blob: 6663ac48ff7b1d123bcd8c686de72227bb3b0709 [file] [log] [blame]
//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler.
// It contains code to translate the data produced by the decoder into
// MCInsts.
// Documentation for the disassembler can be found in X86Disassembler.h.
//
//===----------------------------------------------------------------------===//
/* Capstone Disassembler Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013> */
#include <inttypes.h> // debug
#include <string.h>
#include "../../cs_priv.h"
#include "X86Disassembler.h"
#include "X86DisassemblerDecoderCommon.h"
#include "X86DisassemblerDecoder.h"
#include "../../MCInst.h"
#include "mapping.h"
#define GET_REGINFO_ENUM
#include "X86GenRegisterInfo.inc"
#define GET_INSTRINFO_ENUM
#include "X86GenInstrInfo.inc"
struct reader_info {
unsigned char *code;
uint64_t size;
uint64_t offset;
};
// Fill-ins to make the compiler happy. These constants are never actually
// assigned; they are just filler to make an automatically-generated switch
// statement work.
enum {
X86_BX_SI = 500,
X86_BX_DI = 501,
X86_BP_SI = 502,
X86_BP_DI = 503,
X86_sib = 504,
X86_sib64 = 505
};
//
// Private code that translates from struct InternalInstructions to MCInsts.
//
/// translateRegister - Translates an internal register to the appropriate LLVM
/// register, and appends it as an operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param reg - The Reg to append.
static void translateRegister(MCInst *mcInst, Reg reg)
{
//#define ENTRY(x) X86_x,
#define ENTRY(x) X86_##x,
uint8_t llvmRegnums[] = {
ALL_REGS
0
};
#undef ENTRY
uint8_t llvmRegnum = llvmRegnums[reg];
MCInst_addOperand(mcInst, MCOperand_CreateReg(llvmRegnum));
}
/// translateImmediate - Appends an immediate operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param immediate - The immediate value to append.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
static void translateImmediate(MCInst *mcInst, uint64_t immediate,
const OperandSpecifier *operand, InternalInstruction *insn)
{
// Sign-extend the immediate if necessary.
OperandType type = (OperandType)operand->type;
//bool isBranch = false;
//uint64_t pcrel = 0;
if (type == TYPE_RELv) {
//isBranch = true;
//pcrel = insn->startLocation + insn->immediateOffset + insn->immediateSize;
switch (insn->displacementSize) {
case 1:
if (immediate & 0x80)
immediate |= ~(0xffull);
break;
case 2:
if (immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case 4:
if (immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case 8:
break;
default:
break;
}
}
// By default sign-extend all X86 immediates based on their encoding.
else if (type == TYPE_IMM8 || type == TYPE_IMM16 || type == TYPE_IMM32 ||
type == TYPE_IMM64) {
uint32_t Opcode = MCInst_getOpcode(mcInst);
switch (operand->encoding) {
case ENCODING_IB:
// Special case those X86 instructions that use the imm8 as a set of
// bits, bit count, etc. and are not sign-extend.
if (Opcode != X86_BLENDPSrri && Opcode != X86_BLENDPDrri &&
Opcode != X86_PBLENDWrri && Opcode != X86_MPSADBWrri &&
Opcode != X86_DPPSrri && Opcode != X86_DPPDrri &&
Opcode != X86_INSERTPSrr && Opcode != X86_VBLENDPSYrri &&
Opcode != X86_VBLENDPSYrmi && Opcode != X86_VBLENDPDYrri &&
Opcode != X86_VBLENDPDYrmi && Opcode != X86_VPBLENDWrri &&
Opcode != X86_VMPSADBWrri && Opcode != X86_VDPPSYrri &&
Opcode != X86_VDPPSYrmi && Opcode != X86_VDPPDrri &&
Opcode != X86_VINSERTPSrr)
if (immediate & 0x80)
immediate |= ~(0xffull);
break;
case ENCODING_IW:
if (immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case ENCODING_ID:
if (immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case ENCODING_IO:
break;
default:
break;
}
}
switch (type) {
case TYPE_XMM32:
case TYPE_XMM64:
case TYPE_XMM128:
MCInst_addOperand(mcInst, MCOperand_CreateReg(X86_XMM0 + (immediate >> 4)));
return;
case TYPE_XMM256:
MCInst_addOperand(mcInst, MCOperand_CreateReg(X86_YMM0 + (immediate >> 4)));
return;
case TYPE_XMM512:
MCInst_addOperand(mcInst, MCOperand_CreateReg(X86_ZMM0 + (immediate >> 4)));
return;
case TYPE_REL8:
//isBranch = true;
//pcrel = insn->startLocation + insn->immediateOffset + insn->immediateSize;
if (immediate & 0x80)
immediate |= ~(0xffull);
break;
case TYPE_REL32:
case TYPE_REL64:
//isBranch = true;
//pcrel = insn->startLocation + insn->immediateOffset + insn->immediateSize;
if (immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
default:
// operand is 64 bits wide. Do nothing.
break;
}
MCInst_addOperand(mcInst, MCOperand_CreateImm(immediate));
}
/// translateRMRegister - Translates a register stored in the R/M field of the
/// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction to extract the R/M field
/// from.
/// @return - 0 on success; -1 otherwise
static bool translateRMRegister(MCInst *mcInst, InternalInstruction *insn)
{
if (insn->eaBase == EA_BASE_sib || insn->eaBase == EA_BASE_sib64) {
//debug("A R/M register operand may not have a SIB byte");
return true;
}
switch (insn->eaBase) {
case EA_BASE_NONE:
//debug("EA_BASE_NONE for ModR/M base");
return true;
#define ENTRY(x) case EA_BASE_##x:
ALL_EA_BASES
#undef ENTRY
//debug("A R/M register operand may not have a base; "
// "the operand must be a register.");
return true;
#define ENTRY(x) \
case EA_REG_##x: \
MCInst_addOperand(mcInst, MCOperand_CreateReg(X86_##x)); break;
ALL_REGS
#undef ENTRY
default:
//debug("Unexpected EA base register");
return true;
}
return false;
}
/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
/// fields of an internal instruction (and possibly its SIB byte) to a memory
/// operand in LLVM's format, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRMMemory(MCInst *mcInst, InternalInstruction *insn)
{
// Addresses in an MCInst are represented as five operands:
// 1. basereg (register) The R/M base, or (if there is a SIB) the
// SIB base
// 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
// scale amount
// 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
// the index (which is multiplied by the
// scale amount)
// 4. displacement (immediate) 0, or the displacement if there is one
// 5. segmentreg (register) x86_registerNONE for now, but could be set
// if we have segment overrides
MCOperand *baseReg;
MCOperand *scaleAmount;
MCOperand *indexReg;
MCOperand *displacement;
MCOperand *segmentReg;
//uint64_t pcrel = 0;
if (insn->eaBase == EA_BASE_sib || insn->eaBase == EA_BASE_sib64) {
if (insn->sibBase != SIB_BASE_NONE) {
switch (insn->sibBase) {
#define ENTRY(x) \
case SIB_BASE_##x: \
baseReg = MCOperand_CreateReg(X86_##x); break;
ALL_SIB_BASES
#undef ENTRY
default:
//debug("Unexpected sibBase");
return true;
}
} else {
baseReg = MCOperand_CreateReg(0);
}
// Check whether we are handling VSIB addressing mode for GATHER.
// If sibIndex was set to SIB_INDEX_NONE, index offset is 4 and
// we should use SIB_INDEX_XMM4|YMM4 for VSIB.
// I don't see a way to get the correct IndexReg in readSIB:
// We can tell whether it is VSIB or SIB after instruction ID is decoded,
// but instruction ID may not be decoded yet when calling readSIB.
uint32_t Opcode = MCInst_getOpcode(mcInst);
bool IndexIs128 = (Opcode == X86_VGATHERDPDrm ||
Opcode == X86_VGATHERDPDYrm ||
Opcode == X86_VGATHERQPDrm ||
Opcode == X86_VGATHERDPSrm ||
Opcode == X86_VGATHERQPSrm ||
Opcode == X86_VPGATHERDQrm ||
Opcode == X86_VPGATHERDQYrm ||
Opcode == X86_VPGATHERQQrm ||
Opcode == X86_VPGATHERDDrm ||
Opcode == X86_VPGATHERQDrm);
bool IndexIs256 = (Opcode == X86_VGATHERQPDYrm ||
Opcode == X86_VGATHERDPSYrm ||
Opcode == X86_VGATHERQPSYrm ||
Opcode == X86_VPGATHERQQYrm ||
Opcode == X86_VPGATHERDDYrm ||
Opcode == X86_VPGATHERQDYrm);
if (IndexIs128 || IndexIs256) {
unsigned IndexOffset = insn->sibIndex -
(insn->addressSize == 8 ? SIB_INDEX_RAX:SIB_INDEX_EAX);
SIBIndex IndexBase = IndexIs256 ? SIB_INDEX_YMM0 : SIB_INDEX_XMM0;
insn->sibIndex = (SIBIndex)(IndexBase + (insn->sibIndex == SIB_INDEX_NONE ? 4 : IndexOffset));
}
if (insn->sibIndex != SIB_INDEX_NONE) {
switch (insn->sibIndex) {
default:
//debug("Unexpected sibIndex");
return true;
#define ENTRY(x) \
case SIB_INDEX_##x: \
indexReg = MCOperand_CreateReg(X86_##x); break;
EA_BASES_32BIT
EA_BASES_64BIT
REGS_XMM
REGS_YMM
REGS_ZMM
#undef ENTRY
}
} else {
indexReg = MCOperand_CreateReg(0);
}
scaleAmount = MCOperand_CreateImm(insn->sibScale);
} else {
switch (insn->eaBase) {
case EA_BASE_NONE:
if (insn->eaDisplacement == EA_DISP_NONE) {
//debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
return true;
}
if (insn->mode == MODE_64BIT) {
//pcrel = insn->startLocation +
// insn->displacementOffset + insn->displacementSize;
baseReg = MCOperand_CreateReg(X86_RIP); // Section 2.2.1.6
} else
baseReg = MCOperand_CreateReg(0);
indexReg = MCOperand_CreateReg(0);
break;
case EA_BASE_BX_SI:
baseReg = MCOperand_CreateReg(X86_BX);
indexReg = MCOperand_CreateReg(X86_SI);
break;
case EA_BASE_BX_DI:
baseReg = MCOperand_CreateReg(X86_BX);
indexReg = MCOperand_CreateReg(X86_DI);
break;
case EA_BASE_BP_SI:
baseReg = MCOperand_CreateReg(X86_BP);
indexReg = MCOperand_CreateReg(X86_SI);
break;
case EA_BASE_BP_DI:
baseReg = MCOperand_CreateReg(X86_BP);
indexReg = MCOperand_CreateReg(X86_DI);
break;
default:
indexReg = MCOperand_CreateReg(0);
switch (insn->eaBase) {
default:
//debug("Unexpected eaBase");
return true;
// Here, we will use the fill-ins defined above. However,
// BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
// sib and sib64 were handled in the top-level if, so they're only
// placeholders to keep the compiler happy.
#define ENTRY(x) \
case EA_BASE_##x: \
baseReg = MCOperand_CreateReg(X86_##x); break;
ALL_EA_BASES
#undef ENTRY
#define ENTRY(x) case EA_REG_##x:
ALL_REGS
#undef ENTRY
//debug("A R/M memory operand may not be a register; "
// "the base field must be a base.");
return true;
}
}
scaleAmount = MCOperand_CreateImm(1);
}
displacement = MCOperand_CreateImm(insn->displacement);
static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
0, // SEG_OVERRIDE_NONE
X86_CS,
X86_SS,
X86_DS,
X86_ES,
X86_FS,
X86_GS
};
segmentReg = MCOperand_CreateReg(segmentRegnums[insn->segmentOverride]);
MCInst_addOperand(mcInst, baseReg);
MCInst_addOperand(mcInst, scaleAmount);
MCInst_addOperand(mcInst, indexReg);
MCInst_addOperand(mcInst, displacement);
MCInst_addOperand(mcInst, segmentReg);
return false;
}
/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
/// byte of an instruction to LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRM(MCInst *mcInst, const OperandSpecifier *operand,
InternalInstruction *insn)
{
switch (operand->type) {
case TYPE_R8:
case TYPE_R16:
case TYPE_R32:
case TYPE_R64:
case TYPE_Rv:
case TYPE_MM:
case TYPE_MM32:
case TYPE_MM64:
case TYPE_XMM:
case TYPE_XMM32:
case TYPE_XMM64:
case TYPE_XMM128:
case TYPE_XMM256:
case TYPE_XMM512:
case TYPE_DEBUGREG:
case TYPE_CONTROLREG:
return translateRMRegister(mcInst, insn);
case TYPE_M:
case TYPE_M8:
case TYPE_M16:
case TYPE_M32:
case TYPE_M64:
case TYPE_M128:
case TYPE_M256:
case TYPE_M512:
case TYPE_Mv:
case TYPE_M32FP:
case TYPE_M64FP:
case TYPE_M80FP:
case TYPE_M16INT:
case TYPE_M32INT:
case TYPE_M64INT:
case TYPE_M1616:
case TYPE_M1632:
case TYPE_M1664:
case TYPE_LEA:
return translateRMMemory(mcInst, insn);
default:
//debug("Unexpected type for a R/M operand");
return true;
}
}
/// translateFPRegister - Translates a stack position on the FPU stack to its
/// LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param stackPos - The stack position to translate.
/// @return - 0 on success; nonzero otherwise.
static bool translateFPRegister(MCInst *mcInst, uint8_t stackPos)
{
if (stackPos >= 8) {
//debug("Invalid FP stack position");
return true;
}
MCInst_addOperand(mcInst, MCOperand_CreateReg(X86_ST0 + stackPos));
return false;
}
/// translateOperand - Translates an operand stored in an internal instruction
/// to LLVM's format and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
/// @return - false on success; true otherwise.
static bool translateOperand(MCInst *mcInst, const OperandSpecifier *operand, InternalInstruction *insn)
{
switch (operand->encoding) {
case ENCODING_REG:
translateRegister(mcInst, insn->reg);
return false;
case ENCODING_RM:
return translateRM(mcInst, operand, insn);
case ENCODING_CB:
case ENCODING_CW:
case ENCODING_CD:
case ENCODING_CP:
case ENCODING_CO:
case ENCODING_CT:
//debug("Translation of code offsets isn't supported.");
return true;
case ENCODING_IB:
case ENCODING_IW:
case ENCODING_ID:
case ENCODING_IO:
case ENCODING_Iv:
case ENCODING_Ia:
translateImmediate(mcInst, insn->immediates[insn->numImmediatesTranslated++], operand, insn);
return false;
case ENCODING_RB:
case ENCODING_RW:
case ENCODING_RD:
case ENCODING_RO:
translateRegister(mcInst, insn->opcodeRegister);
return false;
case ENCODING_I:
return translateFPRegister(mcInst, insn->opcodeModifier);
case ENCODING_Rv:
translateRegister(mcInst, insn->opcodeRegister);
return false;
case ENCODING_VVVV:
translateRegister(mcInst, insn->vvvv);
return false;
case ENCODING_DUP:
return translateOperand(mcInst, &insn->operands[operand->type - TYPE_DUP0], insn);
default:
//debug("Unhandled operand encoding during translation");
return true;
}
}
static bool translateInstruction(MCInst *mcInst, InternalInstruction *insn)
{
int index;
if (!insn->spec) {
//debug("Instruction has no specification");
return true;
}
MCInst_setOpcode(mcInst, insn->instructionID);
// If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
// prefix bytes should be disassembled as xrelease and xacquire then set the
// opcode to those instead of the rep and repne opcodes.
if (insn->xAcquireRelease) {
if (MCInst_getOpcode(mcInst) == X86_REP_PREFIX)
MCInst_setOpcode(mcInst, X86_XRELEASE_PREFIX);
else if (MCInst_getOpcode(mcInst) == X86_REPNE_PREFIX)
MCInst_setOpcode(mcInst, X86_XACQUIRE_PREFIX);
}
insn->numImmediatesTranslated = 0;
for (index = 0; index < X86_MAX_OPERANDS; ++index) {
if (insn->operands[index].encoding != ENCODING_NONE) {
if (translateOperand(mcInst, &insn->operands[index], insn)) {
return true;
}
}
}
return false;
}
static int reader(const void* arg, uint8_t* byte, uint64_t address)
{
struct reader_info *info = (void *)arg;
/*
char *buf = "\x55";
buf = "\x55"; // push ebp
buf = "\x01\xd8"; // add eax, ebx
buf = "\x8d\x4c\x32\x08"; // lea ecx, [edx + 8 + esi]
*/
if (address - info->offset >= info->size)
// out of buffer range
return -1;
*byte = info->code[address - info->offset];
return 0;
}
// update x86 detail information
static void update_pub_insn(cs_insn *pub, InternalInstruction *inter)
{
int i, c;
c = 0;
for(i = 0; i < 0x100; i++) {
if (inter->prefixPresent[i] > 0) {
pub->x86.prefix[c] = inter->prefixPresent[i];
c++;
}
}
pub->x86.segment = x86_map_segment(inter->segmentOverride);
if (inter->vexSize > 0)
memcpy(pub->x86.opcode, inter->vexPrefix, sizeof(pub->x86.opcode));
else {
pub->x86.opcode[0] = inter->opcode;
pub->x86.opcode[1] = inter->twoByteEscape;
pub->x86.opcode[2] = inter->threeByteEscape;
}
pub->x86.op_size = inter->operandSize;
pub->x86.addr_size = inter->addressSize;
pub->x86.disp_size = inter->displacementSize;
pub->x86.imm_size = inter->immediateSize;
pub->x86.modrm = inter->modRM;
pub->x86.sib = inter->sib;
pub->x86.disp = inter->displacement;
pub->x86.sib_index = x86_map_sib_index(inter->sibIndex);
pub->x86.sib_scale = inter->sibScale;
pub->x86.sib_base = x86_map_sib_base(inter->sibBase);
}
// Public interface for the disassembler
bool X86_getInstruction(csh ud, unsigned char *code, size_t code_len, MCInst *instr, uint16_t *size, size_t address, void *_info)
{
cs_struct *handle = (cs_struct *)(uintptr_t)ud;
InternalInstruction insn;
struct reader_info info;
int ret;
bool result;
info.code = code;
info.size = code_len;
info.offset = address;
memset(&insn, 0, sizeof(insn));
if (handle->mode & CS_MODE_16)
ret = decodeInstruction(&insn,
reader, &info,
address,
MODE_16BIT);
else if (handle->mode & CS_MODE_32)
ret = decodeInstruction(&insn,
reader, &info,
address,
MODE_32BIT);
else
ret = decodeInstruction(&insn,
reader, &info,
address,
MODE_64BIT);
if (ret) {
*size = insn.readerCursor - address;
return false;
} else {
*size = insn.length;
result = (!translateInstruction(instr, &insn)) ? true : false;
// update instr->pub_insn
update_pub_insn(&instr->pub_insn, &insn);
return result;
}
}