| /*===-- X86DisassemblerDecoder.c - Disassembler decoder ------------*- C -*-===* |
| * |
| * The LLVM Compiler Infrastructure |
| * |
| * This file is distributed under the University of Illinois Open Source |
| * License. See LICENSE.TXT for details. |
| * |
| *===----------------------------------------------------------------------===* |
| * |
| * This file is part of the X86 Disassembler. |
| * It contains the implementation of the instruction decoder. |
| * Documentation for the disassembler can be found in X86Disassembler.h. |
| * |
| *===----------------------------------------------------------------------===*/ |
| |
| /* Capstone Disassembly Engine */ |
| /* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2015 */ |
| |
| #ifdef CAPSTONE_HAS_X86 |
| |
| #include <stdarg.h> /* for va_*() */ |
| #include <stdlib.h> /* for exit() */ |
| |
| #include "../../cs_priv.h" |
| #include "../../utils.h" |
| |
| #include "X86DisassemblerDecoder.h" |
| |
| /// Specifies whether a ModR/M byte is needed and (if so) which |
| /// instruction each possible value of the ModR/M byte corresponds to. Once |
| /// this information is known, we have narrowed down to a single instruction. |
| struct ModRMDecision { |
| uint8_t modrm_type; |
| uint16_t instructionIDs; |
| }; |
| |
| /// Specifies which set of ModR/M->instruction tables to look at |
| /// given a particular opcode. |
| struct OpcodeDecision { |
| struct ModRMDecision modRMDecisions[256]; |
| }; |
| |
| /// Specifies which opcode->instruction tables to look at given |
| /// a particular context (set of attributes). Since there are many possible |
| /// contexts, the decoder first uses CONTEXTS_SYM to determine which context |
| /// applies given a specific set of attributes. Hence there are only IC_max |
| /// entries in this table, rather than 2^(ATTR_max). |
| struct ContextDecision { |
| struct OpcodeDecision opcodeDecisions[IC_max]; |
| }; |
| |
| #ifdef CAPSTONE_X86_REDUCE |
| #include "X86GenDisassemblerTables_reduce.inc" |
| #else |
| #include "X86GenDisassemblerTables.inc" |
| #endif |
| |
| //#define GET_INSTRINFO_ENUM |
| #define GET_INSTRINFO_MC_DESC |
| #ifdef CAPSTONE_X86_REDUCE |
| #include "X86GenInstrInfo_reduce.inc" |
| #else |
| #include "X86GenInstrInfo.inc" |
| #endif |
| |
| /* |
| * contextForAttrs - Client for the instruction context table. Takes a set of |
| * attributes and returns the appropriate decode context. |
| * |
| * @param attrMask - Attributes, from the enumeration attributeBits. |
| * @return - The InstructionContext to use when looking up an |
| * an instruction with these attributes. |
| */ |
| static InstructionContext contextForAttrs(uint16_t attrMask) |
| { |
| return CONTEXTS_SYM[attrMask]; |
| } |
| |
| /* |
| * modRMRequired - Reads the appropriate instruction table to determine whether |
| * the ModR/M byte is required to decode a particular instruction. |
| * |
| * @param type - The opcode type (i.e., how many bytes it has). |
| * @param insnContext - The context for the instruction, as returned by |
| * contextForAttrs. |
| * @param opcode - The last byte of the instruction's opcode, not counting |
| * ModR/M extensions and escapes. |
| * @return - true if the ModR/M byte is required, false otherwise. |
| */ |
| static int modRMRequired(OpcodeType type, |
| InstructionContext insnContext, |
| uint16_t opcode) |
| { |
| const struct OpcodeDecision *decision = NULL; |
| const uint8_t *indextable = NULL; |
| uint8_t index; |
| |
| switch (type) { |
| default: |
| case ONEBYTE: |
| decision = ONEBYTE_SYM; |
| indextable = index_x86DisassemblerOneByteOpcodes; |
| break; |
| case TWOBYTE: |
| decision = TWOBYTE_SYM; |
| indextable = index_x86DisassemblerTwoByteOpcodes; |
| break; |
| case THREEBYTE_38: |
| decision = THREEBYTE38_SYM; |
| indextable = index_x86DisassemblerThreeByte38Opcodes; |
| break; |
| case THREEBYTE_3A: |
| decision = THREEBYTE3A_SYM; |
| indextable = index_x86DisassemblerThreeByte3AOpcodes; |
| break; |
| #ifndef CAPSTONE_X86_REDUCE |
| case XOP8_MAP: |
| decision = XOP8_MAP_SYM; |
| indextable = index_x86DisassemblerXOP8Opcodes; |
| break; |
| case XOP9_MAP: |
| decision = XOP9_MAP_SYM; |
| indextable = index_x86DisassemblerXOP9Opcodes; |
| break; |
| case XOPA_MAP: |
| decision = XOPA_MAP_SYM; |
| indextable = index_x86DisassemblerXOPAOpcodes; |
| break; |
| case T3DNOW_MAP: |
| // 3DNow instructions always have ModRM byte |
| return true; |
| #endif |
| } |
| |
| index = indextable[insnContext]; |
| if (index) |
| return decision[index - 1].modRMDecisions[opcode].modrm_type != MODRM_ONEENTRY; |
| else |
| return false; |
| } |
| |
| /* |
| * decode - Reads the appropriate instruction table to obtain the unique ID of |
| * an instruction. |
| * |
| * @param type - See modRMRequired(). |
| * @param insnContext - See modRMRequired(). |
| * @param opcode - See modRMRequired(). |
| * @param modRM - The ModR/M byte if required, or any value if not. |
| * @return - The UID of the instruction, or 0 on failure. |
| */ |
| static InstrUID decode(OpcodeType type, |
| InstructionContext insnContext, |
| uint8_t opcode, |
| uint8_t modRM) |
| { |
| const struct ModRMDecision *dec = NULL; |
| const uint8_t *indextable = NULL; |
| uint8_t index; |
| |
| switch (type) { |
| default: |
| case ONEBYTE: |
| indextable = index_x86DisassemblerOneByteOpcodes; |
| index = indextable[insnContext]; |
| if (index) |
| dec = &ONEBYTE_SYM[index - 1].modRMDecisions[opcode]; |
| else |
| dec = &emptyTable.modRMDecisions[opcode]; |
| break; |
| case TWOBYTE: |
| indextable = index_x86DisassemblerTwoByteOpcodes; |
| index = indextable[insnContext]; |
| if (index) |
| dec = &TWOBYTE_SYM[index - 1].modRMDecisions[opcode]; |
| else |
| dec = &emptyTable.modRMDecisions[opcode]; |
| break; |
| case THREEBYTE_38: |
| indextable = index_x86DisassemblerThreeByte38Opcodes; |
| index = indextable[insnContext]; |
| if (index) |
| dec = &THREEBYTE38_SYM[index - 1].modRMDecisions[opcode]; |
| else |
| dec = &emptyTable.modRMDecisions[opcode]; |
| break; |
| case THREEBYTE_3A: |
| indextable = index_x86DisassemblerThreeByte3AOpcodes; |
| index = indextable[insnContext]; |
| if (index) |
| dec = &THREEBYTE3A_SYM[index - 1].modRMDecisions[opcode]; |
| else |
| dec = &emptyTable.modRMDecisions[opcode]; |
| break; |
| #ifndef CAPSTONE_X86_REDUCE |
| case XOP8_MAP: |
| indextable = index_x86DisassemblerXOP8Opcodes; |
| index = indextable[insnContext]; |
| if (index) |
| dec = &XOP8_MAP_SYM[index - 1].modRMDecisions[opcode]; |
| else |
| dec = &emptyTable.modRMDecisions[opcode]; |
| break; |
| case XOP9_MAP: |
| indextable = index_x86DisassemblerXOP9Opcodes; |
| index = indextable[insnContext]; |
| if (index) |
| dec = &XOP9_MAP_SYM[index - 1].modRMDecisions[opcode]; |
| else |
| dec = &emptyTable.modRMDecisions[opcode]; |
| break; |
| case XOPA_MAP: |
| indextable = index_x86DisassemblerXOPAOpcodes; |
| index = indextable[insnContext]; |
| if (index) |
| dec = &XOPA_MAP_SYM[index - 1].modRMDecisions[opcode]; |
| else |
| dec = &emptyTable.modRMDecisions[opcode]; |
| break; |
| case T3DNOW_MAP: |
| indextable = index_x86DisassemblerT3DNOWOpcodes; |
| index = indextable[insnContext]; |
| if (index) |
| dec = &T3DNOW_MAP_SYM[index - 1].modRMDecisions[opcode]; |
| else |
| dec = &emptyTable.modRMDecisions[opcode]; |
| break; |
| #endif |
| } |
| |
| switch (dec->modrm_type) { |
| default: |
| //debug("Corrupt table! Unknown modrm_type"); |
| return 0; |
| case MODRM_ONEENTRY: |
| return modRMTable[dec->instructionIDs]; |
| case MODRM_SPLITRM: |
| if (modFromModRM(modRM) == 0x3) |
| return modRMTable[dec->instructionIDs+1]; |
| return modRMTable[dec->instructionIDs]; |
| case MODRM_SPLITREG: |
| if (modFromModRM(modRM) == 0x3) |
| return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8]; |
| return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)]; |
| case MODRM_SPLITMISC: |
| if (modFromModRM(modRM) == 0x3) |
| return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8]; |
| return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)]; |
| case MODRM_FULL: |
| return modRMTable[dec->instructionIDs+modRM]; |
| } |
| } |
| |
| /* |
| * specifierForUID - Given a UID, returns the name and operand specification for |
| * that instruction. |
| * |
| * @param uid - The unique ID for the instruction. This should be returned by |
| * decode(); specifierForUID will not check bounds. |
| * @return - A pointer to the specification for that instruction. |
| */ |
| static const struct InstructionSpecifier *specifierForUID(InstrUID uid) |
| { |
| return &INSTRUCTIONS_SYM[uid]; |
| } |
| |
| /* |
| * consumeByte - Uses the reader function provided by the user to consume one |
| * byte from the instruction's memory and advance the cursor. |
| * |
| * @param insn - The instruction with the reader function to use. The cursor |
| * for this instruction is advanced. |
| * @param byte - A pointer to a pre-allocated memory buffer to be populated |
| * with the data read. |
| * @return - 0 if the read was successful; nonzero otherwise. |
| */ |
| static int consumeByte(struct InternalInstruction *insn, uint8_t *byte) |
| { |
| int ret = insn->reader(insn->readerArg, byte, insn->readerCursor); |
| |
| if (!ret) |
| ++(insn->readerCursor); |
| |
| return ret; |
| } |
| |
| /* |
| * lookAtByte - Like consumeByte, but does not advance the cursor. |
| * |
| * @param insn - See consumeByte(). |
| * @param byte - See consumeByte(). |
| * @return - See consumeByte(). |
| */ |
| static int lookAtByte(struct InternalInstruction *insn, uint8_t *byte) |
| { |
| return insn->reader(insn->readerArg, byte, insn->readerCursor); |
| } |
| |
| static void unconsumeByte(struct InternalInstruction *insn) |
| { |
| insn->readerCursor--; |
| } |
| |
| #define CONSUME_FUNC(name, type) \ |
| static int name(struct InternalInstruction *insn, type *ptr) { \ |
| type combined = 0; \ |
| unsigned offset; \ |
| for (offset = 0; offset < sizeof(type); ++offset) { \ |
| uint8_t byte; \ |
| int ret = insn->reader(insn->readerArg, \ |
| &byte, \ |
| insn->readerCursor + offset); \ |
| if (ret) \ |
| return ret; \ |
| combined = combined | (type)((uint64_t)byte << (offset * 8)); \ |
| } \ |
| *ptr = combined; \ |
| insn->readerCursor += sizeof(type); \ |
| return 0; \ |
| } |
| |
| /* |
| * consume* - Use the reader function provided by the user to consume data |
| * values of various sizes from the instruction's memory and advance the |
| * cursor appropriately. These readers perform endian conversion. |
| * |
| * @param insn - See consumeByte(). |
| * @param ptr - A pointer to a pre-allocated memory of appropriate size to |
| * be populated with the data read. |
| * @return - See consumeByte(). |
| */ |
| CONSUME_FUNC(consumeInt8, int8_t) |
| CONSUME_FUNC(consumeInt16, int16_t) |
| CONSUME_FUNC(consumeInt32, int32_t) |
| CONSUME_FUNC(consumeUInt16, uint16_t) |
| CONSUME_FUNC(consumeUInt32, uint32_t) |
| CONSUME_FUNC(consumeUInt64, uint64_t) |
| |
| /* |
| * setPrefixPresent - Marks that a particular prefix is present at a particular |
| * location. |
| * |
| * @param insn - The instruction to be marked as having the prefix. |
| * @param prefix - The prefix that is present. |
| * @param location - The location where the prefix is located (in the address |
| * space of the instruction's reader). |
| */ |
| static void setPrefixPresent(struct InternalInstruction *insn, uint8_t prefix) |
| { |
| insn->prefixPresent[prefix] = 1; |
| } |
| |
| /* |
| * isPrefixAtLocation - Queries an instruction to determine whether a prefix is |
| * present at a given location. |
| * |
| * @param insn - The instruction to be queried. |
| * @param prefix - The prefix. |
| * @param location - The location to query. |
| * @return - Whether the prefix is at that location. |
| */ |
| static bool isPrefixAtLocation(struct InternalInstruction *insn, uint8_t prefix) |
| { |
| if (insn->prefixPresent[prefix] == 1) |
| return true; |
| else |
| return false; |
| } |
| |
| /* |
| * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the |
| * instruction as having them. Also sets the instruction's default operand, |
| * address, and other relevant data sizes to report operands correctly. |
| * |
| * @param insn - The instruction whose prefixes are to be read. |
| * @return - 0 if the instruction could be read until the end of the prefix |
| * bytes, and no prefixes conflicted; nonzero otherwise. |
| */ |
| static int readPrefixes(struct InternalInstruction *insn) |
| { |
| bool isPrefix = true; |
| uint8_t byte = 0, nextByte; |
| |
| bool hasAdSize = false; |
| bool hasOpSize = false; |
| |
| while (isPrefix) { |
| if (insn->mode == MODE_64BIT) { |
| // eliminate consecutive redundant REX bytes in front |
| if (consumeByte(insn, &byte)) |
| return -1; |
| |
| if ((byte & 0xf0) == 0x40) { |
| while(true) { |
| if (lookAtByte(insn, &byte)) // out of input code |
| return -1; |
| if ((byte & 0xf0) == 0x40) { |
| // another REX prefix, but we only remember the last one |
| consumeByte(insn, &byte); |
| } else |
| break; |
| } |
| |
| // recover the last REX byte if next byte is not a legacy prefix |
| switch (byte) { |
| case 0xf2: /* REPNE/REPNZ */ |
| case 0xf3: /* REP or REPE/REPZ */ |
| case 0xf0: /* LOCK */ |
| case 0x2e: /* CS segment override -OR- Branch not taken */ |
| case 0x36: /* SS segment override -OR- Branch taken */ |
| case 0x3e: /* DS segment override */ |
| case 0x26: /* ES segment override */ |
| case 0x64: /* FS segment override */ |
| case 0x65: /* GS segment override */ |
| case 0x66: /* Operand-size override */ |
| case 0x67: /* Address-size override */ |
| break; |
| default: /* Not a prefix byte */ |
| unconsumeByte(insn); |
| break; |
| } |
| } else { |
| unconsumeByte(insn); |
| } |
| } |
| |
| /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */ |
| if (consumeByte(insn, &byte)) |
| break; |
| |
| if (insn->readerCursor - 1 == insn->startLocation |
| && (byte == 0xf2 || byte == 0xf3) |
| && !lookAtByte(insn, &nextByte)) { |
| /* |
| * If the byte is 0xf2 or 0xf3, and any of the following conditions are |
| * met: |
| * - it is followed by a LOCK (0xf0) prefix |
| * - it is followed by an xchg instruction |
| * then it should be disassembled as a xacquire/xrelease not repne/rep. |
| */ |
| if ((byte == 0xf2 || byte == 0xf3) && |
| ((nextByte == 0xf0) | |
| ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) |
| insn->xAcquireRelease = true; |
| /* |
| * Also if the byte is 0xf3, and the following condition is met: |
| * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or |
| * "mov mem, imm" (opcode 0xc6/0xc7) instructions. |
| * then it should be disassembled as an xrelease not rep. |
| */ |
| if (byte == 0xf3 && |
| (nextByte == 0x88 || nextByte == 0x89 || |
| nextByte == 0xc6 || nextByte == 0xc7)) |
| insn->xAcquireRelease = true; |
| |
| if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) { |
| if (consumeByte(insn, &nextByte)) |
| return -1; |
| if (lookAtByte(insn, &nextByte)) |
| return -1; |
| unconsumeByte(insn); |
| } |
| } |
| |
| switch (byte) { |
| case 0xf2: /* REPNE/REPNZ */ |
| case 0xf3: /* REP or REPE/REPZ */ |
| case 0xf0: /* LOCK */ |
| // only accept the last prefix |
| insn->prefixPresent[0xf2] = 0; |
| insn->prefixPresent[0xf3] = 0; |
| insn->prefixPresent[0xf0] = 0; |
| setPrefixPresent(insn, byte); |
| insn->prefix0 = byte; |
| break; |
| case 0x2e: /* CS segment override -OR- Branch not taken */ |
| insn->segmentOverride = SEG_OVERRIDE_CS; |
| // only accept the last prefix |
| insn->prefixPresent[0x2e] = 0; |
| insn->prefixPresent[0x36] = 0; |
| insn->prefixPresent[0x3e] = 0; |
| insn->prefixPresent[0x26] = 0; |
| insn->prefixPresent[0x64] = 0; |
| insn->prefixPresent[0x65] = 0; |
| |
| setPrefixPresent(insn, byte); |
| insn->prefix1 = byte; |
| break; |
| case 0x36: /* SS segment override -OR- Branch taken */ |
| insn->segmentOverride = SEG_OVERRIDE_SS; |
| // only accept the last prefix |
| insn->prefixPresent[0x2e] = 0; |
| insn->prefixPresent[0x36] = 0; |
| insn->prefixPresent[0x3e] = 0; |
| insn->prefixPresent[0x26] = 0; |
| insn->prefixPresent[0x64] = 0; |
| insn->prefixPresent[0x65] = 0; |
| |
| setPrefixPresent(insn, byte); |
| insn->prefix1 = byte; |
| break; |
| case 0x3e: /* DS segment override */ |
| insn->segmentOverride = SEG_OVERRIDE_DS; |
| // only accept the last prefix |
| insn->prefixPresent[0x2e] = 0; |
| insn->prefixPresent[0x36] = 0; |
| insn->prefixPresent[0x3e] = 0; |
| insn->prefixPresent[0x26] = 0; |
| insn->prefixPresent[0x64] = 0; |
| insn->prefixPresent[0x65] = 0; |
| |
| setPrefixPresent(insn, byte); |
| insn->prefix1 = byte; |
| break; |
| case 0x26: /* ES segment override */ |
| insn->segmentOverride = SEG_OVERRIDE_ES; |
| // only accept the last prefix |
| insn->prefixPresent[0x2e] = 0; |
| insn->prefixPresent[0x36] = 0; |
| insn->prefixPresent[0x3e] = 0; |
| insn->prefixPresent[0x26] = 0; |
| insn->prefixPresent[0x64] = 0; |
| insn->prefixPresent[0x65] = 0; |
| |
| setPrefixPresent(insn, byte); |
| insn->prefix1 = byte; |
| break; |
| case 0x64: /* FS segment override */ |
| insn->segmentOverride = SEG_OVERRIDE_FS; |
| // only accept the last prefix |
| insn->prefixPresent[0x2e] = 0; |
| insn->prefixPresent[0x36] = 0; |
| insn->prefixPresent[0x3e] = 0; |
| insn->prefixPresent[0x26] = 0; |
| insn->prefixPresent[0x64] = 0; |
| insn->prefixPresent[0x65] = 0; |
| |
| setPrefixPresent(insn, byte); |
| insn->prefix1 = byte; |
| break; |
| case 0x65: /* GS segment override */ |
| insn->segmentOverride = SEG_OVERRIDE_GS; |
| // only accept the last prefix |
| insn->prefixPresent[0x2e] = 0; |
| insn->prefixPresent[0x36] = 0; |
| insn->prefixPresent[0x3e] = 0; |
| insn->prefixPresent[0x26] = 0; |
| insn->prefixPresent[0x64] = 0; |
| insn->prefixPresent[0x65] = 0; |
| |
| setPrefixPresent(insn, byte); |
| insn->prefix1 = byte; |
| break; |
| case 0x66: /* Operand-size override */ |
| hasOpSize = true; |
| setPrefixPresent(insn, byte); |
| insn->prefix2 = byte; |
| break; |
| case 0x67: /* Address-size override */ |
| hasAdSize = true; |
| setPrefixPresent(insn, byte); |
| insn->prefix3 = byte; |
| break; |
| default: /* Not a prefix byte */ |
| isPrefix = false; |
| break; |
| } |
| |
| //if (isPrefix) |
| // dbgprintf(insn, "Found prefix 0x%hhx", byte); |
| } |
| |
| insn->vectorExtensionType = TYPE_NO_VEX_XOP; |
| |
| |
| if (byte == 0x62) { |
| uint8_t byte1, byte2; |
| |
| if (consumeByte(insn, &byte1)) { |
| //dbgprintf(insn, "Couldn't read second byte of EVEX prefix"); |
| return -1; |
| } |
| |
| if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) && |
| ((~byte1 & 0xc) == 0xc)) { |
| if (lookAtByte(insn, &byte2)) { |
| //dbgprintf(insn, "Couldn't read third byte of EVEX prefix"); |
| return -1; |
| } |
| |
| if ((byte2 & 0x4) == 0x4) { |
| insn->vectorExtensionType = TYPE_EVEX; |
| } else { |
| unconsumeByte(insn); /* unconsume byte1 */ |
| unconsumeByte(insn); /* unconsume byte */ |
| } |
| |
| if (insn->vectorExtensionType == TYPE_EVEX) { |
| insn->vectorExtensionPrefix[0] = byte; |
| insn->vectorExtensionPrefix[1] = byte1; |
| |
| if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) { |
| //dbgprintf(insn, "Couldn't read third byte of EVEX prefix"); |
| return -1; |
| } |
| |
| if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) { |
| //dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix"); |
| return -1; |
| } |
| |
| /* We simulate the REX prefix for simplicity's sake */ |
| if (insn->mode == MODE_64BIT) { |
| insn->rexPrefix = 0x40 |
| | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
| | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
| | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
| | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0); |
| } |
| |
| //dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx", |
| // insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], |
| // insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]); |
| } |
| } else { |
| // BOUND instruction |
| unconsumeByte(insn); /* unconsume byte1 */ |
| unconsumeByte(insn); /* unconsume byte */ |
| } |
| } else if (byte == 0xc4) { |
| uint8_t byte1; |
| |
| if (lookAtByte(insn, &byte1)) { |
| //dbgprintf(insn, "Couldn't read second byte of VEX"); |
| return -1; |
| } |
| |
| if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) { |
| insn->vectorExtensionType = TYPE_VEX_3B; |
| } else { |
| unconsumeByte(insn); |
| } |
| |
| if (insn->vectorExtensionType == TYPE_VEX_3B) { |
| insn->vectorExtensionPrefix[0] = byte; |
| consumeByte(insn, &insn->vectorExtensionPrefix[1]); |
| consumeByte(insn, &insn->vectorExtensionPrefix[2]); |
| |
| /* We simulate the REX prefix for simplicity's sake */ |
| if (insn->mode == MODE_64BIT) { |
| insn->rexPrefix = 0x40 |
| | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
| | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
| | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
| | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0); |
| |
| } |
| } |
| } else if (byte == 0xc5) { |
| uint8_t byte1; |
| |
| if (lookAtByte(insn, &byte1)) { |
| //dbgprintf(insn, "Couldn't read second byte of VEX"); |
| return -1; |
| } |
| |
| if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) { |
| insn->vectorExtensionType = TYPE_VEX_2B; |
| } else { |
| unconsumeByte(insn); |
| } |
| |
| if (insn->vectorExtensionType == TYPE_VEX_2B) { |
| insn->vectorExtensionPrefix[0] = byte; |
| consumeByte(insn, &insn->vectorExtensionPrefix[1]); |
| |
| if (insn->mode == MODE_64BIT) { |
| insn->rexPrefix = 0x40 |
| | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2); |
| } |
| |
| switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { |
| default: |
| break; |
| case VEX_PREFIX_66: |
| hasOpSize = true; |
| break; |
| } |
| } |
| } else if (byte == 0x8f) { |
| uint8_t byte1; |
| |
| if (lookAtByte(insn, &byte1)) { |
| // dbgprintf(insn, "Couldn't read second byte of XOP"); |
| return -1; |
| } |
| |
| if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */ |
| insn->vectorExtensionType = TYPE_XOP; |
| } |
| else { |
| unconsumeByte(insn); |
| } |
| |
| if (insn->vectorExtensionType == TYPE_XOP) { |
| insn->vectorExtensionPrefix[0] = byte; |
| consumeByte(insn, &insn->vectorExtensionPrefix[1]); |
| consumeByte(insn, &insn->vectorExtensionPrefix[2]); |
| |
| /* We simulate the REX prefix for simplicity's sake */ |
| if (insn->mode == MODE_64BIT) { |
| insn->rexPrefix = 0x40 |
| | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
| | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
| | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
| | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0); |
| } |
| |
| switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { |
| default: |
| break; |
| case VEX_PREFIX_66: |
| hasOpSize = true; |
| break; |
| } |
| } |
| } else { |
| if (insn->mode == MODE_64BIT) { |
| if ((byte & 0xf0) == 0x40) { |
| uint8_t opcodeByte; |
| |
| while(true) { |
| if (lookAtByte(insn, &opcodeByte)) // out of input code |
| return -1; |
| if ((opcodeByte & 0xf0) == 0x40) { |
| // another REX prefix, but we only remember the last one |
| consumeByte(insn, &byte); |
| } else |
| break; |
| } |
| |
| insn->rexPrefix = byte; |
| // dbgprintf(insn, "Found REX prefix 0x%hhx", byte); |
| } else { |
| unconsumeByte(insn); |
| } |
| } else { |
| unconsumeByte(insn); |
| } |
| } |
| |
| if (insn->mode == MODE_16BIT) { |
| insn->registerSize = (hasOpSize ? 4 : 2); |
| insn->addressSize = (hasAdSize ? 4 : 2); |
| insn->displacementSize = (hasAdSize ? 4 : 2); |
| insn->immediateSize = (hasOpSize ? 4 : 2); |
| insn->immSize = (hasOpSize ? 4 : 2); |
| } else if (insn->mode == MODE_32BIT) { |
| insn->registerSize = (hasOpSize ? 2 : 4); |
| insn->addressSize = (hasAdSize ? 2 : 4); |
| insn->displacementSize = (hasAdSize ? 2 : 4); |
| insn->immediateSize = (hasOpSize ? 2 : 4); |
| insn->immSize = (hasOpSize ? 2 : 4); |
| } else if (insn->mode == MODE_64BIT) { |
| if (insn->rexPrefix && wFromREX(insn->rexPrefix)) { |
| insn->registerSize = 8; |
| insn->addressSize = (hasAdSize ? 4 : 8); |
| insn->displacementSize = 4; |
| insn->immediateSize = 4; |
| insn->immSize = 4; |
| } else if (insn->rexPrefix) { |
| insn->registerSize = (hasOpSize ? 2 : 4); |
| insn->addressSize = (hasAdSize ? 4 : 8); |
| insn->displacementSize = (hasOpSize ? 2 : 4); |
| insn->immediateSize = (hasOpSize ? 2 : 4); |
| insn->immSize = (hasOpSize ? 2 : 4); |
| } else { |
| insn->registerSize = (hasOpSize ? 2 : 4); |
| insn->addressSize = (hasAdSize ? 4 : 8); |
| insn->displacementSize = (hasOpSize ? 2 : 4); |
| insn->immediateSize = (hasOpSize ? 2 : 4); |
| insn->immSize = (hasOpSize ? 4 : 8); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int readModRM(struct InternalInstruction *insn); |
| |
| /* |
| * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of |
| * extended or escape opcodes). |
| * |
| * @param insn - The instruction whose opcode is to be read. |
| * @return - 0 if the opcode could be read successfully; nonzero otherwise. |
| */ |
| static int readOpcode(struct InternalInstruction *insn) |
| { |
| /* Determine the length of the primary opcode */ |
| uint8_t current; |
| |
| // printf(">>> readOpcode()\n"); |
| |
| insn->opcodeType = ONEBYTE; |
| |
| if (insn->vectorExtensionType == TYPE_EVEX) { |
| switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) { |
| default: |
| // dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)", |
| // mmFromEVEX2of4(insn->vectorExtensionPrefix[1])); |
| return -1; |
| case VEX_LOB_0F: |
| insn->opcodeType = TWOBYTE; |
| return consumeByte(insn, &insn->opcode); |
| case VEX_LOB_0F38: |
| insn->opcodeType = THREEBYTE_38; |
| return consumeByte(insn, &insn->opcode); |
| case VEX_LOB_0F3A: |
| insn->opcodeType = THREEBYTE_3A; |
| return consumeByte(insn, &insn->opcode); |
| } |
| } else if (insn->vectorExtensionType == TYPE_VEX_3B) { |
| switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) { |
| default: |
| // dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", |
| // mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])); |
| return -1; |
| case VEX_LOB_0F: |
| insn->twoByteEscape = 0x0f; |
| insn->opcodeType = TWOBYTE; |
| return consumeByte(insn, &insn->opcode); |
| case VEX_LOB_0F38: |
| insn->twoByteEscape = 0x0f; |
| insn->threeByteEscape = 0x38; |
| insn->opcodeType = THREEBYTE_38; |
| return consumeByte(insn, &insn->opcode); |
| case VEX_LOB_0F3A: |
| insn->twoByteEscape = 0x0f; |
| insn->threeByteEscape = 0x3a; |
| insn->opcodeType = THREEBYTE_3A; |
| return consumeByte(insn, &insn->opcode); |
| } |
| } else if (insn->vectorExtensionType == TYPE_VEX_2B) { |
| insn->twoByteEscape = 0x0f; |
| insn->opcodeType = TWOBYTE; |
| return consumeByte(insn, &insn->opcode); |
| } else if (insn->vectorExtensionType == TYPE_XOP) { |
| switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) { |
| default: |
| // dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", |
| // mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])); |
| return -1; |
| case XOP_MAP_SELECT_8: |
| // FIXME: twoByteEscape? |
| insn->opcodeType = XOP8_MAP; |
| return consumeByte(insn, &insn->opcode); |
| case XOP_MAP_SELECT_9: |
| // FIXME: twoByteEscape? |
| insn->opcodeType = XOP9_MAP; |
| return consumeByte(insn, &insn->opcode); |
| case XOP_MAP_SELECT_A: |
| // FIXME: twoByteEscape? |
| insn->opcodeType = XOPA_MAP; |
| return consumeByte(insn, &insn->opcode); |
| } |
| } |
| |
| if (consumeByte(insn, ¤t)) |
| return -1; |
| |
| // save this first byte for MOVcr, MOVdr, MOVrc, MOVrd |
| insn->firstByte = current; |
| |
| if (current == 0x0f) { |
| // dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current); |
| |
| insn->twoByteEscape = current; |
| |
| if (consumeByte(insn, ¤t)) |
| return -1; |
| |
| if (current == 0x38) { |
| // dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); |
| |
| insn->threeByteEscape = current; |
| |
| if (consumeByte(insn, ¤t)) |
| return -1; |
| |
| insn->opcodeType = THREEBYTE_38; |
| } else if (current == 0x3a) { |
| // dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); |
| |
| insn->threeByteEscape = current; |
| |
| if (consumeByte(insn, ¤t)) |
| return -1; |
| |
| insn->opcodeType = THREEBYTE_3A; |
| } else { |
| #ifndef CAPSTONE_X86_REDUCE |
| switch(current) { |
| default: |
| // dbgprintf(insn, "Didn't find a three-byte escape prefix"); |
| insn->opcodeType = TWOBYTE; |
| break; |
| case 0x0e: // HACK for femms. to be handled properly in next version 3.x |
| insn->opcodeType = T3DNOW_MAP; |
| // this encode does not have ModRM |
| insn->consumedModRM = true; |
| break; |
| case 0x0f: |
| // 3DNow instruction has weird format: ModRM/SIB/displacement + opcode |
| if (readModRM(insn)) |
| return -1; |
| // next is 3DNow opcode |
| if (consumeByte(insn, ¤t)) |
| return -1; |
| insn->opcodeType = T3DNOW_MAP; |
| break; |
| } |
| #endif |
| } |
| } |
| |
| /* |
| * At this point we have consumed the full opcode. |
| * Anything we consume from here on must be unconsumed. |
| */ |
| |
| insn->opcode = current; |
| |
| return 0; |
| } |
| |
| // Hacky for FEMMS |
| #define GET_INSTRINFO_ENUM |
| #ifndef CAPSTONE_X86_REDUCE |
| #include "X86GenInstrInfo.inc" |
| #else |
| #include "X86GenInstrInfo_reduce.inc" |
| #endif |
| |
| /* |
| * getIDWithAttrMask - Determines the ID of an instruction, consuming |
| * the ModR/M byte as appropriate for extended and escape opcodes, |
| * and using a supplied attribute mask. |
| * |
| * @param instructionID - A pointer whose target is filled in with the ID of the |
| * instruction. |
| * @param insn - The instruction whose ID is to be determined. |
| * @param attrMask - The attribute mask to search. |
| * @return - 0 if the ModR/M could be read when needed or was not |
| * needed; nonzero otherwise. |
| */ |
| static int getIDWithAttrMask(uint16_t *instructionID, |
| struct InternalInstruction *insn, |
| uint16_t attrMask) |
| { |
| bool hasModRMExtension; |
| |
| InstructionContext instructionClass; |
| |
| #ifndef CAPSTONE_X86_REDUCE |
| // HACK for femms. to be handled properly in next version 3.x |
| if (insn->opcode == 0x0e && insn->opcodeType == T3DNOW_MAP) { |
| *instructionID = X86_FEMMS; |
| return 0; |
| } |
| #endif |
| |
| if (insn->opcodeType == T3DNOW_MAP) |
| instructionClass = IC_OF; |
| else |
| instructionClass = contextForAttrs(attrMask); |
| |
| hasModRMExtension = modRMRequired(insn->opcodeType, |
| instructionClass, |
| insn->opcode); |
| |
| if (hasModRMExtension) { |
| if (readModRM(insn)) |
| return -1; |
| |
| *instructionID = decode(insn->opcodeType, |
| instructionClass, |
| insn->opcode, |
| insn->modRM); |
| } else { |
| *instructionID = decode(insn->opcodeType, |
| instructionClass, |
| insn->opcode, |
| 0); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * is16BitEquivalent - Determines whether two instruction names refer to |
| * equivalent instructions but one is 16-bit whereas the other is not. |
| * |
| * @param orig - The instruction ID that is not 16-bit |
| * @param equiv - The instruction ID that is 16-bit |
| */ |
| static bool is16BitEquivalent(unsigned orig, unsigned equiv) |
| { |
| size_t i; |
| uint16_t idx; |
| |
| if ((idx = x86_16_bit_eq_lookup[orig]) != 0) { |
| for (i = idx - 1; i < ARR_SIZE(x86_16_bit_eq_tbl) && x86_16_bit_eq_tbl[i].first == orig; i++) { |
| if (x86_16_bit_eq_tbl[i].second == equiv) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /* |
| * is64Bit - Determines whether this instruction is a 64-bit instruction. |
| * |
| * @param name - The instruction that is not 16-bit |
| */ |
| static bool is64Bit(uint16_t id) |
| { |
| return is_64bit_insn[id]; |
| } |
| |
| /* |
| * getID - Determines the ID of an instruction, consuming the ModR/M byte as |
| * appropriate for extended and escape opcodes. Determines the attributes and |
| * context for the instruction before doing so. |
| * |
| * @param insn - The instruction whose ID is to be determined. |
| * @return - 0 if the ModR/M could be read when needed or was not needed; |
| * nonzero otherwise. |
| */ |
| static int getID(struct InternalInstruction *insn) |
| { |
| uint16_t attrMask; |
| uint16_t instructionID; |
| |
| // printf(">>> getID()\n"); |
| attrMask = ATTR_NONE; |
| |
| if (insn->mode == MODE_64BIT) |
| attrMask |= ATTR_64BIT; |
| |
| if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) { |
| attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX; |
| |
| if (insn->vectorExtensionType == TYPE_EVEX) { |
| switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) { |
| case VEX_PREFIX_66: |
| attrMask |= ATTR_OPSIZE; |
| break; |
| case VEX_PREFIX_F3: |
| attrMask |= ATTR_XS; |
| break; |
| case VEX_PREFIX_F2: |
| attrMask |= ATTR_XD; |
| break; |
| } |
| |
| if (zFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
| attrMask |= ATTR_EVEXKZ; |
| if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
| attrMask |= ATTR_EVEXB; |
| if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
| attrMask |= ATTR_EVEXK; |
| if (lFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
| attrMask |= ATTR_EVEXL; |
| if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3])) |
| attrMask |= ATTR_EVEXL2; |
| } else if (insn->vectorExtensionType == TYPE_VEX_3B) { |
| switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) { |
| case VEX_PREFIX_66: |
| attrMask |= ATTR_OPSIZE; |
| break; |
| case VEX_PREFIX_F3: |
| attrMask |= ATTR_XS; |
| break; |
| case VEX_PREFIX_F2: |
| attrMask |= ATTR_XD; |
| break; |
| } |
| |
| if (lFromVEX3of3(insn->vectorExtensionPrefix[2])) |
| attrMask |= ATTR_VEXL; |
| } else if (insn->vectorExtensionType == TYPE_VEX_2B) { |
| switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { |
| case VEX_PREFIX_66: |
| attrMask |= ATTR_OPSIZE; |
| break; |
| case VEX_PREFIX_F3: |
| attrMask |= ATTR_XS; |
| break; |
| case VEX_PREFIX_F2: |
| attrMask |= ATTR_XD; |
| break; |
| } |
| |
| if (lFromVEX2of2(insn->vectorExtensionPrefix[1])) |
| attrMask |= ATTR_VEXL; |
| } else if (insn->vectorExtensionType == TYPE_XOP) { |
| switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { |
| case VEX_PREFIX_66: |
| attrMask |= ATTR_OPSIZE; |
| break; |
| case VEX_PREFIX_F3: |
| attrMask |= ATTR_XS; |
| break; |
| case VEX_PREFIX_F2: |
| attrMask |= ATTR_XD; |
| break; |
| } |
| |
| if (lFromXOP3of3(insn->vectorExtensionPrefix[2])) |
| attrMask |= ATTR_VEXL; |
| } else { |
| return -1; |
| } |
| } else { |
| if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0x66)) { |
| if (insn->twoByteEscape != 0x0f) |
| attrMask |= ATTR_OPSIZE; |
| } else if (isPrefixAtLocation(insn, 0x67)) |
| attrMask |= ATTR_ADSIZE; |
| |
| if (isPrefixAtLocation(insn, 0xf3)) { |
| attrMask |= ATTR_XS; |
| } else if (isPrefixAtLocation(insn, 0xf2)) { |
| attrMask |= ATTR_XD; |
| } |
| } |
| |
| if (insn->rexPrefix & 0x08) |
| attrMask |= ATTR_REXW; |
| |
| /* |
| * JCXZ/JECXZ need special handling for 16-bit mode because the meaning |
| * of the AdSize prefix is inverted w.r.t. 32-bit mode. |
| */ |
| if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE && |
| insn->opcode == 0xE3) |
| attrMask ^= ATTR_ADSIZE; |
| |
| if (getIDWithAttrMask(&instructionID, insn, attrMask)) |
| return -1; |
| |
| /* The following clauses compensate for limitations of the tables. */ |
| if (insn->mode != MODE_64BIT && |
| insn->vectorExtensionType != TYPE_NO_VEX_XOP) { |
| /* |
| * The tables can't distinquish between cases where the W-bit is used to |
| * select register size and cases where its a required part of the opcode. |
| */ |
| if ((insn->vectorExtensionType == TYPE_EVEX && |
| wFromEVEX3of4(insn->vectorExtensionPrefix[2])) || |
| (insn->vectorExtensionType == TYPE_VEX_3B && |
| wFromVEX3of3(insn->vectorExtensionPrefix[2])) || |
| (insn->vectorExtensionType == TYPE_XOP && |
| wFromXOP3of3(insn->vectorExtensionPrefix[2]))) { |
| uint16_t instructionIDWithREXW; |
| if (getIDWithAttrMask(&instructionIDWithREXW, |
| insn, attrMask | ATTR_REXW)) { |
| insn->instructionID = instructionID; |
| insn->spec = specifierForUID(instructionID); |
| |
| return 0; |
| } |
| |
| // If not a 64-bit instruction. Switch the opcode. |
| if (!is64Bit(instructionIDWithREXW)) { |
| insn->instructionID = instructionIDWithREXW; |
| insn->spec = specifierForUID(instructionIDWithREXW); |
| |
| return 0; |
| } |
| } |
| } |
| |
| /* |
| * Absolute moves need special handling. |
| * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are |
| * inverted w.r.t. |
| * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in |
| * any position. |
| */ |
| if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) { |
| /* Make sure we observed the prefixes in any position. */ |
| if (insn->prefixPresent[0x67]) |
| attrMask |= ATTR_ADSIZE; |
| if (insn->prefixPresent[0x66]) |
| attrMask |= ATTR_OPSIZE; |
| |
| /* In 16-bit, invert the attributes. */ |
| if (insn->mode == MODE_16BIT) |
| attrMask ^= ATTR_ADSIZE | ATTR_OPSIZE; |
| |
| if (getIDWithAttrMask(&instructionID, insn, attrMask)) |
| return -1; |
| |
| insn->instructionID = instructionID; |
| insn->spec = specifierForUID(instructionID); |
| |
| return 0; |
| } |
| |
| if ((insn->mode == MODE_16BIT || insn->prefixPresent[0x66]) && |
| !(attrMask & ATTR_OPSIZE)) { |
| /* |
| * The instruction tables make no distinction between instructions that |
| * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a |
| * particular spot (i.e., many MMX operations). In general we're |
| * conservative, but in the specific case where OpSize is present but not |
| * in the right place we check if there's a 16-bit operation. |
| */ |
| |
| const struct InstructionSpecifier *spec; |
| uint16_t instructionIDWithOpsize; |
| |
| spec = specifierForUID(instructionID); |
| |
| if (getIDWithAttrMask(&instructionIDWithOpsize, |
| insn, attrMask | ATTR_OPSIZE)) { |
| /* |
| * ModRM required with OpSize but not present; give up and return version |
| * without OpSize set |
| */ |
| |
| insn->instructionID = instructionID; |
| insn->spec = spec; |
| return 0; |
| } |
| |
| if (is16BitEquivalent(instructionID, instructionIDWithOpsize) && |
| (insn->mode == MODE_16BIT) ^ insn->prefixPresent[0x66]) { |
| insn->instructionID = instructionIDWithOpsize; |
| insn->spec = specifierForUID(instructionIDWithOpsize); |
| } else { |
| insn->instructionID = instructionID; |
| insn->spec = spec; |
| } |
| return 0; |
| } |
| |
| if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 && |
| insn->rexPrefix & 0x01) { |
| /* |
| * NOOP shouldn't decode as NOOP if REX.b is set. Instead |
| * it should decode as XCHG %r8, %eax. |
| */ |
| |
| const struct InstructionSpecifier *spec; |
| uint16_t instructionIDWithNewOpcode; |
| const struct InstructionSpecifier *specWithNewOpcode; |
| |
| spec = specifierForUID(instructionID); |
| |
| /* Borrow opcode from one of the other XCHGar opcodes */ |
| insn->opcode = 0x91; |
| |
| if (getIDWithAttrMask(&instructionIDWithNewOpcode, |
| insn, |
| attrMask)) { |
| insn->opcode = 0x90; |
| |
| insn->instructionID = instructionID; |
| insn->spec = spec; |
| return 0; |
| } |
| |
| specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode); |
| |
| /* Change back */ |
| insn->opcode = 0x90; |
| |
| insn->instructionID = instructionIDWithNewOpcode; |
| insn->spec = specWithNewOpcode; |
| |
| return 0; |
| } |
| |
| insn->instructionID = instructionID; |
| insn->spec = specifierForUID(insn->instructionID); |
| |
| return 0; |
| } |
| |
| /* |
| * readSIB - Consumes the SIB byte to determine addressing information for an |
| * instruction. |
| * |
| * @param insn - The instruction whose SIB byte is to be read. |
| * @return - 0 if the SIB byte was successfully read; nonzero otherwise. |
| */ |
| static int readSIB(struct InternalInstruction *insn) |
| { |
| SIBIndex sibIndexBase = SIB_INDEX_NONE; |
| SIBBase sibBaseBase = SIB_BASE_NONE; |
| uint8_t index, base; |
| |
| // dbgprintf(insn, "readSIB()"); |
| |
| if (insn->consumedSIB) |
| return 0; |
| |
| insn->consumedSIB = true; |
| |
| switch (insn->addressSize) { |
| case 2: |
| // dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode"); |
| return -1; |
| case 4: |
| sibIndexBase = SIB_INDEX_EAX; |
| sibBaseBase = SIB_BASE_EAX; |
| break; |
| case 8: |
| sibIndexBase = SIB_INDEX_RAX; |
| sibBaseBase = SIB_BASE_RAX; |
| break; |
| } |
| |
| if (consumeByte(insn, &insn->sib)) |
| return -1; |
| |
| index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3); |
| if (insn->vectorExtensionType == TYPE_EVEX) |
| index |= v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4; |
| |
| switch (index) { |
| case 0x4: |
| insn->sibIndex = SIB_INDEX_NONE; |
| break; |
| default: |
| insn->sibIndex = (SIBIndex)(sibIndexBase + index); |
| if (insn->sibIndex == SIB_INDEX_sib || |
| insn->sibIndex == SIB_INDEX_sib64) |
| insn->sibIndex = SIB_INDEX_NONE; |
| break; |
| } |
| |
| switch (scaleFromSIB(insn->sib)) { |
| case 0: |
| insn->sibScale = 1; |
| break; |
| case 1: |
| insn->sibScale = 2; |
| break; |
| case 2: |
| insn->sibScale = 4; |
| break; |
| case 3: |
| insn->sibScale = 8; |
| break; |
| } |
| |
| base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3); |
| |
| switch (base) { |
| case 0x5: |
| case 0xd: |
| switch (modFromModRM(insn->modRM)) { |
| case 0x0: |
| insn->eaDisplacement = EA_DISP_32; |
| insn->sibBase = SIB_BASE_NONE; |
| break; |
| case 0x1: |
| insn->eaDisplacement = EA_DISP_8; |
| insn->sibBase = (SIBBase)(sibBaseBase + base); |
| break; |
| case 0x2: |
| insn->eaDisplacement = EA_DISP_32; |
| insn->sibBase = (SIBBase)(sibBaseBase + base); |
| break; |
| case 0x3: |
| //debug("Cannot have Mod = 0b11 and a SIB byte"); |
| return -1; |
| } |
| break; |
| default: |
| insn->sibBase = (SIBBase)(sibBaseBase + base); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * readDisplacement - Consumes the displacement of an instruction. |
| * |
| * @param insn - The instruction whose displacement is to be read. |
| * @return - 0 if the displacement byte was successfully read; nonzero |
| * otherwise. |
| */ |
| static int readDisplacement(struct InternalInstruction *insn) |
| { |
| int8_t d8; |
| int16_t d16; |
| int32_t d32; |
| |
| // dbgprintf(insn, "readDisplacement()"); |
| |
| if (insn->consumedDisplacement) |
| return 0; |
| |
| insn->consumedDisplacement = true; |
| insn->displacementOffset = (uint8_t)(insn->readerCursor - insn->startLocation); |
| |
| switch (insn->eaDisplacement) { |
| case EA_DISP_NONE: |
| insn->consumedDisplacement = false; |
| break; |
| case EA_DISP_8: |
| if (consumeInt8(insn, &d8)) |
| return -1; |
| insn->displacement = d8; |
| break; |
| case EA_DISP_16: |
| if (consumeInt16(insn, &d16)) |
| return -1; |
| insn->displacement = d16; |
| break; |
| case EA_DISP_32: |
| if (consumeInt32(insn, &d32)) |
| return -1; |
| insn->displacement = d32; |
| break; |
| } |
| |
| insn->consumedDisplacement = true; |
| return 0; |
| } |
| |
| /* |
| * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and |
| * displacement) for an instruction and interprets it. |
| * |
| * @param insn - The instruction whose addressing information is to be read. |
| * @return - 0 if the information was successfully read; nonzero otherwise. |
| */ |
| static int readModRM(struct InternalInstruction *insn) |
| { |
| uint8_t mod, rm, reg; |
| |
| // dbgprintf(insn, "readModRM()"); |
| |
| // already got ModRM byte? |
| if (insn->consumedModRM) |
| return 0; |
| |
| if (consumeByte(insn, &insn->modRM)) |
| return -1; |
| |
| // mark that we already got ModRM |
| insn->consumedModRM = true; |
| |
| // save original ModRM for later reference |
| insn->orgModRM = insn->modRM; |
| |
| // handle MOVcr, MOVdr, MOVrc, MOVrd by pretending they have MRM.mod = 3 |
| if ((insn->firstByte == 0x0f && insn->opcodeType == TWOBYTE) && |
| (insn->opcode >= 0x20 && insn->opcode <= 0x23 )) |
| insn->modRM |= 0xC0; |
| |
| mod = modFromModRM(insn->modRM); |
| rm = rmFromModRM(insn->modRM); |
| reg = regFromModRM(insn->modRM); |
| |
| /* |
| * This goes by insn->registerSize to pick the correct register, which messes |
| * up if we're using (say) XMM or 8-bit register operands. That gets fixed in |
| * fixupReg(). |
| */ |
| switch (insn->registerSize) { |
| case 2: |
| insn->regBase = MODRM_REG_AX; |
| insn->eaRegBase = EA_REG_AX; |
| break; |
| case 4: |
| insn->regBase = MODRM_REG_EAX; |
| insn->eaRegBase = EA_REG_EAX; |
| break; |
| case 8: |
| insn->regBase = MODRM_REG_RAX; |
| insn->eaRegBase = EA_REG_RAX; |
| break; |
| } |
| |
| reg |= rFromREX(insn->rexPrefix) << 3; |
| rm |= bFromREX(insn->rexPrefix) << 3; |
| if (insn->vectorExtensionType == TYPE_EVEX) { |
| reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; |
| rm |= xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; |
| } |
| |
| insn->reg = (Reg)(insn->regBase + reg); |
| |
| switch (insn->addressSize) { |
| case 2: |
| insn->eaBaseBase = EA_BASE_BX_SI; |
| |
| switch (mod) { |
| case 0x0: |
| if (rm == 0x6) { |
| insn->eaBase = EA_BASE_NONE; |
| insn->eaDisplacement = EA_DISP_16; |
| if (readDisplacement(insn)) |
| return -1; |
| } else { |
| insn->eaBase = (EABase)(insn->eaBaseBase + rm); |
| insn->eaDisplacement = EA_DISP_NONE; |
| } |
| break; |
| case 0x1: |
| insn->eaBase = (EABase)(insn->eaBaseBase + rm); |
| insn->eaDisplacement = EA_DISP_8; |
| insn->displacementSize = 1; |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| case 0x2: |
| insn->eaBase = (EABase)(insn->eaBaseBase + rm); |
| insn->eaDisplacement = EA_DISP_16; |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| case 0x3: |
| insn->eaBase = (EABase)(insn->eaRegBase + rm); |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| } |
| break; |
| case 4: |
| case 8: |
| insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); |
| |
| switch (mod) { |
| case 0x0: |
| insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */ |
| switch (rm) { |
| case 0x14: |
| case 0x4: |
| case 0xc: /* in case REXW.b is set */ |
| insn->eaBase = (insn->addressSize == 4 ? |
| EA_BASE_sib : EA_BASE_sib64); |
| if (readSIB(insn) || readDisplacement(insn)) |
| return -1; |
| break; |
| case 0x5: |
| case 0xd: |
| insn->eaBase = EA_BASE_NONE; |
| insn->eaDisplacement = EA_DISP_32; |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| default: |
| insn->eaBase = (EABase)(insn->eaBaseBase + rm); |
| break; |
| } |
| |
| break; |
| case 0x1: |
| insn->displacementSize = 1; |
| /* FALLTHROUGH */ |
| case 0x2: |
| insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32); |
| switch (rm) { |
| case 0x14: |
| case 0x4: |
| case 0xc: /* in case REXW.b is set */ |
| insn->eaBase = EA_BASE_sib; |
| if (readSIB(insn) || readDisplacement(insn)) |
| return -1; |
| break; |
| default: |
| insn->eaBase = (EABase)(insn->eaBaseBase + rm); |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| } |
| break; |
| case 0x3: |
| insn->eaDisplacement = EA_DISP_NONE; |
| insn->eaBase = (EABase)(insn->eaRegBase + rm); |
| break; |
| } |
| break; |
| } /* switch (insn->addressSize) */ |
| |
| return 0; |
| } |
| |
| #define GENERIC_FIXUP_FUNC(name, base, prefix) \ |
| static uint8_t name(struct InternalInstruction *insn, \ |
| OperandType type, \ |
| uint8_t index, \ |
| uint8_t *valid) { \ |
| *valid = 1; \ |
| switch (type) { \ |
| default: \ |
| *valid = 0; \ |
| return 0; \ |
| case TYPE_Rv: \ |
| return base + index; \ |
| case TYPE_R8: \ |
| if (insn->rexPrefix && \ |
| index >= 4 && index <= 7) { \ |
| return prefix##_SPL + (index - 4); \ |
| } else { \ |
| return prefix##_AL + index; \ |
| } \ |
| case TYPE_R16: \ |
| return prefix##_AX + index; \ |
| case TYPE_R32: \ |
| return prefix##_EAX + index; \ |
| case TYPE_R64: \ |
| return prefix##_RAX + index; \ |
| case TYPE_XMM512: \ |
| return prefix##_ZMM0 + index; \ |
| case TYPE_XMM256: \ |
| return prefix##_YMM0 + index; \ |
| case TYPE_XMM128: \ |
| case TYPE_XMM64: \ |
| case TYPE_XMM32: \ |
| case TYPE_XMM: \ |
| return prefix##_XMM0 + index; \ |
| case TYPE_VK1: \ |
| case TYPE_VK8: \ |
| case TYPE_VK16: \ |
| if (index > 7) \ |
| *valid = 0; \ |
| return prefix##_K0 + index; \ |
| case TYPE_MM64: \ |
| return prefix##_MM0 + (index & 0x7); \ |
| case TYPE_SEGMENTREG: \ |
| if (index > 5) \ |
| *valid = 0; \ |
| return prefix##_ES + index; \ |
| case TYPE_DEBUGREG: \ |
| return prefix##_DR0 + index; \ |
| case TYPE_CONTROLREG: \ |
| return prefix##_CR0 + index; \ |
| } \ |
| } |
| |
| |
| /* |
| * fixup*Value - Consults an operand type to determine the meaning of the |
| * reg or R/M field. If the operand is an XMM operand, for example, an |
| * operand would be XMM0 instead of AX, which readModRM() would otherwise |
| * misinterpret it as. |
| * |
| * @param insn - The instruction containing the operand. |
| * @param type - The operand type. |
| * @param index - The existing value of the field as reported by readModRM(). |
| * @param valid - The address of a uint8_t. The target is set to 1 if the |
| * field is valid for the register class; 0 if not. |
| * @return - The proper value. |
| */ |
| GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG) |
| GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG) |
| |
| /* |
| * fixupReg - Consults an operand specifier to determine which of the |
| * fixup*Value functions to use in correcting readModRM()'ss interpretation. |
| * |
| * @param insn - See fixup*Value(). |
| * @param op - The operand specifier. |
| * @return - 0 if fixup was successful; -1 if the register returned was |
| * invalid for its class. |
| */ |
| static int fixupReg(struct InternalInstruction *insn, |
| const struct OperandSpecifier *op) |
| { |
| uint8_t valid; |
| |
| // dbgprintf(insn, "fixupReg()"); |
| |
| switch ((OperandEncoding)op->encoding) { |
| default: |
| //debug("Expected a REG or R/M encoding in fixupReg"); |
| return -1; |
| case ENCODING_VVVV: |
| insn->vvvv = (Reg)fixupRegValue(insn, |
| (OperandType)op->type, |
| insn->vvvv, |
| &valid); |
| if (!valid) |
| return -1; |
| break; |
| case ENCODING_REG: |
| insn->reg = (Reg)fixupRegValue(insn, |
| (OperandType)op->type, |
| (uint8_t)(insn->reg - insn->regBase), |
| &valid); |
| if (!valid) |
| return -1; |
| break; |
| CASE_ENCODING_RM: |
| if (insn->eaBase >= insn->eaRegBase) { |
| insn->eaBase = (EABase)fixupRMValue(insn, |
| (OperandType)op->type, |
| (uint8_t)(insn->eaBase - insn->eaRegBase), |
| &valid); |
| if (!valid) |
| return -1; |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * readOpcodeRegister - Reads an operand from the opcode field of an |
| * instruction and interprets it appropriately given the operand width. |
| * Handles AddRegFrm instructions. |
| * |
| * @param insn - the instruction whose opcode field is to be read. |
| * @param size - The width (in bytes) of the register being specified. |
| * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means |
| * RAX. |
| * @return - 0 on success; nonzero otherwise. |
| */ |
| static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) |
| { |
| // dbgprintf(insn, "readOpcodeRegister()"); |
| |
| if (size == 0) |
| size = insn->registerSize; |
| |
| insn->operandSize = size; |
| |
| switch (size) { |
| case 1: |
| insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) |
| | (insn->opcode & 7))); |
| if (insn->rexPrefix && |
| insn->opcodeRegister >= MODRM_REG_AL + 0x4 && |
| insn->opcodeRegister < MODRM_REG_AL + 0x8) { |
| insn->opcodeRegister = (Reg)(MODRM_REG_SPL |
| + (insn->opcodeRegister - MODRM_REG_AL - 4)); |
| } |
| |
| break; |
| case 2: |
| insn->opcodeRegister = (Reg)(MODRM_REG_AX |
| + ((bFromREX(insn->rexPrefix) << 3) |
| | (insn->opcode & 7))); |
| break; |
| case 4: |
| insn->opcodeRegister = (Reg)(MODRM_REG_EAX |
| + ((bFromREX(insn->rexPrefix) << 3) |
| | (insn->opcode & 7))); |
| break; |
| case 8: |
| insn->opcodeRegister = (Reg)(MODRM_REG_RAX |
| + ((bFromREX(insn->rexPrefix) << 3) |
| | (insn->opcode & 7))); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * readImmediate - Consumes an immediate operand from an instruction, given the |
| * desired operand size. |
| * |
| * @param insn - The instruction whose operand is to be read. |
| * @param size - The width (in bytes) of the operand. |
| * @return - 0 if the immediate was successfully consumed; nonzero |
| * otherwise. |
| */ |
| static int readImmediate(struct InternalInstruction *insn, uint8_t size) |
| { |
| uint8_t imm8; |
| uint16_t imm16; |
| uint32_t imm32; |
| uint64_t imm64; |
| |
| // dbgprintf(insn, "readImmediate()"); |
| |
| if (insn->numImmediatesConsumed == 2) { |
| //debug("Already consumed two immediates"); |
| return -1; |
| } |
| |
| if (size == 0) |
| size = insn->immediateSize; |
| else |
| insn->immediateSize = size; |
| insn->immediateOffset = (uint8_t)(insn->readerCursor - insn->startLocation); |
| |
| switch (size) { |
| case 1: |
| if (consumeByte(insn, &imm8)) |
| return -1; |
| insn->immediates[insn->numImmediatesConsumed] = imm8; |
| break; |
| case 2: |
| if (consumeUInt16(insn, &imm16)) |
| return -1; |
| insn->immediates[insn->numImmediatesConsumed] = imm16; |
| break; |
| case 4: |
| if (consumeUInt32(insn, &imm32)) |
| return -1; |
| insn->immediates[insn->numImmediatesConsumed] = imm32; |
| break; |
| case 8: |
| if (consumeUInt64(insn, &imm64)) |
| return -1; |
| insn->immediates[insn->numImmediatesConsumed] = imm64; |
| break; |
| } |
| |
| insn->numImmediatesConsumed++; |
| |
| return 0; |
| } |
| |
| /* |
| * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix. |
| * |
| * @param insn - The instruction whose operand is to be read. |
| * @return - 0 if the vvvv was successfully consumed; nonzero |
| * otherwise. |
| */ |
| static int readVVVV(struct InternalInstruction *insn) |
| { |
| int vvvv; |
| // dbgprintf(insn, "readVVVV()"); |
| |
| if (insn->vectorExtensionType == TYPE_EVEX) |
| vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 | |
| vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2])); |
| else if (insn->vectorExtensionType == TYPE_VEX_3B) |
| vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]); |
| else if (insn->vectorExtensionType == TYPE_VEX_2B) |
| vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]); |
| else if (insn->vectorExtensionType == TYPE_XOP) |
| vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]); |
| else |
| return -1; |
| |
| if (insn->mode != MODE_64BIT) |
| vvvv &= 0x7; |
| |
| insn->vvvv = vvvv; |
| |
| return 0; |
| } |
| |
| /* |
| * readMaskRegister - Reads an mask register from the opcode field of an |
| * instruction. |
| * |
| * @param insn - The instruction whose opcode field is to be read. |
| * @return - 0 on success; nonzero otherwise. |
| */ |
| static int readMaskRegister(struct InternalInstruction *insn) |
| { |
| // dbgprintf(insn, "readMaskRegister()"); |
| |
| if (insn->vectorExtensionType != TYPE_EVEX) |
| return -1; |
| |
| insn->writemask = aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]); |
| |
| return 0; |
| } |
| |
| /* |
| * readOperands - Consults the specifier for an instruction and consumes all |
| * operands for that instruction, interpreting them as it goes. |
| * |
| * @param insn - The instruction whose operands are to be read and interpreted. |
| * @return - 0 if all operands could be read; nonzero otherwise. |
| */ |
| static int readOperands(struct InternalInstruction *insn) |
| { |
| int index; |
| int hasVVVV, needVVVV; |
| int sawRegImm = 0; |
| |
| // printf(">>> readOperands(): ID = %u\n", insn->instructionID); |
| /* If non-zero vvvv specified, need to make sure one of the operands |
| uses it. */ |
| hasVVVV = !readVVVV(insn); |
| needVVVV = hasVVVV && (insn->vvvv != 0); |
| |
| for (index = 0; index < X86_MAX_OPERANDS; ++index) { |
| //printf(">>> encoding[%u] = %u\n", index, x86OperandSets[insn->spec->operands][index].encoding); |
| switch (x86OperandSets[insn->spec->operands][index].encoding) { |
| case ENCODING_NONE: |
| case ENCODING_SI: |
| case ENCODING_DI: |
| break; |
| case ENCODING_REG: |
| CASE_ENCODING_RM: |
| if (readModRM(insn)) |
| return -1; |
| if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index])) |
| return -1; |
| // Apply the AVX512 compressed displacement scaling factor. |
| if (x86OperandSets[insn->spec->operands][index].encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) |
| insn->displacement *= 1 << (x86OperandSets[insn->spec->operands][index].encoding - ENCODING_RM); |
| break; |
| case ENCODING_CB: |
| case ENCODING_CW: |
| case ENCODING_CD: |
| case ENCODING_CP: |
| case ENCODING_CO: |
| case ENCODING_CT: |
| // dbgprintf(insn, "We currently don't hande code-offset encodings"); |
| return -1; |
| case ENCODING_IB: |
| if (sawRegImm) { |
| /* Saw a register immediate so don't read again and instead split the |
| previous immediate. FIXME: This is a hack. */ |
| insn->immediates[insn->numImmediatesConsumed] = |
| insn->immediates[insn->numImmediatesConsumed - 1] & 0xf; |
| ++insn->numImmediatesConsumed; |
| break; |
| } |
| if (readImmediate(insn, 1)) |
| return -1; |
| if (x86OperandSets[insn->spec->operands][index].type == TYPE_XMM128 || |
| x86OperandSets[insn->spec->operands][index].type == TYPE_XMM256) |
| sawRegImm = 1; |
| break; |
| case ENCODING_IW: |
| if (readImmediate(insn, 2)) |
| return -1; |
| break; |
| case ENCODING_ID: |
| if (readImmediate(insn, 4)) |
| return -1; |
| break; |
| case ENCODING_IO: |
| if (readImmediate(insn, 8)) |
| return -1; |
| break; |
| case ENCODING_Iv: |
| if (readImmediate(insn, insn->immediateSize)) |
| return -1; |
| break; |
| case ENCODING_Ia: |
| if (readImmediate(insn, insn->addressSize)) |
| return -1; |
| break; |
| case ENCODING_RB: |
| if (readOpcodeRegister(insn, 1)) |
| return -1; |
| break; |
| case ENCODING_RW: |
| if (readOpcodeRegister(insn, 2)) |
| return -1; |
| break; |
| case ENCODING_RD: |
| if (readOpcodeRegister(insn, 4)) |
| return -1; |
| break; |
| case ENCODING_RO: |
| if (readOpcodeRegister(insn, 8)) |
| return -1; |
| break; |
| case ENCODING_Rv: |
| if (readOpcodeRegister(insn, 0)) |
| return -1; |
| break; |
| case ENCODING_FP: |
| break; |
| case ENCODING_VVVV: |
| needVVVV = 0; /* Mark that we have found a VVVV operand. */ |
| if (!hasVVVV) |
| return -1; |
| if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index])) |
| return -1; |
| break; |
| case ENCODING_WRITEMASK: |
| if (readMaskRegister(insn)) |
| return -1; |
| break; |
| case ENCODING_DUP: |
| break; |
| default: |
| // dbgprintf(insn, "Encountered an operand with an unknown encoding."); |
| return -1; |
| } |
| } |
| |
| /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */ |
| if (needVVVV) return -1; |
| |
| return 0; |
| } |
| |
| // return True if instruction is illegal to use with prefixes |
| // This also check & fix the prefixPresent[] when a prefix is irrelevant. |
| static bool checkPrefix(struct InternalInstruction *insn) |
| { |
| // LOCK prefix |
| if (insn->prefixPresent[0xf0]) { |
| switch(insn->instructionID) { |
| default: |
| // invalid LOCK |
| return true; |
| |
| // DEC |
| case X86_DEC16m: |
| case X86_DEC32m: |
| case X86_DEC64m: |
| case X86_DEC8m: |
| |
| // ADC |
| case X86_ADC16mi: |
| case X86_ADC16mi8: |
| case X86_ADC16mr: |
| case X86_ADC32mi: |
| case X86_ADC32mi8: |
| case X86_ADC32mr: |
| case X86_ADC64mi32: |
| case X86_ADC64mi8: |
| case X86_ADC64mr: |
| case X86_ADC8mi: |
| case X86_ADC8mi8: |
| case X86_ADC8mr: |
| |
| // ADD |
| case X86_ADD16mi: |
| case X86_ADD16mi8: |
| case X86_ADD16mr: |
| case X86_ADD32mi: |
| case X86_ADD32mi8: |
| case X86_ADD32mr: |
| case X86_ADD64mi32: |
| case X86_ADD64mi8: |
| case X86_ADD64mr: |
| case X86_ADD8mi: |
| case X86_ADD8mi8: |
| case X86_ADD8mr: |
| |
| // AND |
| case X86_AND16mi: |
| case X86_AND16mi8: |
| case X86_AND16mr: |
| case X86_AND32mi: |
| case X86_AND32mi8: |
| case X86_AND32mr: |
| case X86_AND64mi32: |
| case X86_AND64mi8: |
| case X86_AND64mr: |
| case X86_AND8mi: |
| case X86_AND8mi8: |
| case X86_AND8mr: |
| |
| // BTC |
| case X86_BTC16mi8: |
| case X86_BTC16mr: |
| case X86_BTC32mi8: |
| case X86_BTC32mr: |
| case X86_BTC64mi8: |
| case X86_BTC64mr: |
| |
| // BTR |
| case X86_BTR16mi8: |
| case X86_BTR16mr: |
| case X86_BTR32mi8: |
| case X86_BTR32mr: |
| case X86_BTR64mi8: |
| case X86_BTR64mr: |
| |
| // BTS |
| case X86_BTS16mi8: |
| case X86_BTS16mr: |
| case X86_BTS32mi8: |
| case X86_BTS32mr: |
| case X86_BTS64mi8: |
| case X86_BTS64mr: |
| |
| // CMPXCHG |
| case X86_CMPXCHG16rm: |
| case X86_CMPXCHG32rm: |
| case X86_CMPXCHG64rm: |
| case X86_CMPXCHG8rm: |
| case X86_CMPXCHG8B: |
| |
| // INC |
| case X86_INC16m: |
| case X86_INC32m: |
| case X86_INC64m: |
| case X86_INC8m: |
| |
| // NEG |
| case X86_NEG16m: |
| case X86_NEG32m: |
| case X86_NEG64m: |
| case X86_NEG8m: |
| |
| // NOT |
| case X86_NOT16m: |
| case X86_NOT32m: |
| case X86_NOT64m: |
| case X86_NOT8m: |
| |
| // OR |
| case X86_OR16mi: |
| case X86_OR16mi8: |
| case X86_OR16mr: |
| case X86_OR32mi: |
| case X86_OR32mi8: |
| case X86_OR32mr: |
| case X86_OR32mrLocked: |
| case X86_OR64mi32: |
| case X86_OR64mi8: |
| case X86_OR64mr: |
| case X86_OR8mi8: |
| case X86_OR8mi: |
| case X86_OR8mr: |
| |
| // SBB |
| case X86_SBB16mi: |
| case X86_SBB16mi8: |
| case X86_SBB16mr: |
| case X86_SBB32mi: |
| case X86_SBB32mi8: |
| case X86_SBB32mr: |
| case X86_SBB64mi32: |
| case X86_SBB64mi8: |
| case X86_SBB64mr: |
| case X86_SBB8mi: |
| case X86_SBB8mi8: |
| case X86_SBB8mr: |
| |
| // SUB |
| case X86_SUB16mi: |
| case X86_SUB16mi8: |
| case X86_SUB16mr: |
| case X86_SUB32mi: |
| case X86_SUB32mi8: |
| case X86_SUB32mr: |
| case X86_SUB64mi32: |
| case X86_SUB64mi8: |
| case X86_SUB64mr: |
| case X86_SUB8mi8: |
| case X86_SUB8mi: |
| case X86_SUB8mr: |
| |
| // XADD |
| case X86_XADD16rm: |
| case X86_XADD32rm: |
| case X86_XADD64rm: |
| case X86_XADD8rm: |
| |
| // XCHG |
| case X86_XCHG16rm: |
| case X86_XCHG32rm: |
| case X86_XCHG64rm: |
| case X86_XCHG8rm: |
| |
| // XOR |
| case X86_XOR16mi: |
| case X86_XOR16mi8: |
| case X86_XOR16mr: |
| case X86_XOR32mi: |
| case X86_XOR32mi8: |
| case X86_XOR32mr: |
| case X86_XOR64mi32: |
| case X86_XOR64mi8: |
| case X86_XOR64mr: |
| case X86_XOR8mi8: |
| case X86_XOR8mi: |
| case X86_XOR8mr: |
| |
| // this instruction can be used with LOCK prefix |
| return false; |
| } |
| } |
| |
| // REPNE prefix |
| if (insn->prefixPresent[0xf2]) { |
| // 0xf2 can be a part of instruction encoding, but not really a prefix. |
| // In such a case, clear it. |
| if (insn->twoByteEscape == 0x0f) { |
| insn->prefix0 = 0; |
| } |
| } |
| |
| // no invalid prefixes |
| return false; |
| } |
| |
| /* |
| * decodeInstruction - Reads and interprets a full instruction provided by the |
| * user. |
| * |
| * @param insn - A pointer to the instruction to be populated. Must be |
| * pre-allocated. |
| * @param reader - The function to be used to read the instruction's bytes. |
| * @param readerArg - A generic argument to be passed to the reader to store |
| * any internal state. |
| * @param startLoc - The address (in the reader's address space) of the first |
| * byte in the instruction. |
| * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to |
| * decode the instruction in. |
| * @return - 0 if instruction is valid; nonzero if not. |
| */ |
| int decodeInstruction(struct InternalInstruction *insn, |
| byteReader_t reader, |
| const void *readerArg, |
| uint64_t startLoc, |
| DisassemblerMode mode) |
| { |
| insn->reader = reader; |
| insn->readerArg = readerArg; |
| insn->startLocation = startLoc; |
| insn->readerCursor = startLoc; |
| insn->mode = mode; |
| |
| if (readPrefixes(insn) || |
| readOpcode(insn) || |
| getID(insn) || |
| insn->instructionID == 0 || |
| checkPrefix(insn) || |
| readOperands(insn)) |
| return -1; |
| |
| insn->length = (size_t)(insn->readerCursor - insn->startLocation); |
| |
| // instruction length must be <= 15 to be valid |
| if (insn->length > 15) |
| return -1; |
| |
| if (insn->operandSize == 0) |
| insn->operandSize = insn->registerSize; |
| |
| insn->operands = &x86OperandSets[insn->spec->operands][0]; |
| |
| // dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu", |
| // startLoc, insn->readerCursor, insn->length); |
| |
| //if (insn->length > 15) |
| // dbgprintf(insn, "Instruction exceeds 15-byte limit"); |
| |
| #if 0 |
| printf("\n>>> x86OperandSets = %lu\n", sizeof(x86OperandSets)); |
| printf(">>> x86DisassemblerInstrSpecifiers = %lu\n", sizeof(x86DisassemblerInstrSpecifiers)); |
| printf(">>> x86DisassemblerContexts = %lu\n", sizeof(x86DisassemblerContexts)); |
| printf(">>> modRMTable = %lu\n", sizeof(modRMTable)); |
| printf(">>> x86DisassemblerOneByteOpcodes = %lu\n", sizeof(x86DisassemblerOneByteOpcodes)); |
| printf(">>> x86DisassemblerTwoByteOpcodes = %lu\n", sizeof(x86DisassemblerTwoByteOpcodes)); |
| printf(">>> x86DisassemblerThreeByte38Opcodes = %lu\n", sizeof(x86DisassemblerThreeByte38Opcodes)); |
| printf(">>> x86DisassemblerThreeByte3AOpcodes = %lu\n", sizeof(x86DisassemblerThreeByte3AOpcodes)); |
| printf(">>> x86DisassemblerThreeByteA6Opcodes = %lu\n", sizeof(x86DisassemblerThreeByteA6Opcodes)); |
| printf(">>> x86DisassemblerThreeByteA7Opcodes= %lu\n", sizeof(x86DisassemblerThreeByteA7Opcodes)); |
| printf(">>> x86DisassemblerXOP8Opcodes = %lu\n", sizeof(x86DisassemblerXOP8Opcodes)); |
| printf(">>> x86DisassemblerXOP9Opcodes = %lu\n", sizeof(x86DisassemblerXOP9Opcodes)); |
| printf(">>> x86DisassemblerXOPAOpcodes = %lu\n\n", sizeof(x86DisassemblerXOPAOpcodes)); |
| #endif |
| |
| return 0; |
| } |
| |
| #endif |