| /*===-- X86DisassemblerDecoderCommon.h - Disassembler decoder -----*- C -*-===* |
| * |
| * The LLVM Compiler Infrastructure |
| * |
| * This file is distributed under the University of Illinois Open Source |
| * License. See LICENSE.TXT for details. |
| * |
| *===----------------------------------------------------------------------===* |
| * |
| * This file is part of the X86 Disassembler. |
| * It contains common definitions used by both the disassembler and the table |
| * generator. |
| * Documentation for the disassembler can be found in X86Disassembler.h. |
| * |
| *===----------------------------------------------------------------------===*/ |
| |
| /* Capstone Disassembler Engine */ |
| /* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013> */ |
| |
| /* |
| * This header file provides those definitions that need to be shared between |
| * the decoder and the table generator in a C-friendly manner. |
| */ |
| |
| #ifndef SB_X86DISASSEMBLERDECODERCOMMON_H |
| #define SB_X86DISASSEMBLERDECODERCOMMON_H |
| |
| #include <stdint.h> |
| |
| #define INSTRUCTIONS_SYM x86DisassemblerInstrSpecifiers |
| #define CONTEXTS_SYM x86DisassemblerContexts |
| #define ONEBYTE_SYM x86DisassemblerOneByteOpcodes |
| #define TWOBYTE_SYM x86DisassemblerTwoByteOpcodes |
| #define THREEBYTE38_SYM x86DisassemblerThreeByte38Opcodes |
| #define THREEBYTE3A_SYM x86DisassemblerThreeByte3AOpcodes |
| #define THREEBYTEA6_SYM x86DisassemblerThreeByteA6Opcodes |
| #define THREEBYTEA7_SYM x86DisassemblerThreeByteA7Opcodes |
| #define XOP8_MAP_SYM x86DisassemblerXOP8Opcodes |
| #define XOP9_MAP_SYM x86DisassemblerXOP9Opcodes |
| #define XOPA_MAP_SYM x86DisassemblerXOPAOpcodes |
| |
| /* |
| * Attributes of an instruction that must be known before the opcode can be |
| * processed correctly. Most of these indicate the presence of particular |
| * prefixes, but ATTR_64BIT is simply an attribute of the decoding context. |
| */ |
| #define ATTRIBUTE_BITS \ |
| ENUM_ENTRY(ATTR_NONE, 0x00) \ |
| ENUM_ENTRY(ATTR_64BIT, 0x01) \ |
| ENUM_ENTRY(ATTR_XS, 0x02) \ |
| ENUM_ENTRY(ATTR_XD, 0x04) \ |
| ENUM_ENTRY(ATTR_REXW, 0x08) \ |
| ENUM_ENTRY(ATTR_OPSIZE, 0x10) \ |
| ENUM_ENTRY(ATTR_ADSIZE, 0x20) \ |
| ENUM_ENTRY(ATTR_VEX, 0x40) \ |
| ENUM_ENTRY(ATTR_VEXL, 0x80) |
| |
| #define ENUM_ENTRY(n, v) n = v, |
| enum attributeBits { |
| ATTRIBUTE_BITS |
| ATTR_max |
| }; |
| #undef ENUM_ENTRY |
| |
| /* |
| * Combinations of the above attributes that are relevant to instruction |
| * decode. Although other combinations are possible, they can be reduced to |
| * these without affecting the ultimately decoded instruction. |
| */ |
| |
| /* Class name Rank Rationale for rank assignment */ |
| #define INSTRUCTION_CONTEXTS \ |
| ENUM_ENTRY(IC, 0, "says nothing about the instruction") \ |
| ENUM_ENTRY(IC_64BIT, 1, "says the instruction applies in " \ |
| "64-bit mode but no more") \ |
| ENUM_ENTRY(IC_OPSIZE, 3, "requires an OPSIZE prefix, so " \ |
| "operands change width") \ |
| ENUM_ENTRY(IC_ADSIZE, 3, "requires an ADSIZE prefix, so " \ |
| "operands change width") \ |
| ENUM_ENTRY(IC_XD, 2, "may say something about the opcode " \ |
| "but not the operands") \ |
| ENUM_ENTRY(IC_XS, 2, "may say something about the opcode " \ |
| "but not the operands") \ |
| ENUM_ENTRY(IC_XD_OPSIZE, 3, "requires an OPSIZE prefix, so " \ |
| "operands change width") \ |
| ENUM_ENTRY(IC_XS_OPSIZE, 3, "requires an OPSIZE prefix, so " \ |
| "operands change width") \ |
| ENUM_ENTRY(IC_64BIT_REXW, 4, "requires a REX.W prefix, so operands "\ |
| "change width; overrides IC_OPSIZE") \ |
| ENUM_ENTRY(IC_64BIT_OPSIZE, 3, "Just as meaningful as IC_OPSIZE") \ |
| ENUM_ENTRY(IC_64BIT_ADSIZE, 3, "Just as meaningful as IC_ADSIZE") \ |
| ENUM_ENTRY(IC_64BIT_XD, 5, "XD instructions are SSE; REX.W is " \ |
| "secondary") \ |
| ENUM_ENTRY(IC_64BIT_XS, 5, "Just as meaningful as IC_64BIT_XD") \ |
| ENUM_ENTRY(IC_64BIT_XD_OPSIZE, 3, "Just as meaningful as IC_XD_OPSIZE") \ |
| ENUM_ENTRY(IC_64BIT_XS_OPSIZE, 3, "Just as meaningful as IC_XS_OPSIZE") \ |
| ENUM_ENTRY(IC_64BIT_REXW_XS, 6, "OPSIZE could mean a different " \ |
| "opcode") \ |
| ENUM_ENTRY(IC_64BIT_REXW_XD, 6, "Just as meaningful as " \ |
| "IC_64BIT_REXW_XS") \ |
| ENUM_ENTRY(IC_64BIT_REXW_OPSIZE, 7, "The Dynamic Duo! Prefer over all " \ |
| "else because this changes most " \ |
| "operands' meaning") \ |
| ENUM_ENTRY(IC_VEX, 1, "requires a VEX prefix") \ |
| ENUM_ENTRY(IC_VEX_XS, 2, "requires VEX and the XS prefix") \ |
| ENUM_ENTRY(IC_VEX_XD, 2, "requires VEX and the XD prefix") \ |
| ENUM_ENTRY(IC_VEX_OPSIZE, 2, "requires VEX and the OpSize prefix") \ |
| ENUM_ENTRY(IC_VEX_W, 3, "requires VEX and the W prefix") \ |
| ENUM_ENTRY(IC_VEX_W_XS, 4, "requires VEX, W, and XS prefix") \ |
| ENUM_ENTRY(IC_VEX_W_XD, 4, "requires VEX, W, and XD prefix") \ |
| ENUM_ENTRY(IC_VEX_W_OPSIZE, 4, "requires VEX, W, and OpSize") \ |
| ENUM_ENTRY(IC_VEX_L, 3, "requires VEX and the L prefix") \ |
| ENUM_ENTRY(IC_VEX_L_XS, 4, "requires VEX and the L and XS prefix")\ |
| ENUM_ENTRY(IC_VEX_L_XD, 4, "requires VEX and the L and XD prefix")\ |
| ENUM_ENTRY(IC_VEX_L_OPSIZE, 4, "requires VEX, L, and OpSize") \ |
| ENUM_ENTRY(IC_VEX_L_W, 4, "requires VEX, L and W") \ |
| ENUM_ENTRY(IC_VEX_L_W_XS, 5, "requires VEX, L, W and XS prefix") \ |
| ENUM_ENTRY(IC_VEX_L_W_XD, 5, "requires VEX, L, W and XD prefix") \ |
| ENUM_ENTRY(IC_VEX_L_W_OPSIZE, 5, "requires VEX, L, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX, 1, "requires an EVEX prefix") \ |
| ENUM_ENTRY(IC_EVEX_XS, 2, "requires EVEX and the XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_XD, 2, "requires EVEX and the XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_OPSIZE, 2, "requires EVEX and the OpSize prefix") \ |
| ENUM_ENTRY(IC_EVEX_W, 3, "requires EVEX and the W prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XS, 4, "requires EVEX, W, and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XD, 4, "requires EVEX, W, and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_OPSIZE, 4, "requires EVEX, W, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L, 3, "requires EVEX and the L prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_XS, 4, "requires EVEX and the L and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_XD, 4, "requires EVEX and the L and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_OPSIZE, 4, "requires EVEX, L, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_W, 3, "requires EVEX, L and W") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XS, 4, "requires EVEX, L, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XD, 4, "requires EVEX, L, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_OPSIZE, 4, "requires EVEX, L, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2, 3, "requires EVEX and the L2 prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_XS, 4, "requires EVEX and the L2 and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_XD, 4, "requires EVEX and the L2 and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_OPSIZE, 4, "requires EVEX, L2, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_W, 3, "requires EVEX, L2 and W") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XS, 4, "requires EVEX, L2, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XD, 4, "requires EVEX, L2, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE, 4, "requires EVEX, L2, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_K, 1, "requires an EVEX_K prefix") \ |
| ENUM_ENTRY(IC_EVEX_XS_K, 2, "requires EVEX_K and the XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_XD_K, 2, "requires EVEX_K and the XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_OPSIZE_K, 2, "requires EVEX_K and the OpSize prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_K, 3, "requires EVEX_K and the W prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XS_K, 4, "requires EVEX_K, W, and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XD_K, 4, "requires EVEX_K, W, and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_OPSIZE_K, 4, "requires EVEX_K, W, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_K, 3, "requires EVEX_K and the L prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_XS_K, 4, "requires EVEX_K and the L and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_XD_K, 4, "requires EVEX_K and the L and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_OPSIZE_K, 4, "requires EVEX_K, L, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_W_K, 3, "requires EVEX_K, L and W") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XS_K, 4, "requires EVEX_K, L, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XD_K, 4, "requires EVEX_K, L, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K, 4, "requires EVEX_K, L, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_K, 3, "requires EVEX_K and the L2 prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_XS_K, 4, "requires EVEX_K and the L2 and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_XD_K, 4, "requires EVEX_K and the L2 and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K, 4, "requires EVEX_K, L2, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_K, 3, "requires EVEX_K, L2 and W") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XS_K, 4, "requires EVEX_K, L2, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XD_K, 4, "requires EVEX_K, L2, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K, 4, "requires EVEX_K, L2, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_B, 1, "requires an EVEX_B prefix") \ |
| ENUM_ENTRY(IC_EVEX_XS_B, 2, "requires EVEX_B and the XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_XD_B, 2, "requires EVEX_B and the XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_OPSIZE_B, 2, "requires EVEX_B and the OpSize prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_B, 3, "requires EVEX_B and the W prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XS_B, 4, "requires EVEX_B, W, and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XD_B, 4, "requires EVEX_B, W, and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_OPSIZE_B, 4, "requires EVEX_B, W, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_B, 3, "requires EVEX_B and the L prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_XS_B, 4, "requires EVEX_B and the L and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_XD_B, 4, "requires EVEX_B and the L and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_OPSIZE_B, 4, "requires EVEX_B, L, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_W_B, 3, "requires EVEX_B, L and W") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XS_B, 4, "requires EVEX_B, L, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XD_B, 4, "requires EVEX_B, L, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_B, 4, "requires EVEX_B, L, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_B, 3, "requires EVEX_B and the L2 prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_XS_B, 4, "requires EVEX_B and the L2 and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_XD_B, 4, "requires EVEX_B and the L2 and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_OPSIZE_B, 4, "requires EVEX_B, L2, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_B, 3, "requires EVEX_B, L2 and W") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XS_B, 4, "requires EVEX_B, L2, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XD_B, 4, "requires EVEX_B, L2, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_B, 4, "requires EVEX_B, L2, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_K_B, 1, "requires EVEX_B and EVEX_K prefix") \ |
| ENUM_ENTRY(IC_EVEX_XS_K_B, 2, "requires EVEX_B, EVEX_K and the XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_XD_K_B, 2, "requires EVEX_B, EVEX_K and the XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_OPSIZE_K_B, 2, "requires EVEX_B, EVEX_K and the OpSize prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_K_B, 3, "requires EVEX_B, EVEX_K and the W prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, W, and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, W, and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, W, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_K_B, 3, "requires EVEX_B, EVEX_K and the L prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_W_K_B, 3, "requires EVEX_B, EVEX_K, L and W") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_K_B, 3, "requires EVEX_B, EVEX_K and the L2 prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L2, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_K_B, 3, "requires EVEX_B, EVEX_K, L2 and W") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_KZ_B, 1, "requires EVEX_B and EVEX_KZ prefix") \ |
| ENUM_ENTRY(IC_EVEX_XS_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_XD_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_OPSIZE_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the OpSize prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the W prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the L prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ, L and W") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the L2 prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L2 and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L2 and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ, L2 and W") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_KZ, 1, "requires an EVEX_KZ prefix") \ |
| ENUM_ENTRY(IC_EVEX_XS_KZ, 2, "requires EVEX_KZ and the XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_XD_KZ, 2, "requires EVEX_KZ and the XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_OPSIZE_KZ, 2, "requires EVEX_KZ and the OpSize prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_KZ, 3, "requires EVEX_KZ and the W prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XS_KZ, 4, "requires EVEX_KZ, W, and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XD_KZ, 4, "requires EVEX_KZ, W, and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_OPSIZE_KZ, 4, "requires EVEX_KZ, W, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_KZ, 3, "requires EVEX_KZ and the L prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_XS_KZ, 4, "requires EVEX_KZ and the L and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_XD_KZ, 4, "requires EVEX_KZ and the L and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_OPSIZE_KZ, 4, "requires EVEX_KZ, L, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_W_KZ, 3, "requires EVEX_KZ, L and W") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XS_KZ, 4, "requires EVEX_KZ, L, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XD_KZ, 4, "requires EVEX_KZ, L, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_KZ, 4, "requires EVEX_KZ, L, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_KZ, 3, "requires EVEX_KZ and the L2 prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_XS_KZ, 4, "requires EVEX_KZ and the L2 and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_XD_KZ, 4, "requires EVEX_KZ and the L2 and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_OPSIZE_KZ, 4, "requires EVEX_KZ, L2, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_KZ, 3, "requires EVEX_KZ, L2 and W") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XS_KZ, 4, "requires EVEX_KZ, L2, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XD_KZ, 4, "requires EVEX_KZ, L2, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_KZ, 4, "requires EVEX_KZ, L2, W and OpSize") |
| |
| #define ENUM_ENTRY(n, r, d) n, |
| typedef enum { |
| INSTRUCTION_CONTEXTS |
| IC_max |
| } InstructionContext; |
| #undef ENUM_ENTRY |
| |
| /* |
| * Opcode types, which determine which decode table to use, both in the Intel |
| * manual and also for the decoder. |
| */ |
| typedef enum { |
| ONEBYTE = 0, |
| TWOBYTE = 1, |
| THREEBYTE_38 = 2, |
| THREEBYTE_3A = 3, |
| THREEBYTE_A6 = 4, |
| THREEBYTE_A7 = 5, |
| XOP8_MAP = 6, |
| XOP9_MAP = 7, |
| XOPA_MAP = 8 |
| } OpcodeType; |
| |
| /* |
| * The following structs are used for the hierarchical decode table. After |
| * determining the instruction's class (i.e., which IC_* constant applies to |
| * it), the decoder reads the opcode. Some instructions require specific |
| * values of the ModR/M byte, so the ModR/M byte indexes into the final table. |
| * |
| * If a ModR/M byte is not required, "required" is left unset, and the values |
| * for each instructionID are identical. |
| */ |
| |
| typedef uint16_t InstrUID; |
| |
| /* |
| * ModRMDecisionType - describes the type of ModR/M decision, allowing the |
| * consumer to determine the number of entries in it. |
| * |
| * MODRM_ONEENTRY - No matter what the value of the ModR/M byte is, the decoded |
| * instruction is the same. |
| * MODRM_SPLITRM - If the ModR/M byte is between 0x00 and 0xbf, the opcode |
| * corresponds to one instruction; otherwise, it corresponds to |
| * a different instruction. |
| * MODRM_SPLITMISC- If the ModR/M byte is between 0x00 and 0xbf, ModR/M byte |
| * divided by 8 is used to select instruction; otherwise, each |
| * value of the ModR/M byte could correspond to a different |
| * instruction. |
| * MODRM_SPLITREG - ModR/M byte divided by 8 is used to select instruction. This |
| corresponds to instructions that use reg field as opcode |
| * MODRM_FULL - Potentially, each value of the ModR/M byte could correspond |
| * to a different instruction. |
| */ |
| |
| #define MODRMTYPES \ |
| ENUM_ENTRY(MODRM_ONEENTRY) \ |
| ENUM_ENTRY(MODRM_SPLITRM) \ |
| ENUM_ENTRY(MODRM_SPLITMISC) \ |
| ENUM_ENTRY(MODRM_SPLITREG) \ |
| ENUM_ENTRY(MODRM_FULL) |
| |
| #define ENUM_ENTRY(n) n, |
| typedef enum { |
| MODRMTYPES |
| MODRM_max |
| } ModRMDecisionType; |
| #undef ENUM_ENTRY |
| |
| /* |
| * ModRMDecision - Specifies whether a ModR/M byte is needed and (if so) which |
| * instruction each possible value of the ModR/M byte corresponds to. Once |
| * this information is known, we have narrowed down to a single instruction. |
| */ |
| struct ModRMDecision { |
| uint8_t modrm_type; |
| |
| /* The macro below must be defined wherever this file is included. */ |
| INSTRUCTION_IDS |
| }; |
| |
| /* |
| * OpcodeDecision - Specifies which set of ModR/M->instruction tables to look at |
| * given a particular opcode. |
| */ |
| struct OpcodeDecision { |
| struct ModRMDecision modRMDecisions[256]; |
| }; |
| |
| /* |
| * ContextDecision - Specifies which opcode->instruction tables to look at given |
| * a particular context (set of attributes). Since there are many possible |
| * contexts, the decoder first uses CONTEXTS_SYM to determine which context |
| * applies given a specific set of attributes. Hence there are only IC_max |
| * entries in this table, rather than 2^(ATTR_max). |
| */ |
| struct ContextDecision { |
| struct OpcodeDecision opcodeDecisions[IC_max]; |
| }; |
| |
| /* |
| * Physical encodings of instruction operands. |
| */ |
| |
| #define ENCODINGS \ |
| ENUM_ENTRY(ENCODING_NONE, "") \ |
| ENUM_ENTRY(ENCODING_REG, "Register operand in ModR/M byte.") \ |
| ENUM_ENTRY(ENCODING_RM, "R/M operand in ModR/M byte.") \ |
| ENUM_ENTRY(ENCODING_VVVV, "Register operand in VEX.vvvv byte.") \ |
| ENUM_ENTRY(ENCODING_WRITEMASK, "Register operand in EVEX.aaa byte.") \ |
| ENUM_ENTRY(ENCODING_CB, "1-byte code offset (possible new CS value)") \ |
| ENUM_ENTRY(ENCODING_CW, "2-byte") \ |
| ENUM_ENTRY(ENCODING_CD, "4-byte") \ |
| ENUM_ENTRY(ENCODING_CP, "6-byte") \ |
| ENUM_ENTRY(ENCODING_CO, "8-byte") \ |
| ENUM_ENTRY(ENCODING_CT, "10-byte") \ |
| ENUM_ENTRY(ENCODING_IB, "1-byte immediate") \ |
| ENUM_ENTRY(ENCODING_IW, "2-byte") \ |
| ENUM_ENTRY(ENCODING_ID, "4-byte") \ |
| ENUM_ENTRY(ENCODING_IO, "8-byte") \ |
| ENUM_ENTRY(ENCODING_RB, "(AL..DIL, R8L..R15L) Register code added to " \ |
| "the opcode byte") \ |
| ENUM_ENTRY(ENCODING_RW, "(AX..DI, R8W..R15W)") \ |
| ENUM_ENTRY(ENCODING_RD, "(EAX..EDI, R8D..R15D)") \ |
| ENUM_ENTRY(ENCODING_RO, "(RAX..RDI, R8..R15)") \ |
| ENUM_ENTRY(ENCODING_I, "Position on floating-point stack added to the " \ |
| "opcode byte") \ |
| \ |
| ENUM_ENTRY(ENCODING_Iv, "Immediate of operand size") \ |
| ENUM_ENTRY(ENCODING_Ia, "Immediate of address size") \ |
| ENUM_ENTRY(ENCODING_Rv, "Register code of operand size added to the " \ |
| "opcode byte") \ |
| ENUM_ENTRY(ENCODING_DUP, "Duplicate of another operand; ID is encoded " \ |
| "in type") |
| |
| #define ENUM_ENTRY(n, d) n, |
| typedef enum { |
| ENCODINGS |
| ENCODING_max |
| } OperandEncoding; |
| #undef ENUM_ENTRY |
| |
| /* |
| * Semantic interpretations of instruction operands. |
| */ |
| |
| #define TYPES \ |
| ENUM_ENTRY(TYPE_NONE, "") \ |
| ENUM_ENTRY(TYPE_REL8, "1-byte immediate address") \ |
| ENUM_ENTRY(TYPE_REL16, "2-byte") \ |
| ENUM_ENTRY(TYPE_REL32, "4-byte") \ |
| ENUM_ENTRY(TYPE_REL64, "8-byte") \ |
| ENUM_ENTRY(TYPE_PTR1616, "2+2-byte segment+offset address") \ |
| ENUM_ENTRY(TYPE_PTR1632, "2+4-byte") \ |
| ENUM_ENTRY(TYPE_PTR1664, "2+8-byte") \ |
| ENUM_ENTRY(TYPE_R8, "1-byte register operand") \ |
| ENUM_ENTRY(TYPE_R16, "2-byte") \ |
| ENUM_ENTRY(TYPE_R32, "4-byte") \ |
| ENUM_ENTRY(TYPE_R64, "8-byte") \ |
| ENUM_ENTRY(TYPE_IMM8, "1-byte immediate operand") \ |
| ENUM_ENTRY(TYPE_IMM16, "2-byte") \ |
| ENUM_ENTRY(TYPE_IMM32, "4-byte") \ |
| ENUM_ENTRY(TYPE_IMM64, "8-byte") \ |
| ENUM_ENTRY(TYPE_IMM3, "1-byte immediate operand between 0 and 7") \ |
| ENUM_ENTRY(TYPE_IMM5, "1-byte immediate operand between 0 and 31") \ |
| ENUM_ENTRY(TYPE_RM8, "1-byte register or memory operand") \ |
| ENUM_ENTRY(TYPE_RM16, "2-byte") \ |
| ENUM_ENTRY(TYPE_RM32, "4-byte") \ |
| ENUM_ENTRY(TYPE_RM64, "8-byte") \ |
| ENUM_ENTRY(TYPE_M, "Memory operand") \ |
| ENUM_ENTRY(TYPE_M8, "1-byte") \ |
| ENUM_ENTRY(TYPE_M16, "2-byte") \ |
| ENUM_ENTRY(TYPE_M32, "4-byte") \ |
| ENUM_ENTRY(TYPE_M64, "8-byte") \ |
| ENUM_ENTRY(TYPE_LEA, "Effective address") \ |
| ENUM_ENTRY(TYPE_M128, "16-byte (SSE/SSE2)") \ |
| ENUM_ENTRY(TYPE_M256, "256-byte (AVX)") \ |
| ENUM_ENTRY(TYPE_M1616, "2+2-byte segment+offset address") \ |
| ENUM_ENTRY(TYPE_M1632, "2+4-byte") \ |
| ENUM_ENTRY(TYPE_M1664, "2+8-byte") \ |
| ENUM_ENTRY(TYPE_M16_32, "2+4-byte two-part memory operand (LIDT, LGDT)") \ |
| ENUM_ENTRY(TYPE_M16_16, "2+2-byte (BOUND)") \ |
| ENUM_ENTRY(TYPE_M32_32, "4+4-byte (BOUND)") \ |
| ENUM_ENTRY(TYPE_M16_64, "2+8-byte (LIDT, LGDT)") \ |
| ENUM_ENTRY(TYPE_MOFFS8, "1-byte memory offset (relative to segment " \ |
| "base)") \ |
| ENUM_ENTRY(TYPE_MOFFS16, "2-byte") \ |
| ENUM_ENTRY(TYPE_MOFFS32, "4-byte") \ |
| ENUM_ENTRY(TYPE_MOFFS64, "8-byte") \ |
| ENUM_ENTRY(TYPE_SREG, "Byte with single bit set: 0 = ES, 1 = CS, " \ |
| "2 = SS, 3 = DS, 4 = FS, 5 = GS") \ |
| ENUM_ENTRY(TYPE_M32FP, "32-bit IEE754 memory floating-point operand") \ |
| ENUM_ENTRY(TYPE_M64FP, "64-bit") \ |
| ENUM_ENTRY(TYPE_M80FP, "80-bit extended") \ |
| ENUM_ENTRY(TYPE_M16INT, "2-byte memory integer operand for use in " \ |
| "floating-point instructions") \ |
| ENUM_ENTRY(TYPE_M32INT, "4-byte") \ |
| ENUM_ENTRY(TYPE_M64INT, "8-byte") \ |
| ENUM_ENTRY(TYPE_ST, "Position on the floating-point stack") \ |
| ENUM_ENTRY(TYPE_MM, "MMX register operand") \ |
| ENUM_ENTRY(TYPE_MM32, "4-byte MMX register or memory operand") \ |
| ENUM_ENTRY(TYPE_MM64, "8-byte") \ |
| ENUM_ENTRY(TYPE_XMM, "XMM register operand") \ |
| ENUM_ENTRY(TYPE_XMM32, "4-byte XMM register or memory operand") \ |
| ENUM_ENTRY(TYPE_XMM64, "8-byte") \ |
| ENUM_ENTRY(TYPE_XMM128, "16-byte") \ |
| ENUM_ENTRY(TYPE_XMM256, "32-byte") \ |
| ENUM_ENTRY(TYPE_XMM512, "64-byte") \ |
| ENUM_ENTRY(TYPE_VK8, "8-bit") \ |
| ENUM_ENTRY(TYPE_VK16, "16-bit") \ |
| ENUM_ENTRY(TYPE_XMM0, "Implicit use of XMM0") \ |
| ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand") \ |
| ENUM_ENTRY(TYPE_DEBUGREG, "Debug register operand") \ |
| ENUM_ENTRY(TYPE_CONTROLREG, "Control register operand") \ |
| \ |
| ENUM_ENTRY(TYPE_Mv, "Memory operand of operand size") \ |
| ENUM_ENTRY(TYPE_Rv, "Register operand of operand size") \ |
| ENUM_ENTRY(TYPE_IMMv, "Immediate operand of operand size") \ |
| ENUM_ENTRY(TYPE_RELv, "Immediate address of operand size") \ |
| ENUM_ENTRY(TYPE_DUP0, "Duplicate of operand 0") \ |
| ENUM_ENTRY(TYPE_DUP1, "operand 1") \ |
| ENUM_ENTRY(TYPE_DUP2, "operand 2") \ |
| ENUM_ENTRY(TYPE_DUP3, "operand 3") \ |
| ENUM_ENTRY(TYPE_DUP4, "operand 4") \ |
| ENUM_ENTRY(TYPE_M512, "512-bit FPU/MMX/XMM/MXCSR state") |
| |
| #define ENUM_ENTRY(n, d) n, |
| typedef enum { |
| TYPES |
| TYPE_max |
| } OperandType; |
| #undef ENUM_ENTRY |
| |
| /* |
| * OperandSpecifier - The specification for how to extract and interpret one |
| * operand. |
| */ |
| typedef struct OperandSpecifier { |
| uint8_t encoding; |
| uint8_t type; |
| } OperandSpecifier; |
| |
| /* |
| * Indicates where the opcode modifier (if any) is to be found. Extended |
| * opcodes with AddRegFrm have the opcode modifier in the ModR/M byte. |
| */ |
| |
| #define MODIFIER_TYPES \ |
| ENUM_ENTRY(MODIFIER_NONE) \ |
| ENUM_ENTRY(MODIFIER_OPCODE) \ |
| ENUM_ENTRY(MODIFIER_MODRM) |
| |
| #define ENUM_ENTRY(n) n, |
| typedef enum { |
| MODIFIER_TYPES |
| MODIFIER_max |
| } ModifierType; |
| #undef ENUM_ENTRY |
| |
| #define X86_MAX_OPERANDS 5 |
| |
| /* |
| * The specification for how to extract and interpret a full instruction and |
| * its operands. |
| */ |
| struct InstructionSpecifier { |
| uint8_t modifierType; |
| uint8_t modifierBase; |
| |
| /* The macro below must be defined wherever this file is included. */ |
| INSTRUCTION_SPECIFIER_FIELDS |
| }; |
| |
| /* |
| * Decoding mode for the Intel disassembler. 16-bit, 32-bit, and 64-bit mode |
| * are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode, |
| * respectively. |
| */ |
| typedef enum { |
| MODE_16BIT, |
| MODE_32BIT, |
| MODE_64BIT |
| } DisassemblerMode; |
| |
| #endif |