blob: eef2f5e635c9bfcda98137c45c044432074dcb66 [file] [log] [blame]
//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expression parsing implementation for C++.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Parser.h"
#include "RAIIObjectsForParser.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/ParsedTemplate.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang;
/// \brief Parse global scope or nested-name-specifier if present.
///
/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
/// may be preceded by '::'). Note that this routine will not parse ::new or
/// ::delete; it will just leave them in the token stream.
///
/// '::'[opt] nested-name-specifier
/// '::'
///
/// nested-name-specifier:
/// type-name '::'
/// namespace-name '::'
/// nested-name-specifier identifier '::'
/// nested-name-specifier 'template'[opt] simple-template-id '::'
///
///
/// \param SS the scope specifier that will be set to the parsed
/// nested-name-specifier (or empty)
///
/// \param ObjectType if this nested-name-specifier is being parsed following
/// the "." or "->" of a member access expression, this parameter provides the
/// type of the object whose members are being accessed.
///
/// \param EnteringContext whether we will be entering into the context of
/// the nested-name-specifier after parsing it.
///
/// \param MayBePseudoDestructor When non-NULL, points to a flag that
/// indicates whether this nested-name-specifier may be part of a
/// pseudo-destructor name. In this case, the flag will be set false
/// if we don't actually end up parsing a destructor name. Moreorover,
/// if we do end up determining that we are parsing a destructor name,
/// the last component of the nested-name-specifier is not parsed as
/// part of the scope specifier.
/// member access expression, e.g., the \p T:: in \p p->T::m.
///
/// \returns true if there was an error parsing a scope specifier
bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
ParsedType ObjectType,
bool EnteringContext,
bool *MayBePseudoDestructor) {
assert(getLang().CPlusPlus &&
"Call sites of this function should be guarded by checking for C++");
if (Tok.is(tok::annot_cxxscope)) {
Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
Tok.getAnnotationRange(),
SS);
ConsumeToken();
return false;
}
bool HasScopeSpecifier = false;
if (Tok.is(tok::coloncolon)) {
// ::new and ::delete aren't nested-name-specifiers.
tok::TokenKind NextKind = NextToken().getKind();
if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
return false;
// '::' - Global scope qualifier.
if (Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), ConsumeToken(), SS))
return true;
HasScopeSpecifier = true;
}
bool CheckForDestructor = false;
if (MayBePseudoDestructor && *MayBePseudoDestructor) {
CheckForDestructor = true;
*MayBePseudoDestructor = false;
}
while (true) {
if (HasScopeSpecifier) {
// C++ [basic.lookup.classref]p5:
// If the qualified-id has the form
//
// ::class-name-or-namespace-name::...
//
// the class-name-or-namespace-name is looked up in global scope as a
// class-name or namespace-name.
//
// To implement this, we clear out the object type as soon as we've
// seen a leading '::' or part of a nested-name-specifier.
ObjectType = ParsedType();
if (Tok.is(tok::code_completion)) {
// Code completion for a nested-name-specifier, where the code
// code completion token follows the '::'.
Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
ConsumeCodeCompletionToken();
}
}
// nested-name-specifier:
// nested-name-specifier 'template'[opt] simple-template-id '::'
// Parse the optional 'template' keyword, then make sure we have
// 'identifier <' after it.
if (Tok.is(tok::kw_template)) {
// If we don't have a scope specifier or an object type, this isn't a
// nested-name-specifier, since they aren't allowed to start with
// 'template'.
if (!HasScopeSpecifier && !ObjectType)
break;
TentativeParsingAction TPA(*this);
SourceLocation TemplateKWLoc = ConsumeToken();
UnqualifiedId TemplateName;
if (Tok.is(tok::identifier)) {
// Consume the identifier.
TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
ConsumeToken();
} else if (Tok.is(tok::kw_operator)) {
if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
TemplateName)) {
TPA.Commit();
break;
}
if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
Diag(TemplateName.getSourceRange().getBegin(),
diag::err_id_after_template_in_nested_name_spec)
<< TemplateName.getSourceRange();
TPA.Commit();
break;
}
} else {
TPA.Revert();
break;
}
// If the next token is not '<', we have a qualified-id that refers
// to a template name, such as T::template apply, but is not a
// template-id.
if (Tok.isNot(tok::less)) {
TPA.Revert();
break;
}
// Commit to parsing the template-id.
TPA.Commit();
TemplateTy Template;
if (TemplateNameKind TNK = Actions.ActOnDependentTemplateName(getCurScope(),
TemplateKWLoc,
SS,
TemplateName,
ObjectType,
EnteringContext,
Template)) {
if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateName,
TemplateKWLoc, false))
return true;
} else
return true;
continue;
}
if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
// We have
//
// simple-template-id '::'
//
// So we need to check whether the simple-template-id is of the
// right kind (it should name a type or be dependent), and then
// convert it into a type within the nested-name-specifier.
TemplateIdAnnotation *TemplateId
= static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
*MayBePseudoDestructor = true;
return false;
}
if (TemplateId->Kind == TNK_Type_template ||
TemplateId->Kind == TNK_Dependent_template_name) {
// Consume the template-id token.
ConsumeToken();
assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
SourceLocation CCLoc = ConsumeToken();
if (!HasScopeSpecifier)
HasScopeSpecifier = true;
ASTTemplateArgsPtr TemplateArgsPtr(Actions,
TemplateId->getTemplateArgs(),
TemplateId->NumArgs);
if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
/*FIXME:*/SourceLocation(),
SS,
TemplateId->Template,
TemplateId->TemplateNameLoc,
TemplateId->LAngleLoc,
TemplateArgsPtr,
TemplateId->RAngleLoc,
CCLoc,
EnteringContext)) {
SourceLocation StartLoc
= SS.getBeginLoc().isValid()? SS.getBeginLoc()
: TemplateId->TemplateNameLoc;
SS.SetInvalid(SourceRange(StartLoc, CCLoc));
}
TemplateId->Destroy();
continue;
}
assert(false && "FIXME: Only type template names supported here");
}
// The rest of the nested-name-specifier possibilities start with
// tok::identifier.
if (Tok.isNot(tok::identifier))
break;
IdentifierInfo &II = *Tok.getIdentifierInfo();
// nested-name-specifier:
// type-name '::'
// namespace-name '::'
// nested-name-specifier identifier '::'
Token Next = NextToken();
// If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
// and emit a fixit hint for it.
if (Next.is(tok::colon) && !ColonIsSacred) {
if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
Tok.getLocation(),
Next.getLocation(), ObjectType,
EnteringContext) &&
// If the token after the colon isn't an identifier, it's still an
// error, but they probably meant something else strange so don't
// recover like this.
PP.LookAhead(1).is(tok::identifier)) {
Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
<< FixItHint::CreateReplacement(Next.getLocation(), "::");
// Recover as if the user wrote '::'.
Next.setKind(tok::coloncolon);
}
}
if (Next.is(tok::coloncolon)) {
if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
!Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(),
II, ObjectType)) {
*MayBePseudoDestructor = true;
return false;
}
// We have an identifier followed by a '::'. Lookup this name
// as the name in a nested-name-specifier.
SourceLocation IdLoc = ConsumeToken();
assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
"NextToken() not working properly!");
SourceLocation CCLoc = ConsumeToken();
HasScopeSpecifier = true;
if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
ObjectType, EnteringContext, SS))
SS.SetInvalid(SourceRange(IdLoc, CCLoc));
continue;
}
// nested-name-specifier:
// type-name '<'
if (Next.is(tok::less)) {
TemplateTy Template;
UnqualifiedId TemplateName;
TemplateName.setIdentifier(&II, Tok.getLocation());
bool MemberOfUnknownSpecialization;
if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
/*hasTemplateKeyword=*/false,
TemplateName,
ObjectType,
EnteringContext,
Template,
MemberOfUnknownSpecialization)) {
// We have found a template name, so annotate this this token
// with a template-id annotation. We do not permit the
// template-id to be translated into a type annotation,
// because some clients (e.g., the parsing of class template
// specializations) still want to see the original template-id
// token.
ConsumeToken();
if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateName,
SourceLocation(), false))
return true;
continue;
}
if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
IsTemplateArgumentList(1)) {
// We have something like t::getAs<T>, where getAs is a
// member of an unknown specialization. However, this will only
// parse correctly as a template, so suggest the keyword 'template'
// before 'getAs' and treat this as a dependent template name.
Diag(Tok.getLocation(), diag::err_missing_dependent_template_keyword)
<< II.getName()
<< FixItHint::CreateInsertion(Tok.getLocation(), "template ");
if (TemplateNameKind TNK
= Actions.ActOnDependentTemplateName(getCurScope(),
Tok.getLocation(), SS,
TemplateName, ObjectType,
EnteringContext, Template)) {
// Consume the identifier.
ConsumeToken();
if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateName,
SourceLocation(), false))
return true;
}
else
return true;
continue;
}
}
// We don't have any tokens that form the beginning of a
// nested-name-specifier, so we're done.
break;
}
// Even if we didn't see any pieces of a nested-name-specifier, we
// still check whether there is a tilde in this position, which
// indicates a potential pseudo-destructor.
if (CheckForDestructor && Tok.is(tok::tilde))
*MayBePseudoDestructor = true;
return false;
}
/// ParseCXXIdExpression - Handle id-expression.
///
/// id-expression:
/// unqualified-id
/// qualified-id
///
/// qualified-id:
/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
/// '::' identifier
/// '::' operator-function-id
/// '::' template-id
///
/// NOTE: The standard specifies that, for qualified-id, the parser does not
/// expect:
///
/// '::' conversion-function-id
/// '::' '~' class-name
///
/// This may cause a slight inconsistency on diagnostics:
///
/// class C {};
/// namespace A {}
/// void f() {
/// :: A :: ~ C(); // Some Sema error about using destructor with a
/// // namespace.
/// :: ~ C(); // Some Parser error like 'unexpected ~'.
/// }
///
/// We simplify the parser a bit and make it work like:
///
/// qualified-id:
/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
/// '::' unqualified-id
///
/// That way Sema can handle and report similar errors for namespaces and the
/// global scope.
///
/// The isAddressOfOperand parameter indicates that this id-expression is a
/// direct operand of the address-of operator. This is, besides member contexts,
/// the only place where a qualified-id naming a non-static class member may
/// appear.
///
ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
// qualified-id:
// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
// '::' unqualified-id
//
CXXScopeSpec SS;
ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
UnqualifiedId Name;
if (ParseUnqualifiedId(SS,
/*EnteringContext=*/false,
/*AllowDestructorName=*/false,
/*AllowConstructorName=*/false,
/*ObjectType=*/ ParsedType(),
Name))
return ExprError();
// This is only the direct operand of an & operator if it is not
// followed by a postfix-expression suffix.
if (isAddressOfOperand && isPostfixExpressionSuffixStart())
isAddressOfOperand = false;
return Actions.ActOnIdExpression(getCurScope(), SS, Name, Tok.is(tok::l_paren),
isAddressOfOperand);
}
/// ParseCXXCasts - This handles the various ways to cast expressions to another
/// type.
///
/// postfix-expression: [C++ 5.2p1]
/// 'dynamic_cast' '<' type-name '>' '(' expression ')'
/// 'static_cast' '<' type-name '>' '(' expression ')'
/// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
/// 'const_cast' '<' type-name '>' '(' expression ')'
///
ExprResult Parser::ParseCXXCasts() {
tok::TokenKind Kind = Tok.getKind();
const char *CastName = 0; // For error messages
switch (Kind) {
default: assert(0 && "Unknown C++ cast!"); abort();
case tok::kw_const_cast: CastName = "const_cast"; break;
case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
case tok::kw_static_cast: CastName = "static_cast"; break;
}
SourceLocation OpLoc = ConsumeToken();
SourceLocation LAngleBracketLoc = Tok.getLocation();
if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
return ExprError();
TypeResult CastTy = ParseTypeName();
SourceLocation RAngleBracketLoc = Tok.getLocation();
if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, CastName))
return ExprError();
ExprResult Result = ParseExpression();
// Match the ')'.
RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
if (!Result.isInvalid() && !CastTy.isInvalid())
Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
LAngleBracketLoc, CastTy.get(),
RAngleBracketLoc,
LParenLoc, Result.take(), RParenLoc);
return move(Result);
}
/// ParseCXXTypeid - This handles the C++ typeid expression.
///
/// postfix-expression: [C++ 5.2p1]
/// 'typeid' '(' expression ')'
/// 'typeid' '(' type-id ')'
///
ExprResult Parser::ParseCXXTypeid() {
assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
SourceLocation OpLoc = ConsumeToken();
SourceLocation LParenLoc = Tok.getLocation();
SourceLocation RParenLoc;
// typeid expressions are always parenthesized.
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"typeid"))
return ExprError();
ExprResult Result;
if (isTypeIdInParens()) {
TypeResult Ty = ParseTypeName();
// Match the ')'.
RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
if (Ty.isInvalid() || RParenLoc.isInvalid())
return ExprError();
Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
Ty.get().getAsOpaquePtr(), RParenLoc);
} else {
// C++0x [expr.typeid]p3:
// When typeid is applied to an expression other than an lvalue of a
// polymorphic class type [...] The expression is an unevaluated
// operand (Clause 5).
//
// Note that we can't tell whether the expression is an lvalue of a
// polymorphic class type until after we've parsed the expression, so
// we the expression is potentially potentially evaluated.
EnterExpressionEvaluationContext Unevaluated(Actions,
Sema::PotentiallyPotentiallyEvaluated);
Result = ParseExpression();
// Match the ')'.
if (Result.isInvalid())
SkipUntil(tok::r_paren);
else {
RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
if (RParenLoc.isInvalid())
return ExprError();
Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
Result.release(), RParenLoc);
}
}
return move(Result);
}
/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
///
/// '__uuidof' '(' expression ')'
/// '__uuidof' '(' type-id ')'
///
ExprResult Parser::ParseCXXUuidof() {
assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
SourceLocation OpLoc = ConsumeToken();
SourceLocation LParenLoc = Tok.getLocation();
SourceLocation RParenLoc;
// __uuidof expressions are always parenthesized.
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"__uuidof"))
return ExprError();
ExprResult Result;
if (isTypeIdInParens()) {
TypeResult Ty = ParseTypeName();
// Match the ')'.
RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
if (Ty.isInvalid())
return ExprError();
Result = Actions.ActOnCXXUuidof(OpLoc, LParenLoc, /*isType=*/true,
Ty.get().getAsOpaquePtr(), RParenLoc);
} else {
EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
Result = ParseExpression();
// Match the ')'.
if (Result.isInvalid())
SkipUntil(tok::r_paren);
else {
RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
Result = Actions.ActOnCXXUuidof(OpLoc, LParenLoc, /*isType=*/false,
Result.release(), RParenLoc);
}
}
return move(Result);
}
/// \brief Parse a C++ pseudo-destructor expression after the base,
/// . or -> operator, and nested-name-specifier have already been
/// parsed.
///
/// postfix-expression: [C++ 5.2]
/// postfix-expression . pseudo-destructor-name
/// postfix-expression -> pseudo-destructor-name
///
/// pseudo-destructor-name:
/// ::[opt] nested-name-specifier[opt] type-name :: ~type-name
/// ::[opt] nested-name-specifier template simple-template-id ::
/// ~type-name
/// ::[opt] nested-name-specifier[opt] ~type-name
///
ExprResult
Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
tok::TokenKind OpKind,
CXXScopeSpec &SS,
ParsedType ObjectType) {
// We're parsing either a pseudo-destructor-name or a dependent
// member access that has the same form as a
// pseudo-destructor-name. We parse both in the same way and let
// the action model sort them out.
//
// Note that the ::[opt] nested-name-specifier[opt] has already
// been parsed, and if there was a simple-template-id, it has
// been coalesced into a template-id annotation token.
UnqualifiedId FirstTypeName;
SourceLocation CCLoc;
if (Tok.is(tok::identifier)) {
FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
ConsumeToken();
assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
CCLoc = ConsumeToken();
} else if (Tok.is(tok::annot_template_id)) {
FirstTypeName.setTemplateId(
(TemplateIdAnnotation *)Tok.getAnnotationValue());
ConsumeToken();
assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
CCLoc = ConsumeToken();
} else {
FirstTypeName.setIdentifier(0, SourceLocation());
}
// Parse the tilde.
assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
SourceLocation TildeLoc = ConsumeToken();
if (!Tok.is(tok::identifier)) {
Diag(Tok, diag::err_destructor_tilde_identifier);
return ExprError();
}
// Parse the second type.
UnqualifiedId SecondTypeName;
IdentifierInfo *Name = Tok.getIdentifierInfo();
SourceLocation NameLoc = ConsumeToken();
SecondTypeName.setIdentifier(Name, NameLoc);
// If there is a '<', the second type name is a template-id. Parse
// it as such.
if (Tok.is(tok::less) &&
ParseUnqualifiedIdTemplateId(SS, Name, NameLoc, false, ObjectType,
SecondTypeName, /*AssumeTemplateName=*/true,
/*TemplateKWLoc*/SourceLocation()))
return ExprError();
return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base,
OpLoc, OpKind,
SS, FirstTypeName, CCLoc,
TildeLoc, SecondTypeName,
Tok.is(tok::l_paren));
}
/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
///
/// boolean-literal: [C++ 2.13.5]
/// 'true'
/// 'false'
ExprResult Parser::ParseCXXBoolLiteral() {
tok::TokenKind Kind = Tok.getKind();
return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
}
/// ParseThrowExpression - This handles the C++ throw expression.
///
/// throw-expression: [C++ 15]
/// 'throw' assignment-expression[opt]
ExprResult Parser::ParseThrowExpression() {
assert(Tok.is(tok::kw_throw) && "Not throw!");
SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
// If the current token isn't the start of an assignment-expression,
// then the expression is not present. This handles things like:
// "C ? throw : (void)42", which is crazy but legal.
switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
case tok::semi:
case tok::r_paren:
case tok::r_square:
case tok::r_brace:
case tok::colon:
case tok::comma:
return Actions.ActOnCXXThrow(ThrowLoc, 0);
default:
ExprResult Expr(ParseAssignmentExpression());
if (Expr.isInvalid()) return move(Expr);
return Actions.ActOnCXXThrow(ThrowLoc, Expr.take());
}
}
/// ParseCXXThis - This handles the C++ 'this' pointer.
///
/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
/// a non-lvalue expression whose value is the address of the object for which
/// the function is called.
ExprResult Parser::ParseCXXThis() {
assert(Tok.is(tok::kw_this) && "Not 'this'!");
SourceLocation ThisLoc = ConsumeToken();
return Actions.ActOnCXXThis(ThisLoc);
}
/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
///
/// postfix-expression: [C++ 5.2p1]
/// simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
/// typename-specifier '(' expression-list[opt] ')' [TODO]
///
ExprResult
Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
assert(Tok.is(tok::l_paren) && "Expected '('!");
GreaterThanIsOperatorScope G(GreaterThanIsOperator, true);
SourceLocation LParenLoc = ConsumeParen();
ExprVector Exprs(Actions);
CommaLocsTy CommaLocs;
if (Tok.isNot(tok::r_paren)) {
if (ParseExpressionList(Exprs, CommaLocs)) {
SkipUntil(tok::r_paren);
return ExprError();
}
}
// Match the ')'.
SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
// TypeRep could be null, if it references an invalid typedef.
if (!TypeRep)
return ExprError();
assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
"Unexpected number of commas!");
return Actions.ActOnCXXTypeConstructExpr(TypeRep, LParenLoc, move_arg(Exprs),
RParenLoc);
}
/// ParseCXXCondition - if/switch/while condition expression.
///
/// condition:
/// expression
/// type-specifier-seq declarator '=' assignment-expression
/// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
/// '=' assignment-expression
///
/// \param ExprResult if the condition was parsed as an expression, the
/// parsed expression.
///
/// \param DeclResult if the condition was parsed as a declaration, the
/// parsed declaration.
///
/// \param Loc The location of the start of the statement that requires this
/// condition, e.g., the "for" in a for loop.
///
/// \param ConvertToBoolean Whether the condition expression should be
/// converted to a boolean value.
///
/// \returns true if there was a parsing, false otherwise.
bool Parser::ParseCXXCondition(ExprResult &ExprOut,
Decl *&DeclOut,
SourceLocation Loc,
bool ConvertToBoolean) {
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
ConsumeCodeCompletionToken();
}
if (!isCXXConditionDeclaration()) {
// Parse the expression.
ExprOut = ParseExpression(); // expression
DeclOut = 0;
if (ExprOut.isInvalid())
return true;
// If required, convert to a boolean value.
if (ConvertToBoolean)
ExprOut
= Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
return ExprOut.isInvalid();
}
// type-specifier-seq
DeclSpec DS;
ParseSpecifierQualifierList(DS);
// declarator
Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
ParseDeclarator(DeclaratorInfo);
// simple-asm-expr[opt]
if (Tok.is(tok::kw_asm)) {
SourceLocation Loc;
ExprResult AsmLabel(ParseSimpleAsm(&Loc));
if (AsmLabel.isInvalid()) {
SkipUntil(tok::semi);
return true;
}
DeclaratorInfo.setAsmLabel(AsmLabel.release());
DeclaratorInfo.SetRangeEnd(Loc);
}
// If attributes are present, parse them.
MaybeParseGNUAttributes(DeclaratorInfo);
// Type-check the declaration itself.
DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
DeclaratorInfo);
DeclOut = Dcl.get();
ExprOut = ExprError();
// '=' assignment-expression
if (isTokenEqualOrMistypedEqualEqual(
diag::err_invalid_equalequal_after_declarator)) {
ConsumeToken();
ExprResult AssignExpr(ParseAssignmentExpression());
if (!AssignExpr.isInvalid())
Actions.AddInitializerToDecl(DeclOut, AssignExpr.take(), false,
DS.getTypeSpecType() == DeclSpec::TST_auto);
} else {
// FIXME: C++0x allows a braced-init-list
Diag(Tok, diag::err_expected_equal_after_declarator);
}
// FIXME: Build a reference to this declaration? Convert it to bool?
// (This is currently handled by Sema).
Actions.FinalizeDeclaration(DeclOut);
return false;
}
/// \brief Determine whether the current token starts a C++
/// simple-type-specifier.
bool Parser::isCXXSimpleTypeSpecifier() const {
switch (Tok.getKind()) {
case tok::annot_typename:
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw_void:
case tok::kw_char:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_wchar_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_bool:
// FIXME: C++0x decltype support.
// GNU typeof support.
case tok::kw_typeof:
return true;
default:
break;
}
return false;
}
/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
/// This should only be called when the current token is known to be part of
/// simple-type-specifier.
///
/// simple-type-specifier:
/// '::'[opt] nested-name-specifier[opt] type-name
/// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
/// char
/// wchar_t
/// bool
/// short
/// int
/// long
/// signed
/// unsigned
/// float
/// double
/// void
/// [GNU] typeof-specifier
/// [C++0x] auto [TODO]
///
/// type-name:
/// class-name
/// enum-name
/// typedef-name
///
void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
DS.SetRangeStart(Tok.getLocation());
const char *PrevSpec;
unsigned DiagID;
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
case tok::identifier: // foo::bar
case tok::coloncolon: // ::foo::bar
assert(0 && "Annotation token should already be formed!");
default:
assert(0 && "Not a simple-type-specifier token!");
abort();
// type-name
case tok::annot_typename: {
if (getTypeAnnotation(Tok))
DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
getTypeAnnotation(Tok));
else
DS.SetTypeSpecError();
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
ConsumeToken();
// Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
// is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
// Objective-C interface. If we don't have Objective-C or a '<', this is
// just a normal reference to a typedef name.
if (Tok.is(tok::less) && getLang().ObjC1)
ParseObjCProtocolQualifiers(DS);
DS.Finish(Diags, PP);
return;
}
// builtin types
case tok::kw_short:
DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
break;
case tok::kw_long:
DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
break;
case tok::kw_signed:
DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
break;
case tok::kw_unsigned:
DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
break;
case tok::kw_void:
DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
break;
case tok::kw_char:
DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
break;
case tok::kw_int:
DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
break;
case tok::kw_float:
DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
break;
case tok::kw_double:
DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
break;
case tok::kw_wchar_t:
DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
break;
case tok::kw_char16_t:
DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
break;
case tok::kw_char32_t:
DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
break;
case tok::kw_bool:
DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
break;
// FIXME: C++0x decltype support.
// GNU typeof support.
case tok::kw_typeof:
ParseTypeofSpecifier(DS);
DS.Finish(Diags, PP);
return;
}
if (Tok.is(tok::annot_typename))
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
else
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
DS.Finish(Diags, PP);
}
/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
/// [dcl.name]), which is a non-empty sequence of type-specifiers,
/// e.g., "const short int". Note that the DeclSpec is *not* finished
/// by parsing the type-specifier-seq, because these sequences are
/// typically followed by some form of declarator. Returns true and
/// emits diagnostics if this is not a type-specifier-seq, false
/// otherwise.
///
/// type-specifier-seq: [C++ 8.1]
/// type-specifier type-specifier-seq[opt]
///
bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
DS.SetRangeStart(Tok.getLocation());
const char *PrevSpec = 0;
unsigned DiagID;
bool isInvalid = 0;
// Parse one or more of the type specifiers.
if (!ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
ParsedTemplateInfo(), /*SuppressDeclarations*/true)) {
Diag(Tok, diag::err_expected_type);
return true;
}
while (ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
ParsedTemplateInfo(), /*SuppressDeclarations*/true))
{}
DS.Finish(Diags, PP);
return false;
}
/// \brief Finish parsing a C++ unqualified-id that is a template-id of
/// some form.
///
/// This routine is invoked when a '<' is encountered after an identifier or
/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
/// whether the unqualified-id is actually a template-id. This routine will
/// then parse the template arguments and form the appropriate template-id to
/// return to the caller.
///
/// \param SS the nested-name-specifier that precedes this template-id, if
/// we're actually parsing a qualified-id.
///
/// \param Name for constructor and destructor names, this is the actual
/// identifier that may be a template-name.
///
/// \param NameLoc the location of the class-name in a constructor or
/// destructor.
///
/// \param EnteringContext whether we're entering the scope of the
/// nested-name-specifier.
///
/// \param ObjectType if this unqualified-id occurs within a member access
/// expression, the type of the base object whose member is being accessed.
///
/// \param Id as input, describes the template-name or operator-function-id
/// that precedes the '<'. If template arguments were parsed successfully,
/// will be updated with the template-id.
///
/// \param AssumeTemplateId When true, this routine will assume that the name
/// refers to a template without performing name lookup to verify.
///
/// \returns true if a parse error occurred, false otherwise.
bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
IdentifierInfo *Name,
SourceLocation NameLoc,
bool EnteringContext,
ParsedType ObjectType,
UnqualifiedId &Id,
bool AssumeTemplateId,
SourceLocation TemplateKWLoc) {
assert((AssumeTemplateId || Tok.is(tok::less)) &&
"Expected '<' to finish parsing a template-id");
TemplateTy Template;
TemplateNameKind TNK = TNK_Non_template;
switch (Id.getKind()) {
case UnqualifiedId::IK_Identifier:
case UnqualifiedId::IK_OperatorFunctionId:
case UnqualifiedId::IK_LiteralOperatorId:
if (AssumeTemplateId) {
TNK = Actions.ActOnDependentTemplateName(getCurScope(), TemplateKWLoc, SS,
Id, ObjectType, EnteringContext,
Template);
if (TNK == TNK_Non_template)
return true;
} else {
bool MemberOfUnknownSpecialization;
TNK = Actions.isTemplateName(getCurScope(), SS,
TemplateKWLoc.isValid(), Id,
ObjectType, EnteringContext, Template,
MemberOfUnknownSpecialization);
if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
ObjectType && IsTemplateArgumentList()) {
// We have something like t->getAs<T>(), where getAs is a
// member of an unknown specialization. However, this will only
// parse correctly as a template, so suggest the keyword 'template'
// before 'getAs' and treat this as a dependent template name.
std::string Name;
if (Id.getKind() == UnqualifiedId::IK_Identifier)
Name = Id.Identifier->getName();
else {
Name = "operator ";
if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
else
Name += Id.Identifier->getName();
}
Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
<< Name
<< FixItHint::CreateInsertion(Id.StartLocation, "template ");
TNK = Actions.ActOnDependentTemplateName(getCurScope(), TemplateKWLoc,
SS, Id, ObjectType,
EnteringContext, Template);
if (TNK == TNK_Non_template)
return true;
}
}
break;
case UnqualifiedId::IK_ConstructorName: {
UnqualifiedId TemplateName;
bool MemberOfUnknownSpecialization;
TemplateName.setIdentifier(Name, NameLoc);
TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
TemplateName, ObjectType,
EnteringContext, Template,
MemberOfUnknownSpecialization);
break;
}
case UnqualifiedId::IK_DestructorName: {
UnqualifiedId TemplateName;
bool MemberOfUnknownSpecialization;
TemplateName.setIdentifier(Name, NameLoc);
if (ObjectType) {
TNK = Actions.ActOnDependentTemplateName(getCurScope(), TemplateKWLoc, SS,
TemplateName, ObjectType,
EnteringContext, Template);
if (TNK == TNK_Non_template)
return true;
} else {
TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
TemplateName, ObjectType,
EnteringContext, Template,
MemberOfUnknownSpecialization);
if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
Diag(NameLoc, diag::err_destructor_template_id)
<< Name << SS.getRange();
return true;
}
}
break;
}
default:
return false;
}
if (TNK == TNK_Non_template)
return false;
// Parse the enclosed template argument list.
SourceLocation LAngleLoc, RAngleLoc;
TemplateArgList TemplateArgs;
if (Tok.is(tok::less) &&
ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
SS, true, LAngleLoc,
TemplateArgs,
RAngleLoc))
return true;
if (Id.getKind() == UnqualifiedId::IK_Identifier ||
Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
// Form a parsed representation of the template-id to be stored in the
// UnqualifiedId.
TemplateIdAnnotation *TemplateId
= TemplateIdAnnotation::Allocate(TemplateArgs.size());
if (Id.getKind() == UnqualifiedId::IK_Identifier) {
TemplateId->Name = Id.Identifier;
TemplateId->Operator = OO_None;
TemplateId->TemplateNameLoc = Id.StartLocation;
} else {
TemplateId->Name = 0;
TemplateId->Operator = Id.OperatorFunctionId.Operator;
TemplateId->TemplateNameLoc = Id.StartLocation;
}
TemplateId->SS = SS;
TemplateId->Template = Template;
TemplateId->Kind = TNK;
TemplateId->LAngleLoc = LAngleLoc;
TemplateId->RAngleLoc = RAngleLoc;
ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
Arg != ArgEnd; ++Arg)
Args[Arg] = TemplateArgs[Arg];
Id.setTemplateId(TemplateId);
return false;
}
// Bundle the template arguments together.
ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(),
TemplateArgs.size());
// Constructor and destructor names.
TypeResult Type
= Actions.ActOnTemplateIdType(SS, Template, NameLoc,
LAngleLoc, TemplateArgsPtr,
RAngleLoc);
if (Type.isInvalid())
return true;
if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
else
Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
return false;
}
/// \brief Parse an operator-function-id or conversion-function-id as part
/// of a C++ unqualified-id.
///
/// This routine is responsible only for parsing the operator-function-id or
/// conversion-function-id; it does not handle template arguments in any way.
///
/// \code
/// operator-function-id: [C++ 13.5]
/// 'operator' operator
///
/// operator: one of
/// new delete new[] delete[]
/// + - * / % ^ & | ~
/// ! = < > += -= *= /= %=
/// ^= &= |= << >> >>= <<= == !=
/// <= >= && || ++ -- , ->* ->
/// () []
///
/// conversion-function-id: [C++ 12.3.2]
/// operator conversion-type-id
///
/// conversion-type-id:
/// type-specifier-seq conversion-declarator[opt]
///
/// conversion-declarator:
/// ptr-operator conversion-declarator[opt]
/// \endcode
///
/// \param The nested-name-specifier that preceded this unqualified-id. If
/// non-empty, then we are parsing the unqualified-id of a qualified-id.
///
/// \param EnteringContext whether we are entering the scope of the
/// nested-name-specifier.
///
/// \param ObjectType if this unqualified-id occurs within a member access
/// expression, the type of the base object whose member is being accessed.
///
/// \param Result on a successful parse, contains the parsed unqualified-id.
///
/// \returns true if parsing fails, false otherwise.
bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
ParsedType ObjectType,
UnqualifiedId &Result) {
assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
// Consume the 'operator' keyword.
SourceLocation KeywordLoc = ConsumeToken();
// Determine what kind of operator name we have.
unsigned SymbolIdx = 0;
SourceLocation SymbolLocations[3];
OverloadedOperatorKind Op = OO_None;
switch (Tok.getKind()) {
case tok::kw_new:
case tok::kw_delete: {
bool isNew = Tok.getKind() == tok::kw_new;
// Consume the 'new' or 'delete'.
SymbolLocations[SymbolIdx++] = ConsumeToken();
if (Tok.is(tok::l_square)) {
// Consume the '['.
SourceLocation LBracketLoc = ConsumeBracket();
// Consume the ']'.
SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
LBracketLoc);
if (RBracketLoc.isInvalid())
return true;
SymbolLocations[SymbolIdx++] = LBracketLoc;
SymbolLocations[SymbolIdx++] = RBracketLoc;
Op = isNew? OO_Array_New : OO_Array_Delete;
} else {
Op = isNew? OO_New : OO_Delete;
}
break;
}
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
case tok::Token: \
SymbolLocations[SymbolIdx++] = ConsumeToken(); \
Op = OO_##Name; \
break;
#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
#include "clang/Basic/OperatorKinds.def"
case tok::l_paren: {
// Consume the '('.
SourceLocation LParenLoc = ConsumeParen();
// Consume the ')'.
SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren,
LParenLoc);
if (RParenLoc.isInvalid())
return true;
SymbolLocations[SymbolIdx++] = LParenLoc;
SymbolLocations[SymbolIdx++] = RParenLoc;
Op = OO_Call;
break;
}
case tok::l_square: {
// Consume the '['.
SourceLocation LBracketLoc = ConsumeBracket();
// Consume the ']'.
SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
LBracketLoc);
if (RBracketLoc.isInvalid())
return true;
SymbolLocations[SymbolIdx++] = LBracketLoc;
SymbolLocations[SymbolIdx++] = RBracketLoc;
Op = OO_Subscript;
break;
}
case tok::code_completion: {
// Code completion for the operator name.
Actions.CodeCompleteOperatorName(getCurScope());
// Consume the operator token.
ConsumeCodeCompletionToken();
// Don't try to parse any further.
return true;
}
default:
break;
}
if (Op != OO_None) {
// We have parsed an operator-function-id.
Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
return false;
}
// Parse a literal-operator-id.
//
// literal-operator-id: [C++0x 13.5.8]
// operator "" identifier
if (getLang().CPlusPlus0x && Tok.is(tok::string_literal)) {
if (Tok.getLength() != 2)
Diag(Tok.getLocation(), diag::err_operator_string_not_empty);
ConsumeStringToken();
if (Tok.isNot(tok::identifier)) {
Diag(Tok.getLocation(), diag::err_expected_ident);
return true;
}
IdentifierInfo *II = Tok.getIdentifierInfo();
Result.setLiteralOperatorId(II, KeywordLoc, ConsumeToken());
return false;
}
// Parse a conversion-function-id.
//
// conversion-function-id: [C++ 12.3.2]
// operator conversion-type-id
//
// conversion-type-id:
// type-specifier-seq conversion-declarator[opt]
//
// conversion-declarator:
// ptr-operator conversion-declarator[opt]
// Parse the type-specifier-seq.
DeclSpec DS;
if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
return true;
// Parse the conversion-declarator, which is merely a sequence of
// ptr-operators.
Declarator D(DS, Declarator::TypeNameContext);
ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
// Finish up the type.
TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
if (Ty.isInvalid())
return true;
// Note that this is a conversion-function-id.
Result.setConversionFunctionId(KeywordLoc, Ty.get(),
D.getSourceRange().getEnd());
return false;
}
/// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
/// name of an entity.
///
/// \code
/// unqualified-id: [C++ expr.prim.general]
/// identifier
/// operator-function-id
/// conversion-function-id
/// [C++0x] literal-operator-id [TODO]
/// ~ class-name
/// template-id
///
/// \endcode
///
/// \param The nested-name-specifier that preceded this unqualified-id. If
/// non-empty, then we are parsing the unqualified-id of a qualified-id.
///
/// \param EnteringContext whether we are entering the scope of the
/// nested-name-specifier.
///
/// \param AllowDestructorName whether we allow parsing of a destructor name.
///
/// \param AllowConstructorName whether we allow parsing a constructor name.
///
/// \param ObjectType if this unqualified-id occurs within a member access
/// expression, the type of the base object whose member is being accessed.
///
/// \param Result on a successful parse, contains the parsed unqualified-id.
///
/// \returns true if parsing fails, false otherwise.
bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
bool AllowDestructorName,
bool AllowConstructorName,
ParsedType ObjectType,
UnqualifiedId &Result) {
// Handle 'A::template B'. This is for template-ids which have not
// already been annotated by ParseOptionalCXXScopeSpecifier().
bool TemplateSpecified = false;
SourceLocation TemplateKWLoc;
if (getLang().CPlusPlus && Tok.is(tok::kw_template) &&
(ObjectType || SS.isSet())) {
TemplateSpecified = true;
TemplateKWLoc = ConsumeToken();
}
// unqualified-id:
// identifier
// template-id (when it hasn't already been annotated)
if (Tok.is(tok::identifier)) {
// Consume the identifier.
IdentifierInfo *Id = Tok.getIdentifierInfo();
SourceLocation IdLoc = ConsumeToken();
if (!getLang().CPlusPlus) {
// If we're not in C++, only identifiers matter. Record the
// identifier and return.
Result.setIdentifier(Id, IdLoc);
return false;
}
if (AllowConstructorName &&
Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
// We have parsed a constructor name.
Result.setConstructorName(Actions.getTypeName(*Id, IdLoc, getCurScope(),
&SS, false, false,
ParsedType(),
/*NonTrivialTypeSourceInfo=*/true),
IdLoc, IdLoc);
} else {
// We have parsed an identifier.
Result.setIdentifier(Id, IdLoc);
}
// If the next token is a '<', we may have a template.
if (TemplateSpecified || Tok.is(tok::less))
return ParseUnqualifiedIdTemplateId(SS, Id, IdLoc, EnteringContext,
ObjectType, Result,
TemplateSpecified, TemplateKWLoc);
return false;
}
// unqualified-id:
// template-id (already parsed and annotated)
if (Tok.is(tok::annot_template_id)) {
TemplateIdAnnotation *TemplateId
= static_cast<TemplateIdAnnotation*>(Tok.getAnnotationValue());
// If the template-name names the current class, then this is a constructor
if (AllowConstructorName && TemplateId->Name &&
Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
if (SS.isSet()) {
// C++ [class.qual]p2 specifies that a qualified template-name
// is taken as the constructor name where a constructor can be
// declared. Thus, the template arguments are extraneous, so
// complain about them and remove them entirely.
Diag(TemplateId->TemplateNameLoc,
diag::err_out_of_line_constructor_template_id)
<< TemplateId->Name
<< FixItHint::CreateRemoval(
SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
Result.setConstructorName(Actions.getTypeName(*TemplateId->Name,
TemplateId->TemplateNameLoc,
getCurScope(),
&SS, false, false,
ParsedType(),
/*NontrivialTypeSourceInfo=*/true),
TemplateId->TemplateNameLoc,
TemplateId->RAngleLoc);
TemplateId->Destroy();
ConsumeToken();
return false;
}
Result.setConstructorTemplateId(TemplateId);
ConsumeToken();
return false;
}
// We have already parsed a template-id; consume the annotation token as
// our unqualified-id.
Result.setTemplateId(TemplateId);
ConsumeToken();
return false;
}
// unqualified-id:
// operator-function-id
// conversion-function-id
if (Tok.is(tok::kw_operator)) {
if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
return true;
// If we have an operator-function-id or a literal-operator-id and the next
// token is a '<', we may have a
//
// template-id:
// operator-function-id < template-argument-list[opt] >
if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
(TemplateSpecified || Tok.is(tok::less)))
return ParseUnqualifiedIdTemplateId(SS, 0, SourceLocation(),
EnteringContext, ObjectType,
Result,
TemplateSpecified, TemplateKWLoc);
return false;
}
if (getLang().CPlusPlus &&
(AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
// C++ [expr.unary.op]p10:
// There is an ambiguity in the unary-expression ~X(), where X is a
// class-name. The ambiguity is resolved in favor of treating ~ as a
// unary complement rather than treating ~X as referring to a destructor.
// Parse the '~'.
SourceLocation TildeLoc = ConsumeToken();
// Parse the class-name.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_destructor_tilde_identifier);
return true;
}
// Parse the class-name (or template-name in a simple-template-id).
IdentifierInfo *ClassName = Tok.getIdentifierInfo();
SourceLocation ClassNameLoc = ConsumeToken();
if (TemplateSpecified || Tok.is(tok::less)) {
Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
return ParseUnqualifiedIdTemplateId(SS, ClassName, ClassNameLoc,
EnteringContext, ObjectType, Result,
TemplateSpecified, TemplateKWLoc);
}
// Note that this is a destructor name.
ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
ClassNameLoc, getCurScope(),
SS, ObjectType,
EnteringContext);
if (!Ty)
return true;
Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
return false;
}
Diag(Tok, diag::err_expected_unqualified_id)
<< getLang().CPlusPlus;
return true;
}
/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
/// memory in a typesafe manner and call constructors.
///
/// This method is called to parse the new expression after the optional :: has
/// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
/// is its location. Otherwise, "Start" is the location of the 'new' token.
///
/// new-expression:
/// '::'[opt] 'new' new-placement[opt] new-type-id
/// new-initializer[opt]
/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
/// new-initializer[opt]
///
/// new-placement:
/// '(' expression-list ')'
///
/// new-type-id:
/// type-specifier-seq new-declarator[opt]
///
/// new-declarator:
/// ptr-operator new-declarator[opt]
/// direct-new-declarator
///
/// new-initializer:
/// '(' expression-list[opt] ')'
/// [C++0x] braced-init-list [TODO]
///
ExprResult
Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
assert(Tok.is(tok::kw_new) && "expected 'new' token");
ConsumeToken(); // Consume 'new'
// A '(' now can be a new-placement or the '(' wrapping the type-id in the
// second form of new-expression. It can't be a new-type-id.
ExprVector PlacementArgs(Actions);
SourceLocation PlacementLParen, PlacementRParen;
SourceRange TypeIdParens;
DeclSpec DS;
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
if (Tok.is(tok::l_paren)) {
// If it turns out to be a placement, we change the type location.
PlacementLParen = ConsumeParen();
if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
PlacementRParen = MatchRHSPunctuation(tok::r_paren, PlacementLParen);
if (PlacementRParen.isInvalid()) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
if (PlacementArgs.empty()) {
// Reset the placement locations. There was no placement.
TypeIdParens = SourceRange(PlacementLParen, PlacementRParen);
PlacementLParen = PlacementRParen = SourceLocation();
} else {
// We still need the type.
if (Tok.is(tok::l_paren)) {
TypeIdParens.setBegin(ConsumeParen());
ParseSpecifierQualifierList(DS);
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
ParseDeclarator(DeclaratorInfo);
TypeIdParens.setEnd(MatchRHSPunctuation(tok::r_paren,
TypeIdParens.getBegin()));
} else {
if (ParseCXXTypeSpecifierSeq(DS))
DeclaratorInfo.setInvalidType(true);
else {
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
ParseDeclaratorInternal(DeclaratorInfo,
&Parser::ParseDirectNewDeclarator);
}
}
}
} else {
// A new-type-id is a simplified type-id, where essentially the
// direct-declarator is replaced by a direct-new-declarator.
if (ParseCXXTypeSpecifierSeq(DS))
DeclaratorInfo.setInvalidType(true);
else {
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
ParseDeclaratorInternal(DeclaratorInfo,
&Parser::ParseDirectNewDeclarator);
}
}
if (DeclaratorInfo.isInvalidType()) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
ExprVector ConstructorArgs(Actions);
SourceLocation ConstructorLParen, ConstructorRParen;
if (Tok.is(tok::l_paren)) {
ConstructorLParen = ConsumeParen();
if (Tok.isNot(tok::r_paren)) {
CommaLocsTy CommaLocs;
if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
}
ConstructorRParen = MatchRHSPunctuation(tok::r_paren, ConstructorLParen);
if (ConstructorRParen.isInvalid()) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
}
return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
move_arg(PlacementArgs), PlacementRParen,
TypeIdParens, DeclaratorInfo, ConstructorLParen,
move_arg(ConstructorArgs), ConstructorRParen);
}
/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
/// passed to ParseDeclaratorInternal.
///
/// direct-new-declarator:
/// '[' expression ']'
/// direct-new-declarator '[' constant-expression ']'
///
void Parser::ParseDirectNewDeclarator(Declarator &D) {
// Parse the array dimensions.
bool first = true;
while (Tok.is(tok::l_square)) {
SourceLocation LLoc = ConsumeBracket();
ExprResult Size(first ? ParseExpression()
: ParseConstantExpression());
if (Size.isInvalid()) {
// Recover
SkipUntil(tok::r_square);
return;
}
first = false;
SourceLocation RLoc = MatchRHSPunctuation(tok::r_square, LLoc);
D.AddTypeInfo(DeclaratorChunk::getArray(0, ParsedAttributes(),
/*static=*/false, /*star=*/false,
Size.release(), LLoc, RLoc),
RLoc);
if (RLoc.isInvalid())
return;
}
}
/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
/// This ambiguity appears in the syntax of the C++ new operator.
///
/// new-expression:
/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
/// new-initializer[opt]
///
/// new-placement:
/// '(' expression-list ')'
///
bool Parser::ParseExpressionListOrTypeId(
llvm::SmallVectorImpl<Expr*> &PlacementArgs,
Declarator &D) {
// The '(' was already consumed.
if (isTypeIdInParens()) {
ParseSpecifierQualifierList(D.getMutableDeclSpec());
D.SetSourceRange(D.getDeclSpec().getSourceRange());
ParseDeclarator(D);
return D.isInvalidType();
}
// It's not a type, it has to be an expression list.
// Discard the comma locations - ActOnCXXNew has enough parameters.
CommaLocsTy CommaLocs;
return ParseExpressionList(PlacementArgs, CommaLocs);
}
/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
/// to free memory allocated by new.
///
/// This method is called to parse the 'delete' expression after the optional
/// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
/// and "Start" is its location. Otherwise, "Start" is the location of the
/// 'delete' token.
///
/// delete-expression:
/// '::'[opt] 'delete' cast-expression
/// '::'[opt] 'delete' '[' ']' cast-expression
ExprResult
Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
ConsumeToken(); // Consume 'delete'
// Array delete?
bool ArrayDelete = false;
if (Tok.is(tok::l_square)) {
ArrayDelete = true;
SourceLocation LHS = ConsumeBracket();
SourceLocation RHS = MatchRHSPunctuation(tok::r_square, LHS);
if (RHS.isInvalid())
return ExprError();
}
ExprResult Operand(ParseCastExpression(false));
if (Operand.isInvalid())
return move(Operand);
return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.take());
}
static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
switch(kind) {
default: llvm_unreachable("Not a known unary type trait");
case tok::kw___has_nothrow_assign: return UTT_HasNothrowAssign;
case tok::kw___has_nothrow_copy: return UTT_HasNothrowCopy;
case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
case tok::kw___has_trivial_assign: return UTT_HasTrivialAssign;
case tok::kw___has_trivial_copy: return UTT_HasTrivialCopy;
case tok::kw___has_trivial_constructor: return UTT_HasTrivialConstructor;
case tok::kw___has_trivial_destructor: return UTT_HasTrivialDestructor;
case tok::kw___has_virtual_destructor: return UTT_HasVirtualDestructor;
case tok::kw___is_abstract: return UTT_IsAbstract;
case tok::kw___is_class: return UTT_IsClass;
case tok::kw___is_empty: return UTT_IsEmpty;
case tok::kw___is_enum: return UTT_IsEnum;
case tok::kw___is_pod: return UTT_IsPOD;
case tok::kw___is_polymorphic: return UTT_IsPolymorphic;
case tok::kw___is_union: return UTT_IsUnion;
case tok::kw___is_literal: return UTT_IsLiteral;
}
}
static BinaryTypeTrait BinaryTypeTraitFromTokKind(tok::TokenKind kind) {
switch(kind) {
default: llvm_unreachable("Not a known binary type trait");
case tok::kw___is_base_of: return BTT_IsBaseOf;
case tok::kw___builtin_types_compatible_p: return BTT_TypeCompatible;
case tok::kw___is_convertible_to: return BTT_IsConvertibleTo;
}
}
/// ParseUnaryTypeTrait - Parse the built-in unary type-trait
/// pseudo-functions that allow implementation of the TR1/C++0x type traits
/// templates.
///
/// primary-expression:
/// [GNU] unary-type-trait '(' type-id ')'
///
ExprResult Parser::ParseUnaryTypeTrait() {
UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
SourceLocation Loc = ConsumeToken();
SourceLocation LParen = Tok.getLocation();
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen))
return ExprError();
// FIXME: Error reporting absolutely sucks! If the this fails to parse a type
// there will be cryptic errors about mismatched parentheses and missing
// specifiers.
TypeResult Ty = ParseTypeName();
SourceLocation RParen = MatchRHSPunctuation(tok::r_paren, LParen);
if (Ty.isInvalid())
return ExprError();
return Actions.ActOnUnaryTypeTrait(UTT, Loc, Ty.get(), RParen);
}
/// ParseBinaryTypeTrait - Parse the built-in binary type-trait
/// pseudo-functions that allow implementation of the TR1/C++0x type traits
/// templates.
///
/// primary-expression:
/// [GNU] binary-type-trait '(' type-id ',' type-id ')'
///
ExprResult Parser::ParseBinaryTypeTrait() {
BinaryTypeTrait BTT = BinaryTypeTraitFromTokKind(Tok.getKind());
SourceLocation Loc = ConsumeToken();
SourceLocation LParen = Tok.getLocation();
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen))
return ExprError();
TypeResult LhsTy = ParseTypeName();
if (LhsTy.isInvalid()) {
SkipUntil(tok::r_paren);
return ExprError();
}
if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
SkipUntil(tok::r_paren);
return ExprError();
}
TypeResult RhsTy = ParseTypeName();
if (RhsTy.isInvalid()) {
SkipUntil(tok::r_paren);
return ExprError();
}
SourceLocation RParen = MatchRHSPunctuation(tok::r_paren, LParen);
return Actions.ActOnBinaryTypeTrait(BTT, Loc, LhsTy.get(), RhsTy.get(), RParen);
}
/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
/// based on the context past the parens.
ExprResult
Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
ParsedType &CastTy,
SourceLocation LParenLoc,
SourceLocation &RParenLoc) {
assert(getLang().CPlusPlus && "Should only be called for C++!");
assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
assert(isTypeIdInParens() && "Not a type-id!");
ExprResult Result(true);
CastTy = ParsedType();
// We need to disambiguate a very ugly part of the C++ syntax:
//
// (T())x; - type-id
// (T())*x; - type-id
// (T())/x; - expression
// (T()); - expression
//
// The bad news is that we cannot use the specialized tentative parser, since
// it can only verify that the thing inside the parens can be parsed as
// type-id, it is not useful for determining the context past the parens.
//
// The good news is that the parser can disambiguate this part without
// making any unnecessary Action calls.
//
// It uses a scheme similar to parsing inline methods. The parenthesized
// tokens are cached, the context that follows is determined (possibly by
// parsing a cast-expression), and then we re-introduce the cached tokens
// into the token stream and parse them appropriately.
ParenParseOption ParseAs;
CachedTokens Toks;
// Store the tokens of the parentheses. We will parse them after we determine
// the context that follows them.
if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
// We didn't find the ')' we expected.
MatchRHSPunctuation(tok::r_paren, LParenLoc);
return ExprError();
}
if (Tok.is(tok::l_brace)) {
ParseAs = CompoundLiteral;
} else {
bool NotCastExpr;
// FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
NotCastExpr = true;
} else {
// Try parsing the cast-expression that may follow.
// If it is not a cast-expression, NotCastExpr will be true and no token
// will be consumed.
Result = ParseCastExpression(false/*isUnaryExpression*/,
false/*isAddressofOperand*/,
NotCastExpr,
ParsedType()/*TypeOfCast*/);
}
// If we parsed a cast-expression, it's really a type-id, otherwise it's
// an expression.
ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
}
// The current token should go after the cached tokens.
Toks.push_back(Tok);
// Re-enter the stored parenthesized tokens into the token stream, so we may
// parse them now.
PP.EnterTokenStream(Toks.data(), Toks.size(),
true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
// Drop the current token and bring the first cached one. It's the same token
// as when we entered this function.
ConsumeAnyToken();
if (ParseAs >= CompoundLiteral) {
TypeResult Ty = ParseTypeName();
// Match the ')'.
if (Tok.is(tok::r_paren))
RParenLoc = ConsumeParen();
else
MatchRHSPunctuation(tok::r_paren, LParenLoc);
if (ParseAs == CompoundLiteral) {
ExprType = CompoundLiteral;
return ParseCompoundLiteralExpression(Ty.get(), LParenLoc, RParenLoc);
}
// We parsed '(' type-id ')' and the thing after it wasn't a '{'.
assert(ParseAs == CastExpr);
if (Ty.isInvalid())
return ExprError();
CastTy = Ty.get();
// Result is what ParseCastExpression returned earlier.
if (!Result.isInvalid())
Result = Actions.ActOnCastExpr(getCurScope(), LParenLoc, CastTy, RParenLoc,
Result.take());
return move(Result);
}
// Not a compound literal, and not followed by a cast-expression.
assert(ParseAs == SimpleExpr);
ExprType = SimpleExpr;
Result = ParseExpression();
if (!Result.isInvalid() && Tok.is(tok::r_paren))
Result = Actions.ActOnParenExpr(LParenLoc, Tok.getLocation(), Result.take());
// Match the ')'.
if (Result.isInvalid()) {
SkipUntil(tok::r_paren);
return ExprError();
}
if (Tok.is(tok::r_paren))
RParenLoc = ConsumeParen();
else
MatchRHSPunctuation(tok::r_paren, LParenLoc);
return move(Result);
}