| // Copyright 2014 Google Inc. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // Brotli bit stream functions to support the low level format. There are no |
| // compression algorithms here, just the right ordering of bits to match the |
| // specs. |
| |
| #include "./brotli_bit_stream.h" |
| |
| #include <algorithm> |
| #include <limits> |
| #include <vector> |
| |
| #include "./bit_cost.h" |
| #include "./context.h" |
| #include "./entropy_encode.h" |
| #include "./fast_log.h" |
| #include "./prefix.h" |
| #include "./write_bits.h" |
| |
| namespace brotli { |
| |
| // returns false if fail |
| // nibblesbits represents the 2 bits to encode MNIBBLES (0-3) |
| bool EncodeMlen(size_t length, int* bits, int* numbits, int* nibblesbits) { |
| length--; // MLEN - 1 is encoded |
| int lg = length == 0 ? 1 : Log2Floor(length) + 1; |
| if (lg > 24) return false; |
| int mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4; |
| *nibblesbits = mnibbles - 4; |
| *numbits = mnibbles * 4; |
| *bits = length; |
| return true; |
| } |
| |
| void StoreVarLenUint8(int n, int* storage_ix, uint8_t* storage) { |
| if (n == 0) { |
| WriteBits(1, 0, storage_ix, storage); |
| } else { |
| WriteBits(1, 1, storage_ix, storage); |
| int nbits = Log2Floor(n); |
| WriteBits(3, nbits, storage_ix, storage); |
| WriteBits(nbits, n - (1 << nbits), storage_ix, storage); |
| } |
| } |
| |
| bool StoreCompressedMetaBlockHeader(bool final_block, |
| size_t length, |
| int* storage_ix, |
| uint8_t* storage) { |
| // Write ISLAST bit. |
| WriteBits(1, final_block, storage_ix, storage); |
| // Write ISEMPTY bit. |
| if (final_block) { |
| WriteBits(1, length == 0, storage_ix, storage); |
| if (length == 0) { |
| return true; |
| } |
| } |
| |
| if (length == 0) { |
| // Only the last meta-block can be empty. |
| return false; |
| } |
| |
| int lenbits; |
| int nlenbits; |
| int nibblesbits; |
| if (!EncodeMlen(length, &lenbits, &nlenbits, &nibblesbits)) { |
| return false; |
| } |
| |
| WriteBits(2, nibblesbits, storage_ix, storage); |
| WriteBits(nlenbits, lenbits, storage_ix, storage); |
| |
| if (!final_block) { |
| // Write ISUNCOMPRESSED bit. |
| WriteBits(1, 0, storage_ix, storage); |
| } |
| return true; |
| } |
| |
| bool StoreUncompressedMetaBlockHeader(size_t length, |
| int* storage_ix, |
| uint8_t* storage) { |
| // Write ISLAST bit. Uncompressed block cannot be the last one, so set to 0. |
| WriteBits(1, 0, storage_ix, storage); |
| int lenbits; |
| int nlenbits; |
| int nibblesbits; |
| if (!EncodeMlen(length, &lenbits, &nlenbits, &nibblesbits)) { |
| return false; |
| } |
| WriteBits(2, nibblesbits, storage_ix, storage); |
| WriteBits(nlenbits, lenbits, storage_ix, storage); |
| // Write ISUNCOMPRESSED bit. |
| WriteBits(1, 1, storage_ix, storage); |
| return true; |
| } |
| |
| void StoreHuffmanTreeOfHuffmanTreeToBitMask( |
| const int num_codes, |
| const uint8_t *code_length_bitdepth, |
| int *storage_ix, |
| uint8_t *storage) { |
| static const uint8_t kStorageOrder[kCodeLengthCodes] = { |
| 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
| }; |
| // The bit lengths of the Huffman code over the code length alphabet |
| // are compressed with the following static Huffman code: |
| // Symbol Code |
| // ------ ---- |
| // 0 00 |
| // 1 1110 |
| // 2 110 |
| // 3 01 |
| // 4 10 |
| // 5 1111 |
| static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = { |
| 0, 7, 3, 2, 1, 15 |
| }; |
| static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = { |
| 2, 4, 3, 2, 2, 4 |
| }; |
| |
| // Throw away trailing zeros: |
| int codes_to_store = kCodeLengthCodes; |
| if (num_codes > 1) { |
| for (; codes_to_store > 0; --codes_to_store) { |
| if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) { |
| break; |
| } |
| } |
| } |
| int skip_some = 0; // skips none. |
| if (code_length_bitdepth[kStorageOrder[0]] == 0 && |
| code_length_bitdepth[kStorageOrder[1]] == 0) { |
| skip_some = 2; // skips two. |
| if (code_length_bitdepth[kStorageOrder[2]] == 0) { |
| skip_some = 3; // skips three. |
| } |
| } |
| WriteBits(2, skip_some, storage_ix, storage); |
| for (int i = skip_some; i < codes_to_store; ++i) { |
| uint8_t l = code_length_bitdepth[kStorageOrder[i]]; |
| WriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l], |
| kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage); |
| } |
| } |
| |
| void StoreHuffmanTreeToBitMask( |
| const std::vector<uint8_t> &huffman_tree, |
| const std::vector<uint8_t> &huffman_tree_extra_bits, |
| const uint8_t *code_length_bitdepth, |
| const std::vector<uint16_t> &code_length_bitdepth_symbols, |
| int * __restrict storage_ix, |
| uint8_t * __restrict storage) { |
| for (int i = 0; i < huffman_tree.size(); ++i) { |
| int ix = huffman_tree[i]; |
| WriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix], |
| storage_ix, storage); |
| // Extra bits |
| switch (ix) { |
| case 16: |
| WriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage); |
| break; |
| case 17: |
| WriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage); |
| break; |
| } |
| } |
| } |
| |
| void StoreSimpleHuffmanTree(const uint8_t* depths, |
| int symbols[4], |
| int num_symbols, |
| int max_bits, |
| int *storage_ix, uint8_t *storage) { |
| // value of 1 indicates a simple Huffman code |
| WriteBits(2, 1, storage_ix, storage); |
| WriteBits(2, num_symbols - 1, storage_ix, storage); // NSYM - 1 |
| |
| // Sort |
| for (int i = 0; i < num_symbols; i++) { |
| for (int j = i + 1; j < num_symbols; j++) { |
| if (depths[symbols[j]] < depths[symbols[i]]) { |
| std::swap(symbols[j], symbols[i]); |
| } |
| } |
| } |
| |
| if (num_symbols == 2) { |
| WriteBits(max_bits, symbols[0], storage_ix, storage); |
| WriteBits(max_bits, symbols[1], storage_ix, storage); |
| } else if (num_symbols == 3) { |
| WriteBits(max_bits, symbols[0], storage_ix, storage); |
| WriteBits(max_bits, symbols[1], storage_ix, storage); |
| WriteBits(max_bits, symbols[2], storage_ix, storage); |
| } else { |
| WriteBits(max_bits, symbols[0], storage_ix, storage); |
| WriteBits(max_bits, symbols[1], storage_ix, storage); |
| WriteBits(max_bits, symbols[2], storage_ix, storage); |
| WriteBits(max_bits, symbols[3], storage_ix, storage); |
| // tree-select |
| WriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage); |
| } |
| } |
| |
| // num = alphabet size |
| // depths = symbol depths |
| void StoreHuffmanTree(const uint8_t* depths, size_t num, |
| int *storage_ix, uint8_t *storage) { |
| // Write the Huffman tree into the brotli-representation. |
| std::vector<uint8_t> huffman_tree; |
| std::vector<uint8_t> huffman_tree_extra_bits; |
| // TODO: Consider allocating these from stack. |
| huffman_tree.reserve(256); |
| huffman_tree_extra_bits.reserve(256); |
| WriteHuffmanTree(depths, num, &huffman_tree, &huffman_tree_extra_bits); |
| |
| // Calculate the statistics of the Huffman tree in brotli-representation. |
| int huffman_tree_histogram[kCodeLengthCodes] = { 0 }; |
| for (int i = 0; i < huffman_tree.size(); ++i) { |
| ++huffman_tree_histogram[huffman_tree[i]]; |
| } |
| |
| int num_codes = 0; |
| int code = 0; |
| for (int i = 0; i < kCodeLengthCodes; ++i) { |
| if (huffman_tree_histogram[i]) { |
| if (num_codes == 0) { |
| code = i; |
| num_codes = 1; |
| } else if (num_codes == 1) { |
| num_codes = 2; |
| break; |
| } |
| } |
| } |
| |
| // Calculate another Huffman tree to use for compressing both the |
| // earlier Huffman tree with. |
| // TODO: Consider allocating these from stack. |
| uint8_t code_length_bitdepth[kCodeLengthCodes] = { 0 }; |
| std::vector<uint16_t> code_length_bitdepth_symbols(kCodeLengthCodes); |
| CreateHuffmanTree(&huffman_tree_histogram[0], kCodeLengthCodes, |
| 5, &code_length_bitdepth[0]); |
| ConvertBitDepthsToSymbols(code_length_bitdepth, kCodeLengthCodes, |
| code_length_bitdepth_symbols.data()); |
| |
| // Now, we have all the data, let's start storing it |
| StoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth, |
| storage_ix, storage); |
| |
| if (num_codes == 1) { |
| code_length_bitdepth[code] = 0; |
| } |
| |
| // Store the real huffman tree now. |
| StoreHuffmanTreeToBitMask(huffman_tree, |
| huffman_tree_extra_bits, |
| &code_length_bitdepth[0], |
| code_length_bitdepth_symbols, |
| storage_ix, storage); |
| } |
| |
| void BuildAndStoreHuffmanTree(const int *histogram, |
| const int length, |
| uint8_t* depth, |
| uint16_t* bits, |
| int* storage_ix, |
| uint8_t* storage) { |
| int count = 0; |
| int s4[4] = { 0 }; |
| for (size_t i = 0; i < length; i++) { |
| if (histogram[i]) { |
| if (count < 4) { |
| s4[count] = i; |
| } else if (count > 4) { |
| break; |
| } |
| count++; |
| } |
| } |
| |
| int max_bits_counter = length - 1; |
| int max_bits = 0; |
| while (max_bits_counter) { |
| max_bits_counter >>= 1; |
| ++max_bits; |
| } |
| |
| if (count <= 1) { |
| WriteBits(4, 1, storage_ix, storage); |
| WriteBits(max_bits, s4[0], storage_ix, storage); |
| return; |
| } |
| |
| CreateHuffmanTree(histogram, length, 15, depth); |
| ConvertBitDepthsToSymbols(depth, length, bits); |
| |
| if (count <= 4) { |
| StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage); |
| } else { |
| StoreHuffmanTree(depth, length, storage_ix, storage); |
| } |
| } |
| |
| int IndexOf(const std::vector<int>& v, int value) { |
| for (int i = 0; i < v.size(); ++i) { |
| if (v[i] == value) return i; |
| } |
| return -1; |
| } |
| |
| void MoveToFront(std::vector<int>* v, int index) { |
| int value = (*v)[index]; |
| for (int i = index; i > 0; --i) { |
| (*v)[i] = (*v)[i - 1]; |
| } |
| (*v)[0] = value; |
| } |
| |
| std::vector<int> MoveToFrontTransform(const std::vector<int>& v) { |
| if (v.empty()) return v; |
| std::vector<int> mtf(*std::max_element(v.begin(), v.end()) + 1); |
| for (int i = 0; i < mtf.size(); ++i) mtf[i] = i; |
| std::vector<int> result(v.size()); |
| for (int i = 0; i < v.size(); ++i) { |
| int index = IndexOf(mtf, v[i]); |
| result[i] = index; |
| MoveToFront(&mtf, index); |
| } |
| return result; |
| } |
| |
| // Finds runs of zeros in v_in and replaces them with a prefix code of the run |
| // length plus extra bits in *v_out and *extra_bits. Non-zero values in v_in are |
| // shifted by *max_length_prefix. Will not create prefix codes bigger than the |
| // initial value of *max_run_length_prefix. The prefix code of run length L is |
| // simply Log2Floor(L) and the number of extra bits is the same as the prefix |
| // code. |
| void RunLengthCodeZeros(const std::vector<int>& v_in, |
| int* max_run_length_prefix, |
| std::vector<int>* v_out, |
| std::vector<int>* extra_bits) { |
| int max_reps = 0; |
| for (int i = 0; i < v_in.size();) { |
| for (; i < v_in.size() && v_in[i] != 0; ++i) ; |
| int reps = 0; |
| for (; i < v_in.size() && v_in[i] == 0; ++i) { |
| ++reps; |
| } |
| max_reps = std::max(reps, max_reps); |
| } |
| int max_prefix = max_reps > 0 ? Log2Floor(max_reps) : 0; |
| *max_run_length_prefix = std::min(max_prefix, *max_run_length_prefix); |
| for (int i = 0; i < v_in.size();) { |
| if (v_in[i] != 0) { |
| v_out->push_back(v_in[i] + *max_run_length_prefix); |
| extra_bits->push_back(0); |
| ++i; |
| } else { |
| int reps = 1; |
| for (uint32_t k = i + 1; k < v_in.size() && v_in[k] == 0; ++k) { |
| ++reps; |
| } |
| i += reps; |
| while (reps) { |
| if (reps < (2 << *max_run_length_prefix)) { |
| int run_length_prefix = Log2Floor(reps); |
| v_out->push_back(run_length_prefix); |
| extra_bits->push_back(reps - (1 << run_length_prefix)); |
| break; |
| } else { |
| v_out->push_back(*max_run_length_prefix); |
| extra_bits->push_back((1 << *max_run_length_prefix) - 1); |
| reps -= (2 << *max_run_length_prefix) - 1; |
| } |
| } |
| } |
| } |
| } |
| |
| void EncodeContextMap(const std::vector<int>& context_map, |
| int num_clusters, |
| int* storage_ix, uint8_t* storage) { |
| StoreVarLenUint8(num_clusters - 1, storage_ix, storage); |
| |
| if (num_clusters == 1) { |
| return; |
| } |
| |
| std::vector<int> transformed_symbols = MoveToFrontTransform(context_map); |
| std::vector<int> rle_symbols; |
| std::vector<int> extra_bits; |
| int max_run_length_prefix = 6; |
| RunLengthCodeZeros(transformed_symbols, &max_run_length_prefix, |
| &rle_symbols, &extra_bits); |
| HistogramContextMap symbol_histogram; |
| for (int i = 0; i < rle_symbols.size(); ++i) { |
| symbol_histogram.Add(rle_symbols[i]); |
| } |
| bool use_rle = max_run_length_prefix > 0; |
| WriteBits(1, use_rle, storage_ix, storage); |
| if (use_rle) { |
| WriteBits(4, max_run_length_prefix - 1, storage_ix, storage); |
| } |
| EntropyCodeContextMap symbol_code; |
| memset(symbol_code.depth_, 0, sizeof(symbol_code.depth_)); |
| memset(symbol_code.bits_, 0, sizeof(symbol_code.bits_)); |
| BuildAndStoreHuffmanTree(symbol_histogram.data_, |
| num_clusters + max_run_length_prefix, |
| symbol_code.depth_, symbol_code.bits_, |
| storage_ix, storage); |
| for (int i = 0; i < rle_symbols.size(); ++i) { |
| WriteBits(symbol_code.depth_[rle_symbols[i]], |
| symbol_code.bits_[rle_symbols[i]], |
| storage_ix, storage); |
| if (rle_symbols[i] > 0 && rle_symbols[i] <= max_run_length_prefix) { |
| WriteBits(rle_symbols[i], extra_bits[i], storage_ix, storage); |
| } |
| } |
| WriteBits(1, 1, storage_ix, storage); // use move-to-front |
| } |
| |
| void StoreBlockSwitch(const BlockSplitCode& code, |
| const int block_ix, |
| int* storage_ix, |
| uint8_t* storage) { |
| if (block_ix > 0) { |
| int typecode = code.type_code[block_ix]; |
| WriteBits(code.type_depths[typecode], code.type_bits[typecode], |
| storage_ix, storage); |
| } |
| int lencode = code.length_prefix[block_ix]; |
| WriteBits(code.length_depths[lencode], code.length_bits[lencode], |
| storage_ix, storage); |
| WriteBits(code.length_nextra[block_ix], code.length_extra[block_ix], |
| storage_ix, storage); |
| } |
| |
| void BuildAndStoreBlockSplitCode(const std::vector<int>& types, |
| const std::vector<int>& lengths, |
| const int num_types, |
| BlockSplitCode* code, |
| int* storage_ix, |
| uint8_t* storage) { |
| const int num_blocks = types.size(); |
| std::vector<int> type_histo(num_types + 2); |
| std::vector<int> length_histo(26); |
| int last_type = 1; |
| int second_last_type = 0; |
| code->type_code.resize(num_blocks); |
| code->length_prefix.resize(num_blocks); |
| code->length_nextra.resize(num_blocks); |
| code->length_extra.resize(num_blocks); |
| code->type_depths.resize(num_types + 2); |
| code->type_bits.resize(num_types + 2); |
| code->length_depths.resize(26); |
| code->length_bits.resize(26); |
| for (int i = 0; i < num_blocks; ++i) { |
| int type = types[i]; |
| int type_code = (type == last_type + 1 ? 1 : |
| type == second_last_type ? 0 : |
| type + 2); |
| second_last_type = last_type; |
| last_type = type; |
| code->type_code[i] = type_code; |
| if (i > 0) ++type_histo[type_code]; |
| GetBlockLengthPrefixCode(lengths[i], |
| &code->length_prefix[i], |
| &code->length_nextra[i], |
| &code->length_extra[i]); |
| ++length_histo[code->length_prefix[i]]; |
| } |
| StoreVarLenUint8(num_types - 1, storage_ix, storage); |
| if (num_types > 1) { |
| BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2, |
| &code->type_depths[0], &code->type_bits[0], |
| storage_ix, storage); |
| BuildAndStoreHuffmanTree(&length_histo[0], 26, |
| &code->length_depths[0], &code->length_bits[0], |
| storage_ix, storage); |
| StoreBlockSwitch(*code, 0, storage_ix, storage); |
| } |
| } |
| |
| void StoreTrivialContextMap(int num_types, |
| int context_bits, |
| int* storage_ix, |
| uint8_t* storage) { |
| StoreVarLenUint8(num_types - 1, storage_ix, storage); |
| if (num_types > 1) { |
| int repeat_code = context_bits - 1; |
| int repeat_bits = (1 << repeat_code) - 1; |
| int alphabet_size = num_types + repeat_code; |
| std::vector<int> histogram(alphabet_size); |
| std::vector<uint8_t> depths(alphabet_size); |
| std::vector<uint16_t> bits(alphabet_size); |
| // Write RLEMAX. |
| WriteBits(1, 1, storage_ix, storage); |
| WriteBits(4, repeat_code - 1, storage_ix, storage); |
| histogram[repeat_code] = num_types; |
| histogram[0] = 1; |
| for (int i = context_bits; i < alphabet_size; ++i) { |
| histogram[i] = 1; |
| } |
| BuildAndStoreHuffmanTree(&histogram[0], alphabet_size, |
| &depths[0], &bits[0], |
| storage_ix, storage); |
| for (int i = 0; i < num_types; ++i) { |
| int code = (i == 0 ? 0 : i + context_bits - 1); |
| WriteBits(depths[code], bits[code], storage_ix, storage); |
| WriteBits(depths[repeat_code], bits[repeat_code], storage_ix, storage); |
| WriteBits(repeat_code, repeat_bits, storage_ix, storage); |
| } |
| // Write IMTF (inverse-move-to-front) bit. |
| WriteBits(1, 1, storage_ix, storage); |
| } |
| } |
| |
| // Manages the encoding of one block category (literal, command or distance). |
| class BlockEncoder { |
| public: |
| BlockEncoder(int alphabet_size, |
| int num_block_types, |
| const std::vector<int>& block_types, |
| const std::vector<int>& block_lengths) |
| : alphabet_size_(alphabet_size), |
| num_block_types_(num_block_types), |
| block_types_(block_types), |
| block_lengths_(block_lengths), |
| block_ix_(0), |
| block_len_(block_lengths.empty() ? 0 : block_lengths[0]), |
| entropy_ix_(0) {} |
| |
| // Creates entropy codes of block lengths and block types and stores them |
| // to the bit stream. |
| void BuildAndStoreBlockSwitchEntropyCodes(int* storage_ix, uint8_t* storage) { |
| BuildAndStoreBlockSplitCode( |
| block_types_, block_lengths_, num_block_types_, |
| &block_split_code_, storage_ix, storage); |
| } |
| |
| // Creates entropy codes for all block types and stores them to the bit |
| // stream. |
| template<int kSize> |
| void BuildAndStoreEntropyCodes( |
| const std::vector<Histogram<kSize> >& histograms, |
| int* storage_ix, uint8_t* storage) { |
| depths_.resize(histograms.size() * alphabet_size_); |
| bits_.resize(histograms.size() * alphabet_size_); |
| for (int i = 0; i < histograms.size(); ++i) { |
| int ix = i * alphabet_size_; |
| BuildAndStoreHuffmanTree(&histograms[i].data_[0], alphabet_size_, |
| &depths_[ix], &bits_[ix], |
| storage_ix, storage); |
| } |
| } |
| |
| // Stores the next symbol with the entropy code of the current block type. |
| // Updates the block type and block length at block boundaries. |
| void StoreSymbol(int symbol, int* storage_ix, uint8_t* storage) { |
| if (block_len_ == 0) { |
| ++block_ix_; |
| block_len_ = block_lengths_[block_ix_]; |
| entropy_ix_ = block_types_[block_ix_] * alphabet_size_; |
| StoreBlockSwitch(block_split_code_, block_ix_, storage_ix, storage); |
| } |
| --block_len_; |
| int ix = entropy_ix_ + symbol; |
| WriteBits(depths_[ix], bits_[ix], storage_ix, storage); |
| } |
| |
| // Stores the next symbol with the entropy code of the current block type and |
| // context value. |
| // Updates the block type and block length at block boundaries. |
| template<int kContextBits> |
| void StoreSymbolWithContext(int symbol, int context, |
| const std::vector<int>& context_map, |
| int* storage_ix, uint8_t* storage) { |
| if (block_len_ == 0) { |
| ++block_ix_; |
| block_len_ = block_lengths_[block_ix_]; |
| entropy_ix_ = block_types_[block_ix_] << kContextBits; |
| StoreBlockSwitch(block_split_code_, block_ix_, storage_ix, storage); |
| } |
| --block_len_; |
| int histo_ix = context_map[entropy_ix_ + context]; |
| int ix = histo_ix * alphabet_size_ + symbol; |
| WriteBits(depths_[ix], bits_[ix], storage_ix, storage); |
| } |
| |
| private: |
| const int alphabet_size_; |
| const int num_block_types_; |
| const std::vector<int>& block_types_; |
| const std::vector<int>& block_lengths_; |
| BlockSplitCode block_split_code_; |
| int block_ix_; |
| int block_len_; |
| int entropy_ix_; |
| std::vector<uint8_t> depths_; |
| std::vector<uint16_t> bits_; |
| }; |
| |
| void JumpToByteBoundary(int* storage_ix, uint8_t* storage) { |
| *storage_ix = (*storage_ix + 7) & ~7; |
| storage[*storage_ix >> 3] = 0; |
| } |
| |
| bool StoreMetaBlock(const uint8_t* input, |
| size_t start_pos, |
| size_t length, |
| size_t mask, |
| uint8_t prev_byte, |
| uint8_t prev_byte2, |
| bool is_last, |
| int num_direct_distance_codes, |
| int distance_postfix_bits, |
| int literal_context_mode, |
| const brotli::Command *commands, |
| size_t n_commands, |
| const MetaBlockSplit& mb, |
| int *storage_ix, |
| uint8_t *storage) { |
| if (!StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage)) { |
| return false; |
| } |
| |
| if (length == 0) { |
| // Only the last meta-block can be empty, so jump to next byte. |
| JumpToByteBoundary(storage_ix, storage); |
| return true; |
| } |
| |
| int num_distance_codes = |
| kNumDistanceShortCodes + num_direct_distance_codes + |
| (48 << distance_postfix_bits); |
| |
| BlockEncoder literal_enc(256, |
| mb.literal_split.num_types, |
| mb.literal_split.types, |
| mb.literal_split.lengths); |
| BlockEncoder command_enc(kNumCommandPrefixes, |
| mb.command_split.num_types, |
| mb.command_split.types, |
| mb.command_split.lengths); |
| BlockEncoder distance_enc(num_distance_codes, |
| mb.distance_split.num_types, |
| mb.distance_split.types, |
| mb.distance_split.lengths); |
| |
| literal_enc.BuildAndStoreBlockSwitchEntropyCodes(storage_ix, storage); |
| command_enc.BuildAndStoreBlockSwitchEntropyCodes(storage_ix, storage); |
| distance_enc.BuildAndStoreBlockSwitchEntropyCodes(storage_ix, storage); |
| |
| WriteBits(2, distance_postfix_bits, storage_ix, storage); |
| WriteBits(4, num_direct_distance_codes >> distance_postfix_bits, |
| storage_ix, storage); |
| for (int i = 0; i < mb.literal_split.num_types; ++i) { |
| WriteBits(2, literal_context_mode, storage_ix, storage); |
| } |
| |
| if (mb.literal_context_map.empty()) { |
| StoreTrivialContextMap(mb.literal_histograms.size(), kLiteralContextBits, |
| storage_ix, storage); |
| } else { |
| EncodeContextMap(mb.literal_context_map, mb.literal_histograms.size(), |
| storage_ix, storage); |
| } |
| |
| if (mb.distance_context_map.empty()) { |
| StoreTrivialContextMap(mb.distance_histograms.size(), kDistanceContextBits, |
| storage_ix, storage); |
| } else { |
| EncodeContextMap(mb.distance_context_map, mb.distance_histograms.size(), |
| storage_ix, storage); |
| } |
| |
| literal_enc.BuildAndStoreEntropyCodes(mb.literal_histograms, |
| storage_ix, storage); |
| command_enc.BuildAndStoreEntropyCodes(mb.command_histograms, |
| storage_ix, storage); |
| distance_enc.BuildAndStoreEntropyCodes(mb.distance_histograms, |
| storage_ix, storage); |
| |
| size_t pos = start_pos; |
| for (int i = 0; i < n_commands; ++i) { |
| const Command cmd = commands[i]; |
| int cmd_code = cmd.cmd_prefix_; |
| int lennumextra = cmd.cmd_extra_ >> 48; |
| uint64_t lenextra = cmd.cmd_extra_ & 0xffffffffffffULL; |
| command_enc.StoreSymbol(cmd_code, storage_ix, storage); |
| WriteBits(lennumextra, lenextra, storage_ix, storage); |
| if (mb.literal_context_map.empty()) { |
| for (int j = 0; j < cmd.insert_len_; j++) { |
| literal_enc.StoreSymbol(input[pos & mask], storage_ix, storage); |
| ++pos; |
| } |
| } else { |
| for (int j = 0; j < cmd.insert_len_; ++j) { |
| int context = Context(prev_byte, prev_byte2, |
| literal_context_mode); |
| int literal = input[pos & mask]; |
| literal_enc.StoreSymbolWithContext<kLiteralContextBits>( |
| literal, context, mb.literal_context_map, storage_ix, storage); |
| prev_byte2 = prev_byte; |
| prev_byte = literal; |
| ++pos; |
| } |
| } |
| pos += cmd.copy_len_; |
| if (cmd.copy_len_ > 0) { |
| prev_byte2 = input[(pos - 2) & mask]; |
| prev_byte = input[(pos - 1) & mask]; |
| if (cmd.cmd_prefix_ >= 128) { |
| int dist_code = cmd.dist_prefix_; |
| int distnumextra = cmd.dist_extra_ >> 24; |
| int distextra = cmd.dist_extra_ & 0xffffff; |
| if (mb.distance_context_map.empty()) { |
| distance_enc.StoreSymbol(dist_code, storage_ix, storage); |
| } else { |
| int context = cmd.DistanceContext(); |
| distance_enc.StoreSymbolWithContext<kDistanceContextBits>( |
| dist_code, context, mb.distance_context_map, storage_ix, storage); |
| } |
| brotli::WriteBits(distnumextra, distextra, storage_ix, storage); |
| } |
| } |
| } |
| if (is_last) { |
| JumpToByteBoundary(storage_ix, storage); |
| } |
| return true; |
| } |
| |
| bool StoreMetaBlockTrivial(const uint8_t* input, |
| size_t start_pos, |
| size_t length, |
| size_t mask, |
| bool is_last, |
| const brotli::Command *commands, |
| size_t n_commands, |
| int *storage_ix, |
| uint8_t *storage) { |
| if (!StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage)) { |
| return false; |
| } |
| |
| if (length == 0) { |
| // Only the last meta-block can be empty, so jump to next byte. |
| JumpToByteBoundary(storage_ix, storage); |
| return true; |
| } |
| |
| HistogramLiteral lit_histo; |
| HistogramCommand cmd_histo; |
| HistogramDistance dist_histo; |
| |
| size_t pos = start_pos; |
| for (int i = 0; i < n_commands; ++i) { |
| const Command cmd = commands[i]; |
| cmd_histo.Add(cmd.cmd_prefix_); |
| for (int j = 0; j < cmd.insert_len_; ++j) { |
| lit_histo.Add(input[pos & mask]); |
| ++pos; |
| } |
| pos += cmd.copy_len_; |
| if (cmd.copy_len_ > 0 && cmd.cmd_prefix_ >= 128) { |
| dist_histo.Add(cmd.dist_prefix_); |
| } |
| } |
| |
| WriteBits(13, 0, storage_ix, storage); |
| |
| std::vector<uint8_t> lit_depth(256); |
| std::vector<uint16_t> lit_bits(256); |
| std::vector<uint8_t> cmd_depth(kNumCommandPrefixes); |
| std::vector<uint16_t> cmd_bits(kNumCommandPrefixes); |
| std::vector<uint8_t> dist_depth(64); |
| std::vector<uint16_t> dist_bits(64); |
| |
| BuildAndStoreHuffmanTree(&lit_histo.data_[0], 256, |
| &lit_depth[0], &lit_bits[0], |
| storage_ix, storage); |
| BuildAndStoreHuffmanTree(&cmd_histo.data_[0], kNumCommandPrefixes, |
| &cmd_depth[0], &cmd_bits[0], |
| storage_ix, storage); |
| BuildAndStoreHuffmanTree(&dist_histo.data_[0], 64, |
| &dist_depth[0], &dist_bits[0], |
| storage_ix, storage); |
| |
| pos = start_pos; |
| for (int i = 0; i < n_commands; ++i) { |
| const Command cmd = commands[i]; |
| const int cmd_code = cmd.cmd_prefix_; |
| const int lennumextra = cmd.cmd_extra_ >> 48; |
| const uint64_t lenextra = cmd.cmd_extra_ & 0xffffffffffffULL; |
| WriteBits(cmd_depth[cmd_code], cmd_bits[cmd_code], storage_ix, storage); |
| WriteBits(lennumextra, lenextra, storage_ix, storage); |
| for (int j = 0; j < cmd.insert_len_; j++) { |
| const uint8_t literal = input[pos & mask]; |
| WriteBits(lit_depth[literal], lit_bits[literal], storage_ix, storage); |
| ++pos; |
| } |
| pos += cmd.copy_len_; |
| if (cmd.copy_len_ > 0 && cmd.cmd_prefix_ >= 128) { |
| const int dist_code = cmd.dist_prefix_; |
| const int distnumextra = cmd.dist_extra_ >> 24; |
| const int distextra = cmd.dist_extra_ & 0xffffff; |
| WriteBits(dist_depth[dist_code], dist_bits[dist_code], |
| storage_ix, storage); |
| WriteBits(distnumextra, distextra, storage_ix, storage); |
| } |
| } |
| if (is_last) { |
| JumpToByteBoundary(storage_ix, storage); |
| } |
| return true; |
| } |
| |
| // This is for storing uncompressed blocks (simple raw storage of |
| // bytes-as-bytes). |
| bool StoreUncompressedMetaBlock(bool final_block, |
| const uint8_t * __restrict input, |
| size_t position, size_t mask, |
| size_t len, |
| int * __restrict storage_ix, |
| uint8_t * __restrict storage) { |
| if (!brotli::StoreUncompressedMetaBlockHeader(len, storage_ix, storage)) { |
| return false; |
| } |
| JumpToByteBoundary(storage_ix, storage); |
| |
| size_t masked_pos = position & mask; |
| if (masked_pos + len > mask + 1) { |
| size_t len1 = mask + 1 - masked_pos; |
| memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len1); |
| *storage_ix += len1 << 3; |
| len -= len1; |
| masked_pos = 0; |
| } |
| memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len); |
| *storage_ix += len << 3; |
| |
| // We need to clear the next 4 bytes to continue to be |
| // compatible with WriteBits. |
| brotli::WriteBitsPrepareStorage(*storage_ix, storage); |
| |
| // Since the uncomressed block itself may not be the final block, add an empty |
| // one after this. |
| if (final_block) { |
| brotli::WriteBits(1, 1, storage_ix, storage); // islast |
| brotli::WriteBits(1, 1, storage_ix, storage); // isempty |
| JumpToByteBoundary(storage_ix, storage); |
| } |
| return true; |
| } |
| |
| void StoreSyncMetaBlock(int * __restrict storage_ix, |
| uint8_t * __restrict storage) { |
| // Empty metadata meta-block bit pattern: |
| // 1 bit: is_last (0) |
| // 2 bits: num nibbles (3) |
| // 1 bit: reserved (0) |
| // 2 bits: metadata length bytes (0) |
| WriteBits(6, 6, storage_ix, storage); |
| JumpToByteBoundary(storage_ix, storage); |
| } |
| |
| } // namespace brotli |