| //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Aggregate Expr nodes as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "CGObjCRuntime.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Intrinsics.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| //===----------------------------------------------------------------------===// |
| // Aggregate Expression Emitter |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class AggExprEmitter : public StmtVisitor<AggExprEmitter> { |
| CodeGenFunction &CGF; |
| CGBuilderTy &Builder; |
| AggValueSlot Dest; |
| bool IgnoreResult; |
| |
| ReturnValueSlot getReturnValueSlot() const { |
| // If the destination slot requires garbage collection, we can't |
| // use the real return value slot, because we have to use the GC |
| // API. |
| if (Dest.requiresGCollection()) return ReturnValueSlot(); |
| |
| return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); |
| } |
| |
| AggValueSlot EnsureSlot(QualType T) { |
| if (!Dest.isIgnored()) return Dest; |
| return CGF.CreateAggTemp(T, "agg.tmp.ensured"); |
| } |
| |
| public: |
| AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, |
| bool ignore) |
| : CGF(cgf), Builder(CGF.Builder), Dest(Dest), |
| IgnoreResult(ignore) { |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Utilities |
| //===--------------------------------------------------------------------===// |
| |
| /// EmitAggLoadOfLValue - Given an expression with aggregate type that |
| /// represents a value lvalue, this method emits the address of the lvalue, |
| /// then loads the result into DestPtr. |
| void EmitAggLoadOfLValue(const Expr *E); |
| |
| /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. |
| void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); |
| void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); |
| |
| void EmitGCMove(const Expr *E, RValue Src); |
| |
| bool TypeRequiresGCollection(QualType T); |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| void VisitStmt(Stmt *S) { |
| CGF.ErrorUnsupported(S, "aggregate expression"); |
| } |
| void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } |
| void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } |
| |
| // l-values. |
| void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } |
| void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } |
| void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } |
| void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } |
| void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { |
| EmitAggLoadOfLValue(E); |
| } |
| void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { |
| EmitAggLoadOfLValue(E); |
| } |
| void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { |
| EmitAggLoadOfLValue(E); |
| } |
| void VisitPredefinedExpr(const PredefinedExpr *E) { |
| EmitAggLoadOfLValue(E); |
| } |
| |
| // Operators. |
| void VisitCastExpr(CastExpr *E); |
| void VisitCallExpr(const CallExpr *E); |
| void VisitStmtExpr(const StmtExpr *E); |
| void VisitBinaryOperator(const BinaryOperator *BO); |
| void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); |
| void VisitBinAssign(const BinaryOperator *E); |
| void VisitBinComma(const BinaryOperator *E); |
| |
| void VisitObjCMessageExpr(ObjCMessageExpr *E); |
| void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { |
| EmitAggLoadOfLValue(E); |
| } |
| void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); |
| |
| void VisitConditionalOperator(const ConditionalOperator *CO); |
| void VisitChooseExpr(const ChooseExpr *CE); |
| void VisitInitListExpr(InitListExpr *E); |
| void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); |
| void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { |
| Visit(DAE->getExpr()); |
| } |
| void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); |
| void VisitCXXConstructExpr(const CXXConstructExpr *E); |
| void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); |
| void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); |
| void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } |
| |
| void VisitVAArgExpr(VAArgExpr *E); |
| |
| void EmitInitializationToLValue(Expr *E, LValue Address, QualType T); |
| void EmitNullInitializationToLValue(LValue Address, QualType T); |
| // case Expr::ChooseExprClass: |
| void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } |
| }; |
| } // end anonymous namespace. |
| |
| //===----------------------------------------------------------------------===// |
| // Utilities |
| //===----------------------------------------------------------------------===// |
| |
| /// EmitAggLoadOfLValue - Given an expression with aggregate type that |
| /// represents a value lvalue, this method emits the address of the lvalue, |
| /// then loads the result into DestPtr. |
| void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { |
| LValue LV = CGF.EmitLValue(E); |
| EmitFinalDestCopy(E, LV); |
| } |
| |
| /// \brief True if the given aggregate type requires special GC API calls. |
| bool AggExprEmitter::TypeRequiresGCollection(QualType T) { |
| // Only record types have members that might require garbage collection. |
| const RecordType *RecordTy = T->getAs<RecordType>(); |
| if (!RecordTy) return false; |
| |
| // Don't mess with non-trivial C++ types. |
| RecordDecl *Record = RecordTy->getDecl(); |
| if (isa<CXXRecordDecl>(Record) && |
| (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || |
| !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) |
| return false; |
| |
| // Check whether the type has an object member. |
| return Record->hasObjectMember(); |
| } |
| |
| /// \brief Perform the final move to DestPtr if RequiresGCollection is set. |
| /// |
| /// The idea is that you do something like this: |
| /// RValue Result = EmitSomething(..., getReturnValueSlot()); |
| /// EmitGCMove(E, Result); |
| /// If GC doesn't interfere, this will cause the result to be emitted |
| /// directly into the return value slot. If GC does interfere, a final |
| /// move will be performed. |
| void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { |
| if (Dest.requiresGCollection()) { |
| std::pair<uint64_t, unsigned> TypeInfo = |
| CGF.getContext().getTypeInfo(E->getType()); |
| unsigned long size = TypeInfo.first/8; |
| const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); |
| llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); |
| CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), |
| Src.getAggregateAddr(), |
| SizeVal); |
| } |
| } |
| |
| /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. |
| void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { |
| assert(Src.isAggregate() && "value must be aggregate value!"); |
| |
| // If Dest is ignored, then we're evaluating an aggregate expression |
| // in a context (like an expression statement) that doesn't care |
| // about the result. C says that an lvalue-to-rvalue conversion is |
| // performed in these cases; C++ says that it is not. In either |
| // case, we don't actually need to do anything unless the value is |
| // volatile. |
| if (Dest.isIgnored()) { |
| if (!Src.isVolatileQualified() || |
| CGF.CGM.getLangOptions().CPlusPlus || |
| (IgnoreResult && Ignore)) |
| return; |
| |
| // If the source is volatile, we must read from it; to do that, we need |
| // some place to put it. |
| Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); |
| } |
| |
| if (Dest.requiresGCollection()) { |
| std::pair<uint64_t, unsigned> TypeInfo = |
| CGF.getContext().getTypeInfo(E->getType()); |
| unsigned long size = TypeInfo.first/8; |
| const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); |
| llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); |
| CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, |
| Dest.getAddr(), |
| Src.getAggregateAddr(), |
| SizeVal); |
| return; |
| } |
| // If the result of the assignment is used, copy the LHS there also. |
| // FIXME: Pass VolatileDest as well. I think we also need to merge volatile |
| // from the source as well, as we can't eliminate it if either operand |
| // is volatile, unless copy has volatile for both source and destination.. |
| CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), |
| Dest.isVolatile()|Src.isVolatileQualified()); |
| } |
| |
| /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. |
| void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { |
| assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); |
| |
| EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), |
| Src.isVolatileQualified()), |
| Ignore); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Visitor Methods |
| //===----------------------------------------------------------------------===// |
| |
| void AggExprEmitter::VisitCastExpr(CastExpr *E) { |
| if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) { |
| Visit(E->getSubExpr()); |
| return; |
| } |
| |
| switch (E->getCastKind()) { |
| case CK_Dynamic: { |
| assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); |
| LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); |
| // FIXME: Do we also need to handle property references here? |
| if (LV.isSimple()) |
| CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); |
| else |
| CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); |
| |
| if (!Dest.isIgnored()) |
| CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); |
| break; |
| } |
| |
| case CK_ToUnion: { |
| // GCC union extension |
| QualType Ty = E->getSubExpr()->getType(); |
| QualType PtrTy = CGF.getContext().getPointerType(Ty); |
| llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), |
| CGF.ConvertType(PtrTy)); |
| EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty), |
| Ty); |
| break; |
| } |
| |
| case CK_DerivedToBase: |
| case CK_BaseToDerived: |
| case CK_UncheckedDerivedToBase: { |
| assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " |
| "should have been unpacked before we got here"); |
| break; |
| } |
| |
| case CK_GetObjCProperty: { |
| LValue LV = CGF.EmitLValue(E->getSubExpr()); |
| assert(LV.isPropertyRef()); |
| RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot()); |
| EmitGCMove(E, RV); |
| break; |
| } |
| |
| case CK_LValueToRValue: // hope for downstream optimization |
| case CK_NoOp: |
| case CK_UserDefinedConversion: |
| case CK_ConstructorConversion: |
| assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), |
| E->getType()) && |
| "Implicit cast types must be compatible"); |
| Visit(E->getSubExpr()); |
| break; |
| |
| case CK_LValueBitCast: |
| llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); |
| break; |
| |
| case CK_Dependent: |
| case CK_BitCast: |
| case CK_ArrayToPointerDecay: |
| case CK_FunctionToPointerDecay: |
| case CK_NullToPointer: |
| case CK_NullToMemberPointer: |
| case CK_BaseToDerivedMemberPointer: |
| case CK_DerivedToBaseMemberPointer: |
| case CK_MemberPointerToBoolean: |
| case CK_IntegralToPointer: |
| case CK_PointerToIntegral: |
| case CK_PointerToBoolean: |
| case CK_ToVoid: |
| case CK_VectorSplat: |
| case CK_IntegralCast: |
| case CK_IntegralToBoolean: |
| case CK_IntegralToFloating: |
| case CK_FloatingToIntegral: |
| case CK_FloatingToBoolean: |
| case CK_FloatingCast: |
| case CK_AnyPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_ObjCObjectLValueCast: |
| case CK_FloatingRealToComplex: |
| case CK_FloatingComplexToReal: |
| case CK_FloatingComplexToBoolean: |
| case CK_FloatingComplexCast: |
| case CK_FloatingComplexToIntegralComplex: |
| case CK_IntegralRealToComplex: |
| case CK_IntegralComplexToReal: |
| case CK_IntegralComplexToBoolean: |
| case CK_IntegralComplexCast: |
| case CK_IntegralComplexToFloatingComplex: |
| llvm_unreachable("cast kind invalid for aggregate types"); |
| } |
| } |
| |
| void AggExprEmitter::VisitCallExpr(const CallExpr *E) { |
| if (E->getCallReturnType()->isReferenceType()) { |
| EmitAggLoadOfLValue(E); |
| return; |
| } |
| |
| RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); |
| EmitGCMove(E, RV); |
| } |
| |
| void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { |
| RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); |
| EmitGCMove(E, RV); |
| } |
| |
| void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { |
| llvm_unreachable("direct property access not surrounded by " |
| "lvalue-to-rvalue cast"); |
| } |
| |
| void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { |
| CGF.EmitIgnoredExpr(E->getLHS()); |
| Visit(E->getRHS()); |
| } |
| |
| void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { |
| CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); |
| } |
| |
| void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) |
| VisitPointerToDataMemberBinaryOperator(E); |
| else |
| CGF.ErrorUnsupported(E, "aggregate binary expression"); |
| } |
| |
| void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( |
| const BinaryOperator *E) { |
| LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); |
| EmitFinalDestCopy(E, LV); |
| } |
| |
| void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { |
| // For an assignment to work, the value on the right has |
| // to be compatible with the value on the left. |
| assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), |
| E->getRHS()->getType()) |
| && "Invalid assignment"); |
| LValue LHS = CGF.EmitLValue(E->getLHS()); |
| |
| // We have to special case property setters, otherwise we must have |
| // a simple lvalue (no aggregates inside vectors, bitfields). |
| if (LHS.isPropertyRef()) { |
| AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); |
| CGF.EmitAggExpr(E->getRHS(), Slot); |
| CGF.EmitStoreThroughPropertyRefLValue(Slot.asRValue(), LHS); |
| } else { |
| bool GCollection = false; |
| if (CGF.getContext().getLangOptions().getGCMode()) |
| GCollection = TypeRequiresGCollection(E->getLHS()->getType()); |
| |
| // Codegen the RHS so that it stores directly into the LHS. |
| AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, |
| GCollection); |
| CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); |
| EmitFinalDestCopy(E, LHS, true); |
| } |
| } |
| |
| void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { |
| if (!E->getLHS()) { |
| CGF.ErrorUnsupported(E, "conditional operator with missing LHS"); |
| return; |
| } |
| |
| llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); |
| llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); |
| |
| CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); |
| |
| CGF.BeginConditionalBranch(); |
| CGF.EmitBlock(LHSBlock); |
| |
| // Save whether the destination's lifetime is externally managed. |
| bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged(); |
| |
| Visit(E->getLHS()); |
| CGF.EndConditionalBranch(); |
| CGF.EmitBranch(ContBlock); |
| |
| CGF.BeginConditionalBranch(); |
| CGF.EmitBlock(RHSBlock); |
| |
| // If the result of an agg expression is unused, then the emission |
| // of the LHS might need to create a destination slot. That's fine |
| // with us, and we can safely emit the RHS into the same slot, but |
| // we shouldn't claim that its lifetime is externally managed. |
| Dest.setLifetimeExternallyManaged(DestLifetimeManaged); |
| |
| Visit(E->getRHS()); |
| CGF.EndConditionalBranch(); |
| CGF.EmitBranch(ContBlock); |
| |
| CGF.EmitBlock(ContBlock); |
| } |
| |
| void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { |
| Visit(CE->getChosenSubExpr(CGF.getContext())); |
| } |
| |
| void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { |
| llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); |
| llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); |
| |
| if (!ArgPtr) { |
| CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); |
| return; |
| } |
| |
| EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); |
| } |
| |
| void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { |
| // Ensure that we have a slot, but if we already do, remember |
| // whether its lifetime was externally managed. |
| bool WasManaged = Dest.isLifetimeExternallyManaged(); |
| Dest = EnsureSlot(E->getType()); |
| Dest.setLifetimeExternallyManaged(); |
| |
| Visit(E->getSubExpr()); |
| |
| // Set up the temporary's destructor if its lifetime wasn't already |
| // being managed. |
| if (!WasManaged) |
| CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); |
| } |
| |
| void |
| AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { |
| AggValueSlot Slot = EnsureSlot(E->getType()); |
| CGF.EmitCXXConstructExpr(E, Slot); |
| } |
| |
| void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { |
| CGF.EmitCXXExprWithTemporaries(E, Dest); |
| } |
| |
| void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { |
| QualType T = E->getType(); |
| AggValueSlot Slot = EnsureSlot(T); |
| EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); |
| } |
| |
| void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { |
| QualType T = E->getType(); |
| AggValueSlot Slot = EnsureSlot(T); |
| EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); |
| } |
| |
| /// isSimpleZero - If emitting this value will obviously just cause a store of |
| /// zero to memory, return true. This can return false if uncertain, so it just |
| /// handles simple cases. |
| static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { |
| // (0) |
| if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) |
| return isSimpleZero(PE->getSubExpr(), CGF); |
| // 0 |
| if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) |
| return IL->getValue() == 0; |
| // +0.0 |
| if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) |
| return FL->getValue().isPosZero(); |
| // int() |
| if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && |
| CGF.getTypes().isZeroInitializable(E->getType())) |
| return true; |
| // (int*)0 - Null pointer expressions. |
| if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) |
| return ICE->getCastKind() == CK_NullToPointer; |
| // '\0' |
| if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) |
| return CL->getValue() == 0; |
| |
| // Otherwise, hard case: conservatively return false. |
| return false; |
| } |
| |
| |
| void |
| AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { |
| // FIXME: Ignore result? |
| // FIXME: Are initializers affected by volatile? |
| if (Dest.isZeroed() && isSimpleZero(E, CGF)) { |
| // Storing "i32 0" to a zero'd memory location is a noop. |
| } else if (isa<ImplicitValueInitExpr>(E)) { |
| EmitNullInitializationToLValue(LV, T); |
| } else if (T->isReferenceType()) { |
| RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); |
| CGF.EmitStoreThroughLValue(RV, LV, T); |
| } else if (T->isAnyComplexType()) { |
| CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); |
| } else if (CGF.hasAggregateLLVMType(T)) { |
| CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true, |
| false, Dest.isZeroed())); |
| } else { |
| CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T); |
| } |
| } |
| |
| void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { |
| // If the destination slot is already zeroed out before the aggregate is |
| // copied into it, we don't have to emit any zeros here. |
| if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T)) |
| return; |
| |
| if (!CGF.hasAggregateLLVMType(T)) { |
| // For non-aggregates, we can store zero |
| llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); |
| CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); |
| } else { |
| // There's a potential optimization opportunity in combining |
| // memsets; that would be easy for arrays, but relatively |
| // difficult for structures with the current code. |
| CGF.EmitNullInitialization(LV.getAddress(), T); |
| } |
| } |
| |
| void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { |
| #if 0 |
| // FIXME: Assess perf here? Figure out what cases are worth optimizing here |
| // (Length of globals? Chunks of zeroed-out space?). |
| // |
| // If we can, prefer a copy from a global; this is a lot less code for long |
| // globals, and it's easier for the current optimizers to analyze. |
| if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { |
| llvm::GlobalVariable* GV = |
| new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, |
| llvm::GlobalValue::InternalLinkage, C, ""); |
| EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); |
| return; |
| } |
| #endif |
| if (E->hadArrayRangeDesignator()) |
| CGF.ErrorUnsupported(E, "GNU array range designator extension"); |
| |
| llvm::Value *DestPtr = Dest.getAddr(); |
| |
| // Handle initialization of an array. |
| if (E->getType()->isArrayType()) { |
| const llvm::PointerType *APType = |
| cast<llvm::PointerType>(DestPtr->getType()); |
| const llvm::ArrayType *AType = |
| cast<llvm::ArrayType>(APType->getElementType()); |
| |
| uint64_t NumInitElements = E->getNumInits(); |
| |
| if (E->getNumInits() > 0) { |
| QualType T1 = E->getType(); |
| QualType T2 = E->getInit(0)->getType(); |
| if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { |
| EmitAggLoadOfLValue(E->getInit(0)); |
| return; |
| } |
| } |
| |
| uint64_t NumArrayElements = AType->getNumElements(); |
| QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); |
| ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); |
| |
| // FIXME: were we intentionally ignoring address spaces and GC attributes? |
| |
| for (uint64_t i = 0; i != NumArrayElements; ++i) { |
| // If we're done emitting initializers and the destination is known-zeroed |
| // then we're done. |
| if (i == NumInitElements && |
| Dest.isZeroed() && |
| CGF.getTypes().isZeroInitializable(ElementType)) |
| break; |
| |
| llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); |
| LValue LV = CGF.MakeAddrLValue(NextVal, ElementType); |
| |
| if (i < NumInitElements) |
| EmitInitializationToLValue(E->getInit(i), LV, ElementType); |
| else |
| EmitNullInitializationToLValue(LV, ElementType); |
| |
| // If the GEP didn't get used because of a dead zero init or something |
| // else, clean it up for -O0 builds and general tidiness. |
| if (llvm::GetElementPtrInst *GEP = |
| dyn_cast<llvm::GetElementPtrInst>(NextVal)) |
| if (GEP->use_empty()) |
| GEP->eraseFromParent(); |
| } |
| return; |
| } |
| |
| assert(E->getType()->isRecordType() && "Only support structs/unions here!"); |
| |
| // Do struct initialization; this code just sets each individual member |
| // to the approprate value. This makes bitfield support automatic; |
| // the disadvantage is that the generated code is more difficult for |
| // the optimizer, especially with bitfields. |
| unsigned NumInitElements = E->getNumInits(); |
| RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); |
| |
| if (E->getType()->isUnionType()) { |
| // Only initialize one field of a union. The field itself is |
| // specified by the initializer list. |
| if (!E->getInitializedFieldInUnion()) { |
| // Empty union; we have nothing to do. |
| |
| #ifndef NDEBUG |
| // Make sure that it's really an empty and not a failure of |
| // semantic analysis. |
| for (RecordDecl::field_iterator Field = SD->field_begin(), |
| FieldEnd = SD->field_end(); |
| Field != FieldEnd; ++Field) |
| assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); |
| #endif |
| return; |
| } |
| |
| // FIXME: volatility |
| FieldDecl *Field = E->getInitializedFieldInUnion(); |
| |
| LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); |
| if (NumInitElements) { |
| // Store the initializer into the field |
| EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType()); |
| } else { |
| // Default-initialize to null. |
| EmitNullInitializationToLValue(FieldLoc, Field->getType()); |
| } |
| |
| return; |
| } |
| |
| // Here we iterate over the fields; this makes it simpler to both |
| // default-initialize fields and skip over unnamed fields. |
| unsigned CurInitVal = 0; |
| for (RecordDecl::field_iterator Field = SD->field_begin(), |
| FieldEnd = SD->field_end(); |
| Field != FieldEnd; ++Field) { |
| // We're done once we hit the flexible array member |
| if (Field->getType()->isIncompleteArrayType()) |
| break; |
| |
| if (Field->isUnnamedBitfield()) |
| continue; |
| |
| // Don't emit GEP before a noop store of zero. |
| if (CurInitVal == NumInitElements && Dest.isZeroed() && |
| CGF.getTypes().isZeroInitializable(E->getType())) |
| break; |
| |
| // FIXME: volatility |
| LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); |
| // We never generate write-barries for initialized fields. |
| FieldLoc.setNonGC(true); |
| |
| if (CurInitVal < NumInitElements) { |
| // Store the initializer into the field. |
| EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc, |
| Field->getType()); |
| } else { |
| // We're out of initalizers; default-initialize to null |
| EmitNullInitializationToLValue(FieldLoc, Field->getType()); |
| } |
| |
| // If the GEP didn't get used because of a dead zero init or something |
| // else, clean it up for -O0 builds and general tidiness. |
| if (FieldLoc.isSimple()) |
| if (llvm::GetElementPtrInst *GEP = |
| dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress())) |
| if (GEP->use_empty()) |
| GEP->eraseFromParent(); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Entry Points into this File |
| //===----------------------------------------------------------------------===// |
| |
| /// GetNumNonZeroBytesInInit - Get an approximate count of the number of |
| /// non-zero bytes that will be stored when outputting the initializer for the |
| /// specified initializer expression. |
| static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { |
| if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) |
| return GetNumNonZeroBytesInInit(PE->getSubExpr(), CGF); |
| |
| // 0 and 0.0 won't require any non-zero stores! |
| if (isSimpleZero(E, CGF)) return 0; |
| |
| // If this is an initlist expr, sum up the size of sizes of the (present) |
| // elements. If this is something weird, assume the whole thing is non-zero. |
| const InitListExpr *ILE = dyn_cast<InitListExpr>(E); |
| if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) |
| return CGF.getContext().getTypeSize(E->getType())/8; |
| |
| // InitListExprs for structs have to be handled carefully. If there are |
| // reference members, we need to consider the size of the reference, not the |
| // referencee. InitListExprs for unions and arrays can't have references. |
| if (const RecordType *RT = E->getType()->getAs<RecordType>()) { |
| if (!RT->isUnionType()) { |
| RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); |
| uint64_t NumNonZeroBytes = 0; |
| |
| unsigned ILEElement = 0; |
| for (RecordDecl::field_iterator Field = SD->field_begin(), |
| FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { |
| // We're done once we hit the flexible array member or run out of |
| // InitListExpr elements. |
| if (Field->getType()->isIncompleteArrayType() || |
| ILEElement == ILE->getNumInits()) |
| break; |
| if (Field->isUnnamedBitfield()) |
| continue; |
| |
| const Expr *E = ILE->getInit(ILEElement++); |
| |
| // Reference values are always non-null and have the width of a pointer. |
| if (Field->getType()->isReferenceType()) |
| NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0); |
| else |
| NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); |
| } |
| |
| return NumNonZeroBytes; |
| } |
| } |
| |
| |
| uint64_t NumNonZeroBytes = 0; |
| for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) |
| NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); |
| return NumNonZeroBytes; |
| } |
| |
| /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of |
| /// zeros in it, emit a memset and avoid storing the individual zeros. |
| /// |
| static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, |
| CodeGenFunction &CGF) { |
| // If the slot is already known to be zeroed, nothing to do. Don't mess with |
| // volatile stores. |
| if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; |
| |
| // If the type is 16-bytes or smaller, prefer individual stores over memset. |
| std::pair<uint64_t, unsigned> TypeInfo = |
| CGF.getContext().getTypeInfo(E->getType()); |
| if (TypeInfo.first/8 <= 16) |
| return; |
| |
| // Check to see if over 3/4 of the initializer are known to be zero. If so, |
| // we prefer to emit memset + individual stores for the rest. |
| uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); |
| if (NumNonZeroBytes*4 > TypeInfo.first/8) |
| return; |
| |
| // Okay, it seems like a good idea to use an initial memset, emit the call. |
| llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8); |
| llvm::ConstantInt *AlignVal = CGF.Builder.getInt32(TypeInfo.second/8); |
| |
| llvm::Value *Loc = Slot.getAddr(); |
| const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); |
| |
| Loc = CGF.Builder.CreateBitCast(Loc, BP); |
| CGF.Builder.CreateCall5(CGF.CGM.getMemSetFn(Loc->getType(), |
| SizeVal->getType()), |
| Loc, CGF.Builder.getInt8(0), SizeVal, AlignVal, |
| CGF.Builder.getFalse()); |
| |
| // Tell the AggExprEmitter that the slot is known zero. |
| Slot.setZeroed(); |
| } |
| |
| |
| |
| |
| /// EmitAggExpr - Emit the computation of the specified expression of aggregate |
| /// type. The result is computed into DestPtr. Note that if DestPtr is null, |
| /// the value of the aggregate expression is not needed. If VolatileDest is |
| /// true, DestPtr cannot be 0. |
| /// |
| /// \param IsInitializer - true if this evaluation is initializing an |
| /// object whose lifetime is already being managed. |
| // |
| // FIXME: Take Qualifiers object. |
| void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, |
| bool IgnoreResult) { |
| assert(E && hasAggregateLLVMType(E->getType()) && |
| "Invalid aggregate expression to emit"); |
| assert((Slot.getAddr() != 0 || Slot.isIgnored()) && |
| "slot has bits but no address"); |
| |
| // Optimize the slot if possible. |
| CheckAggExprForMemSetUse(Slot, E, *this); |
| |
| AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); |
| } |
| |
| LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { |
| assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); |
| llvm::Value *Temp = CreateMemTemp(E->getType()); |
| LValue LV = MakeAddrLValue(Temp, E->getType()); |
| EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false)); |
| return LV; |
| } |
| |
| void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, |
| llvm::Value *SrcPtr, QualType Ty, |
| bool isVolatile) { |
| assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); |
| |
| if (getContext().getLangOptions().CPlusPlus) { |
| if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); |
| assert((Record->hasTrivialCopyConstructor() || |
| Record->hasTrivialCopyAssignment()) && |
| "Trying to aggregate-copy a type without a trivial copy " |
| "constructor or assignment operator"); |
| // Ignore empty classes in C++. |
| if (Record->isEmpty()) |
| return; |
| } |
| } |
| |
| // Aggregate assignment turns into llvm.memcpy. This is almost valid per |
| // C99 6.5.16.1p3, which states "If the value being stored in an object is |
| // read from another object that overlaps in anyway the storage of the first |
| // object, then the overlap shall be exact and the two objects shall have |
| // qualified or unqualified versions of a compatible type." |
| // |
| // memcpy is not defined if the source and destination pointers are exactly |
| // equal, but other compilers do this optimization, and almost every memcpy |
| // implementation handles this case safely. If there is a libc that does not |
| // safely handle this, we can add a target hook. |
| |
| // Get size and alignment info for this aggregate. |
| std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); |
| |
| // FIXME: Handle variable sized types. |
| |
| // FIXME: If we have a volatile struct, the optimizer can remove what might |
| // appear to be `extra' memory ops: |
| // |
| // volatile struct { int i; } a, b; |
| // |
| // int main() { |
| // a = b; |
| // a = b; |
| // } |
| // |
| // we need to use a different call here. We use isVolatile to indicate when |
| // either the source or the destination is volatile. |
| |
| const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); |
| const llvm::Type *DBP = |
| llvm::Type::getInt8PtrTy(VMContext, DPT->getAddressSpace()); |
| DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); |
| |
| const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); |
| const llvm::Type *SBP = |
| llvm::Type::getInt8PtrTy(VMContext, SPT->getAddressSpace()); |
| SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); |
| |
| if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { |
| RecordDecl *Record = RecordTy->getDecl(); |
| if (Record->hasObjectMember()) { |
| unsigned long size = TypeInfo.first/8; |
| const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); |
| llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); |
| CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, |
| SizeVal); |
| return; |
| } |
| } else if (getContext().getAsArrayType(Ty)) { |
| QualType BaseType = getContext().getBaseElementType(Ty); |
| if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { |
| if (RecordTy->getDecl()->hasObjectMember()) { |
| unsigned long size = TypeInfo.first/8; |
| const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); |
| llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); |
| CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, |
| SizeVal); |
| return; |
| } |
| } |
| } |
| |
| Builder.CreateCall5(CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), |
| IntPtrTy), |
| DestPtr, SrcPtr, |
| // TypeInfo.first describes size in bits. |
| llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8), |
| Builder.getInt32(TypeInfo.second/8), |
| Builder.getInt1(isVolatile)); |
| } |