| //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the ASTContext interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Bitcode/Serialize.h" |
| #include "llvm/Bitcode/Deserialize.h" |
| |
| using namespace clang; |
| |
| enum FloatingRank { |
| FloatRank, DoubleRank, LongDoubleRank |
| }; |
| |
| ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM, TargetInfo &t, |
| IdentifierTable &idents, SelectorTable &sels, |
| unsigned size_reserve) : |
| CFConstantStringTypeDecl(0), ObjCFastEnumerationStateTypeDecl(0), |
| SourceMgr(SM), LangOpts(LOpts), Target(t), |
| Idents(idents), Selectors(sels) |
| { |
| if (size_reserve > 0) Types.reserve(size_reserve); |
| InitBuiltinTypes(); |
| BuiltinInfo.InitializeBuiltins(idents, Target); |
| TUDecl = TranslationUnitDecl::Create(*this); |
| } |
| |
| ASTContext::~ASTContext() { |
| // Deallocate all the types. |
| while (!Types.empty()) { |
| Types.back()->Destroy(*this); |
| Types.pop_back(); |
| } |
| |
| TUDecl->Destroy(*this); |
| } |
| |
| void ASTContext::PrintStats() const { |
| fprintf(stderr, "*** AST Context Stats:\n"); |
| fprintf(stderr, " %d types total.\n", (int)Types.size()); |
| unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0; |
| unsigned NumVector = 0, NumComplex = 0; |
| unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0; |
| |
| unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0; |
| unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0; |
| unsigned NumObjCQualifiedIds = 0; |
| unsigned NumTypeOfTypes = 0, NumTypeOfExprs = 0; |
| |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) { |
| Type *T = Types[i]; |
| if (isa<BuiltinType>(T)) |
| ++NumBuiltin; |
| else if (isa<PointerType>(T)) |
| ++NumPointer; |
| else if (isa<ReferenceType>(T)) |
| ++NumReference; |
| else if (isa<ComplexType>(T)) |
| ++NumComplex; |
| else if (isa<ArrayType>(T)) |
| ++NumArray; |
| else if (isa<VectorType>(T)) |
| ++NumVector; |
| else if (isa<FunctionTypeNoProto>(T)) |
| ++NumFunctionNP; |
| else if (isa<FunctionTypeProto>(T)) |
| ++NumFunctionP; |
| else if (isa<TypedefType>(T)) |
| ++NumTypeName; |
| else if (TagType *TT = dyn_cast<TagType>(T)) { |
| ++NumTagged; |
| switch (TT->getDecl()->getTagKind()) { |
| default: assert(0 && "Unknown tagged type!"); |
| case TagDecl::TK_struct: ++NumTagStruct; break; |
| case TagDecl::TK_union: ++NumTagUnion; break; |
| case TagDecl::TK_class: ++NumTagClass; break; |
| case TagDecl::TK_enum: ++NumTagEnum; break; |
| } |
| } else if (isa<ObjCInterfaceType>(T)) |
| ++NumObjCInterfaces; |
| else if (isa<ObjCQualifiedInterfaceType>(T)) |
| ++NumObjCQualifiedInterfaces; |
| else if (isa<ObjCQualifiedIdType>(T)) |
| ++NumObjCQualifiedIds; |
| else if (isa<TypeOfType>(T)) |
| ++NumTypeOfTypes; |
| else if (isa<TypeOfExpr>(T)) |
| ++NumTypeOfExprs; |
| else { |
| QualType(T, 0).dump(); |
| assert(0 && "Unknown type!"); |
| } |
| } |
| |
| fprintf(stderr, " %d builtin types\n", NumBuiltin); |
| fprintf(stderr, " %d pointer types\n", NumPointer); |
| fprintf(stderr, " %d reference types\n", NumReference); |
| fprintf(stderr, " %d complex types\n", NumComplex); |
| fprintf(stderr, " %d array types\n", NumArray); |
| fprintf(stderr, " %d vector types\n", NumVector); |
| fprintf(stderr, " %d function types with proto\n", NumFunctionP); |
| fprintf(stderr, " %d function types with no proto\n", NumFunctionNP); |
| fprintf(stderr, " %d typename (typedef) types\n", NumTypeName); |
| fprintf(stderr, " %d tagged types\n", NumTagged); |
| fprintf(stderr, " %d struct types\n", NumTagStruct); |
| fprintf(stderr, " %d union types\n", NumTagUnion); |
| fprintf(stderr, " %d class types\n", NumTagClass); |
| fprintf(stderr, " %d enum types\n", NumTagEnum); |
| fprintf(stderr, " %d interface types\n", NumObjCInterfaces); |
| fprintf(stderr, " %d protocol qualified interface types\n", |
| NumObjCQualifiedInterfaces); |
| fprintf(stderr, " %d protocol qualified id types\n", |
| NumObjCQualifiedIds); |
| fprintf(stderr, " %d typeof types\n", NumTypeOfTypes); |
| fprintf(stderr, " %d typeof exprs\n", NumTypeOfExprs); |
| |
| fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+ |
| NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+ |
| NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+ |
| NumFunctionP*sizeof(FunctionTypeProto)+ |
| NumFunctionNP*sizeof(FunctionTypeNoProto)+ |
| NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+ |
| NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprs*sizeof(TypeOfExpr))); |
| } |
| |
| |
| void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) { |
| Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr()); |
| } |
| |
| void ASTContext::InitBuiltinTypes() { |
| assert(VoidTy.isNull() && "Context reinitialized?"); |
| |
| // C99 6.2.5p19. |
| InitBuiltinType(VoidTy, BuiltinType::Void); |
| |
| // C99 6.2.5p2. |
| InitBuiltinType(BoolTy, BuiltinType::Bool); |
| // C99 6.2.5p3. |
| if (Target.isCharSigned()) |
| InitBuiltinType(CharTy, BuiltinType::Char_S); |
| else |
| InitBuiltinType(CharTy, BuiltinType::Char_U); |
| // C99 6.2.5p4. |
| InitBuiltinType(SignedCharTy, BuiltinType::SChar); |
| InitBuiltinType(ShortTy, BuiltinType::Short); |
| InitBuiltinType(IntTy, BuiltinType::Int); |
| InitBuiltinType(LongTy, BuiltinType::Long); |
| InitBuiltinType(LongLongTy, BuiltinType::LongLong); |
| |
| // C99 6.2.5p6. |
| InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); |
| InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); |
| InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); |
| InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); |
| InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); |
| |
| // C99 6.2.5p10. |
| InitBuiltinType(FloatTy, BuiltinType::Float); |
| InitBuiltinType(DoubleTy, BuiltinType::Double); |
| InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); |
| |
| // C++ 3.9.1p5 |
| InitBuiltinType(WCharTy, BuiltinType::WChar); |
| |
| // C99 6.2.5p11. |
| FloatComplexTy = getComplexType(FloatTy); |
| DoubleComplexTy = getComplexType(DoubleTy); |
| LongDoubleComplexTy = getComplexType(LongDoubleTy); |
| |
| BuiltinVaListType = QualType(); |
| ObjCIdType = QualType(); |
| IdStructType = 0; |
| ObjCClassType = QualType(); |
| ClassStructType = 0; |
| |
| ObjCConstantStringType = QualType(); |
| |
| // void * type |
| VoidPtrTy = getPointerType(VoidTy); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Sizing and Analysis |
| //===----------------------------------------------------------------------===// |
| |
| /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified |
| /// scalar floating point type. |
| const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { |
| const BuiltinType *BT = T->getAsBuiltinType(); |
| assert(BT && "Not a floating point type!"); |
| switch (BT->getKind()) { |
| default: assert(0 && "Not a floating point type!"); |
| case BuiltinType::Float: return Target.getFloatFormat(); |
| case BuiltinType::Double: return Target.getDoubleFormat(); |
| case BuiltinType::LongDouble: return Target.getLongDoubleFormat(); |
| } |
| } |
| |
| |
| /// getTypeSize - Return the size of the specified type, in bits. This method |
| /// does not work on incomplete types. |
| std::pair<uint64_t, unsigned> |
| ASTContext::getTypeInfo(QualType T) { |
| T = getCanonicalType(T); |
| uint64_t Width; |
| unsigned Align; |
| switch (T->getTypeClass()) { |
| case Type::TypeName: assert(0 && "Not a canonical type!"); |
| case Type::FunctionNoProto: |
| case Type::FunctionProto: |
| default: |
| assert(0 && "Incomplete types have no size!"); |
| case Type::VariableArray: |
| assert(0 && "VLAs not implemented yet!"); |
| case Type::ConstantArray: { |
| ConstantArrayType *CAT = cast<ConstantArrayType>(T); |
| |
| std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType()); |
| Width = EltInfo.first*CAT->getSize().getZExtValue(); |
| Align = EltInfo.second; |
| break; |
| } |
| case Type::ExtVector: |
| case Type::Vector: { |
| std::pair<uint64_t, unsigned> EltInfo = |
| getTypeInfo(cast<VectorType>(T)->getElementType()); |
| Width = EltInfo.first*cast<VectorType>(T)->getNumElements(); |
| // FIXME: This isn't right for unusual vectors |
| Align = Width; |
| break; |
| } |
| |
| case Type::Builtin: |
| switch (cast<BuiltinType>(T)->getKind()) { |
| default: assert(0 && "Unknown builtin type!"); |
| case BuiltinType::Void: |
| assert(0 && "Incomplete types have no size!"); |
| case BuiltinType::Bool: |
| Width = Target.getBoolWidth(); |
| Align = Target.getBoolAlign(); |
| break; |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::UChar: |
| case BuiltinType::SChar: |
| Width = Target.getCharWidth(); |
| Align = Target.getCharAlign(); |
| break; |
| case BuiltinType::WChar: |
| Width = Target.getWCharWidth(); |
| Align = Target.getWCharAlign(); |
| break; |
| case BuiltinType::UShort: |
| case BuiltinType::Short: |
| Width = Target.getShortWidth(); |
| Align = Target.getShortAlign(); |
| break; |
| case BuiltinType::UInt: |
| case BuiltinType::Int: |
| Width = Target.getIntWidth(); |
| Align = Target.getIntAlign(); |
| break; |
| case BuiltinType::ULong: |
| case BuiltinType::Long: |
| Width = Target.getLongWidth(); |
| Align = Target.getLongAlign(); |
| break; |
| case BuiltinType::ULongLong: |
| case BuiltinType::LongLong: |
| Width = Target.getLongLongWidth(); |
| Align = Target.getLongLongAlign(); |
| break; |
| case BuiltinType::Float: |
| Width = Target.getFloatWidth(); |
| Align = Target.getFloatAlign(); |
| break; |
| case BuiltinType::Double: |
| Width = Target.getDoubleWidth(); |
| Align = Target.getDoubleAlign(); |
| break; |
| case BuiltinType::LongDouble: |
| Width = Target.getLongDoubleWidth(); |
| Align = Target.getLongDoubleAlign(); |
| break; |
| } |
| break; |
| case Type::ASQual: |
| // FIXME: Pointers into different addr spaces could have different sizes and |
| // alignment requirements: getPointerInfo should take an AddrSpace. |
| return getTypeInfo(QualType(cast<ASQualType>(T)->getBaseType(), 0)); |
| case Type::ObjCQualifiedId: |
| Width = Target.getPointerWidth(0); |
| Align = Target.getPointerAlign(0); |
| break; |
| case Type::Pointer: { |
| unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace(); |
| Width = Target.getPointerWidth(AS); |
| Align = Target.getPointerAlign(AS); |
| break; |
| } |
| case Type::Reference: |
| // "When applied to a reference or a reference type, the result is the size |
| // of the referenced type." C++98 5.3.3p2: expr.sizeof. |
| // FIXME: This is wrong for struct layout: a reference in a struct has |
| // pointer size. |
| return getTypeInfo(cast<ReferenceType>(T)->getPointeeType()); |
| |
| case Type::Complex: { |
| // Complex types have the same alignment as their elements, but twice the |
| // size. |
| std::pair<uint64_t, unsigned> EltInfo = |
| getTypeInfo(cast<ComplexType>(T)->getElementType()); |
| Width = EltInfo.first*2; |
| Align = EltInfo.second; |
| break; |
| } |
| case Type::ObjCInterface: { |
| ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T); |
| const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); |
| Width = Layout.getSize(); |
| Align = Layout.getAlignment(); |
| break; |
| } |
| case Type::Tagged: { |
| if (cast<TagType>(T)->getDecl()->isInvalidDecl()) { |
| Width = 1; |
| Align = 1; |
| break; |
| } |
| |
| if (EnumType *ET = dyn_cast<EnumType>(cast<TagType>(T))) |
| return getTypeInfo(ET->getDecl()->getIntegerType()); |
| |
| RecordType *RT = cast<RecordType>(T); |
| const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl()); |
| Width = Layout.getSize(); |
| Align = Layout.getAlignment(); |
| break; |
| } |
| } |
| |
| assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2"); |
| return std::make_pair(Width, Align); |
| } |
| |
| /// LayoutField - Field layout. |
| void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo, |
| bool IsUnion, bool StructIsPacked, |
| ASTContext &Context) { |
| bool FieldIsPacked = StructIsPacked || FD->getAttr<PackedAttr>(); |
| uint64_t FieldOffset = IsUnion ? 0 : Size; |
| uint64_t FieldSize; |
| unsigned FieldAlign; |
| |
| if (const Expr *BitWidthExpr = FD->getBitWidth()) { |
| // TODO: Need to check this algorithm on other targets! |
| // (tested on Linux-X86) |
| FieldSize = |
| BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue(); |
| |
| std::pair<uint64_t, unsigned> FieldInfo = |
| Context.getTypeInfo(FD->getType()); |
| uint64_t TypeSize = FieldInfo.first; |
| |
| FieldAlign = FieldInfo.second; |
| if (FieldIsPacked) |
| FieldAlign = 1; |
| if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>()) |
| FieldAlign = std::max(FieldAlign, AA->getAlignment()); |
| |
| // Check if we need to add padding to give the field the correct |
| // alignment. |
| if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize) |
| FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1); |
| |
| // Padding members don't affect overall alignment |
| if (!FD->getIdentifier()) |
| FieldAlign = 1; |
| } else { |
| if (FD->getType()->isIncompleteArrayType()) { |
| // This is a flexible array member; we can't directly |
| // query getTypeInfo about these, so we figure it out here. |
| // Flexible array members don't have any size, but they |
| // have to be aligned appropriately for their element type. |
| FieldSize = 0; |
| const ArrayType* ATy = Context.getAsArrayType(FD->getType()); |
| FieldAlign = Context.getTypeAlign(ATy->getElementType()); |
| } else { |
| std::pair<uint64_t, unsigned> FieldInfo = |
| Context.getTypeInfo(FD->getType()); |
| FieldSize = FieldInfo.first; |
| FieldAlign = FieldInfo.second; |
| } |
| |
| if (FieldIsPacked) |
| FieldAlign = 8; |
| if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>()) |
| FieldAlign = std::max(FieldAlign, AA->getAlignment()); |
| |
| // Round up the current record size to the field's alignment boundary. |
| FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1); |
| } |
| |
| // Place this field at the current location. |
| FieldOffsets[FieldNo] = FieldOffset; |
| |
| // Reserve space for this field. |
| if (IsUnion) { |
| Size = std::max(Size, FieldSize); |
| } else { |
| Size = FieldOffset + FieldSize; |
| } |
| |
| // Remember max struct/class alignment. |
| Alignment = std::max(Alignment, FieldAlign); |
| } |
| |
| |
| /// getASTObjcInterfaceLayout - Get or compute information about the layout of the |
| /// specified Objective C, which indicates its size and ivar |
| /// position information. |
| const ASTRecordLayout & |
| ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) { |
| // Look up this layout, if already laid out, return what we have. |
| const ASTRecordLayout *&Entry = ASTObjCInterfaces[D]; |
| if (Entry) return *Entry; |
| |
| // Allocate and assign into ASTRecordLayouts here. The "Entry" reference can |
| // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into. |
| ASTRecordLayout *NewEntry = NULL; |
| unsigned FieldCount = D->ivar_size(); |
| if (ObjCInterfaceDecl *SD = D->getSuperClass()) { |
| FieldCount++; |
| const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD); |
| unsigned Alignment = SL.getAlignment(); |
| uint64_t Size = SL.getSize(); |
| NewEntry = new ASTRecordLayout(Size, Alignment); |
| NewEntry->InitializeLayout(FieldCount); |
| NewEntry->SetFieldOffset(0, 0); // Super class is at the beginning of the layout. |
| } else { |
| NewEntry = new ASTRecordLayout(); |
| NewEntry->InitializeLayout(FieldCount); |
| } |
| Entry = NewEntry; |
| |
| bool IsPacked = D->getAttr<PackedAttr>(); |
| |
| if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) |
| NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), |
| AA->getAlignment())); |
| |
| // Layout each ivar sequentially. |
| unsigned i = 0; |
| for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(), |
| IVE = D->ivar_end(); IVI != IVE; ++IVI) { |
| const ObjCIvarDecl* Ivar = (*IVI); |
| NewEntry->LayoutField(Ivar, i++, false, IsPacked, *this); |
| } |
| |
| // Finally, round the size of the total struct up to the alignment of the |
| // struct itself. |
| NewEntry->FinalizeLayout(); |
| return *NewEntry; |
| } |
| |
| /// getASTRecordLayout - Get or compute information about the layout of the |
| /// specified record (struct/union/class), which indicates its size and field |
| /// position information. |
| const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) { |
| assert(D->isDefinition() && "Cannot get layout of forward declarations!"); |
| |
| // Look up this layout, if already laid out, return what we have. |
| const ASTRecordLayout *&Entry = ASTRecordLayouts[D]; |
| if (Entry) return *Entry; |
| |
| // Allocate and assign into ASTRecordLayouts here. The "Entry" reference can |
| // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into. |
| ASTRecordLayout *NewEntry = new ASTRecordLayout(); |
| Entry = NewEntry; |
| |
| NewEntry->InitializeLayout(D->getNumMembers()); |
| bool StructIsPacked = D->getAttr<PackedAttr>(); |
| bool IsUnion = D->isUnion(); |
| |
| if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) |
| NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), |
| AA->getAlignment())); |
| |
| // Layout each field, for now, just sequentially, respecting alignment. In |
| // the future, this will need to be tweakable by targets. |
| for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) { |
| const FieldDecl *FD = D->getMember(i); |
| NewEntry->LayoutField(FD, i, IsUnion, StructIsPacked, *this); |
| } |
| |
| // Finally, round the size of the total struct up to the alignment of the |
| // struct itself. |
| NewEntry->FinalizeLayout(); |
| return *NewEntry; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type creation/memoization methods |
| //===----------------------------------------------------------------------===// |
| |
| QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) { |
| QualType CanT = getCanonicalType(T); |
| if (CanT.getAddressSpace() == AddressSpace) |
| return T; |
| |
| // Type's cannot have multiple ASQuals, therefore we know we only have to deal |
| // with CVR qualifiers from here on out. |
| assert(CanT.getAddressSpace() == 0 && |
| "Type is already address space qualified"); |
| |
| // Check if we've already instantiated an address space qual'd type of this |
| // type. |
| llvm::FoldingSetNodeID ID; |
| ASQualType::Profile(ID, T.getTypePtr(), AddressSpace); |
| void *InsertPos = 0; |
| if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(ASQy, 0); |
| |
| // If the base type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getASQualType(CanT, AddressSpace); |
| |
| // Get the new insert position for the node we care about. |
| ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| ASQualType *New = new ASQualType(T.getTypePtr(), Canonical, AddressSpace); |
| ASQualTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, T.getCVRQualifiers()); |
| } |
| |
| |
| /// getComplexType - Return the uniqued reference to the type for a complex |
| /// number with the specified element type. |
| QualType ASTContext::getComplexType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ComplexType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(CT, 0); |
| |
| // If the pointee type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getComplexType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| ComplexType *New = new ComplexType(T, Canonical); |
| Types.push_back(New); |
| ComplexTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| |
| /// getPointerType - Return the uniqued reference to the type for a pointer to |
| /// the specified type. |
| QualType ASTContext::getPointerType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| PointerType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(PT, 0); |
| |
| // If the pointee type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getPointerType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| PointerType *New = new PointerType(T, Canonical); |
| Types.push_back(New); |
| PointerTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getBlockPointerType - Return the uniqued reference to the type for |
| /// a pointer to the specified block. |
| QualType ASTContext::getBlockPointerType(QualType T) { |
| assert(T->isFunctionType() && "block of function types only"); |
| // Unique pointers, to guarantee there is only one block of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| BlockPointerType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (BlockPointerType *PT = |
| BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(PT, 0); |
| |
| // If the block pointee type isn't canonical, this won't be a canonical |
| // type either so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getBlockPointerType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| BlockPointerType *NewIP = |
| BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| BlockPointerType *New = new BlockPointerType(T, Canonical); |
| Types.push_back(New); |
| BlockPointerTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getReferenceType - Return the uniqued reference to the type for a reference |
| /// to the specified type. |
| QualType ASTContext::getReferenceType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ReferenceType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(RT, 0); |
| |
| // If the referencee type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getReferenceType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| ReferenceType *New = new ReferenceType(T, Canonical); |
| Types.push_back(New); |
| ReferenceTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getConstantArrayType - Return the unique reference to the type for an |
| /// array of the specified element type. |
| QualType ASTContext::getConstantArrayType(QualType EltTy, |
| const llvm::APInt &ArySize, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned EltTypeQuals) { |
| llvm::FoldingSetNodeID ID; |
| ConstantArrayType::Profile(ID, EltTy, ArySize); |
| |
| void *InsertPos = 0; |
| if (ConstantArrayType *ATP = |
| ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(ATP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!EltTy->isCanonical()) { |
| Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize, |
| ASM, EltTypeQuals); |
| // Get the new insert position for the node we care about. |
| ConstantArrayType *NewIP = |
| ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); |
| |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize, |
| ASM, EltTypeQuals); |
| ConstantArrayTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getVariableArrayType - Returns a non-unique reference to the type for a |
| /// variable array of the specified element type. |
| QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned EltTypeQuals) { |
| // Since we don't unique expressions, it isn't possible to unique VLA's |
| // that have an expression provided for their size. |
| |
| VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts, |
| ASM, EltTypeQuals); |
| |
| VariableArrayTypes.push_back(New); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| QualType ASTContext::getIncompleteArrayType(QualType EltTy, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned EltTypeQuals) { |
| llvm::FoldingSetNodeID ID; |
| IncompleteArrayType::Profile(ID, EltTy); |
| |
| void *InsertPos = 0; |
| if (IncompleteArrayType *ATP = |
| IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(ATP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| |
| if (!EltTy->isCanonical()) { |
| Canonical = getIncompleteArrayType(getCanonicalType(EltTy), |
| ASM, EltTypeQuals); |
| |
| // Get the new insert position for the node we care about. |
| IncompleteArrayType *NewIP = |
| IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos); |
| |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| IncompleteArrayType *New = new IncompleteArrayType(EltTy, Canonical, |
| ASM, EltTypeQuals); |
| |
| IncompleteArrayTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getVectorType - Return the unique reference to a vector type of |
| /// the specified element type and size. VectorType must be a built-in type. |
| QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) { |
| BuiltinType *baseType; |
| |
| baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr()); |
| assert(baseType != 0 && "getVectorType(): Expecting a built-in type"); |
| |
| // Check if we've already instantiated a vector of this type. |
| llvm::FoldingSetNodeID ID; |
| VectorType::Profile(ID, vecType, NumElts, Type::Vector); |
| void *InsertPos = 0; |
| if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(VTP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!vecType->isCanonical()) { |
| Canonical = getVectorType(getCanonicalType(vecType), NumElts); |
| |
| // Get the new insert position for the node we care about. |
| VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| VectorType *New = new VectorType(vecType, NumElts, Canonical); |
| VectorTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getExtVectorType - Return the unique reference to an extended vector type of |
| /// the specified element type and size. VectorType must be a built-in type. |
| QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) { |
| BuiltinType *baseType; |
| |
| baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr()); |
| assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type"); |
| |
| // Check if we've already instantiated a vector of this type. |
| llvm::FoldingSetNodeID ID; |
| VectorType::Profile(ID, vecType, NumElts, Type::ExtVector); |
| void *InsertPos = 0; |
| if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(VTP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!vecType->isCanonical()) { |
| Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); |
| |
| // Get the new insert position for the node we care about. |
| VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| ExtVectorType *New = new ExtVectorType(vecType, NumElts, Canonical); |
| VectorTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'. |
| /// |
| QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) { |
| // Unique functions, to guarantee there is only one function of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| FunctionTypeNoProto::Profile(ID, ResultTy); |
| |
| void *InsertPos = 0; |
| if (FunctionTypeNoProto *FT = |
| FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(FT, 0); |
| |
| QualType Canonical; |
| if (!ResultTy->isCanonical()) { |
| Canonical = getFunctionTypeNoProto(getCanonicalType(ResultTy)); |
| |
| // Get the new insert position for the node we care about. |
| FunctionTypeNoProto *NewIP = |
| FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical); |
| Types.push_back(New); |
| FunctionTypeNoProtos.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getFunctionType - Return a normal function type with a typed argument |
| /// list. isVariadic indicates whether the argument list includes '...'. |
| QualType ASTContext::getFunctionType(QualType ResultTy, const QualType *ArgArray, |
| unsigned NumArgs, bool isVariadic) { |
| // Unique functions, to guarantee there is only one function of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic); |
| |
| void *InsertPos = 0; |
| if (FunctionTypeProto *FTP = |
| FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(FTP, 0); |
| |
| // Determine whether the type being created is already canonical or not. |
| bool isCanonical = ResultTy->isCanonical(); |
| for (unsigned i = 0; i != NumArgs && isCanonical; ++i) |
| if (!ArgArray[i]->isCanonical()) |
| isCanonical = false; |
| |
| // If this type isn't canonical, get the canonical version of it. |
| QualType Canonical; |
| if (!isCanonical) { |
| llvm::SmallVector<QualType, 16> CanonicalArgs; |
| CanonicalArgs.reserve(NumArgs); |
| for (unsigned i = 0; i != NumArgs; ++i) |
| CanonicalArgs.push_back(getCanonicalType(ArgArray[i])); |
| |
| Canonical = getFunctionType(getCanonicalType(ResultTy), |
| &CanonicalArgs[0], NumArgs, |
| isVariadic); |
| |
| // Get the new insert position for the node we care about. |
| FunctionTypeProto *NewIP = |
| FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| // FunctionTypeProto objects are not allocated with new because they have a |
| // variable size array (for parameter types) at the end of them. |
| FunctionTypeProto *FTP = |
| (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) + |
| NumArgs*sizeof(QualType)); |
| new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic, |
| Canonical); |
| Types.push_back(FTP); |
| FunctionTypeProtos.InsertNode(FTP, InsertPos); |
| return QualType(FTP, 0); |
| } |
| |
| /// getTypeDeclType - Return the unique reference to the type for the |
| /// specified type declaration. |
| QualType ASTContext::getTypeDeclType(TypeDecl *Decl) { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| if (TypedefDecl *Typedef = dyn_cast_or_null<TypedefDecl>(Decl)) |
| return getTypedefType(Typedef); |
| else if (ObjCInterfaceDecl *ObjCInterface |
| = dyn_cast_or_null<ObjCInterfaceDecl>(Decl)) |
| return getObjCInterfaceType(ObjCInterface); |
| |
| if (CXXRecordDecl *CXXRecord = dyn_cast_or_null<CXXRecordDecl>(Decl)) |
| Decl->TypeForDecl = new CXXRecordType(CXXRecord); |
| else if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Decl)) |
| Decl->TypeForDecl = new RecordType(Record); |
| else if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Decl)) |
| Decl->TypeForDecl = new EnumType(Enum); |
| else |
| assert(false && "TypeDecl without a type?"); |
| |
| Types.push_back(Decl->TypeForDecl); |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// getTypedefType - Return the unique reference to the type for the |
| /// specified typename decl. |
| QualType ASTContext::getTypedefType(TypedefDecl *Decl) { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| QualType Canonical = getCanonicalType(Decl->getUnderlyingType()); |
| Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical); |
| Types.push_back(Decl->TypeForDecl); |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// getObjCInterfaceType - Return the unique reference to the type for the |
| /// specified ObjC interface decl. |
| QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl); |
| Types.push_back(Decl->TypeForDecl); |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// CmpProtocolNames - Comparison predicate for sorting protocols |
| /// alphabetically. |
| static bool CmpProtocolNames(const ObjCProtocolDecl *LHS, |
| const ObjCProtocolDecl *RHS) { |
| return strcmp(LHS->getName(), RHS->getName()) < 0; |
| } |
| |
| static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols, |
| unsigned &NumProtocols) { |
| ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols; |
| |
| // Sort protocols, keyed by name. |
| std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames); |
| |
| // Remove duplicates. |
| ProtocolsEnd = std::unique(Protocols, ProtocolsEnd); |
| NumProtocols = ProtocolsEnd-Protocols; |
| } |
| |
| |
| /// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for |
| /// the given interface decl and the conforming protocol list. |
| QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl, |
| ObjCProtocolDecl **Protocols, unsigned NumProtocols) { |
| // Sort the protocol list alphabetically to canonicalize it. |
| SortAndUniqueProtocols(Protocols, NumProtocols); |
| |
| llvm::FoldingSetNodeID ID; |
| ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols); |
| |
| void *InsertPos = 0; |
| if (ObjCQualifiedInterfaceType *QT = |
| ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(QT, 0); |
| |
| // No Match; |
| ObjCQualifiedInterfaceType *QType = |
| new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols); |
| Types.push_back(QType); |
| ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos); |
| return QualType(QType, 0); |
| } |
| |
| /// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl |
| /// and the conforming protocol list. |
| QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols, |
| unsigned NumProtocols) { |
| // Sort the protocol list alphabetically to canonicalize it. |
| SortAndUniqueProtocols(Protocols, NumProtocols); |
| |
| llvm::FoldingSetNodeID ID; |
| ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols); |
| |
| void *InsertPos = 0; |
| if (ObjCQualifiedIdType *QT = |
| ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(QT, 0); |
| |
| // No Match; |
| ObjCQualifiedIdType *QType = new ObjCQualifiedIdType(Protocols, NumProtocols); |
| Types.push_back(QType); |
| ObjCQualifiedIdTypes.InsertNode(QType, InsertPos); |
| return QualType(QType, 0); |
| } |
| |
| /// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique |
| /// TypeOfExpr AST's (since expression's are never shared). For example, |
| /// multiple declarations that refer to "typeof(x)" all contain different |
| /// DeclRefExpr's. This doesn't effect the type checker, since it operates |
| /// on canonical type's (which are always unique). |
| QualType ASTContext::getTypeOfExpr(Expr *tofExpr) { |
| QualType Canonical = getCanonicalType(tofExpr->getType()); |
| TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical); |
| Types.push_back(toe); |
| return QualType(toe, 0); |
| } |
| |
| /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique |
| /// TypeOfType AST's. The only motivation to unique these nodes would be |
| /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be |
| /// an issue. This doesn't effect the type checker, since it operates |
| /// on canonical type's (which are always unique). |
| QualType ASTContext::getTypeOfType(QualType tofType) { |
| QualType Canonical = getCanonicalType(tofType); |
| TypeOfType *tot = new TypeOfType(tofType, Canonical); |
| Types.push_back(tot); |
| return QualType(tot, 0); |
| } |
| |
| /// getTagDeclType - Return the unique reference to the type for the |
| /// specified TagDecl (struct/union/class/enum) decl. |
| QualType ASTContext::getTagDeclType(TagDecl *Decl) { |
| assert (Decl); |
| return getTypeDeclType(Decl); |
| } |
| |
| /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result |
| /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and |
| /// needs to agree with the definition in <stddef.h>. |
| QualType ASTContext::getSizeType() const { |
| // On Darwin, size_t is defined as a "long unsigned int". |
| // FIXME: should derive from "Target". |
| return UnsignedLongTy; |
| } |
| |
| /// getWCharType - Return the unique type for "wchar_t" (C99 7.17), the |
| /// width of characters in wide strings, The value is target dependent and |
| /// needs to agree with the definition in <stddef.h>. |
| QualType ASTContext::getWCharType() const { |
| if (LangOpts.CPlusPlus) |
| return WCharTy; |
| |
| // On Darwin, wchar_t is defined as a "int". |
| // FIXME: should derive from "Target". |
| return IntTy; |
| } |
| |
| /// getSignedWCharType - Return the type of "signed wchar_t". |
| /// Used when in C++, as a GCC extension. |
| QualType ASTContext::getSignedWCharType() const { |
| // FIXME: derive from "Target" ? |
| return WCharTy; |
| } |
| |
| /// getUnsignedWCharType - Return the type of "unsigned wchar_t". |
| /// Used when in C++, as a GCC extension. |
| QualType ASTContext::getUnsignedWCharType() const { |
| // FIXME: derive from "Target" ? |
| return UnsignedIntTy; |
| } |
| |
| /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?) |
| /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). |
| QualType ASTContext::getPointerDiffType() const { |
| // On Darwin, ptrdiff_t is defined as a "int". This seems like a bug... |
| // FIXME: should derive from "Target". |
| return IntTy; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Operators |
| //===----------------------------------------------------------------------===// |
| |
| /// getCanonicalType - Return the canonical (structural) type corresponding to |
| /// the specified potentially non-canonical type. The non-canonical version |
| /// of a type may have many "decorated" versions of types. Decorators can |
| /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed |
| /// to be free of any of these, allowing two canonical types to be compared |
| /// for exact equality with a simple pointer comparison. |
| QualType ASTContext::getCanonicalType(QualType T) { |
| QualType CanType = T.getTypePtr()->getCanonicalTypeInternal(); |
| |
| // If the result has type qualifiers, make sure to canonicalize them as well. |
| unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers(); |
| if (TypeQuals == 0) return CanType; |
| |
| // If the type qualifiers are on an array type, get the canonical type of the |
| // array with the qualifiers applied to the element type. |
| ArrayType *AT = dyn_cast<ArrayType>(CanType); |
| if (!AT) |
| return CanType.getQualifiedType(TypeQuals); |
| |
| // Get the canonical version of the element with the extra qualifiers on it. |
| // This can recursively sink qualifiers through multiple levels of arrays. |
| QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals); |
| NewEltTy = getCanonicalType(NewEltTy); |
| |
| if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) |
| return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(), |
| CAT->getIndexTypeQualifier()); |
| if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) |
| return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(), |
| IAT->getIndexTypeQualifier()); |
| |
| // FIXME: What is the ownership of size expressions in VLAs? |
| VariableArrayType *VAT = cast<VariableArrayType>(AT); |
| return getVariableArrayType(NewEltTy, VAT->getSizeExpr(), |
| VAT->getSizeModifier(), |
| VAT->getIndexTypeQualifier()); |
| } |
| |
| |
| const ArrayType *ASTContext::getAsArrayType(QualType T) { |
| // Handle the non-qualified case efficiently. |
| if (T.getCVRQualifiers() == 0) { |
| // Handle the common positive case fast. |
| if (const ArrayType *AT = dyn_cast<ArrayType>(T)) |
| return AT; |
| } |
| |
| // Handle the common negative case fast, ignoring CVR qualifiers. |
| QualType CType = T->getCanonicalTypeInternal(); |
| |
| // Make sure to look through type qualifiers (like ASQuals) for the negative |
| // test. |
| if (!isa<ArrayType>(CType) && |
| !isa<ArrayType>(CType.getUnqualifiedType())) |
| return 0; |
| |
| // Apply any CVR qualifiers from the array type to the element type. This |
| // implements C99 6.7.3p8: "If the specification of an array type includes |
| // any type qualifiers, the element type is so qualified, not the array type." |
| |
| // If we get here, we either have type qualifiers on the type, or we have |
| // sugar such as a typedef in the way. If we have type qualifiers on the type |
| // we must propagate them down into the elemeng type. |
| unsigned CVRQuals = T.getCVRQualifiers(); |
| unsigned AddrSpace = 0; |
| Type *Ty = T.getTypePtr(); |
| |
| // Rip through ASQualType's and typedefs to get to a concrete type. |
| while (1) { |
| if (const ASQualType *ASQT = dyn_cast<ASQualType>(Ty)) { |
| AddrSpace = ASQT->getAddressSpace(); |
| Ty = ASQT->getBaseType(); |
| } else { |
| T = Ty->getDesugaredType(); |
| if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0) |
| break; |
| CVRQuals |= T.getCVRQualifiers(); |
| Ty = T.getTypePtr(); |
| } |
| } |
| |
| // If we have a simple case, just return now. |
| const ArrayType *ATy = dyn_cast<ArrayType>(Ty); |
| if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0)) |
| return ATy; |
| |
| // Otherwise, we have an array and we have qualifiers on it. Push the |
| // qualifiers into the array element type and return a new array type. |
| // Get the canonical version of the element with the extra qualifiers on it. |
| // This can recursively sink qualifiers through multiple levels of arrays. |
| QualType NewEltTy = ATy->getElementType(); |
| if (AddrSpace) |
| NewEltTy = getASQualType(NewEltTy, AddrSpace); |
| NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals); |
| |
| if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy)) |
| return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), |
| CAT->getSizeModifier(), |
| CAT->getIndexTypeQualifier())); |
| if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy)) |
| return cast<ArrayType>(getIncompleteArrayType(NewEltTy, |
| IAT->getSizeModifier(), |
| IAT->getIndexTypeQualifier())); |
| |
| // FIXME: What is the ownership of size expressions in VLAs? |
| const VariableArrayType *VAT = cast<VariableArrayType>(ATy); |
| return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(), |
| VAT->getSizeModifier(), |
| VAT->getIndexTypeQualifier())); |
| } |
| |
| |
| /// getArrayDecayedType - Return the properly qualified result of decaying the |
| /// specified array type to a pointer. This operation is non-trivial when |
| /// handling typedefs etc. The canonical type of "T" must be an array type, |
| /// this returns a pointer to a properly qualified element of the array. |
| /// |
| /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. |
| QualType ASTContext::getArrayDecayedType(QualType Ty) { |
| // Get the element type with 'getAsArrayType' so that we don't lose any |
| // typedefs in the element type of the array. This also handles propagation |
| // of type qualifiers from the array type into the element type if present |
| // (C99 6.7.3p8). |
| const ArrayType *PrettyArrayType = getAsArrayType(Ty); |
| assert(PrettyArrayType && "Not an array type!"); |
| |
| QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); |
| |
| // int x[restrict 4] -> int *restrict |
| return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier()); |
| } |
| |
| /// getFloatingRank - Return a relative rank for floating point types. |
| /// This routine will assert if passed a built-in type that isn't a float. |
| static FloatingRank getFloatingRank(QualType T) { |
| if (const ComplexType *CT = T->getAsComplexType()) |
| return getFloatingRank(CT->getElementType()); |
| |
| switch (T->getAsBuiltinType()->getKind()) { |
| default: assert(0 && "getFloatingRank(): not a floating type"); |
| case BuiltinType::Float: return FloatRank; |
| case BuiltinType::Double: return DoubleRank; |
| case BuiltinType::LongDouble: return LongDoubleRank; |
| } |
| } |
| |
| /// getFloatingTypeOfSizeWithinDomain - Returns a real floating |
| /// point or a complex type (based on typeDomain/typeSize). |
| /// 'typeDomain' is a real floating point or complex type. |
| /// 'typeSize' is a real floating point or complex type. |
| QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, |
| QualType Domain) const { |
| FloatingRank EltRank = getFloatingRank(Size); |
| if (Domain->isComplexType()) { |
| switch (EltRank) { |
| default: assert(0 && "getFloatingRank(): illegal value for rank"); |
| case FloatRank: return FloatComplexTy; |
| case DoubleRank: return DoubleComplexTy; |
| case LongDoubleRank: return LongDoubleComplexTy; |
| } |
| } |
| |
| assert(Domain->isRealFloatingType() && "Unknown domain!"); |
| switch (EltRank) { |
| default: assert(0 && "getFloatingRank(): illegal value for rank"); |
| case FloatRank: return FloatTy; |
| case DoubleRank: return DoubleTy; |
| case LongDoubleRank: return LongDoubleTy; |
| } |
| } |
| |
| /// getFloatingTypeOrder - Compare the rank of the two specified floating |
| /// point types, ignoring the domain of the type (i.e. 'double' == |
| /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If |
| /// LHS < RHS, return -1. |
| int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) { |
| FloatingRank LHSR = getFloatingRank(LHS); |
| FloatingRank RHSR = getFloatingRank(RHS); |
| |
| if (LHSR == RHSR) |
| return 0; |
| if (LHSR > RHSR) |
| return 1; |
| return -1; |
| } |
| |
| /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This |
| /// routine will assert if passed a built-in type that isn't an integer or enum, |
| /// or if it is not canonicalized. |
| static unsigned getIntegerRank(Type *T) { |
| assert(T->isCanonical() && "T should be canonicalized"); |
| if (isa<EnumType>(T)) |
| return 4; |
| |
| switch (cast<BuiltinType>(T)->getKind()) { |
| default: assert(0 && "getIntegerRank(): not a built-in integer"); |
| case BuiltinType::Bool: |
| return 1; |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::SChar: |
| case BuiltinType::UChar: |
| return 2; |
| case BuiltinType::Short: |
| case BuiltinType::UShort: |
| return 3; |
| case BuiltinType::Int: |
| case BuiltinType::UInt: |
| return 4; |
| case BuiltinType::Long: |
| case BuiltinType::ULong: |
| return 5; |
| case BuiltinType::LongLong: |
| case BuiltinType::ULongLong: |
| return 6; |
| } |
| } |
| |
| /// getIntegerTypeOrder - Returns the highest ranked integer type: |
| /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If |
| /// LHS < RHS, return -1. |
| int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) { |
| Type *LHSC = getCanonicalType(LHS).getTypePtr(); |
| Type *RHSC = getCanonicalType(RHS).getTypePtr(); |
| if (LHSC == RHSC) return 0; |
| |
| bool LHSUnsigned = LHSC->isUnsignedIntegerType(); |
| bool RHSUnsigned = RHSC->isUnsignedIntegerType(); |
| |
| unsigned LHSRank = getIntegerRank(LHSC); |
| unsigned RHSRank = getIntegerRank(RHSC); |
| |
| if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. |
| if (LHSRank == RHSRank) return 0; |
| return LHSRank > RHSRank ? 1 : -1; |
| } |
| |
| // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. |
| if (LHSUnsigned) { |
| // If the unsigned [LHS] type is larger, return it. |
| if (LHSRank >= RHSRank) |
| return 1; |
| |
| // If the signed type can represent all values of the unsigned type, it |
| // wins. Because we are dealing with 2's complement and types that are |
| // powers of two larger than each other, this is always safe. |
| return -1; |
| } |
| |
| // If the unsigned [RHS] type is larger, return it. |
| if (RHSRank >= LHSRank) |
| return -1; |
| |
| // If the signed type can represent all values of the unsigned type, it |
| // wins. Because we are dealing with 2's complement and types that are |
| // powers of two larger than each other, this is always safe. |
| return 1; |
| } |
| |
| // getCFConstantStringType - Return the type used for constant CFStrings. |
| QualType ASTContext::getCFConstantStringType() { |
| if (!CFConstantStringTypeDecl) { |
| CFConstantStringTypeDecl = |
| RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(), |
| &Idents.get("NSConstantString")); |
| QualType FieldTypes[4]; |
| |
| // const int *isa; |
| FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const)); |
| // int flags; |
| FieldTypes[1] = IntTy; |
| // const char *str; |
| FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const)); |
| // long length; |
| FieldTypes[3] = LongTy; |
| // Create fields |
| FieldDecl *FieldDecls[4]; |
| |
| for (unsigned i = 0; i < 4; ++i) |
| FieldDecls[i] = FieldDecl::Create(*this, SourceLocation(), 0, |
| FieldTypes[i]); |
| |
| CFConstantStringTypeDecl->defineBody(FieldDecls, 4); |
| } |
| |
| return getTagDeclType(CFConstantStringTypeDecl); |
| } |
| |
| QualType ASTContext::getObjCFastEnumerationStateType() |
| { |
| if (!ObjCFastEnumerationStateTypeDecl) { |
| QualType FieldTypes[] = { |
| UnsignedLongTy, |
| getPointerType(ObjCIdType), |
| getPointerType(UnsignedLongTy), |
| getConstantArrayType(UnsignedLongTy, |
| llvm::APInt(32, 5), ArrayType::Normal, 0) |
| }; |
| |
| FieldDecl *FieldDecls[4]; |
| for (size_t i = 0; i < 4; ++i) |
| FieldDecls[i] = FieldDecl::Create(*this, SourceLocation(), 0, |
| FieldTypes[i]); |
| |
| ObjCFastEnumerationStateTypeDecl = |
| RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(), |
| &Idents.get("__objcFastEnumerationState")); |
| |
| ObjCFastEnumerationStateTypeDecl->defineBody(FieldDecls, 4); |
| } |
| |
| return getTagDeclType(ObjCFastEnumerationStateTypeDecl); |
| } |
| |
| // This returns true if a type has been typedefed to BOOL: |
| // typedef <type> BOOL; |
| static bool isTypeTypedefedAsBOOL(QualType T) { |
| if (const TypedefType *TT = dyn_cast<TypedefType>(T)) |
| return !strcmp(TT->getDecl()->getName(), "BOOL"); |
| |
| return false; |
| } |
| |
| /// getObjCEncodingTypeSize returns size of type for objective-c encoding |
| /// purpose. |
| int ASTContext::getObjCEncodingTypeSize(QualType type) { |
| uint64_t sz = getTypeSize(type); |
| |
| // Make all integer and enum types at least as large as an int |
| if (sz > 0 && type->isIntegralType()) |
| sz = std::max(sz, getTypeSize(IntTy)); |
| // Treat arrays as pointers, since that's how they're passed in. |
| else if (type->isArrayType()) |
| sz = getTypeSize(VoidPtrTy); |
| return sz / getTypeSize(CharTy); |
| } |
| |
| /// getObjCEncodingForMethodDecl - Return the encoded type for this method |
| /// declaration. |
| void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, |
| std::string& S) |
| { |
| // FIXME: This is not very efficient. |
| // Encode type qualifer, 'in', 'inout', etc. for the return type. |
| getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S); |
| // Encode result type. |
| getObjCEncodingForType(Decl->getResultType(), S, EncodingRecordTypes); |
| // Compute size of all parameters. |
| // Start with computing size of a pointer in number of bytes. |
| // FIXME: There might(should) be a better way of doing this computation! |
| SourceLocation Loc; |
| int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy); |
| // The first two arguments (self and _cmd) are pointers; account for |
| // their size. |
| int ParmOffset = 2 * PtrSize; |
| int NumOfParams = Decl->getNumParams(); |
| for (int i = 0; i < NumOfParams; i++) { |
| QualType PType = Decl->getParamDecl(i)->getType(); |
| int sz = getObjCEncodingTypeSize (PType); |
| assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type"); |
| ParmOffset += sz; |
| } |
| S += llvm::utostr(ParmOffset); |
| S += "@0:"; |
| S += llvm::utostr(PtrSize); |
| |
| // Argument types. |
| ParmOffset = 2 * PtrSize; |
| for (int i = 0; i < NumOfParams; i++) { |
| QualType PType = Decl->getParamDecl(i)->getType(); |
| // Process argument qualifiers for user supplied arguments; such as, |
| // 'in', 'inout', etc. |
| getObjCEncodingForTypeQualifier( |
| Decl->getParamDecl(i)->getObjCDeclQualifier(), S); |
| getObjCEncodingForType(PType, S, EncodingRecordTypes); |
| S += llvm::utostr(ParmOffset); |
| ParmOffset += getObjCEncodingTypeSize(PType); |
| } |
| } |
| |
| /// getObjCEncodingForPropertyDecl - Return the encoded type for this |
| /// method declaration. If non-NULL, Container must be either an |
| /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be |
| /// NULL when getting encodings for protocol properties. |
| void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, |
| const Decl *Container, |
| std::string& S) |
| { |
| // Collect information from the property implementation decl(s). |
| bool Dynamic = false; |
| ObjCPropertyImplDecl *SynthesizePID = 0; |
| |
| // FIXME: Duplicated code due to poor abstraction. |
| if (Container) { |
| if (const ObjCCategoryImplDecl *CID = |
| dyn_cast<ObjCCategoryImplDecl>(Container)) { |
| for (ObjCCategoryImplDecl::propimpl_iterator |
| i = CID->propimpl_begin(), e = CID->propimpl_end(); i != e; ++i) { |
| ObjCPropertyImplDecl *PID = *i; |
| if (PID->getPropertyDecl() == PD) { |
| if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) { |
| Dynamic = true; |
| } else { |
| SynthesizePID = PID; |
| } |
| } |
| } |
| } else { |
| const ObjCImplementationDecl *OID = cast<ObjCImplementationDecl>(Container); |
| for (ObjCCategoryImplDecl::propimpl_iterator |
| i = OID->propimpl_begin(), e = OID->propimpl_end(); i != e; ++i) { |
| ObjCPropertyImplDecl *PID = *i; |
| if (PID->getPropertyDecl() == PD) { |
| if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) { |
| Dynamic = true; |
| } else { |
| SynthesizePID = PID; |
| } |
| } |
| } |
| } |
| } |
| |
| // FIXME: This is not very efficient. |
| S = "T"; |
| |
| // Encode result type. |
| // FIXME: GCC uses a generating_property_type_encoding mode during |
| // this part. Investigate. |
| getObjCEncodingForType(PD->getType(), S, EncodingRecordTypes); |
| |
| if (PD->isReadOnly()) { |
| S += ",R"; |
| } else { |
| switch (PD->getSetterKind()) { |
| case ObjCPropertyDecl::Assign: break; |
| case ObjCPropertyDecl::Copy: S += ",C"; break; |
| case ObjCPropertyDecl::Retain: S += ",&"; break; |
| } |
| } |
| |
| // It really isn't clear at all what this means, since properties |
| // are "dynamic by default". |
| if (Dynamic) |
| S += ",D"; |
| |
| if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) { |
| S += ",G"; |
| S += PD->getGetterName().getName(); |
| } |
| |
| if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) { |
| S += ",S"; |
| S += PD->getSetterName().getName(); |
| } |
| |
| if (SynthesizePID) { |
| const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); |
| S += ",V"; |
| S += OID->getName(); |
| } |
| |
| // FIXME: OBJCGC: weak & strong |
| } |
| |
| void ASTContext::getObjCEncodingForType(QualType T, std::string& S, |
| llvm::SmallVector<const RecordType *, 8> &ERType) const { |
| // FIXME: This currently doesn't encode: |
| // @ An object (whether statically typed or typed id) |
| // # A class object (Class) |
| // : A method selector (SEL) |
| // {name=type...} A structure |
| // (name=type...) A union |
| // bnum A bit field of num bits |
| |
| if (const BuiltinType *BT = T->getAsBuiltinType()) { |
| char encoding; |
| switch (BT->getKind()) { |
| default: assert(0 && "Unhandled builtin type kind"); |
| case BuiltinType::Void: encoding = 'v'; break; |
| case BuiltinType::Bool: encoding = 'B'; break; |
| case BuiltinType::Char_U: |
| case BuiltinType::UChar: encoding = 'C'; break; |
| case BuiltinType::UShort: encoding = 'S'; break; |
| case BuiltinType::UInt: encoding = 'I'; break; |
| case BuiltinType::ULong: encoding = 'L'; break; |
| case BuiltinType::ULongLong: encoding = 'Q'; break; |
| case BuiltinType::Char_S: |
| case BuiltinType::SChar: encoding = 'c'; break; |
| case BuiltinType::Short: encoding = 's'; break; |
| case BuiltinType::Int: encoding = 'i'; break; |
| case BuiltinType::Long: encoding = 'l'; break; |
| case BuiltinType::LongLong: encoding = 'q'; break; |
| case BuiltinType::Float: encoding = 'f'; break; |
| case BuiltinType::Double: encoding = 'd'; break; |
| case BuiltinType::LongDouble: encoding = 'd'; break; |
| } |
| |
| S += encoding; |
| } |
| else if (T->isObjCQualifiedIdType()) { |
| // Treat id<P...> same as 'id' for encoding purposes. |
| return getObjCEncodingForType(getObjCIdType(), S, ERType); |
| |
| } |
| else if (const PointerType *PT = T->getAsPointerType()) { |
| QualType PointeeTy = PT->getPointeeType(); |
| if (isObjCIdType(PointeeTy) || PointeeTy->isObjCInterfaceType()) { |
| S += '@'; |
| return; |
| } else if (isObjCClassType(PointeeTy)) { |
| S += '#'; |
| return; |
| } else if (isObjCSelType(PointeeTy)) { |
| S += ':'; |
| return; |
| } |
| |
| if (PointeeTy->isCharType()) { |
| // char pointer types should be encoded as '*' unless it is a |
| // type that has been typedef'd to 'BOOL'. |
| if (!isTypeTypedefedAsBOOL(PointeeTy)) { |
| S += '*'; |
| return; |
| } |
| } |
| |
| S += '^'; |
| getObjCEncodingForType(PT->getPointeeType(), S, ERType); |
| } else if (const ArrayType *AT = |
| // Ignore type qualifiers etc. |
| dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) { |
| S += '['; |
| |
| if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) |
| S += llvm::utostr(CAT->getSize().getZExtValue()); |
| else |
| assert(0 && "Unhandled array type!"); |
| |
| getObjCEncodingForType(AT->getElementType(), S, ERType); |
| S += ']'; |
| } else if (T->getAsFunctionType()) { |
| S += '?'; |
| } else if (const RecordType *RTy = T->getAsRecordType()) { |
| RecordDecl *RDecl= RTy->getDecl(); |
| // This mimics the behavior in gcc's encode_aggregate_within(). |
| // The idea is to only inline structure definitions for top level pointers |
| // to structures and embedded structures. |
| bool inlining = (S.size() == 1 && S[0] == '^' || |
| S.size() > 1 && S[S.size()-1] != '^'); |
| S += '{'; |
| S += RDecl->getName(); |
| bool found = false; |
| for (unsigned i = 0, e = ERType.size(); i != e; ++i) |
| if (ERType[i] == RTy) { |
| found = true; |
| break; |
| } |
| if (!found && inlining) { |
| ERType.push_back(RTy); |
| S += '='; |
| for (int i = 0; i < RDecl->getNumMembers(); i++) { |
| FieldDecl *field = RDecl->getMember(i); |
| getObjCEncodingForType(field->getType(), S, ERType); |
| } |
| assert(ERType.back() == RTy && "Record Type stack mismatch."); |
| ERType.pop_back(); |
| } |
| S += '}'; |
| } else if (T->isEnumeralType()) { |
| S += 'i'; |
| } else |
| assert(0 && "@encode for type not implemented!"); |
| } |
| |
| void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, |
| std::string& S) const { |
| if (QT & Decl::OBJC_TQ_In) |
| S += 'n'; |
| if (QT & Decl::OBJC_TQ_Inout) |
| S += 'N'; |
| if (QT & Decl::OBJC_TQ_Out) |
| S += 'o'; |
| if (QT & Decl::OBJC_TQ_Bycopy) |
| S += 'O'; |
| if (QT & Decl::OBJC_TQ_Byref) |
| S += 'R'; |
| if (QT & Decl::OBJC_TQ_Oneway) |
| S += 'V'; |
| } |
| |
| void ASTContext::setBuiltinVaListType(QualType T) |
| { |
| assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!"); |
| |
| BuiltinVaListType = T; |
| } |
| |
| void ASTContext::setObjCIdType(TypedefDecl *TD) |
| { |
| assert(ObjCIdType.isNull() && "'id' type already set!"); |
| |
| ObjCIdType = getTypedefType(TD); |
| |
| // typedef struct objc_object *id; |
| const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); |
| assert(ptr && "'id' incorrectly typed"); |
| const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); |
| assert(rec && "'id' incorrectly typed"); |
| IdStructType = rec; |
| } |
| |
| void ASTContext::setObjCSelType(TypedefDecl *TD) |
| { |
| assert(ObjCSelType.isNull() && "'SEL' type already set!"); |
| |
| ObjCSelType = getTypedefType(TD); |
| |
| // typedef struct objc_selector *SEL; |
| const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); |
| assert(ptr && "'SEL' incorrectly typed"); |
| const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); |
| assert(rec && "'SEL' incorrectly typed"); |
| SelStructType = rec; |
| } |
| |
| void ASTContext::setObjCProtoType(QualType QT) |
| { |
| assert(ObjCProtoType.isNull() && "'Protocol' type already set!"); |
| ObjCProtoType = QT; |
| } |
| |
| void ASTContext::setObjCClassType(TypedefDecl *TD) |
| { |
| assert(ObjCClassType.isNull() && "'Class' type already set!"); |
| |
| ObjCClassType = getTypedefType(TD); |
| |
| // typedef struct objc_class *Class; |
| const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); |
| assert(ptr && "'Class' incorrectly typed"); |
| const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); |
| assert(rec && "'Class' incorrectly typed"); |
| ClassStructType = rec; |
| } |
| |
| void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { |
| assert(ObjCConstantStringType.isNull() && |
| "'NSConstantString' type already set!"); |
| |
| ObjCConstantStringType = getObjCInterfaceType(Decl); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Type Predicates. |
| //===----------------------------------------------------------------------===// |
| |
| /// isObjCObjectPointerType - Returns true if type is an Objective-C pointer |
| /// to an object type. This includes "id" and "Class" (two 'special' pointers |
| /// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified |
| /// ID type). |
| bool ASTContext::isObjCObjectPointerType(QualType Ty) const { |
| if (Ty->isObjCQualifiedIdType()) |
| return true; |
| |
| if (!Ty->isPointerType()) |
| return false; |
| |
| // Check to see if this is 'id' or 'Class', both of which are typedefs for |
| // pointer types. This looks for the typedef specifically, not for the |
| // underlying type. |
| if (Ty == getObjCIdType() || Ty == getObjCClassType()) |
| return true; |
| |
| // If this a pointer to an interface (e.g. NSString*), it is ok. |
| return Ty->getAsPointerType()->getPointeeType()->isObjCInterfaceType(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Compatibility Testing |
| //===----------------------------------------------------------------------===// |
| |
| /// typesAreBlockCompatible - This routine is called when comparing two |
| /// block types. Types must be strictly compatible here. |
| bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) { |
| if (lhs.getCVRQualifiers() != rhs.getCVRQualifiers()) |
| return false; |
| |
| QualType lcanon = getCanonicalType(lhs); |
| QualType rcanon = getCanonicalType(rhs); |
| |
| // If two types are identical, they are are compatible |
| if (lcanon == rcanon) |
| return true; |
| if (isa<FunctionType>(lcanon) && isa<FunctionType>(rcanon)) { |
| const FunctionType *lbase = cast<FunctionType>(lcanon); |
| const FunctionType *rbase = cast<FunctionType>(rcanon); |
| |
| // First check the return types. |
| if (!typesAreBlockCompatible(lbase->getResultType(),rbase->getResultType())) |
| return false; |
| |
| // Return types matched, now check the argument types. |
| const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase); |
| const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase); |
| |
| if (lproto && rproto) { // two C99 style function prototypes |
| unsigned lproto_nargs = lproto->getNumArgs(); |
| unsigned rproto_nargs = rproto->getNumArgs(); |
| |
| if (lproto_nargs != rproto_nargs) |
| return false; |
| |
| if (lproto->isVariadic() || rproto->isVariadic()) |
| return false; |
| |
| // The use of ellipsis agree...now check the argument types. |
| for (unsigned i = 0; i < lproto_nargs; i++) |
| if (!typesAreBlockCompatible(lproto->getArgType(i), |
| rproto->getArgType(i))) |
| return false; |
| return true; |
| } |
| return (!lproto && !rproto); // two K&R style function decls match. |
| } |
| return false; |
| } |
| |
| /// areCompatVectorTypes - Return true if the two specified vector types are |
| /// compatible. |
| static bool areCompatVectorTypes(const VectorType *LHS, |
| const VectorType *RHS) { |
| assert(LHS->isCanonical() && RHS->isCanonical()); |
| return LHS->getElementType() == RHS->getElementType() && |
| LHS->getNumElements() == RHS->getNumElements(); |
| } |
| |
| /// canAssignObjCInterfaces - Return true if the two interface types are |
| /// compatible for assignment from RHS to LHS. This handles validation of any |
| /// protocol qualifiers on the LHS or RHS. |
| /// |
| bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS, |
| const ObjCInterfaceType *RHS) { |
| // Verify that the base decls are compatible: the RHS must be a subclass of |
| // the LHS. |
| if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl())) |
| return false; |
| |
| // RHS must have a superset of the protocols in the LHS. If the LHS is not |
| // protocol qualified at all, then we are good. |
| if (!isa<ObjCQualifiedInterfaceType>(LHS)) |
| return true; |
| |
| // Okay, we know the LHS has protocol qualifiers. If the RHS doesn't, then it |
| // isn't a superset. |
| if (!isa<ObjCQualifiedInterfaceType>(RHS)) |
| return true; // FIXME: should return false! |
| |
| // Finally, we must have two protocol-qualified interfaces. |
| const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS); |
| const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS); |
| ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(); |
| ObjCQualifiedInterfaceType::qual_iterator LHSPE = LHSP->qual_end(); |
| ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(); |
| ObjCQualifiedInterfaceType::qual_iterator RHSPE = RHSP->qual_end(); |
| |
| // All protocols in LHS must have a presence in RHS. Since the protocol lists |
| // are both sorted alphabetically and have no duplicates, we can scan RHS and |
| // LHS in a single parallel scan until we run out of elements in LHS. |
| assert(LHSPI != LHSPE && "Empty LHS protocol list?"); |
| ObjCProtocolDecl *LHSProto = *LHSPI; |
| |
| while (RHSPI != RHSPE) { |
| ObjCProtocolDecl *RHSProto = *RHSPI++; |
| // If the RHS has a protocol that the LHS doesn't, ignore it. |
| if (RHSProto != LHSProto) |
| continue; |
| |
| // Otherwise, the RHS does have this element. |
| ++LHSPI; |
| if (LHSPI == LHSPE) |
| return true; // All protocols in LHS exist in RHS. |
| |
| LHSProto = *LHSPI; |
| } |
| |
| // If we got here, we didn't find one of the LHS's protocols in the RHS list. |
| return false; |
| } |
| |
| /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, |
| /// both shall have the identically qualified version of a compatible type. |
| /// C99 6.2.7p1: Two types have compatible types if their types are the |
| /// same. See 6.7.[2,3,5] for additional rules. |
| bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) { |
| return !mergeTypes(LHS, RHS).isNull(); |
| } |
| |
| QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) { |
| const FunctionType *lbase = lhs->getAsFunctionType(); |
| const FunctionType *rbase = rhs->getAsFunctionType(); |
| const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase); |
| const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase); |
| bool allLTypes = true; |
| bool allRTypes = true; |
| |
| // Check return type |
| QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType()); |
| if (retType.isNull()) return QualType(); |
| if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType())) allLTypes = false; |
| if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType())) allRTypes = false; |
| |
| if (lproto && rproto) { // two C99 style function prototypes |
| unsigned lproto_nargs = lproto->getNumArgs(); |
| unsigned rproto_nargs = rproto->getNumArgs(); |
| |
| // Compatible functions must have the same number of arguments |
| if (lproto_nargs != rproto_nargs) |
| return QualType(); |
| |
| // Variadic and non-variadic functions aren't compatible |
| if (lproto->isVariadic() != rproto->isVariadic()) |
| return QualType(); |
| |
| // Check argument compatibility |
| llvm::SmallVector<QualType, 10> types; |
| for (unsigned i = 0; i < lproto_nargs; i++) { |
| QualType largtype = lproto->getArgType(i).getUnqualifiedType(); |
| QualType rargtype = rproto->getArgType(i).getUnqualifiedType(); |
| QualType argtype = mergeTypes(largtype, rargtype); |
| if (argtype.isNull()) return QualType(); |
| types.push_back(argtype); |
| if (getCanonicalType(argtype) != getCanonicalType(largtype)) allLTypes = false; |
| if (getCanonicalType(argtype) != getCanonicalType(rargtype)) allRTypes = false; |
| } |
| if (allLTypes) return lhs; |
| if (allRTypes) return rhs; |
| return getFunctionType(retType, types.begin(), types.size(), |
| lproto->isVariadic()); |
| } |
| |
| if (lproto) allRTypes = false; |
| if (rproto) allLTypes = false; |
| |
| const FunctionTypeProto *proto = lproto ? lproto : rproto; |
| if (proto) { |
| if (proto->isVariadic()) return QualType(); |
| // Check that the types are compatible with the types that |
| // would result from default argument promotions (C99 6.7.5.3p15). |
| // The only types actually affected are promotable integer |
| // types and floats, which would be passed as a different |
| // type depending on whether the prototype is visible. |
| unsigned proto_nargs = proto->getNumArgs(); |
| for (unsigned i = 0; i < proto_nargs; ++i) { |
| QualType argTy = proto->getArgType(i); |
| if (argTy->isPromotableIntegerType() || |
| getCanonicalType(argTy).getUnqualifiedType() == FloatTy) |
| return QualType(); |
| } |
| |
| if (allLTypes) return lhs; |
| if (allRTypes) return rhs; |
| return getFunctionType(retType, proto->arg_type_begin(), |
| proto->getNumArgs(), lproto->isVariadic()); |
| } |
| |
| if (allLTypes) return lhs; |
| if (allRTypes) return rhs; |
| return getFunctionTypeNoProto(retType); |
| } |
| |
| QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) { |
| // C++ [expr]: If an expression initially has the type "reference to T", the |
| // type is adjusted to "T" prior to any further analysis, the expression |
| // designates the object or function denoted by the reference, and the |
| // expression is an lvalue. |
| // FIXME: C++ shouldn't be going through here! The rules are different |
| // enough that they should be handled separately. |
| if (const ReferenceType *RT = LHS->getAsReferenceType()) |
| LHS = RT->getPointeeType(); |
| if (const ReferenceType *RT = RHS->getAsReferenceType()) |
| RHS = RT->getPointeeType(); |
| |
| QualType LHSCan = getCanonicalType(LHS), |
| RHSCan = getCanonicalType(RHS); |
| |
| // If two types are identical, they are compatible. |
| if (LHSCan == RHSCan) |
| return LHS; |
| |
| // If the qualifiers are different, the types aren't compatible |
| if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers() || |
| LHSCan.getAddressSpace() != RHSCan.getAddressSpace()) |
| return QualType(); |
| |
| Type::TypeClass LHSClass = LHSCan->getTypeClass(); |
| Type::TypeClass RHSClass = RHSCan->getTypeClass(); |
| |
| // We want to consider the two function types to be the same for these |
| // comparisons, just force one to the other. |
| if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; |
| if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; |
| |
| // Same as above for arrays |
| if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) |
| LHSClass = Type::ConstantArray; |
| if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) |
| RHSClass = Type::ConstantArray; |
| |
| // Canonicalize ExtVector -> Vector. |
| if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; |
| if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; |
| |
| // Consider qualified interfaces and interfaces the same. |
| if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface; |
| if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface; |
| |
| // If the canonical type classes don't match. |
| if (LHSClass != RHSClass) { |
| // ID is compatible with all qualified id types. |
| if (LHS->isObjCQualifiedIdType()) { |
| if (const PointerType *PT = RHS->getAsPointerType()) |
| if (isObjCIdType(PT->getPointeeType())) |
| return LHS; |
| } |
| if (RHS->isObjCQualifiedIdType()) { |
| if (const PointerType *PT = LHS->getAsPointerType()) |
| if (isObjCIdType(PT->getPointeeType())) |
| return RHS; |
| } |
| |
| // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, |
| // a signed integer type, or an unsigned integer type. |
| if (const EnumType* ETy = LHS->getAsEnumType()) { |
| if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType()) |
| return RHS; |
| } |
| if (const EnumType* ETy = RHS->getAsEnumType()) { |
| if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType()) |
| return LHS; |
| } |
| |
| return QualType(); |
| } |
| |
| // The canonical type classes match. |
| switch (LHSClass) { |
| case Type::Pointer: |
| { |
| // Merge two pointer types, while trying to preserve typedef info |
| QualType LHSPointee = LHS->getAsPointerType()->getPointeeType(); |
| QualType RHSPointee = RHS->getAsPointerType()->getPointeeType(); |
| QualType ResultType = mergeTypes(LHSPointee, RHSPointee); |
| if (ResultType.isNull()) return QualType(); |
| if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) return LHS; |
| if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) return RHS; |
| return getPointerType(ResultType); |
| } |
| case Type::ConstantArray: |
| { |
| const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); |
| const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); |
| if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) |
| return QualType(); |
| |
| QualType LHSElem = getAsArrayType(LHS)->getElementType(); |
| QualType RHSElem = getAsArrayType(RHS)->getElementType(); |
| QualType ResultType = mergeTypes(LHSElem, RHSElem); |
| if (ResultType.isNull()) return QualType(); |
| if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; |
| if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; |
| if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(), |
| ArrayType::ArraySizeModifier(), 0); |
| if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(), |
| ArrayType::ArraySizeModifier(), 0); |
| const VariableArrayType* LVAT = getAsVariableArrayType(LHS); |
| const VariableArrayType* RVAT = getAsVariableArrayType(RHS); |
| if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; |
| if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; |
| if (LVAT) { |
| // FIXME: This isn't correct! But tricky to implement because |
| // the array's size has to be the size of LHS, but the type |
| // has to be different. |
| return LHS; |
| } |
| if (RVAT) { |
| // FIXME: This isn't correct! But tricky to implement because |
| // the array's size has to be the size of RHS, but the type |
| // has to be different. |
| return RHS; |
| } |
| if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; |
| if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; |
| return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(), 0); |
| } |
| case Type::FunctionNoProto: |
| return mergeFunctionTypes(LHS, RHS); |
| case Type::Tagged: |
| { |
| // FIXME: Why are these compatible? |
| if (isObjCIdType(LHS) && isObjCClassType(RHS)) return LHS; |
| if (isObjCClassType(LHS) && isObjCIdType(RHS)) return LHS; |
| return QualType(); |
| } |
| case Type::Builtin: |
| // Only exactly equal builtin types are compatible, which is tested above. |
| return QualType(); |
| case Type::Vector: |
| if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType())) |
| return LHS; |
| case Type::ObjCInterface: |
| { |
| // Distinct ObjC interfaces are not compatible; see canAssignObjCInterfaces |
| // for checking assignment/comparison safety |
| return QualType(); |
| } |
| default: |
| assert(0 && "unexpected type"); |
| return QualType(); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Integer Predicates |
| //===----------------------------------------------------------------------===// |
| unsigned ASTContext::getIntWidth(QualType T) { |
| if (T == BoolTy) |
| return 1; |
| // At the moment, only bool has padding bits |
| return (unsigned)getTypeSize(T); |
| } |
| |
| QualType ASTContext::getCorrespondingUnsignedType(QualType T) { |
| assert(T->isSignedIntegerType() && "Unexpected type"); |
| if (const EnumType* ETy = T->getAsEnumType()) |
| T = ETy->getDecl()->getIntegerType(); |
| const BuiltinType* BTy = T->getAsBuiltinType(); |
| assert (BTy && "Unexpected signed integer type"); |
| switch (BTy->getKind()) { |
| case BuiltinType::Char_S: |
| case BuiltinType::SChar: |
| return UnsignedCharTy; |
| case BuiltinType::Short: |
| return UnsignedShortTy; |
| case BuiltinType::Int: |
| return UnsignedIntTy; |
| case BuiltinType::Long: |
| return UnsignedLongTy; |
| case BuiltinType::LongLong: |
| return UnsignedLongLongTy; |
| default: |
| assert(0 && "Unexpected signed integer type"); |
| return QualType(); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Serialization Support |
| //===----------------------------------------------------------------------===// |
| |
| /// Emit - Serialize an ASTContext object to Bitcode. |
| void ASTContext::Emit(llvm::Serializer& S) const { |
| S.Emit(LangOpts); |
| S.EmitRef(SourceMgr); |
| S.EmitRef(Target); |
| S.EmitRef(Idents); |
| S.EmitRef(Selectors); |
| |
| // Emit the size of the type vector so that we can reserve that size |
| // when we reconstitute the ASTContext object. |
| S.EmitInt(Types.size()); |
| |
| for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end(); |
| I!=E;++I) |
| (*I)->Emit(S); |
| |
| S.EmitOwnedPtr(TUDecl); |
| |
| // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl); |
| } |
| |
| ASTContext* ASTContext::Create(llvm::Deserializer& D) { |
| |
| // Read the language options. |
| LangOptions LOpts; |
| LOpts.Read(D); |
| |
| SourceManager &SM = D.ReadRef<SourceManager>(); |
| TargetInfo &t = D.ReadRef<TargetInfo>(); |
| IdentifierTable &idents = D.ReadRef<IdentifierTable>(); |
| SelectorTable &sels = D.ReadRef<SelectorTable>(); |
| |
| unsigned size_reserve = D.ReadInt(); |
| |
| ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels, size_reserve); |
| |
| for (unsigned i = 0; i < size_reserve; ++i) |
| Type::Create(*A,i,D); |
| |
| A->TUDecl = cast<TranslationUnitDecl>(D.ReadOwnedPtr<Decl>(*A)); |
| |
| // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>(); |
| |
| return A; |
| } |