blob: f2458649b4f8c537b1153f06f438fb2c98929b6f [file] [log] [blame]
//===- AArch64Disassembler.cpp - Disassembler for AArch64 ISA -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the functions necessary to decode AArch64 instruction
// bitpatterns into MCInsts (with the help of TableGenerated information from
// the instruction definitions).
//
//===----------------------------------------------------------------------===//
/* Capstone Disassembler Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013> */
#include <stdio.h> // DEBUG
#include <stdlib.h>
#include "../../cs_priv.h"
#include "../../SubtargetFeature.h"
#include "../../MCInst.h"
#include "../../MCInstrDesc.h"
#include "../../MCFixedLenDisassembler.h"
#include "../../MCRegisterInfo.h"
#include "../../MCDisassembler.h"
#include "AArch64BaseInfo.h"
// Forward-declarations used in the auto-generated files.
static DecodeStatus DecodeGPR64RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder);
static DecodeStatus
DecodeGPR64xspRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder);
static DecodeStatus DecodeGPR32RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder);
static DecodeStatus
DecodeGPR32wspRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder);
static DecodeStatus DecodeFPR8RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder);
static DecodeStatus DecodeFPR16RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder);
static DecodeStatus DecodeFPR32RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder);
static DecodeStatus DecodeFPR64RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder);
static DecodeStatus DecodeFPR64LoRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder);
static DecodeStatus DecodeFPR128RegisterClass(MCInst *Inst,
unsigned RegNo, uint64_t Address,
void *Decoder);
static DecodeStatus DecodeFPR128LoRegisterClass(MCInst *Inst,
unsigned RegNo, uint64_t Address,
void *Decoder);
static DecodeStatus DecodeGPR64noxzrRegisterClass(MCInst *Inst,
unsigned RegNo,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeDPairRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeQPairRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeDTripleRegisterClass(MCInst *Inst,
unsigned RegNo, uint64_t Address,
void *Decoder);
static DecodeStatus DecodeQTripleRegisterClass(MCInst *Inst,
unsigned RegNo, uint64_t Address,
void *Decoder);
static DecodeStatus DecodeDQuadRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeQQuadRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeAddrRegExtendOperand(MCInst *Inst,
unsigned OptionHiS,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeBitfield32ImmOperand(MCInst *Inst,
unsigned Imm6Bits,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeCVT32FixedPosOperand(MCInst *Inst,
unsigned Imm6Bits,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeFPZeroOperand(MCInst *Inst,
unsigned RmBits,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeShiftRightImm8(MCInst *Inst, unsigned Val,
uint64_t Address, void *Decoder);
static DecodeStatus DecodeShiftRightImm16(MCInst *Inst, unsigned Val,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeShiftRightImm32(MCInst *Inst, unsigned Val,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeShiftRightImm64(MCInst *Inst, unsigned Val,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeShiftLeftImm8(MCInst *Inst, unsigned Val,
uint64_t Address, void *Decoder);
static DecodeStatus DecodeShiftLeftImm16(MCInst *Inst, unsigned Val,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeShiftLeftImm32(MCInst *Inst, unsigned Val,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeShiftLeftImm64(MCInst *Inst, unsigned Val,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeMoveWideImmOperand(MCInst *Inst,
unsigned FullImm,
uint64_t Address,
void *Decoder, int RegWidth);
static DecodeStatus DecodeLogicalImmOperand(MCInst *Inst,
unsigned Bits,
uint64_t Address,
void *Decoder, int RegWidth);
static DecodeStatus DecodeRegExtendOperand(MCInst *Inst,
unsigned ShiftAmount,
uint64_t Address,
void *Decoder);
static DecodeStatus
DecodeNeonMovImmShiftOperand(MCInst *Inst, unsigned ShiftAmount,
uint64_t Address, void *Decoder, A64SE_ShiftExtSpecifiers Ext, bool IsHalf);
static DecodeStatus Decode32BitShiftOperand(MCInst *Inst,
unsigned ShiftAmount,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeBitfieldInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeFMOVLaneInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeLDSTPairInstruction(MCInst *Inst,
unsigned Insn,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeLoadPairExclusiveInstruction(MCInst *Inst,
unsigned Val,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeNamedImmOperand(MCInst *Inst,
unsigned Val,
uint64_t Address,
void *Decoder, NamedImmMapper *N);
static DecodeStatus
DecodeSysRegOperand(SysRegMapper *InstMapper,
MCInst *Inst, unsigned Val,
uint64_t Address, void *Decoder);
static DecodeStatus DecodeMRSOperand(MCInst *Inst,
unsigned Val,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeMSROperand(MCInst *Inst,
unsigned Val,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeSingleIndexedInstruction(MCInst *Inst,
unsigned Val,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeVLDSTPostInstruction(MCInst *Inst, unsigned Val,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeVLDSTLanePostInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address,
void *Decoder);
static DecodeStatus DecodeSHLLInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address,
void *Decoder);
static bool Check(DecodeStatus *Out, DecodeStatus In);
#define GET_SUBTARGETINFO_ENUM
#include "AArch64GenSubtargetInfo.inc"
#define GET_SUBTARGETINFO_MC_DESC
#include "AArch64GenSubtargetInfo.inc"
// Hacky: enable all features for disassembler
static uint64_t AArch64_getFeatureBits(void)
{
int i;
uint64_t Bits = 0;
for (i = 0; i < sizeof(AArch64FeatureKV)/sizeof(AArch64FeatureKV[0]); i++) {
Bits |= AArch64FeatureKV[i].Value;
}
return Bits;
}
#include "AArch64GenDisassemblerTables.inc"
#define GET_INSTRINFO_ENUM
#include "AArch64GenInstrInfo.inc"
#define GET_REGINFO_ENUM
#include "AArch64GenRegisterInfo.inc"
static bool Check(DecodeStatus *Out, DecodeStatus In)
{
switch (In) {
case MCDisassembler_Success:
// Out stays the same.
return true;
case MCDisassembler_SoftFail:
*Out = In;
return true;
case MCDisassembler_Fail:
*Out = In;
return false;
default:
return false; // never reach
}
}
#define GET_REGINFO_MC_DESC
#include "AArch64GenRegisterInfo.inc"
void AArch64_init(MCRegisterInfo *MRI)
{
/*
RI->InitMCRegisterInfo(AArch64RegDesc, 228,
RA, PC,
AArch64MCRegisterClasses, 15,
AArch64RegUnitRoots, 66,
AArch64RegDiffLists,
AArch64RegStrings,
AArch64SubRegIdxLists, 6,
AArch64SubRegIdxRanges, AArch64RegEncodingTable);
*/
/*
RI->InitMCRegisterInfo(AArch64RegDesc, 420,
RA, PC,
AArch64MCRegisterClasses, 61,
AArch64RegUnitRoots, 66,
AArch64RegDiffLists,
AArch64RegStrings,
AArch64SubRegIdxLists, 53,
AArch64SubRegIdxRanges, AArch64RegEncodingTable);
*/
MCRegisterInfo_InitMCRegisterInfo(MRI, AArch64RegDesc, 420,
0, 0,
AArch64MCRegisterClasses, 61,
0, 0,
AArch64RegDiffLists,
0,
AArch64SubRegIdxLists, 53,
0);
}
static DecodeStatus _getInstruction(MCInst *MI,
unsigned char *code, size_t code_len,
uint16_t *Size,
uint64_t Address, MCRegisterInfo *MRI)
{
if (code_len < 4) {
// not enough data
*Size = 0;
return MCDisassembler_Fail;
}
// Encoded as a small-endian 32-bit word in the stream.
uint32_t insn = (code[3] << 24) | (code[2] << 16) |
(code[1] << 8) | (code[0] << 0);
//printf("insn: %u\n", insn);
// Calling the auto-generated decoder function.
DecodeStatus result = decodeInstruction(DecoderTableA6432, MI, insn, Address, MRI);
//printf("result: %u\n", result);
if (result != MCDisassembler_Fail) {
*Size = 4;
return result;
}
MCInst_clear(MI);
*Size = 0;
return MCDisassembler_Fail;
}
bool AArch64_getInstruction(csh ud, unsigned char *code, size_t code_len, MCInst *instr, uint16_t *size, uint64_t address, void *info)
{
DecodeStatus status = _getInstruction(instr,
code, code_len,
size,
address, (MCRegisterInfo *)info);
return status == MCDisassembler_Success;
}
static unsigned getReg(MCRegisterInfo *MRI, unsigned RC, unsigned RegNo)
{
MCRegisterClass *rc = MCRegisterInfo_getRegClass(MRI, RC);
return rc->RegsBegin[RegNo];
}
static DecodeStatus DecodeGPR64RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder)
{
if (RegNo > 31)
return MCDisassembler_Fail;
uint16_t Register = getReg(Decoder, AArch64_GPR64RegClassID, RegNo);
MCInst_addOperand(Inst, MCOperand_CreateReg(Register));
return MCDisassembler_Success;
}
static DecodeStatus
DecodeGPR64xspRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder)
{
if (RegNo > 31)
return MCDisassembler_Fail;
uint16_t Register = getReg(Decoder, AArch64_GPR64xspRegClassID, RegNo);
MCInst_addOperand(Inst, MCOperand_CreateReg(Register));
return MCDisassembler_Success;
}
static DecodeStatus DecodeGPR32RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address,
void *Decoder)
{
if (RegNo > 31)
return MCDisassembler_Fail;
uint16_t Register = getReg(Decoder, AArch64_GPR32RegClassID, RegNo);
MCInst_addOperand(Inst, MCOperand_CreateReg(Register));
return MCDisassembler_Success;
}
static DecodeStatus
DecodeGPR32wspRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder)
{
if (RegNo > 31)
return MCDisassembler_Fail;
uint16_t Register = getReg(Decoder, AArch64_GPR32wspRegClassID, RegNo);
MCInst_addOperand(Inst, MCOperand_CreateReg(Register));
return MCDisassembler_Success;
}
static DecodeStatus
DecodeFPR8RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder)
{
if (RegNo > 31)
return MCDisassembler_Fail;
uint16_t Register = getReg(Decoder, AArch64_FPR8RegClassID, RegNo);
MCInst_addOperand(Inst, MCOperand_CreateReg(Register));
return MCDisassembler_Success;
}
static DecodeStatus
DecodeFPR16RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder)
{
if (RegNo > 31)
return MCDisassembler_Fail;
uint16_t Register = getReg(Decoder, AArch64_FPR16RegClassID, RegNo);
MCInst_addOperand(Inst, MCOperand_CreateReg(Register));
return MCDisassembler_Success;
}
static DecodeStatus
DecodeFPR32RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder)
{
if (RegNo > 31)
return MCDisassembler_Fail;
uint16_t Register = getReg(Decoder, AArch64_FPR32RegClassID, RegNo);
MCInst_addOperand(Inst, MCOperand_CreateReg(Register));
return MCDisassembler_Success;
}
static DecodeStatus
DecodeFPR64RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder)
{
if (RegNo > 31)
return MCDisassembler_Fail;
uint16_t Register = getReg(Decoder, AArch64_FPR64RegClassID, RegNo);
MCInst_addOperand(Inst, MCOperand_CreateReg(Register));
return MCDisassembler_Success;
}
static DecodeStatus
DecodeFPR64LoRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder)
{
if (RegNo > 15)
return MCDisassembler_Fail;
return DecodeFPR64RegisterClass(Inst, RegNo, Address, Decoder);
}
static DecodeStatus
DecodeFPR128RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder)
{
if (RegNo > 31)
return MCDisassembler_Fail;
uint16_t Register = getReg(Decoder, AArch64_FPR128RegClassID, RegNo);
MCInst_addOperand(Inst, MCOperand_CreateReg(Register));
return MCDisassembler_Success;
}
static DecodeStatus
DecodeFPR128LoRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, void *Decoder)
{
if (RegNo > 15)
return MCDisassembler_Fail;
return DecodeFPR128RegisterClass(Inst, RegNo, Address, Decoder);
}
static DecodeStatus DecodeGPR64noxzrRegisterClass(MCInst *Inst,
unsigned RegNo,
uint64_t Address,
void *Decoder)
{
if (RegNo > 30)
return MCDisassembler_Fail;
uint16_t Register = getReg(Decoder, AArch64_GPR64noxzrRegClassID, RegNo);
MCInst_addOperand(Inst, MCOperand_CreateReg(Register));
return MCDisassembler_Success;
}
static DecodeStatus DecodeRegisterClassByID(MCInst *Inst, unsigned RegNo,
unsigned RegID,
void *Decoder)
{
if (RegNo > 31)
return MCDisassembler_Fail;
uint16_t Register = getReg(Decoder, RegID, RegNo);
MCInst_addOperand(Inst, MCOperand_CreateReg(Register));
return MCDisassembler_Success;
}
static DecodeStatus DecodeDPairRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address,
void *Decoder)
{
return DecodeRegisterClassByID(Inst, RegNo, AArch64_DPairRegClassID,
Decoder);
}
static DecodeStatus DecodeQPairRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address,
void *Decoder)
{
return DecodeRegisterClassByID(Inst, RegNo, AArch64_QPairRegClassID,
Decoder);
}
static DecodeStatus DecodeDTripleRegisterClass(MCInst *Inst,
unsigned RegNo, uint64_t Address,
void *Decoder)
{
return DecodeRegisterClassByID(Inst, RegNo, AArch64_DTripleRegClassID,
Decoder);
}
static DecodeStatus DecodeQTripleRegisterClass(MCInst *Inst,
unsigned RegNo, uint64_t Address,
void *Decoder)
{
return DecodeRegisterClassByID(Inst, RegNo, AArch64_QTripleRegClassID,
Decoder);
}
static DecodeStatus DecodeDQuadRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address,
void *Decoder)
{
return DecodeRegisterClassByID(Inst, RegNo, AArch64_DQuadRegClassID,
Decoder);
}
static DecodeStatus DecodeQQuadRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address,
void *Decoder)
{
return DecodeRegisterClassByID(Inst, RegNo, AArch64_QQuadRegClassID,
Decoder);
}
static DecodeStatus DecodeAddrRegExtendOperand(MCInst *Inst,
unsigned OptionHiS,
uint64_t Address,
void *Decoder)
{
// Option{1} must be 1. OptionHiS is made up of {Option{2}, Option{1},
// S}. Hence we want to check bit 1.
if (!(OptionHiS & 2))
return MCDisassembler_Fail;
MCInst_addOperand(Inst, MCOperand_CreateImm(OptionHiS));
return MCDisassembler_Success;
}
static DecodeStatus DecodeBitfield32ImmOperand(MCInst *Inst,
unsigned Imm6Bits,
uint64_t Address,
void *Decoder)
{
// In the 32-bit variant, bit 6 must be zero. I.e. the immediate must be
// between 0 and 31.
if (Imm6Bits > 31)
return MCDisassembler_Fail;
MCInst_addOperand(Inst, MCOperand_CreateImm(Imm6Bits));
return MCDisassembler_Success;
}
static DecodeStatus DecodeCVT32FixedPosOperand(MCInst *Inst,
unsigned Imm6Bits,
uint64_t Address,
void *Decoder)
{
// 1 <= Imm <= 32. Encoded as 64 - Imm so: 63 >= Encoded >= 32.
if (Imm6Bits < 32)
return MCDisassembler_Fail;
MCInst_addOperand(Inst, MCOperand_CreateImm(Imm6Bits));
return MCDisassembler_Success;
}
static DecodeStatus DecodeFPZeroOperand(MCInst *Inst,
unsigned RmBits, uint64_t Address, void *Decoder)
{
// Any bits are valid in the instruction (they're architecturally ignored),
// but a code generator should insert 0.
MCInst_addOperand(Inst, MCOperand_CreateImm(0));
return MCDisassembler_Success;
}
static DecodeStatus DecodeShiftRightImm8(MCInst *Inst,
unsigned Val, uint64_t Address, void *Decoder)
{
MCInst_addOperand(Inst, MCOperand_CreateImm(8 - Val));
return MCDisassembler_Success;
}
static DecodeStatus DecodeShiftRightImm16(MCInst *Inst,
unsigned Val, uint64_t Address, void *Decoder)
{
MCInst_addOperand(Inst, MCOperand_CreateImm(16 - Val));
return MCDisassembler_Success;
}
static DecodeStatus DecodeShiftRightImm32(MCInst *Inst,
unsigned Val, uint64_t Address, void *Decoder)
{
MCInst_addOperand(Inst, MCOperand_CreateImm(32 - Val));
return MCDisassembler_Success;
}
static DecodeStatus DecodeShiftRightImm64(MCInst *Inst,
unsigned Val, uint64_t Address, void *Decoder)
{
MCInst_addOperand(Inst, MCOperand_CreateImm(64 - Val));
return MCDisassembler_Success;
}
static DecodeStatus DecodeShiftLeftImm8(MCInst *Inst, unsigned Val,
uint64_t Address,
void *Decoder)
{
if (Val > 7)
return MCDisassembler_Fail;
MCInst_addOperand(Inst, MCOperand_CreateImm(Val));
return MCDisassembler_Success;
}
static DecodeStatus DecodeShiftLeftImm16(MCInst *Inst, unsigned Val,
uint64_t Address,
void *Decoder)
{
if (Val > 15)
return MCDisassembler_Fail;
MCInst_addOperand(Inst, MCOperand_CreateImm(Val));
return MCDisassembler_Success;
}
static DecodeStatus DecodeShiftLeftImm32(MCInst *Inst, unsigned Val,
uint64_t Address,
void *Decoder)
{
if (Val > 31)
return MCDisassembler_Fail;
MCInst_addOperand(Inst, MCOperand_CreateImm(Val));
return MCDisassembler_Success;
}
static DecodeStatus DecodeShiftLeftImm64(MCInst *Inst, unsigned Val,
uint64_t Address,
void *Decoder)
{
if (Val > 63)
return MCDisassembler_Fail;
MCInst_addOperand(Inst, MCOperand_CreateImm(Val));
return MCDisassembler_Success;
}
static DecodeStatus DecodeMoveWideImmOperand(MCInst *Inst,
unsigned FullImm,
uint64_t Address,
void *Decoder, int RegWidth)
{
unsigned Imm16 = FullImm & 0xffff;
unsigned Shift = FullImm >> 16;
if (RegWidth == 32 && Shift > 1) return MCDisassembler_Fail;
MCInst_addOperand(Inst, MCOperand_CreateImm(Imm16));
MCInst_addOperand(Inst, MCOperand_CreateImm(Shift));
return MCDisassembler_Success;
}
static DecodeStatus DecodeLogicalImmOperand(MCInst *Inst,
unsigned Bits,
uint64_t Address,
void *Decoder, int RegWidth)
{
uint64_t Imm;
if (!A64Imms_isLogicalImmBits(RegWidth, Bits, &Imm))
return MCDisassembler_Fail;
MCInst_addOperand(Inst, MCOperand_CreateImm(Bits));
return MCDisassembler_Success;
}
static DecodeStatus DecodeRegExtendOperand(MCInst *Inst,
unsigned ShiftAmount,
uint64_t Address,
void *Decoder)
{
// Only values 0-4 are valid for this 3-bit field
if (ShiftAmount > 4)
return MCDisassembler_Fail;
MCInst_addOperand(Inst, MCOperand_CreateImm(ShiftAmount));
return MCDisassembler_Success;
}
static DecodeStatus Decode32BitShiftOperand(MCInst *Inst,
unsigned ShiftAmount,
uint64_t Address,
void *Decoder)
{
// Only values below 32 are valid for a 32-bit register
if (ShiftAmount > 31)
return MCDisassembler_Fail;
MCInst_addOperand(Inst, MCOperand_CreateImm(ShiftAmount));
return MCDisassembler_Success;
}
static DecodeStatus DecodeBitfieldInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address,
void *Decoder)
{
unsigned Rd = fieldFromInstruction(Insn, 0, 5);
unsigned Rn = fieldFromInstruction(Insn, 5, 5);
unsigned ImmS = fieldFromInstruction(Insn, 10, 6);
unsigned ImmR = fieldFromInstruction(Insn, 16, 6);
unsigned SF = fieldFromInstruction(Insn, 31, 1);
// Undef for 0b11 just in case it occurs. Don't want the compiler to optimise
// out assertions that it thinks should never be hit.
enum OpcTypes { SBFM = 0, BFM, UBFM, Undef } Opc;
Opc = (enum OpcTypes)fieldFromInstruction(Insn, 29, 2);
if (!SF) {
// ImmR and ImmS must be between 0 and 31 for 32-bit instructions.
if (ImmR > 31 || ImmS > 31)
return MCDisassembler_Fail;
}
if (SF) {
DecodeGPR64RegisterClass(Inst, Rd, Address, Decoder);
// BFM MCInsts use Rd as a source too.
if (Opc == BFM) DecodeGPR64RegisterClass(Inst, Rd, Address, Decoder);
DecodeGPR64RegisterClass(Inst, Rn, Address, Decoder);
} else {
DecodeGPR32RegisterClass(Inst, Rd, Address, Decoder);
// BFM MCInsts use Rd as a source too.
if (Opc == BFM) DecodeGPR32RegisterClass(Inst, Rd, Address, Decoder);
DecodeGPR32RegisterClass(Inst, Rn, Address, Decoder);
}
// ASR and LSR have more specific patterns so they won't get here:
//assert(!(ImmS == 31 && !SF && Opc != BFM)
// && "shift should have used auto decode");
//assert(!(ImmS == 63 && SF && Opc != BFM)
// && "shift should have used auto decode");
// Extension instructions similarly:
if (Opc == SBFM && ImmR == 0) {
//assert((ImmS != 7 && ImmS != 15) && "extension got here");
//assert((ImmS != 31 || SF == 0) && "extension got here");
} else if (Opc == UBFM && ImmR == 0) {
//assert((SF != 0 || (ImmS != 7 && ImmS != 15)) && "extension got here");
}
if (Opc == UBFM) {
// It might be a LSL instruction, which actually takes the shift amount
// itself as an MCInst operand.
if (SF && (ImmS + 1) % 64 == ImmR) {
MCInst_setOpcode(Inst, AArch64_LSLxxi);
MCInst_addOperand(Inst, MCOperand_CreateImm(63 - ImmS));
return MCDisassembler_Success;
} else if (!SF && (ImmS + 1) % 32 == ImmR) {
MCInst_setOpcode(Inst, AArch64_LSLwwi);
MCInst_addOperand(Inst, MCOperand_CreateImm(31 - ImmS));
return MCDisassembler_Success;
}
}
// Otherwise it's definitely either an extract or an insert depending on which
// of ImmR or ImmS is larger.
unsigned ExtractOp = 0, InsertOp = 0;
switch (Opc) {
default: break; // never reach
case SBFM:
ExtractOp = SF ? AArch64_SBFXxxii : AArch64_SBFXwwii;
InsertOp = SF ? AArch64_SBFIZxxii : AArch64_SBFIZwwii;
break;
case BFM:
ExtractOp = SF ? AArch64_BFXILxxii : AArch64_BFXILwwii;
InsertOp = SF ? AArch64_BFIxxii : AArch64_BFIwwii;
break;
case UBFM:
ExtractOp = SF ? AArch64_UBFXxxii : AArch64_UBFXwwii;
InsertOp = SF ? AArch64_UBFIZxxii : AArch64_UBFIZwwii;
break;
}
// Otherwise it's a boring insert or extract
MCInst_addOperand(Inst, MCOperand_CreateImm(ImmR));
MCInst_addOperand(Inst, MCOperand_CreateImm(ImmS));
if (ImmS < ImmR)
MCInst_setOpcode(Inst, InsertOp);
else
MCInst_setOpcode(Inst, ExtractOp);
return MCDisassembler_Success;
}
static DecodeStatus DecodeFMOVLaneInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address,
void *Decoder)
{
// This decoder exists to add the dummy Lane operand to the MCInst, which must
// be 1 in assembly but has no other real manifestation.
unsigned Rd = fieldFromInstruction(Insn, 0, 5);
unsigned Rn = fieldFromInstruction(Insn, 5, 5);
unsigned IsToVec = fieldFromInstruction(Insn, 16, 1);
if (IsToVec) {
DecodeFPR128RegisterClass(Inst, Rd, Address, Decoder);
DecodeGPR64RegisterClass(Inst, Rn, Address, Decoder);
} else {
DecodeGPR64RegisterClass(Inst, Rd, Address, Decoder);
DecodeFPR128RegisterClass(Inst, Rn, Address, Decoder);
}
// Add the lane
MCInst_addOperand(Inst, MCOperand_CreateImm(1));
return MCDisassembler_Success;
}
static DecodeStatus DecodeLDSTPairInstruction(MCInst *Inst,
unsigned Insn,
uint64_t Address,
void *Decoder)
{
DecodeStatus Result = MCDisassembler_Success;
unsigned Rt = fieldFromInstruction(Insn, 0, 5);
unsigned Rn = fieldFromInstruction(Insn, 5, 5);
unsigned Rt2 = fieldFromInstruction(Insn, 10, 5);
unsigned SImm7 = fieldFromInstruction(Insn, 15, 7);
unsigned L = fieldFromInstruction(Insn, 22, 1);
unsigned V = fieldFromInstruction(Insn, 26, 1);
unsigned Opc = fieldFromInstruction(Insn, 30, 2);
// Not an official name, but it turns out that bit 23 distinguishes indexed
// from non-indexed operations.
unsigned Indexed = fieldFromInstruction(Insn, 23, 1);
if (Indexed && L == 0) {
// The MCInst for an indexed store has an out operand and 4 ins:
// Rn_wb, Rt, Rt2, Rn, Imm
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
}
// You shouldn't load to the same register twice in an instruction...
if (L && Rt == Rt2)
Result = MCDisassembler_SoftFail;
// ... or do any operation that writes-back to a transfer register. But note
// that "stp xzr, xzr, [sp], #4" is fine because xzr and sp are different.
if (Indexed && V == 0 && Rn != 31 && (Rt == Rn || Rt2 == Rn))
Result = MCDisassembler_SoftFail;
// Exactly how we decode the MCInst's registers depends on the Opc and V
// fields of the instruction. These also obviously determine the size of the
// operation so we can fill in that information while we're at it.
if (V) {
// The instruction operates on the FP/SIMD registers
switch (Opc) {
default: return MCDisassembler_Fail;
case 0:
DecodeFPR32RegisterClass(Inst, Rt, Address, Decoder);
DecodeFPR32RegisterClass(Inst, Rt2, Address, Decoder);
break;
case 1:
DecodeFPR64RegisterClass(Inst, Rt, Address, Decoder);
DecodeFPR64RegisterClass(Inst, Rt2, Address, Decoder);
break;
case 2:
DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
DecodeFPR128RegisterClass(Inst, Rt2, Address, Decoder);
break;
}
} else {
switch (Opc) {
default: return MCDisassembler_Fail;
case 0:
DecodeGPR32RegisterClass(Inst, Rt, Address, Decoder);
DecodeGPR32RegisterClass(Inst, Rt2, Address, Decoder);
break;
case 1:
//assert(L && "unexpected \"store signed\" attempt");
DecodeGPR64RegisterClass(Inst, Rt, Address, Decoder);
DecodeGPR64RegisterClass(Inst, Rt2, Address, Decoder);
break;
case 2:
DecodeGPR64RegisterClass(Inst, Rt, Address, Decoder);
DecodeGPR64RegisterClass(Inst, Rt2, Address, Decoder);
break;
}
}
if (Indexed && L == 1) {
// The MCInst for an indexed load has 3 out operands and an 3 ins:
// Rt, Rt2, Rn_wb, Rt2, Rn, Imm
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
}
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
MCInst_addOperand(Inst, MCOperand_CreateImm(SImm7));
return Result;
}
static DecodeStatus DecodeLoadPairExclusiveInstruction(MCInst *Inst,
uint32_t Val,
uint64_t Address,
void *Decoder)
{
unsigned Rt = fieldFromInstruction(Val, 0, 5);
unsigned Rn = fieldFromInstruction(Val, 5, 5);
unsigned Rt2 = fieldFromInstruction(Val, 10, 5);
unsigned MemSize = fieldFromInstruction(Val, 30, 2);
DecodeStatus S = MCDisassembler_Success;
if (Rt == Rt2) S = MCDisassembler_SoftFail;
switch (MemSize) {
case 2:
if (!Check(&S, DecodeGPR32RegisterClass(Inst, Rt, Address, Decoder)))
return MCDisassembler_Fail;
if (!Check(&S, DecodeGPR32RegisterClass(Inst, Rt2, Address, Decoder)))
return MCDisassembler_Fail;
break;
case 3:
if (!Check(&S, DecodeGPR64RegisterClass(Inst, Rt, Address, Decoder)))
return MCDisassembler_Fail;
if (!Check(&S, DecodeGPR64RegisterClass(Inst, Rt2, Address, Decoder)))
return MCDisassembler_Fail;
break;
default:
break; // never reach
}
if (!Check(&S, DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
return S;
}
static DecodeStatus DecodeNamedImmOperand(MCInst *Inst,
unsigned Val,
uint64_t Address,
void *Decoder, NamedImmMapper *N)
{
bool ValidNamed;
NamedImmMapper_toString(N, Val, &ValidNamed);
if (ValidNamed || NamedImmMapper_validImm(N, Val)) {
MCInst_addOperand(Inst, MCOperand_CreateImm(Val));
return MCDisassembler_Success;
}
return MCDisassembler_Fail;
}
static DecodeStatus DecodeSysRegOperand(SysRegMapper *Mapper,
MCInst *Inst,
unsigned Val,
uint64_t Address,
void *Decoder)
{
bool ValidNamed;
char result[128];
SysRegMapper_toString(Mapper, Val, &ValidNamed, result);
MCInst_addOperand(Inst, MCOperand_CreateImm(Val));
return ValidNamed ? MCDisassembler_Success : MCDisassembler_Fail;
}
static DecodeStatus DecodeMRSOperand(MCInst *Inst,
unsigned Val,
uint64_t Address,
void *Decoder)
{
return DecodeSysRegOperand(&AArch64_MRSMapper, Inst, Val, Address, Decoder);
}
static DecodeStatus DecodeMSROperand(MCInst *Inst,
unsigned Val,
uint64_t Address,
void *Decoder)
{
return DecodeSysRegOperand(&AArch64_MSRMapper, Inst, Val, Address, Decoder);
}
static DecodeStatus DecodeSingleIndexedInstruction(MCInst *Inst,
unsigned Insn,
uint64_t Address,
void *Decoder)
{
unsigned Rt = fieldFromInstruction(Insn, 0, 5);
unsigned Rn = fieldFromInstruction(Insn, 5, 5);
unsigned Imm9 = fieldFromInstruction(Insn, 12, 9);
unsigned Opc = fieldFromInstruction(Insn, 22, 2);
unsigned V = fieldFromInstruction(Insn, 26, 1);
unsigned Size = fieldFromInstruction(Insn, 30, 2);
if (Opc == 0 || (V == 1 && Opc == 2)) {
// It's a store, the MCInst gets: Rn_wb, Rt, Rn, Imm
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
}
if (V == 0 && (Opc == 2 || Size == 3)) {
DecodeGPR64RegisterClass(Inst, Rt, Address, Decoder);
} else if (V == 0) {
DecodeGPR32RegisterClass(Inst, Rt, Address, Decoder);
} else if (V == 1 && (Opc & 2)) {
DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
} else {
switch (Size) {
case 0:
DecodeFPR8RegisterClass(Inst, Rt, Address, Decoder);
break;
case 1:
DecodeFPR16RegisterClass(Inst, Rt, Address, Decoder);
break;
case 2:
DecodeFPR32RegisterClass(Inst, Rt, Address, Decoder);
break;
case 3:
DecodeFPR64RegisterClass(Inst, Rt, Address, Decoder);
break;
}
}
if (Opc != 0 && (V != 1 || Opc != 2)) {
// It's a load, the MCInst gets: Rt, Rn_wb, Rn, Imm
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
}
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
MCInst_addOperand(Inst, MCOperand_CreateImm(Imm9));
// N.b. The official documentation says undpredictable if Rt == Rn, but this
// takes place at the architectural rather than encoding level:
//
// "STR xzr, [sp], #4" is perfectly valid.
if (V == 0 && Rt == Rn && Rn != 31)
return MCDisassembler_SoftFail;
else
return MCDisassembler_Success;
}
static DecodeStatus
DecodeNeonMovImmShiftOperand(MCInst *Inst, unsigned ShiftAmount,
uint64_t Address, void *Decoder, A64SE_ShiftExtSpecifiers Ext, bool IsHalf)
{
bool IsLSL = false;
if (Ext == A64SE_LSL)
IsLSL = true;
else if (Ext != A64SE_MSL)
return MCDisassembler_Fail;
// MSL and LSLH accepts encoded shift amount 0 or 1.
if ((!IsLSL || (IsLSL && IsHalf)) && ShiftAmount != 0 && ShiftAmount != 1)
return MCDisassembler_Fail;
// LSL accepts encoded shift amount 0, 1, 2 or 3.
if (IsLSL && ShiftAmount > 3)
return MCDisassembler_Fail;
MCInst_addOperand(Inst, MCOperand_CreateImm(ShiftAmount));
return MCDisassembler_Success;
}
// Decode post-index vector load/store instructions.
// This is necessary as we need to decode Rm: if Rm == 0b11111, the last
// operand is an immediate equal the the length of vector list in bytes,
// or Rm is decoded to a GPR64noxzr register.
static DecodeStatus DecodeVLDSTPostInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address,
void *Decoder)
{
unsigned Rt = fieldFromInstruction(Insn, 0, 5);
unsigned Rn = fieldFromInstruction(Insn, 5, 5);
unsigned Rm = fieldFromInstruction(Insn, 16, 5);
unsigned Opcode = fieldFromInstruction(Insn, 12, 4);
unsigned IsLoad = fieldFromInstruction(Insn, 22, 1);
// 0 for 64bit vector list, 1 for 128bit vector list
unsigned Is128BitVec = fieldFromInstruction(Insn, 30, 1);
unsigned NumVecs;
switch (Opcode) {
default:
// llvm_unreachable("Invalid opcode for post-index load/store instructions");
case 0: // ld4/st4
case 2: // ld1/st1 with 4 vectors
NumVecs = 4; break;
case 4: // ld3/st3
case 6: // ld1/st1 with 3 vectors
NumVecs = 3; break;
case 7: // ld1/st1 with 1 vector
NumVecs = 1; break;
case 8: // ld2/st2
case 10: // ld1/st1 with 2 vectors
NumVecs = 2; break;
}
// Decode vector list of 1/2/3/4 vectors for load instructions.
if (IsLoad) {
switch (NumVecs) {
case 1:
Is128BitVec ? DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder)
: DecodeFPR64RegisterClass(Inst, Rt, Address, Decoder);
break;
case 2:
Is128BitVec ? DecodeQPairRegisterClass(Inst, Rt, Address, Decoder)
: DecodeDPairRegisterClass(Inst, Rt, Address, Decoder);
break;
case 3:
Is128BitVec ? DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder)
: DecodeDTripleRegisterClass(Inst, Rt, Address, Decoder);
break;
case 4:
Is128BitVec ? DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder)
: DecodeDQuadRegisterClass(Inst, Rt, Address, Decoder);
break;
}
}
// Decode write back register, which is equal to Rn.
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
if (Rm == 31) // If Rm is 0x11111, add the vector list length in byte
MCInst_addOperand(Inst, MCOperand_CreateImm(NumVecs * (Is128BitVec ? 16 : 8)));
else // Decode Rm
DecodeGPR64noxzrRegisterClass(Inst, Rm, Address, Decoder);
// Decode vector list of 1/2/3/4 vectors for load instructions.
if (!IsLoad) {
switch (NumVecs) {
case 1:
Is128BitVec ? DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder)
: DecodeFPR64RegisterClass(Inst, Rt, Address, Decoder);
break;
case 2:
Is128BitVec ? DecodeQPairRegisterClass(Inst, Rt, Address, Decoder)
: DecodeDPairRegisterClass(Inst, Rt, Address, Decoder);
break;
case 3:
Is128BitVec ? DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder)
: DecodeDTripleRegisterClass(Inst, Rt, Address, Decoder);
break;
case 4:
Is128BitVec ? DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder)
: DecodeDQuadRegisterClass(Inst, Rt, Address, Decoder);
break;
}
}
return MCDisassembler_Success;
}
// Decode post-index vector load/store lane instructions.
// This is necessary as we need to decode Rm: if Rm == 0b11111, the last
// operand is an immediate equal the the length of the changed bytes,
// or Rm is decoded to a GPR64noxzr register.
static DecodeStatus DecodeVLDSTLanePostInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address,
void *Decoder)
{
bool Is64bitVec = false;
bool IsLoadDup = false;
bool IsLoad = false;
// The total number of bytes transferred.
// TransferBytes = NumVecs * OneLaneBytes
unsigned TransferBytes = 0;
unsigned NumVecs = 0;
unsigned Opc = MCInst_getOpcode(Inst);
switch (Opc) {
case AArch64_LD1R_WB_8B_fixed: case AArch64_LD1R_WB_8B_register:
case AArch64_LD1R_WB_4H_fixed: case AArch64_LD1R_WB_4H_register:
case AArch64_LD1R_WB_2S_fixed: case AArch64_LD1R_WB_2S_register:
case AArch64_LD1R_WB_1D_fixed: case AArch64_LD1R_WB_1D_register:
{
switch (Opc) {
case AArch64_LD1R_WB_8B_fixed: case AArch64_LD1R_WB_8B_register:
TransferBytes = 1; break;
case AArch64_LD1R_WB_4H_fixed: case AArch64_LD1R_WB_4H_register:
TransferBytes = 2; break;
case AArch64_LD1R_WB_2S_fixed: case AArch64_LD1R_WB_2S_register:
TransferBytes = 4; break;
case AArch64_LD1R_WB_1D_fixed: case AArch64_LD1R_WB_1D_register:
TransferBytes = 8; break;
}
Is64bitVec = true;
IsLoadDup = true;
NumVecs = 1;
break;
}
case AArch64_LD1R_WB_16B_fixed: case AArch64_LD1R_WB_16B_register:
case AArch64_LD1R_WB_8H_fixed: case AArch64_LD1R_WB_8H_register:
case AArch64_LD1R_WB_4S_fixed: case AArch64_LD1R_WB_4S_register:
case AArch64_LD1R_WB_2D_fixed: case AArch64_LD1R_WB_2D_register:
{
switch (Opc) {
case AArch64_LD1R_WB_16B_fixed: case AArch64_LD1R_WB_16B_register:
TransferBytes = 1; break;
case AArch64_LD1R_WB_8H_fixed: case AArch64_LD1R_WB_8H_register:
TransferBytes = 2; break;
case AArch64_LD1R_WB_4S_fixed: case AArch64_LD1R_WB_4S_register:
TransferBytes = 4; break;
case AArch64_LD1R_WB_2D_fixed: case AArch64_LD1R_WB_2D_register:
TransferBytes = 8; break;
}
IsLoadDup = true;
NumVecs = 1;
break;
}
case AArch64_LD2R_WB_8B_fixed: case AArch64_LD2R_WB_8B_register:
case AArch64_LD2R_WB_4H_fixed: case AArch64_LD2R_WB_4H_register:
case AArch64_LD2R_WB_2S_fixed: case AArch64_LD2R_WB_2S_register:
case AArch64_LD2R_WB_1D_fixed: case AArch64_LD2R_WB_1D_register:
{
switch (Opc) {
case AArch64_LD2R_WB_8B_fixed: case AArch64_LD2R_WB_8B_register:
TransferBytes = 2; break;
case AArch64_LD2R_WB_4H_fixed: case AArch64_LD2R_WB_4H_register:
TransferBytes = 4; break;
case AArch64_LD2R_WB_2S_fixed: case AArch64_LD2R_WB_2S_register:
TransferBytes = 8; break;
case AArch64_LD2R_WB_1D_fixed: case AArch64_LD2R_WB_1D_register:
TransferBytes = 16; break;
}
Is64bitVec = true;
IsLoadDup = true;
NumVecs = 2;
break;
}
case AArch64_LD2R_WB_16B_fixed: case AArch64_LD2R_WB_16B_register:
case AArch64_LD2R_WB_8H_fixed: case AArch64_LD2R_WB_8H_register:
case AArch64_LD2R_WB_4S_fixed: case AArch64_LD2R_WB_4S_register:
case AArch64_LD2R_WB_2D_fixed: case AArch64_LD2R_WB_2D_register:
{
switch (Opc) {
case AArch64_LD2R_WB_16B_fixed: case AArch64_LD2R_WB_16B_register:
TransferBytes = 2; break;
case AArch64_LD2R_WB_8H_fixed: case AArch64_LD2R_WB_8H_register:
TransferBytes = 4; break;
case AArch64_LD2R_WB_4S_fixed: case AArch64_LD2R_WB_4S_register:
TransferBytes = 8; break;
case AArch64_LD2R_WB_2D_fixed: case AArch64_LD2R_WB_2D_register:
TransferBytes = 16; break;
}
IsLoadDup = true;
NumVecs = 2;
break;
}
case AArch64_LD3R_WB_8B_fixed: case AArch64_LD3R_WB_8B_register:
case AArch64_LD3R_WB_4H_fixed: case AArch64_LD3R_WB_4H_register:
case AArch64_LD3R_WB_2S_fixed: case AArch64_LD3R_WB_2S_register:
case AArch64_LD3R_WB_1D_fixed: case AArch64_LD3R_WB_1D_register:
{
switch (Opc) {
case AArch64_LD3R_WB_8B_fixed: case AArch64_LD3R_WB_8B_register:
TransferBytes = 3; break;
case AArch64_LD3R_WB_4H_fixed: case AArch64_LD3R_WB_4H_register:
TransferBytes = 6; break;
case AArch64_LD3R_WB_2S_fixed: case AArch64_LD3R_WB_2S_register:
TransferBytes = 12; break;
case AArch64_LD3R_WB_1D_fixed: case AArch64_LD3R_WB_1D_register:
TransferBytes = 24; break;
}
Is64bitVec = true;
IsLoadDup = true;
NumVecs = 3;
break;
}
case AArch64_LD3R_WB_16B_fixed: case AArch64_LD3R_WB_16B_register:
case AArch64_LD3R_WB_4S_fixed: case AArch64_LD3R_WB_8H_register:
case AArch64_LD3R_WB_8H_fixed: case AArch64_LD3R_WB_4S_register:
case AArch64_LD3R_WB_2D_fixed: case AArch64_LD3R_WB_2D_register:
{
switch (Opc) {
case AArch64_LD3R_WB_16B_fixed: case AArch64_LD3R_WB_16B_register:
TransferBytes = 3; break;
case AArch64_LD3R_WB_8H_fixed: case AArch64_LD3R_WB_8H_register:
TransferBytes = 6; break;
case AArch64_LD3R_WB_4S_fixed: case AArch64_LD3R_WB_4S_register:
TransferBytes = 12; break;
case AArch64_LD3R_WB_2D_fixed: case AArch64_LD3R_WB_2D_register:
TransferBytes = 24; break;
}
IsLoadDup = true;
NumVecs = 3;
break;
}
case AArch64_LD4R_WB_8B_fixed: case AArch64_LD4R_WB_8B_register:
case AArch64_LD4R_WB_4H_fixed: case AArch64_LD4R_WB_4H_register:
case AArch64_LD4R_WB_2S_fixed: case AArch64_LD4R_WB_2S_register:
case AArch64_LD4R_WB_1D_fixed: case AArch64_LD4R_WB_1D_register:
{
switch (Opc) {
case AArch64_LD4R_WB_8B_fixed: case AArch64_LD4R_WB_8B_register:
TransferBytes = 4; break;
case AArch64_LD4R_WB_4H_fixed: case AArch64_LD4R_WB_4H_register:
TransferBytes = 8; break;
case AArch64_LD4R_WB_2S_fixed: case AArch64_LD4R_WB_2S_register:
TransferBytes = 16; break;
case AArch64_LD4R_WB_1D_fixed: case AArch64_LD4R_WB_1D_register:
TransferBytes = 32; break;
}
Is64bitVec = true;
IsLoadDup = true;
NumVecs = 4;
break;
}
case AArch64_LD4R_WB_16B_fixed: case AArch64_LD4R_WB_16B_register:
case AArch64_LD4R_WB_4S_fixed: case AArch64_LD4R_WB_8H_register:
case AArch64_LD4R_WB_8H_fixed: case AArch64_LD4R_WB_4S_register:
case AArch64_LD4R_WB_2D_fixed: case AArch64_LD4R_WB_2D_register:
{
switch (Opc) {
case AArch64_LD4R_WB_16B_fixed: case AArch64_LD4R_WB_16B_register:
TransferBytes = 4; break;
case AArch64_LD4R_WB_8H_fixed: case AArch64_LD4R_WB_8H_register:
TransferBytes = 8; break;
case AArch64_LD4R_WB_4S_fixed: case AArch64_LD4R_WB_4S_register:
TransferBytes = 16; break;
case AArch64_LD4R_WB_2D_fixed: case AArch64_LD4R_WB_2D_register:
TransferBytes = 32; break;
}
IsLoadDup = true;
NumVecs = 4;
break;
}
case AArch64_LD1LN_WB_B_fixed: case AArch64_LD1LN_WB_B_register:
case AArch64_LD1LN_WB_H_fixed: case AArch64_LD1LN_WB_H_register:
case AArch64_LD1LN_WB_S_fixed: case AArch64_LD1LN_WB_S_register:
case AArch64_LD1LN_WB_D_fixed: case AArch64_LD1LN_WB_D_register:
{
switch (Opc) {
case AArch64_LD1LN_WB_B_fixed: case AArch64_LD1LN_WB_B_register:
TransferBytes = 1; break;
case AArch64_LD1LN_WB_H_fixed: case AArch64_LD1LN_WB_H_register:
TransferBytes = 2; break;
case AArch64_LD1LN_WB_S_fixed: case AArch64_LD1LN_WB_S_register:
TransferBytes = 4; break;
case AArch64_LD1LN_WB_D_fixed: case AArch64_LD1LN_WB_D_register:
TransferBytes = 8; break;
}
IsLoad = true;
NumVecs = 1;
break;
}
case AArch64_LD2LN_WB_B_fixed: case AArch64_LD2LN_WB_B_register:
case AArch64_LD2LN_WB_H_fixed: case AArch64_LD2LN_WB_H_register:
case AArch64_LD2LN_WB_S_fixed: case AArch64_LD2LN_WB_S_register:
case AArch64_LD2LN_WB_D_fixed: case AArch64_LD2LN_WB_D_register:
{
switch (Opc) {
case AArch64_LD2LN_WB_B_fixed: case AArch64_LD2LN_WB_B_register:
TransferBytes = 2; break;
case AArch64_LD2LN_WB_H_fixed: case AArch64_LD2LN_WB_H_register:
TransferBytes = 4; break;
case AArch64_LD2LN_WB_S_fixed: case AArch64_LD2LN_WB_S_register:
TransferBytes = 8; break;
case AArch64_LD2LN_WB_D_fixed: case AArch64_LD2LN_WB_D_register:
TransferBytes = 16; break;
}
IsLoad = true;
NumVecs = 2;
break;
}
case AArch64_LD3LN_WB_B_fixed: case AArch64_LD3LN_WB_B_register:
case AArch64_LD3LN_WB_H_fixed: case AArch64_LD3LN_WB_H_register:
case AArch64_LD3LN_WB_S_fixed: case AArch64_LD3LN_WB_S_register:
case AArch64_LD3LN_WB_D_fixed: case AArch64_LD3LN_WB_D_register:
{
switch (Opc) {
case AArch64_LD3LN_WB_B_fixed: case AArch64_LD3LN_WB_B_register:
TransferBytes = 3; break;
case AArch64_LD3LN_WB_H_fixed: case AArch64_LD3LN_WB_H_register:
TransferBytes = 6; break;
case AArch64_LD3LN_WB_S_fixed: case AArch64_LD3LN_WB_S_register:
TransferBytes = 12; break;
case AArch64_LD3LN_WB_D_fixed: case AArch64_LD3LN_WB_D_register:
TransferBytes = 24; break;
}
IsLoad = true;
NumVecs = 3;
break;
}
case AArch64_LD4LN_WB_B_fixed: case AArch64_LD4LN_WB_B_register:
case AArch64_LD4LN_WB_H_fixed: case AArch64_LD4LN_WB_H_register:
case AArch64_LD4LN_WB_S_fixed: case AArch64_LD4LN_WB_S_register:
case AArch64_LD4LN_WB_D_fixed: case AArch64_LD4LN_WB_D_register:
{
switch (Opc) {
case AArch64_LD4LN_WB_B_fixed: case AArch64_LD4LN_WB_B_register:
TransferBytes = 4; break;
case AArch64_LD4LN_WB_H_fixed: case AArch64_LD4LN_WB_H_register:
TransferBytes = 8; break;
case AArch64_LD4LN_WB_S_fixed: case AArch64_LD4LN_WB_S_register:
TransferBytes = 16; break;
case AArch64_LD4LN_WB_D_fixed: case AArch64_LD4LN_WB_D_register:
TransferBytes = 32; break;
}
IsLoad = true;
NumVecs = 4;
break;
}
case AArch64_ST1LN_WB_B_fixed: case AArch64_ST1LN_WB_B_register:
case AArch64_ST1LN_WB_H_fixed: case AArch64_ST1LN_WB_H_register:
case AArch64_ST1LN_WB_S_fixed: case AArch64_ST1LN_WB_S_register:
case AArch64_ST1LN_WB_D_fixed: case AArch64_ST1LN_WB_D_register:
{
switch (Opc) {
case AArch64_ST1LN_WB_B_fixed: case AArch64_ST1LN_WB_B_register:
TransferBytes = 1; break;
case AArch64_ST1LN_WB_H_fixed: case AArch64_ST1LN_WB_H_register:
TransferBytes = 2; break;
case AArch64_ST1LN_WB_S_fixed: case AArch64_ST1LN_WB_S_register:
TransferBytes = 4; break;
case AArch64_ST1LN_WB_D_fixed: case AArch64_ST1LN_WB_D_register:
TransferBytes = 8; break;
}
NumVecs = 1;
break;
}
case AArch64_ST2LN_WB_B_fixed: case AArch64_ST2LN_WB_B_register:
case AArch64_ST2LN_WB_H_fixed: case AArch64_ST2LN_WB_H_register:
case AArch64_ST2LN_WB_S_fixed: case AArch64_ST2LN_WB_S_register:
case AArch64_ST2LN_WB_D_fixed: case AArch64_ST2LN_WB_D_register:
{
switch (Opc) {
case AArch64_ST2LN_WB_B_fixed: case AArch64_ST2LN_WB_B_register:
TransferBytes = 2; break;
case AArch64_ST2LN_WB_H_fixed: case AArch64_ST2LN_WB_H_register:
TransferBytes = 4; break;
case AArch64_ST2LN_WB_S_fixed: case AArch64_ST2LN_WB_S_register:
TransferBytes = 8; break;
case AArch64_ST2LN_WB_D_fixed: case AArch64_ST2LN_WB_D_register:
TransferBytes = 16; break;
}
NumVecs = 2;
break;
}
case AArch64_ST3LN_WB_B_fixed: case AArch64_ST3LN_WB_B_register:
case AArch64_ST3LN_WB_H_fixed: case AArch64_ST3LN_WB_H_register:
case AArch64_ST3LN_WB_S_fixed: case AArch64_ST3LN_WB_S_register:
case AArch64_ST3LN_WB_D_fixed: case AArch64_ST3LN_WB_D_register:
{
switch (Opc) {
case AArch64_ST3LN_WB_B_fixed: case AArch64_ST3LN_WB_B_register:
TransferBytes = 3; break;
case AArch64_ST3LN_WB_H_fixed: case AArch64_ST3LN_WB_H_register:
TransferBytes = 6; break;
case AArch64_ST3LN_WB_S_fixed: case AArch64_ST3LN_WB_S_register:
TransferBytes = 12; break;
case AArch64_ST3LN_WB_D_fixed: case AArch64_ST3LN_WB_D_register:
TransferBytes = 24; break;
}
NumVecs = 3;
break;
}
case AArch64_ST4LN_WB_B_fixed: case AArch64_ST4LN_WB_B_register:
case AArch64_ST4LN_WB_H_fixed: case AArch64_ST4LN_WB_H_register:
case AArch64_ST4LN_WB_S_fixed: case AArch64_ST4LN_WB_S_register:
case AArch64_ST4LN_WB_D_fixed: case AArch64_ST4LN_WB_D_register:
{
switch (Opc) {
case AArch64_ST4LN_WB_B_fixed: case AArch64_ST4LN_WB_B_register:
TransferBytes = 4; break;
case AArch64_ST4LN_WB_H_fixed: case AArch64_ST4LN_WB_H_register:
TransferBytes = 8; break;
case AArch64_ST4LN_WB_S_fixed: case AArch64_ST4LN_WB_S_register:
TransferBytes = 16; break;
case AArch64_ST4LN_WB_D_fixed: case AArch64_ST4LN_WB_D_register:
TransferBytes = 32; break;
}
NumVecs = 4;
break;
}
default:
return MCDisassembler_Fail;
} // End of switch (Opc)
unsigned Rt = fieldFromInstruction(Insn, 0, 5);
unsigned Rn = fieldFromInstruction(Insn, 5, 5);
unsigned Rm = fieldFromInstruction(Insn, 16, 5);
// Decode post-index of load duplicate lane
if (IsLoadDup) {
switch (NumVecs) {
case 1:
Is64bitVec ? DecodeFPR64RegisterClass(Inst, Rt, Address, Decoder)
: DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
break;
case 2:
Is64bitVec ? DecodeDPairRegisterClass(Inst, Rt, Address, Decoder)
: DecodeQPairRegisterClass(Inst, Rt, Address, Decoder);
break;
case 3:
Is64bitVec ? DecodeDTripleRegisterClass(Inst, Rt, Address, Decoder)
: DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder);
break;
case 4:
Is64bitVec ? DecodeDQuadRegisterClass(Inst, Rt, Address, Decoder)
: DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder);
}
// Decode write back register, which is equal to Rn.
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
if (Rm == 31) // If Rm is 0x11111, add the number of transferred bytes
MCInst_addOperand(Inst, MCOperand_CreateImm(TransferBytes));
else // Decode Rm
DecodeGPR64noxzrRegisterClass(Inst, Rm, Address, Decoder);
return MCDisassembler_Success;
}
// Decode post-index of load/store lane
// Loads have a vector list as output.
if (IsLoad) {
switch (NumVecs) {
case 1:
DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
break;
case 2:
DecodeQPairRegisterClass(Inst, Rt, Address, Decoder);
break;
case 3:
DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder);
break;
case 4:
DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder);
}
}
// Decode write back register, which is equal to Rn.
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
if (Rm == 31) // If Rm is 0x11111, add the number of transferred bytes
MCInst_addOperand(Inst, MCOperand_CreateImm(TransferBytes));
else // Decode Rm
DecodeGPR64noxzrRegisterClass(Inst, Rm, Address, Decoder);
// Decode the source vector list.
switch (NumVecs) {
case 1:
DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
break;
case 2:
DecodeQPairRegisterClass(Inst, Rt, Address, Decoder);
break;
case 3:
DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder);
break;
case 4:
DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder);
}
// Decode lane
unsigned Q = fieldFromInstruction(Insn, 30, 1);
unsigned S = fieldFromInstruction(Insn, 10, 3);
unsigned lane = 0;
// Calculate the number of lanes by number of vectors and transfered bytes.
// NumLanes = 16 bytes / bytes of each lane
unsigned NumLanes = 16 / (TransferBytes / NumVecs);
switch (NumLanes) {
case 16: // A vector has 16 lanes, each lane is 1 bytes.
lane = (Q << 3) | S;
break;
case 8:
lane = (Q << 2) | (S >> 1);
break;
case 4:
lane = (Q << 1) | (S >> 2);
break;
case 2:
lane = Q;
break;
}
MCInst_addOperand(Inst, MCOperand_CreateImm(lane));
return MCDisassembler_Success;
}
static DecodeStatus DecodeSHLLInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address,
void *Decoder)
{
unsigned Rd = fieldFromInstruction(Insn, 0, 5);
unsigned Rn = fieldFromInstruction(Insn, 5, 5);
unsigned size = fieldFromInstruction(Insn, 22, 2);
unsigned Q = fieldFromInstruction(Insn, 30, 1);
DecodeFPR128RegisterClass(Inst, Rd, Address, Decoder);
if (Q)
DecodeFPR128RegisterClass(Inst, Rn, Address, Decoder);
else
DecodeFPR64RegisterClass(Inst, Rn, Address, Decoder);
switch (size) {
case 0:
MCInst_addOperand(Inst, MCOperand_CreateImm(8));
break;
case 1:
MCInst_addOperand(Inst, MCOperand_CreateImm(16));
break;
case 2:
MCInst_addOperand(Inst, MCOperand_CreateImm(32));
break;
default :
return MCDisassembler_Fail;
}
return MCDisassembler_Success;
}