blob: a898ade021d64358ff38f45d2f6089739f2b28c4 [file] [log] [blame]
//===-- X86ATTInstPrinter.cpp - AT&T assembly instruction printing --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file includes code for rendering MCInst instances as AT&T-style
// assembly.
//
//===----------------------------------------------------------------------===//
/* Capstone Disassembler Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013> */
#include <ctype.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "../../utils.h"
#include "../../MCInst.h"
#include "../../cs_priv.h"
#include "../../SStream.h"
#include "../../MCRegisterInfo.h"
#include "mapping.h"
#define markup(x) ""
const char *X86ATT_getRegisterName(unsigned RegNo);
static void printMemReference(MCInst *MI, unsigned Op, SStream *O);
static void printopaquemem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat(O, "opaque ptr ");
printMemReference(MI, OpNo, O);
}
static void printi8mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat(O, "byte ptr ");
printMemReference(MI, OpNo, O);
}
static void printi16mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat(O, "word ptr ");
printMemReference(MI, OpNo, O);
}
static void printi32mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat(O, "dword ptr ");
printMemReference(MI, OpNo, O);
}
static void printi64mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat(O, "qword ptr ");
printMemReference(MI, OpNo, O);
}
static void printi128mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat(O, "xmmword ptr ");
printMemReference(MI, OpNo, O);
}
static void printi256mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat(O, "ymmword ptr ");
printMemReference(MI, OpNo, O);
}
static void printi512mem(MCInst *MI, unsigned OpNo, SStream *O)
{
printMemReference(MI, OpNo, O);
}
static void printf32mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat(O, "dword ptr ");
printMemReference(MI, OpNo, O);
}
static void printf64mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat(O, "qword ptr ");
printMemReference(MI, OpNo, O);
}
static void printf80mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat(O, "xword ptr ");
printMemReference(MI, OpNo, O);
}
static void printf128mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat(O, "xmmword ptr ");
printMemReference(MI, OpNo, O);
}
static void printf256mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat(O, "ymmword ptr ");
printMemReference(MI, OpNo, O);
}
static void printf512mem(MCInst *MI, unsigned OpNo, SStream *O)
{
printMemReference(MI, OpNo, O);
}
static void printMemOffset(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *DispSpec = MCInst_getOperand(MI, Op);
SStream_concat(O, "%s", markup("<mem:"));
if (MI->csh->detail) {
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].type = X86_OP_MEM;
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].mem.base = X86_REG_INVALID;
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].mem.index = X86_REG_INVALID;
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].mem.scale = 1;
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].mem.disp = 0;
}
if (MCOperand_isImm(DispSpec)) {
int64_t imm = MCOperand_getImm(DispSpec);
if (MI->csh->detail)
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].mem.disp = imm;
if (imm < 0) {
if (imm <= -HEX_THRESHOLD)
SStream_concat(O, "-0x%"PRIx64, -imm);
else
SStream_concat(O, "-%"PRIu64, -imm);
} else {
if (imm > HEX_THRESHOLD)
SStream_concat(O, "0x%"PRIx64, imm);
else
SStream_concat(O, "%"PRIu64, imm);
}
}
SStream_concat(O, "%s", markup(">"));
if (MI->csh->detail)
MI->flat_insn.x86.op_count++;
}
static void printMemOffs8(MCInst *MI, unsigned OpNo, SStream *O)
{
// If this has a segment register, print it.
// this is a hack. will fix it later
if (MI->x86_segment) {
SStream_concat(O, "%%%s:", X86_reg_name(1, MI->x86_segment));
}
printMemOffset(MI, OpNo, O);
}
static void printMemOffs16(MCInst *MI, unsigned OpNo, SStream *O)
{
// If this has a segment register, print it.
// this is a hack. will fix it later
if (MI->x86_segment) {
SStream_concat(O, "%%%s:", X86_reg_name(1, MI->x86_segment));
}
printMemOffset(MI, OpNo, O);
}
static void printMemOffs32(MCInst *MI, unsigned OpNo, SStream *O)
{
// If this has a segment register, print it.
// this is a hack. will fix it later
if (MI->x86_segment) {
SStream_concat(O, "%%%s:", X86_reg_name(1, MI->x86_segment));
}
printMemOffset(MI, OpNo, O);
}
static void printMemOffs64(MCInst *MI, unsigned OpNo, SStream *O)
{
printMemOffset(MI, OpNo, O);
}
static void printRegName(SStream *OS, unsigned RegNo);
static void printSSECC(MCInst *MI, unsigned Op, SStream *OS)
{
int64_t Imm = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0xf;
switch (Imm) {
default: break; // never reach
case 0: SStream_concat(OS, "eq"); break;
case 1: SStream_concat(OS, "lt"); break;
case 2: SStream_concat(OS, "le"); break;
case 3: SStream_concat(OS, "unord"); break;
case 4: SStream_concat(OS, "neq"); break;
case 5: SStream_concat(OS, "nlt"); break;
case 6: SStream_concat(OS, "nle"); break;
case 7: SStream_concat(OS, "ord"); break;
case 8: SStream_concat(OS, "eq_uq"); break;
case 9: SStream_concat(OS, "nge"); break;
case 0xa: SStream_concat(OS, "ngt"); break;
case 0xb: SStream_concat(OS, "false"); break;
case 0xc: SStream_concat(OS, "neq_oq"); break;
case 0xd: SStream_concat(OS, "ge"); break;
case 0xe: SStream_concat(OS, "gt"); break;
case 0xf: SStream_concat(OS, "true"); break;
}
}
static void printAVXCC(MCInst *MI, unsigned Op, SStream *O)
{
int64_t Imm = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0x1f;
switch (Imm) {
default: printf("Invalid avxcc argument!\n"); break;
case 0: SStream_concat(O, "eq"); break;
case 1: SStream_concat(O, "lt"); break;
case 2: SStream_concat(O, "le"); break;
case 3: SStream_concat(O, "unord"); break;
case 4: SStream_concat(O, "neq"); break;
case 5: SStream_concat(O, "nlt"); break;
case 6: SStream_concat(O, "nle"); break;
case 7: SStream_concat(O, "ord"); break;
case 8: SStream_concat(O, "eq_uq"); break;
case 9: SStream_concat(O, "nge"); break;
case 0xa: SStream_concat(O, "ngt"); break;
case 0xb: SStream_concat(O, "false"); break;
case 0xc: SStream_concat(O, "neq_oq"); break;
case 0xd: SStream_concat(O, "ge"); break;
case 0xe: SStream_concat(O, "gt"); break;
case 0xf: SStream_concat(O, "true"); break;
case 0x10: SStream_concat(O, "eq_os"); break;
case 0x11: SStream_concat(O, "lt_oq"); break;
case 0x12: SStream_concat(O, "le_oq"); break;
case 0x13: SStream_concat(O, "unord_s"); break;
case 0x14: SStream_concat(O, "neq_us"); break;
case 0x15: SStream_concat(O, "nlt_uq"); break;
case 0x16: SStream_concat(O, "nle_uq"); break;
case 0x17: SStream_concat(O, "ord_s"); break;
case 0x18: SStream_concat(O, "eq_us"); break;
case 0x19: SStream_concat(O, "nge_uq"); break;
case 0x1a: SStream_concat(O, "ngt_uq"); break;
case 0x1b: SStream_concat(O, "false_os"); break;
case 0x1c: SStream_concat(O, "neq_os"); break;
case 0x1d: SStream_concat(O, "ge_oq"); break;
case 0x1e: SStream_concat(O, "gt_oq"); break;
case 0x1f: SStream_concat(O, "true_us"); break;
}
}
/// printPCRelImm - This is used to print an immediate value that ends up
/// being encoded as a pc-relative value (e.g. for jumps and calls). These
/// print slightly differently than normal immediates. For example, a $ is not
/// emitted.
static void printPCRelImm(MCInst *MI, unsigned OpNo, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNo);
if (MCOperand_isImm(Op)) {
int64_t imm = MCOperand_getImm(Op) + MI->insn_size + MI->address;
if (imm < 0) {
if (imm <= -HEX_THRESHOLD)
SStream_concat(O, "-0x%"PRIx64, -imm);
else
SStream_concat(O, "-%"PRIu64, -imm);
} else {
if (imm > HEX_THRESHOLD)
SStream_concat(O, "0x%"PRIx64, imm);
else
SStream_concat(O, "%"PRIu64, imm);
}
if (MI->csh->detail) {
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].type = X86_OP_IMM;
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].imm = imm;
MI->flat_insn.x86.op_count++;
}
}
}
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNo);
if (MCOperand_isReg(Op)) {
printRegName(O, MCOperand_getReg(Op));
if (MI->csh->detail) {
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].type = X86_OP_REG;
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].reg = MCOperand_getReg(Op);
MI->flat_insn.x86.op_count++;
}
} else if (MCOperand_isImm(Op)) {
// Print X86 immediates as signed values.
int64_t imm = MCOperand_getImm(Op);
if (imm >= 0) {
if (imm > HEX_THRESHOLD)
SStream_concat(O, "%s$0x%"PRIx64"%s", markup("<imm:"), imm, markup(">"));
else
SStream_concat(O, "%s$%"PRIu64"%s", markup("<imm:"), imm, markup(">"));
} else {
if (imm <= -HEX_THRESHOLD)
SStream_concat(O, "%s$-0x%"PRIx64"%s", markup("<imm:"), -imm, markup(">"));
else
SStream_concat(O, "%s$-%"PRIu64"%s", markup("<imm:"), -imm, markup(">"));
}
if (MI->csh->detail) {
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].type = X86_OP_IMM;
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].imm = imm;
MI->flat_insn.x86.op_count++;
}
}
}
// local printOperand, without updating public operands
static void _printOperand(MCInst *MI, unsigned OpNo, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNo);
if (MCOperand_isReg(Op)) {
printRegName(O, MCOperand_getReg(Op));
} else if (MCOperand_isImm(Op)) {
// Print X86 immediates as signed values.
int64_t imm = MCOperand_getImm(Op);
if (imm < 0) {
if (imm <= -HEX_THRESHOLD)
SStream_concat(O, "%s$-0x%"PRIx64"%s", markup("<imm:"), -imm, markup(">"));
else
SStream_concat(O, "%s$-%"PRIu64"%s", markup("<imm:"), -imm, markup(">"));
} else {
if (imm > HEX_THRESHOLD)
SStream_concat(O, "%s$0x%"PRIx64"%s", markup("<imm:"), imm, markup(">"));
else
SStream_concat(O, "%s$%"PRIu64"%s", markup("<imm:"), imm, markup(">"));
}
}
}
static void printMemReference(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *BaseReg = MCInst_getOperand(MI, Op);
MCOperand *IndexReg = MCInst_getOperand(MI, Op+2);
MCOperand *DispSpec = MCInst_getOperand(MI, Op+3);
MCOperand *SegReg = MCInst_getOperand(MI, Op+4);
if (MI->csh->detail) {
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].type = X86_OP_MEM;
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].mem.base = MCOperand_getReg(BaseReg);
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].mem.index = MCOperand_getReg(IndexReg);
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].mem.scale = 1;
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].mem.disp = 0;
}
SStream_concat(O, markup("<mem:"));
// If this has a segment register, print it.
if (MCOperand_getReg(SegReg)) {
_printOperand(MI, Op+4, O);
SStream_concat(O, ":");
}
if (MCOperand_isImm(DispSpec)) {
int64_t DispVal = MCOperand_getImm(DispSpec);
if (MI->csh->detail)
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].mem.disp = DispVal;
if (DispVal || (!MCOperand_getReg(IndexReg) && !MCOperand_getReg(BaseReg))) {
if (DispVal < 0) {
if (DispVal <= -HEX_THRESHOLD)
SStream_concat(O, "-0x%"PRIx64, -DispVal);
else
SStream_concat(O, "-%"PRIu64, -DispVal);
} else {
if (DispVal > HEX_THRESHOLD)
SStream_concat(O, "0x%"PRIx64, DispVal);
else
SStream_concat(O, "%"PRIu64, DispVal);
}
}
}
if (MCOperand_getReg(IndexReg) || MCOperand_getReg(BaseReg)) {
SStream_concat(O, "(");
if (MCOperand_getReg(BaseReg))
_printOperand(MI, Op, O);
if (MCOperand_getReg(IndexReg)) {
SStream_concat(O, ", ");
_printOperand(MI, Op+2, O);
unsigned ScaleVal = MCOperand_getImm(MCInst_getOperand(MI, Op+1));
if (MI->csh->detail)
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].mem.scale = ScaleVal;
if (ScaleVal != 1) {
SStream_concat(O, ", %s%u%s", markup("<imm:"), ScaleVal, markup(">"));
}
}
SStream_concat(O, ")");
}
SStream_concat(O, markup(">"));
if (MI->csh->detail)
MI->flat_insn.x86.op_count++;
}
#include "X86InstPrinter.h"
#define GET_INSTRINFO_ENUM
#include "X86GenInstrInfo.inc"
#define GET_REGINFO_ENUM
#include "X86GenRegisterInfo.inc"
// Include the auto-generated portion of the assembly writer.
#define PRINT_ALIAS_INSTR
#include "X86GenAsmWriter.inc"
static void printRegName(SStream *OS, unsigned RegNo)
{
SStream_concat(OS, "%s%%%s%s", markup("<reg:"), getRegisterName(RegNo), markup(">"));
}
// get the first op from the asm buffer
// NOTE: make sure firstop is big enough to contain the resulted string
static void get_last_op(char *buffer, char *lastop)
{
char *comma = strrchr(buffer, ',');
if (comma) {
// skip a space after the comma
strcpy(lastop, comma + 2);
} else // no op
lastop[0] = '\0';
}
void X86_ATT_printInst(MCInst *MI, SStream *OS, void *info)
{
// FIXME
//const MCInstrDesc *Desc = MII.get(MI->getOpcode());
//uint64_t TSFlags = Desc.TSFlags;
//if (TSFlags & X86II::LOCK)
// OS << "\tlock\n";
// Try to print any aliases first.
if (printAliasInstr(MI, OS)) {
char *mnem = strdup(OS->buffer);
char *tab = strchr(mnem, '\t');
if (tab)
*tab = '\0';
// reflect the new insn name (alias) in the opcode
MCInst_setOpcode(MI, X86_get_insn_id2(X86_map_insn(mnem)));
free(mnem);
} else
printInstruction(MI, OS);
if (MI->csh->detail) {
// first op can be embedded in the asm by llvm.
// so we have to handle that case to not miss the first op.
char lastop[32];
get_last_op(OS->buffer, lastop);
char *acc_regs[] = {"al", "ax", "eax", "rax", NULL};
int post;
if (lastop[0] == '%' && ((post = str_in_list(acc_regs, lastop+1)) != -1)) {
// set operand size following register size
MI->flat_insn.x86.op_size = 1 << post;
// this is one of the registers AL, AX, EAX, RAX
// canonicalize the register name first
//int i;
//for (i = 1; lastop[i]; i++)
// lastop[i] = tolower(lastop[i]);
if (MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count - 1].type != X86_OP_REG) {
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].type = X86_OP_REG;
MI->flat_insn.x86.operands[MI->flat_insn.x86.op_count].reg = x86_map_regname(lastop + 1);
MI->flat_insn.x86.op_count++;
}
}
}
}