| //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This provides C++ name mangling targeting the Microsoft Visual C++ ABI. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/Mangle.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/Basic/ABI.h" |
| #include "clang/Basic/DiagnosticOptions.h" |
| |
| #include <map> |
| |
| using namespace clang; |
| |
| namespace { |
| |
| /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the |
| /// Microsoft Visual C++ ABI. |
| class MicrosoftCXXNameMangler { |
| MangleContext &Context; |
| raw_ostream &Out; |
| |
| // FIXME: audit the performance of BackRefMap as it might do way too many |
| // copying of strings. |
| typedef std::map<std::string, unsigned> BackRefMap; |
| BackRefMap NameBackReferences; |
| bool UseNameBackReferences; |
| |
| typedef llvm::DenseMap<void*, unsigned> ArgBackRefMap; |
| ArgBackRefMap TypeBackReferences; |
| |
| ASTContext &getASTContext() const { return Context.getASTContext(); } |
| |
| public: |
| MicrosoftCXXNameMangler(MangleContext &C, raw_ostream &Out_) |
| : Context(C), Out(Out_), UseNameBackReferences(true) { } |
| |
| raw_ostream &getStream() const { return Out; } |
| |
| void mangle(const NamedDecl *D, StringRef Prefix = "\01?"); |
| void mangleName(const NamedDecl *ND); |
| void mangleFunctionEncoding(const FunctionDecl *FD); |
| void mangleVariableEncoding(const VarDecl *VD); |
| void mangleNumber(int64_t Number); |
| void mangleNumber(const llvm::APSInt &Value); |
| void mangleType(QualType T, SourceRange Range, bool MangleQualifiers = true); |
| |
| private: |
| void disableBackReferences() { UseNameBackReferences = false; } |
| void mangleUnqualifiedName(const NamedDecl *ND) { |
| mangleUnqualifiedName(ND, ND->getDeclName()); |
| } |
| void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name); |
| void mangleSourceName(const IdentifierInfo *II); |
| void manglePostfix(const DeclContext *DC, bool NoFunction=false); |
| void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc); |
| void mangleQualifiers(Qualifiers Quals, bool IsMember); |
| void manglePointerQualifiers(Qualifiers Quals); |
| |
| void mangleUnscopedTemplateName(const TemplateDecl *ND); |
| void mangleTemplateInstantiationName(const TemplateDecl *TD, |
| const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs); |
| void mangleObjCMethodName(const ObjCMethodDecl *MD); |
| void mangleLocalName(const FunctionDecl *FD); |
| |
| void mangleArgumentType(QualType T, SourceRange Range); |
| |
| // Declare manglers for every type class. |
| #define ABSTRACT_TYPE(CLASS, PARENT) |
| #define NON_CANONICAL_TYPE(CLASS, PARENT) |
| #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \ |
| SourceRange Range); |
| #include "clang/AST/TypeNodes.def" |
| #undef ABSTRACT_TYPE |
| #undef NON_CANONICAL_TYPE |
| #undef TYPE |
| |
| void mangleType(const TagType*); |
| void mangleType(const FunctionType *T, const FunctionDecl *D, |
| bool IsStructor, bool IsInstMethod); |
| void mangleType(const ArrayType *T, bool IsGlobal); |
| void mangleExtraDimensions(QualType T); |
| void mangleFunctionClass(const FunctionDecl *FD); |
| void mangleCallingConvention(const FunctionType *T, bool IsInstMethod = false); |
| void mangleIntegerLiteral(QualType T, const llvm::APSInt &Number); |
| void mangleExpression(const Expr *E); |
| void mangleThrowSpecification(const FunctionProtoType *T); |
| |
| void mangleTemplateArgs( |
| const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs); |
| |
| }; |
| |
| /// MicrosoftMangleContext - Overrides the default MangleContext for the |
| /// Microsoft Visual C++ ABI. |
| class MicrosoftMangleContext : public MangleContext { |
| public: |
| MicrosoftMangleContext(ASTContext &Context, |
| DiagnosticsEngine &Diags) : MangleContext(Context, Diags) { } |
| virtual bool shouldMangleDeclName(const NamedDecl *D); |
| virtual void mangleName(const NamedDecl *D, raw_ostream &Out); |
| virtual void mangleThunk(const CXXMethodDecl *MD, |
| const ThunkInfo &Thunk, |
| raw_ostream &); |
| virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, |
| const ThisAdjustment &ThisAdjustment, |
| raw_ostream &); |
| virtual void mangleCXXVTable(const CXXRecordDecl *RD, |
| raw_ostream &); |
| virtual void mangleCXXVTT(const CXXRecordDecl *RD, |
| raw_ostream &); |
| virtual void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, |
| const CXXRecordDecl *Type, |
| raw_ostream &); |
| virtual void mangleCXXRTTI(QualType T, raw_ostream &); |
| virtual void mangleCXXRTTIName(QualType T, raw_ostream &); |
| virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, |
| raw_ostream &); |
| virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, |
| raw_ostream &); |
| virtual void mangleReferenceTemporary(const clang::VarDecl *, |
| raw_ostream &); |
| }; |
| |
| } |
| |
| static bool isInCLinkageSpecification(const Decl *D) { |
| D = D->getCanonicalDecl(); |
| for (const DeclContext *DC = D->getDeclContext(); |
| !DC->isTranslationUnit(); DC = DC->getParent()) { |
| if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC)) |
| return Linkage->getLanguage() == LinkageSpecDecl::lang_c; |
| } |
| |
| return false; |
| } |
| |
| bool MicrosoftMangleContext::shouldMangleDeclName(const NamedDecl *D) { |
| // In C, functions with no attributes never need to be mangled. Fastpath them. |
| if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs()) |
| return false; |
| |
| // Any decl can be declared with __asm("foo") on it, and this takes precedence |
| // over all other naming in the .o file. |
| if (D->hasAttr<AsmLabelAttr>()) |
| return true; |
| |
| // Clang's "overloadable" attribute extension to C/C++ implies name mangling |
| // (always) as does passing a C++ member function and a function |
| // whose name is not a simple identifier. |
| const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); |
| if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) || |
| !FD->getDeclName().isIdentifier())) |
| return true; |
| |
| // Otherwise, no mangling is done outside C++ mode. |
| if (!getASTContext().getLangOpts().CPlusPlus) |
| return false; |
| |
| // Variables at global scope with internal linkage are not mangled. |
| if (!FD) { |
| const DeclContext *DC = D->getDeclContext(); |
| if (DC->isTranslationUnit() && D->getLinkage() == InternalLinkage) |
| return false; |
| } |
| |
| // C functions and "main" are not mangled. |
| if ((FD && FD->isMain()) || isInCLinkageSpecification(D)) |
| return false; |
| |
| return true; |
| } |
| |
| void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, |
| StringRef Prefix) { |
| // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. |
| // Therefore it's really important that we don't decorate the |
| // name with leading underscores or leading/trailing at signs. So, by |
| // default, we emit an asm marker at the start so we get the name right. |
| // Callers can override this with a custom prefix. |
| |
| // Any decl can be declared with __asm("foo") on it, and this takes precedence |
| // over all other naming in the .o file. |
| if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) { |
| // If we have an asm name, then we use it as the mangling. |
| Out << '\01' << ALA->getLabel(); |
| return; |
| } |
| |
| // <mangled-name> ::= ? <name> <type-encoding> |
| Out << Prefix; |
| mangleName(D); |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) |
| mangleFunctionEncoding(FD); |
| else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| mangleVariableEncoding(VD); |
| else { |
| // TODO: Fields? Can MSVC even mangle them? |
| // Issue a diagnostic for now. |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this declaration yet"); |
| Diags.Report(D->getLocation(), DiagID) |
| << D->getSourceRange(); |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { |
| // <type-encoding> ::= <function-class> <function-type> |
| |
| // Don't mangle in the type if this isn't a decl we should typically mangle. |
| if (!Context.shouldMangleDeclName(FD)) |
| return; |
| |
| // We should never ever see a FunctionNoProtoType at this point. |
| // We don't even know how to mangle their types anyway :). |
| const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>(); |
| |
| bool InStructor = false, InInstMethod = false; |
| const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); |
| if (MD) { |
| if (MD->isInstance()) |
| InInstMethod = true; |
| if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) |
| InStructor = true; |
| } |
| |
| // First, the function class. |
| mangleFunctionClass(FD); |
| |
| mangleType(FT, FD, InStructor, InInstMethod); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { |
| // <type-encoding> ::= <storage-class> <variable-type> |
| // <storage-class> ::= 0 # private static member |
| // ::= 1 # protected static member |
| // ::= 2 # public static member |
| // ::= 3 # global |
| // ::= 4 # static local |
| |
| // The first character in the encoding (after the name) is the storage class. |
| if (VD->isStaticDataMember()) { |
| // If it's a static member, it also encodes the access level. |
| switch (VD->getAccess()) { |
| default: |
| case AS_private: Out << '0'; break; |
| case AS_protected: Out << '1'; break; |
| case AS_public: Out << '2'; break; |
| } |
| } |
| else if (!VD->isStaticLocal()) |
| Out << '3'; |
| else |
| Out << '4'; |
| // Now mangle the type. |
| // <variable-type> ::= <type> <cvr-qualifiers> |
| // ::= <type> <pointee-cvr-qualifiers> # pointers, references |
| // Pointers and references are odd. The type of 'int * const foo;' gets |
| // mangled as 'QAHA' instead of 'PAHB', for example. |
| TypeLoc TL = VD->getTypeSourceInfo()->getTypeLoc(); |
| QualType Ty = TL.getType(); |
| if (Ty->isPointerType() || Ty->isReferenceType()) { |
| mangleType(Ty, TL.getSourceRange()); |
| mangleQualifiers(Ty->getPointeeType().getQualifiers(), false); |
| } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) { |
| // Global arrays are funny, too. |
| mangleType(AT, true); |
| mangleQualifiers(Ty.getQualifiers(), false); |
| } else { |
| mangleType(Ty.getLocalUnqualifiedType(), TL.getSourceRange()); |
| mangleQualifiers(Ty.getLocalQualifiers(), false); |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) { |
| // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ |
| const DeclContext *DC = ND->getDeclContext(); |
| |
| // Always start with the unqualified name. |
| mangleUnqualifiedName(ND); |
| |
| // If this is an extern variable declared locally, the relevant DeclContext |
| // is that of the containing namespace, or the translation unit. |
| if (isa<FunctionDecl>(DC) && ND->hasLinkage()) |
| while (!DC->isNamespace() && !DC->isTranslationUnit()) |
| DC = DC->getParent(); |
| |
| manglePostfix(DC); |
| |
| // Terminate the whole name with an '@'. |
| Out << '@'; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { |
| // <number> ::= [?] <decimal digit> # 1 <= Number <= 10 |
| // ::= [?] <hex digit>+ @ # 0 or > 9; A = 0, B = 1, etc... |
| // ::= [?] @ # 0 (alternate mangling, not emitted by VC) |
| if (Number < 0) { |
| Out << '?'; |
| Number = -Number; |
| } |
| // There's a special shorter mangling for 0, but Microsoft |
| // chose not to use it. Instead, 0 gets mangled as "A@". Oh well... |
| if (Number >= 1 && Number <= 10) |
| Out << Number-1; |
| else { |
| // We have to build up the encoding in reverse order, so it will come |
| // out right when we write it out. |
| char Encoding[16]; |
| char *EndPtr = Encoding+sizeof(Encoding); |
| char *CurPtr = EndPtr; |
| do { |
| *--CurPtr = 'A' + (Number % 16); |
| Number /= 16; |
| } while (Number); |
| Out.write(CurPtr, EndPtr-CurPtr); |
| Out << '@'; |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleNumber(const llvm::APSInt &Value) { |
| if (Value.isSigned() && Value.isNegative()) { |
| Out << '?'; |
| mangleNumber(llvm::APSInt(Value.abs())); |
| return; |
| } |
| llvm::APSInt Temp(Value); |
| if (Value.uge(1) && Value.ule(10)) { |
| --Temp; |
| Temp.print(Out, false); |
| } else { |
| // We have to build up the encoding in reverse order, so it will come |
| // out right when we write it out. |
| char Encoding[64]; |
| char *EndPtr = Encoding+sizeof(Encoding); |
| char *CurPtr = EndPtr; |
| llvm::APSInt NibbleMask(Value.getBitWidth(), Value.isUnsigned()); |
| NibbleMask = 0xf; |
| for (int i = 0, e = (Value.getActiveBits() + 3) / 4; i != e; ++i) { |
| *--CurPtr = 'A' + Temp.And(NibbleMask).getLimitedValue(0xf); |
| Temp = Temp.lshr(4); |
| } |
| Out.write(CurPtr, EndPtr-CurPtr); |
| Out << '@'; |
| } |
| } |
| |
| static const TemplateDecl * |
| isTemplate(const NamedDecl *ND, |
| SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) { |
| // Check if we have a function template. |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){ |
| if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { |
| if (FD->getTemplateSpecializationArgsAsWritten()) { |
| const ASTTemplateArgumentListInfo *ArgList = |
| FD->getTemplateSpecializationArgsAsWritten(); |
| TemplateArgs.append(ArgList->getTemplateArgs(), |
| ArgList->getTemplateArgs() + |
| ArgList->NumTemplateArgs); |
| } else { |
| const TemplateArgumentList *ArgList = |
| FD->getTemplateSpecializationArgs(); |
| TemplateArgumentListInfo LI; |
| for (unsigned i = 0, e = ArgList->size(); i != e; ++i) |
| TemplateArgs.push_back(TemplateArgumentLoc(ArgList->get(i), |
| FD->getTypeSourceInfo())); |
| } |
| return TD; |
| } |
| } |
| |
| // Check if we have a class template. |
| if (const ClassTemplateSpecializationDecl *Spec = |
| dyn_cast<ClassTemplateSpecializationDecl>(ND)) { |
| TypeSourceInfo *TSI = Spec->getTypeAsWritten(); |
| if (TSI) { |
| TemplateSpecializationTypeLoc &TSTL = |
| cast<TemplateSpecializationTypeLoc>(TSI->getTypeLoc()); |
| TemplateArgumentListInfo LI(TSTL.getLAngleLoc(), TSTL.getRAngleLoc()); |
| for (unsigned i = 0, e = TSTL.getNumArgs(); i != e; ++i) |
| TemplateArgs.push_back(TSTL.getArgLoc(i)); |
| } else { |
| TemplateArgumentListInfo LI; |
| const TemplateArgumentList &ArgList = |
| Spec->getTemplateArgs(); |
| for (unsigned i = 0, e = ArgList.size(); i != e; ++i) |
| TemplateArgs.push_back(TemplateArgumentLoc(ArgList[i], |
| TemplateArgumentLocInfo())); |
| } |
| return Spec->getSpecializedTemplate(); |
| } |
| |
| return 0; |
| } |
| |
| void |
| MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, |
| DeclarationName Name) { |
| // <unqualified-name> ::= <operator-name> |
| // ::= <ctor-dtor-name> |
| // ::= <source-name> |
| // ::= <template-name> |
| SmallVector<TemplateArgumentLoc, 2> TemplateArgs; |
| // Check if we have a template. |
| if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { |
| // We have a template. |
| // Here comes the tricky thing: if we need to mangle something like |
| // void foo(A::X<Y>, B::X<Y>), |
| // the X<Y> part is aliased. However, if you need to mangle |
| // void foo(A::X<A::Y>, A::X<B::Y>), |
| // the A::X<> part is not aliased. |
| // That said, from the mangler's perspective we have a structure like this: |
| // namespace[s] -> type[ -> template-parameters] |
| // but from the Clang perspective we have |
| // type [ -> template-parameters] |
| // \-> namespace[s] |
| // What we do is we create a new mangler, mangle the same type (without |
| // a namespace suffix) using the extra mangler with back references |
| // disabled (to avoid infinite recursion) and then use the mangled type |
| // name as a key to check the mangling of different types for aliasing. |
| |
| std::string BackReferenceKey; |
| BackRefMap::iterator Found; |
| if (UseNameBackReferences) { |
| llvm::raw_string_ostream Stream(BackReferenceKey); |
| MicrosoftCXXNameMangler Extra(Context, Stream); |
| Extra.disableBackReferences(); |
| Extra.mangleUnqualifiedName(ND, Name); |
| Stream.flush(); |
| |
| Found = NameBackReferences.find(BackReferenceKey); |
| } |
| if (!UseNameBackReferences || Found == NameBackReferences.end()) { |
| mangleTemplateInstantiationName(TD, TemplateArgs); |
| if (UseNameBackReferences && NameBackReferences.size() < 10) { |
| size_t Size = NameBackReferences.size(); |
| NameBackReferences[BackReferenceKey] = Size; |
| } |
| } else { |
| Out << Found->second; |
| } |
| return; |
| } |
| |
| switch (Name.getNameKind()) { |
| case DeclarationName::Identifier: { |
| if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { |
| mangleSourceName(II); |
| break; |
| } |
| |
| // Otherwise, an anonymous entity. We must have a declaration. |
| assert(ND && "mangling empty name without declaration"); |
| |
| if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { |
| if (NS->isAnonymousNamespace()) { |
| Out << "?A"; |
| break; |
| } |
| } |
| |
| // We must have an anonymous struct. |
| const TagDecl *TD = cast<TagDecl>(ND); |
| if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { |
| assert(TD->getDeclContext() == D->getDeclContext() && |
| "Typedef should not be in another decl context!"); |
| assert(D->getDeclName().getAsIdentifierInfo() && |
| "Typedef was not named!"); |
| mangleSourceName(D->getDeclName().getAsIdentifierInfo()); |
| break; |
| } |
| |
| // When VC encounters an anonymous type with no tag and no typedef, |
| // it literally emits '<unnamed-tag>'. |
| Out << "<unnamed-tag>"; |
| break; |
| } |
| |
| case DeclarationName::ObjCZeroArgSelector: |
| case DeclarationName::ObjCOneArgSelector: |
| case DeclarationName::ObjCMultiArgSelector: |
| llvm_unreachable("Can't mangle Objective-C selector names here!"); |
| |
| case DeclarationName::CXXConstructorName: |
| Out << "?0"; |
| break; |
| |
| case DeclarationName::CXXDestructorName: |
| Out << "?1"; |
| break; |
| |
| case DeclarationName::CXXConversionFunctionName: |
| // <operator-name> ::= ?B # (cast) |
| // The target type is encoded as the return type. |
| Out << "?B"; |
| break; |
| |
| case DeclarationName::CXXOperatorName: |
| mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation()); |
| break; |
| |
| case DeclarationName::CXXLiteralOperatorName: { |
| // FIXME: Was this added in VS2010? Does MS even know how to mangle this? |
| DiagnosticsEngine Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this literal operator yet"); |
| Diags.Report(ND->getLocation(), DiagID); |
| break; |
| } |
| |
| case DeclarationName::CXXUsingDirective: |
| llvm_unreachable("Can't mangle a using directive name!"); |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC, |
| bool NoFunction) { |
| // <postfix> ::= <unqualified-name> [<postfix>] |
| // ::= <substitution> [<postfix>] |
| |
| if (!DC) return; |
| |
| while (isa<LinkageSpecDecl>(DC)) |
| DC = DC->getParent(); |
| |
| if (DC->isTranslationUnit()) |
| return; |
| |
| if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { |
| Context.mangleBlock(BD, Out); |
| Out << '@'; |
| return manglePostfix(DC->getParent(), NoFunction); |
| } |
| |
| if (NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC))) |
| return; |
| else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) |
| mangleObjCMethodName(Method); |
| else if (const FunctionDecl *Func = dyn_cast<FunctionDecl>(DC)) |
| mangleLocalName(Func); |
| else { |
| mangleUnqualifiedName(cast<NamedDecl>(DC)); |
| manglePostfix(DC->getParent(), NoFunction); |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, |
| SourceLocation Loc) { |
| switch (OO) { |
| // ?0 # constructor |
| // ?1 # destructor |
| // <operator-name> ::= ?2 # new |
| case OO_New: Out << "?2"; break; |
| // <operator-name> ::= ?3 # delete |
| case OO_Delete: Out << "?3"; break; |
| // <operator-name> ::= ?4 # = |
| case OO_Equal: Out << "?4"; break; |
| // <operator-name> ::= ?5 # >> |
| case OO_GreaterGreater: Out << "?5"; break; |
| // <operator-name> ::= ?6 # << |
| case OO_LessLess: Out << "?6"; break; |
| // <operator-name> ::= ?7 # ! |
| case OO_Exclaim: Out << "?7"; break; |
| // <operator-name> ::= ?8 # == |
| case OO_EqualEqual: Out << "?8"; break; |
| // <operator-name> ::= ?9 # != |
| case OO_ExclaimEqual: Out << "?9"; break; |
| // <operator-name> ::= ?A # [] |
| case OO_Subscript: Out << "?A"; break; |
| // ?B # conversion |
| // <operator-name> ::= ?C # -> |
| case OO_Arrow: Out << "?C"; break; |
| // <operator-name> ::= ?D # * |
| case OO_Star: Out << "?D"; break; |
| // <operator-name> ::= ?E # ++ |
| case OO_PlusPlus: Out << "?E"; break; |
| // <operator-name> ::= ?F # -- |
| case OO_MinusMinus: Out << "?F"; break; |
| // <operator-name> ::= ?G # - |
| case OO_Minus: Out << "?G"; break; |
| // <operator-name> ::= ?H # + |
| case OO_Plus: Out << "?H"; break; |
| // <operator-name> ::= ?I # & |
| case OO_Amp: Out << "?I"; break; |
| // <operator-name> ::= ?J # ->* |
| case OO_ArrowStar: Out << "?J"; break; |
| // <operator-name> ::= ?K # / |
| case OO_Slash: Out << "?K"; break; |
| // <operator-name> ::= ?L # % |
| case OO_Percent: Out << "?L"; break; |
| // <operator-name> ::= ?M # < |
| case OO_Less: Out << "?M"; break; |
| // <operator-name> ::= ?N # <= |
| case OO_LessEqual: Out << "?N"; break; |
| // <operator-name> ::= ?O # > |
| case OO_Greater: Out << "?O"; break; |
| // <operator-name> ::= ?P # >= |
| case OO_GreaterEqual: Out << "?P"; break; |
| // <operator-name> ::= ?Q # , |
| case OO_Comma: Out << "?Q"; break; |
| // <operator-name> ::= ?R # () |
| case OO_Call: Out << "?R"; break; |
| // <operator-name> ::= ?S # ~ |
| case OO_Tilde: Out << "?S"; break; |
| // <operator-name> ::= ?T # ^ |
| case OO_Caret: Out << "?T"; break; |
| // <operator-name> ::= ?U # | |
| case OO_Pipe: Out << "?U"; break; |
| // <operator-name> ::= ?V # && |
| case OO_AmpAmp: Out << "?V"; break; |
| // <operator-name> ::= ?W # || |
| case OO_PipePipe: Out << "?W"; break; |
| // <operator-name> ::= ?X # *= |
| case OO_StarEqual: Out << "?X"; break; |
| // <operator-name> ::= ?Y # += |
| case OO_PlusEqual: Out << "?Y"; break; |
| // <operator-name> ::= ?Z # -= |
| case OO_MinusEqual: Out << "?Z"; break; |
| // <operator-name> ::= ?_0 # /= |
| case OO_SlashEqual: Out << "?_0"; break; |
| // <operator-name> ::= ?_1 # %= |
| case OO_PercentEqual: Out << "?_1"; break; |
| // <operator-name> ::= ?_2 # >>= |
| case OO_GreaterGreaterEqual: Out << "?_2"; break; |
| // <operator-name> ::= ?_3 # <<= |
| case OO_LessLessEqual: Out << "?_3"; break; |
| // <operator-name> ::= ?_4 # &= |
| case OO_AmpEqual: Out << "?_4"; break; |
| // <operator-name> ::= ?_5 # |= |
| case OO_PipeEqual: Out << "?_5"; break; |
| // <operator-name> ::= ?_6 # ^= |
| case OO_CaretEqual: Out << "?_6"; break; |
| // ?_7 # vftable |
| // ?_8 # vbtable |
| // ?_9 # vcall |
| // ?_A # typeof |
| // ?_B # local static guard |
| // ?_C # string |
| // ?_D # vbase destructor |
| // ?_E # vector deleting destructor |
| // ?_F # default constructor closure |
| // ?_G # scalar deleting destructor |
| // ?_H # vector constructor iterator |
| // ?_I # vector destructor iterator |
| // ?_J # vector vbase constructor iterator |
| // ?_K # virtual displacement map |
| // ?_L # eh vector constructor iterator |
| // ?_M # eh vector destructor iterator |
| // ?_N # eh vector vbase constructor iterator |
| // ?_O # copy constructor closure |
| // ?_P<name> # udt returning <name> |
| // ?_Q # <unknown> |
| // ?_R0 # RTTI Type Descriptor |
| // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) |
| // ?_R2 # RTTI Base Class Array |
| // ?_R3 # RTTI Class Hierarchy Descriptor |
| // ?_R4 # RTTI Complete Object Locator |
| // ?_S # local vftable |
| // ?_T # local vftable constructor closure |
| // <operator-name> ::= ?_U # new[] |
| case OO_Array_New: Out << "?_U"; break; |
| // <operator-name> ::= ?_V # delete[] |
| case OO_Array_Delete: Out << "?_V"; break; |
| |
| case OO_Conditional: { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this conditional operator yet"); |
| Diags.Report(Loc, DiagID); |
| break; |
| } |
| |
| case OO_None: |
| case NUM_OVERLOADED_OPERATORS: |
| llvm_unreachable("Not an overloaded operator"); |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleSourceName(const IdentifierInfo *II) { |
| // <source name> ::= <identifier> @ |
| std::string key = II->getNameStart(); |
| BackRefMap::iterator Found; |
| if (UseNameBackReferences) |
| Found = NameBackReferences.find(key); |
| if (!UseNameBackReferences || Found == NameBackReferences.end()) { |
| Out << II->getName() << '@'; |
| if (UseNameBackReferences && NameBackReferences.size() < 10) { |
| size_t Size = NameBackReferences.size(); |
| NameBackReferences[key] = Size; |
| } |
| } else { |
| Out << Found->second; |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { |
| Context.mangleObjCMethodName(MD, Out); |
| } |
| |
| // Find out how many function decls live above this one and return an integer |
| // suitable for use as the number in a numbered anonymous scope. |
| // TODO: Memoize. |
| static unsigned getLocalNestingLevel(const FunctionDecl *FD) { |
| const DeclContext *DC = FD->getParent(); |
| int level = 1; |
| |
| while (DC && !DC->isTranslationUnit()) { |
| if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) level++; |
| DC = DC->getParent(); |
| } |
| |
| return 2*level; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleLocalName(const FunctionDecl *FD) { |
| // <nested-name> ::= <numbered-anonymous-scope> ? <mangled-name> |
| // <numbered-anonymous-scope> ::= ? <number> |
| // Even though the name is rendered in reverse order (e.g. |
| // A::B::C is rendered as C@B@A), VC numbers the scopes from outermost to |
| // innermost. So a method bar in class C local to function foo gets mangled |
| // as something like: |
| // ?bar@C@?1??foo@@YAXXZ@QAEXXZ |
| // This is more apparent when you have a type nested inside a method of a |
| // type nested inside a function. A method baz in class D local to method |
| // bar of class C local to function foo gets mangled as: |
| // ?baz@D@?3??bar@C@?1??foo@@YAXXZ@QAEXXZ@QAEXXZ |
| // This scheme is general enough to support GCC-style nested |
| // functions. You could have a method baz of class C inside a function bar |
| // inside a function foo, like so: |
| // ?baz@C@?3??bar@?1??foo@@YAXXZ@YAXXZ@QAEXXZ |
| int NestLevel = getLocalNestingLevel(FD); |
| Out << '?'; |
| mangleNumber(NestLevel); |
| Out << '?'; |
| mangle(FD, "?"); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleTemplateInstantiationName( |
| const TemplateDecl *TD, |
| const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) { |
| // <template-name> ::= <unscoped-template-name> <template-args> |
| // ::= <substitution> |
| // Always start with the unqualified name. |
| |
| // Templates have their own context for back references. |
| BackRefMap TemplateContext; |
| NameBackReferences.swap(TemplateContext); |
| |
| mangleUnscopedTemplateName(TD); |
| mangleTemplateArgs(TemplateArgs); |
| |
| NameBackReferences.swap(TemplateContext); |
| } |
| |
| void |
| MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) { |
| // <unscoped-template-name> ::= ?$ <unqualified-name> |
| Out << "?$"; |
| mangleUnqualifiedName(TD); |
| } |
| |
| void |
| MicrosoftCXXNameMangler::mangleIntegerLiteral(QualType T, |
| const llvm::APSInt &Value) { |
| // <integer-literal> ::= $0 <number> |
| Out << "$0"; |
| // Make sure booleans are encoded as 0/1. |
| if (T->isBooleanType()) |
| Out << (Value.getBoolValue() ? "0" : "A@"); |
| else |
| mangleNumber(Value); |
| } |
| |
| void |
| MicrosoftCXXNameMangler::mangleExpression(const Expr *E) { |
| // See if this is a constant expression. |
| llvm::APSInt Value; |
| if (E->isIntegerConstantExpr(Value, Context.getASTContext())) { |
| mangleIntegerLiteral(E->getType(), Value); |
| return; |
| } |
| |
| // As bad as this diagnostic is, it's better than crashing. |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot yet mangle expression type %0"); |
| Diags.Report(E->getExprLoc(), DiagID) |
| << E->getStmtClassName() << E->getSourceRange(); |
| } |
| |
| void |
| MicrosoftCXXNameMangler::mangleTemplateArgs( |
| const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) { |
| // <template-args> ::= {<type> | <integer-literal>}+ @ |
| unsigned NumTemplateArgs = TemplateArgs.size(); |
| for (unsigned i = 0; i < NumTemplateArgs; ++i) { |
| const TemplateArgumentLoc &TAL = TemplateArgs[i]; |
| const TemplateArgument &TA = TAL.getArgument(); |
| switch (TA.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Can't mangle null template arguments!"); |
| case TemplateArgument::Type: |
| mangleType(TA.getAsType(), TAL.getSourceRange()); |
| break; |
| case TemplateArgument::Integral: |
| mangleIntegerLiteral(TA.getIntegralType(), TA.getAsIntegral()); |
| break; |
| case TemplateArgument::Expression: |
| mangleExpression(TA.getAsExpr()); |
| break; |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: |
| case TemplateArgument::Declaration: |
| case TemplateArgument::NullPtr: |
| case TemplateArgument::Pack: { |
| // Issue a diagnostic. |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this %select{ERROR|ERROR|pointer/reference|nullptr|" |
| "integral|template|template pack expansion|ERROR|parameter pack}0 " |
| "template argument yet"); |
| Diags.Report(TAL.getLocation(), DiagID) |
| << TA.getKind() |
| << TAL.getSourceRange(); |
| } |
| } |
| } |
| Out << '@'; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, |
| bool IsMember) { |
| // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers> |
| // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); |
| // 'I' means __restrict (32/64-bit). |
| // Note that the MSVC __restrict keyword isn't the same as the C99 restrict |
| // keyword! |
| // <base-cvr-qualifiers> ::= A # near |
| // ::= B # near const |
| // ::= C # near volatile |
| // ::= D # near const volatile |
| // ::= E # far (16-bit) |
| // ::= F # far const (16-bit) |
| // ::= G # far volatile (16-bit) |
| // ::= H # far const volatile (16-bit) |
| // ::= I # huge (16-bit) |
| // ::= J # huge const (16-bit) |
| // ::= K # huge volatile (16-bit) |
| // ::= L # huge const volatile (16-bit) |
| // ::= M <basis> # based |
| // ::= N <basis> # based const |
| // ::= O <basis> # based volatile |
| // ::= P <basis> # based const volatile |
| // ::= Q # near member |
| // ::= R # near const member |
| // ::= S # near volatile member |
| // ::= T # near const volatile member |
| // ::= U # far member (16-bit) |
| // ::= V # far const member (16-bit) |
| // ::= W # far volatile member (16-bit) |
| // ::= X # far const volatile member (16-bit) |
| // ::= Y # huge member (16-bit) |
| // ::= Z # huge const member (16-bit) |
| // ::= 0 # huge volatile member (16-bit) |
| // ::= 1 # huge const volatile member (16-bit) |
| // ::= 2 <basis> # based member |
| // ::= 3 <basis> # based const member |
| // ::= 4 <basis> # based volatile member |
| // ::= 5 <basis> # based const volatile member |
| // ::= 6 # near function (pointers only) |
| // ::= 7 # far function (pointers only) |
| // ::= 8 # near method (pointers only) |
| // ::= 9 # far method (pointers only) |
| // ::= _A <basis> # based function (pointers only) |
| // ::= _B <basis> # based function (far?) (pointers only) |
| // ::= _C <basis> # based method (pointers only) |
| // ::= _D <basis> # based method (far?) (pointers only) |
| // ::= _E # block (Clang) |
| // <basis> ::= 0 # __based(void) |
| // ::= 1 # __based(segment)? |
| // ::= 2 <name> # __based(name) |
| // ::= 3 # ? |
| // ::= 4 # ? |
| // ::= 5 # not really based |
| bool HasConst = Quals.hasConst(), |
| HasVolatile = Quals.hasVolatile(); |
| if (!IsMember) { |
| if (HasConst && HasVolatile) { |
| Out << 'D'; |
| } else if (HasVolatile) { |
| Out << 'C'; |
| } else if (HasConst) { |
| Out << 'B'; |
| } else { |
| Out << 'A'; |
| } |
| } else { |
| if (HasConst && HasVolatile) { |
| Out << 'T'; |
| } else if (HasVolatile) { |
| Out << 'S'; |
| } else if (HasConst) { |
| Out << 'R'; |
| } else { |
| Out << 'Q'; |
| } |
| } |
| |
| // FIXME: For now, just drop all extension qualifiers on the floor. |
| } |
| |
| void MicrosoftCXXNameMangler::manglePointerQualifiers(Qualifiers Quals) { |
| // <pointer-cvr-qualifiers> ::= P # no qualifiers |
| // ::= Q # const |
| // ::= R # volatile |
| // ::= S # const volatile |
| bool HasConst = Quals.hasConst(), |
| HasVolatile = Quals.hasVolatile(); |
| if (HasConst && HasVolatile) { |
| Out << 'S'; |
| } else if (HasVolatile) { |
| Out << 'R'; |
| } else if (HasConst) { |
| Out << 'Q'; |
| } else { |
| Out << 'P'; |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleArgumentType(QualType T, |
| SourceRange Range) { |
| void *TypePtr = getASTContext().getCanonicalType(T).getAsOpaquePtr(); |
| ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr); |
| |
| if (Found == TypeBackReferences.end()) { |
| size_t OutSizeBefore = Out.GetNumBytesInBuffer(); |
| |
| mangleType(T, Range, false); |
| |
| // See if it's worth creating a back reference. |
| // Only types longer than 1 character are considered |
| // and only 10 back references slots are available: |
| bool LongerThanOneChar = (Out.GetNumBytesInBuffer() - OutSizeBefore > 1); |
| if (LongerThanOneChar && TypeBackReferences.size() < 10) { |
| size_t Size = TypeBackReferences.size(); |
| TypeBackReferences[TypePtr] = Size; |
| } |
| } else { |
| Out << Found->second; |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range, |
| bool MangleQualifiers) { |
| // Only operate on the canonical type! |
| T = getASTContext().getCanonicalType(T); |
| |
| Qualifiers Quals = T.getLocalQualifiers(); |
| // We have to mangle these now, while we still have enough information. |
| if (T->isAnyPointerType() || T->isMemberPointerType() || |
| T->isBlockPointerType()) { |
| manglePointerQualifiers(Quals); |
| } else if (Quals && MangleQualifiers) { |
| mangleQualifiers(Quals, false); |
| } |
| |
| SplitQualType split = T.split(); |
| const Type *ty = split.Ty; |
| |
| // If we're mangling a qualified array type, push the qualifiers to |
| // the element type. |
| if (split.Quals && isa<ArrayType>(T)) { |
| ty = Context.getASTContext().getAsArrayType(T); |
| } |
| |
| switch (ty->getTypeClass()) { |
| #define ABSTRACT_TYPE(CLASS, PARENT) |
| #define NON_CANONICAL_TYPE(CLASS, PARENT) \ |
| case Type::CLASS: \ |
| llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ |
| return; |
| #define TYPE(CLASS, PARENT) \ |
| case Type::CLASS: \ |
| mangleType(cast<CLASS##Type>(ty), Range); \ |
| break; |
| #include "clang/AST/TypeNodes.def" |
| #undef ABSTRACT_TYPE |
| #undef NON_CANONICAL_TYPE |
| #undef TYPE |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, |
| SourceRange Range) { |
| // <type> ::= <builtin-type> |
| // <builtin-type> ::= X # void |
| // ::= C # signed char |
| // ::= D # char |
| // ::= E # unsigned char |
| // ::= F # short |
| // ::= G # unsigned short (or wchar_t if it's not a builtin) |
| // ::= H # int |
| // ::= I # unsigned int |
| // ::= J # long |
| // ::= K # unsigned long |
| // L # <none> |
| // ::= M # float |
| // ::= N # double |
| // ::= O # long double (__float80 is mangled differently) |
| // ::= _J # long long, __int64 |
| // ::= _K # unsigned long long, __int64 |
| // ::= _L # __int128 |
| // ::= _M # unsigned __int128 |
| // ::= _N # bool |
| // _O # <array in parameter> |
| // ::= _T # __float80 (Intel) |
| // ::= _W # wchar_t |
| // ::= _Z # __float80 (Digital Mars) |
| switch (T->getKind()) { |
| case BuiltinType::Void: Out << 'X'; break; |
| case BuiltinType::SChar: Out << 'C'; break; |
| case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break; |
| case BuiltinType::UChar: Out << 'E'; break; |
| case BuiltinType::Short: Out << 'F'; break; |
| case BuiltinType::UShort: Out << 'G'; break; |
| case BuiltinType::Int: Out << 'H'; break; |
| case BuiltinType::UInt: Out << 'I'; break; |
| case BuiltinType::Long: Out << 'J'; break; |
| case BuiltinType::ULong: Out << 'K'; break; |
| case BuiltinType::Float: Out << 'M'; break; |
| case BuiltinType::Double: Out << 'N'; break; |
| // TODO: Determine size and mangle accordingly |
| case BuiltinType::LongDouble: Out << 'O'; break; |
| case BuiltinType::LongLong: Out << "_J"; break; |
| case BuiltinType::ULongLong: Out << "_K"; break; |
| case BuiltinType::Int128: Out << "_L"; break; |
| case BuiltinType::UInt128: Out << "_M"; break; |
| case BuiltinType::Bool: Out << "_N"; break; |
| case BuiltinType::WChar_S: |
| case BuiltinType::WChar_U: Out << "_W"; break; |
| |
| #define BUILTIN_TYPE(Id, SingletonId) |
| #define PLACEHOLDER_TYPE(Id, SingletonId) \ |
| case BuiltinType::Id: |
| #include "clang/AST/BuiltinTypes.def" |
| case BuiltinType::Dependent: |
| llvm_unreachable("placeholder types shouldn't get to name mangling"); |
| |
| case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break; |
| case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break; |
| case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break; |
| |
| case BuiltinType::NullPtr: Out << "$$T"; break; |
| |
| case BuiltinType::Char16: |
| case BuiltinType::Char32: |
| case BuiltinType::Half: { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this built-in %0 type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << T->getName(Context.getASTContext().getPrintingPolicy()) |
| << Range; |
| break; |
| } |
| } |
| } |
| |
| // <type> ::= <function-type> |
| void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, |
| SourceRange) { |
| // Structors only appear in decls, so at this point we know it's not a |
| // structor type. |
| // FIXME: This may not be lambda-friendly. |
| Out << "$$A6"; |
| mangleType(T, NULL, false, false); |
| } |
| void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T, |
| SourceRange) { |
| llvm_unreachable("Can't mangle K&R function prototypes"); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const FunctionType *T, |
| const FunctionDecl *D, |
| bool IsStructor, |
| bool IsInstMethod) { |
| // <function-type> ::= <this-cvr-qualifiers> <calling-convention> |
| // <return-type> <argument-list> <throw-spec> |
| const FunctionProtoType *Proto = cast<FunctionProtoType>(T); |
| |
| // If this is a C++ instance method, mangle the CVR qualifiers for the |
| // this pointer. |
| if (IsInstMethod) |
| mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false); |
| |
| mangleCallingConvention(T, IsInstMethod); |
| |
| // <return-type> ::= <type> |
| // ::= @ # structors (they have no declared return type) |
| if (IsStructor) |
| Out << '@'; |
| else { |
| QualType Result = Proto->getResultType(); |
| const Type* RT = Result.getTypePtr(); |
| if (!RT->isAnyPointerType() && !RT->isReferenceType()) { |
| if (Result.hasQualifiers() || !RT->isBuiltinType()) |
| Out << '?'; |
| if (!RT->isBuiltinType() && !Result.hasQualifiers()) { |
| // Lack of qualifiers for user types is mangled as 'A'. |
| Out << 'A'; |
| } |
| } |
| |
| // FIXME: Get the source range for the result type. Or, better yet, |
| // implement the unimplemented stuff so we don't need accurate source |
| // location info anymore :). |
| mangleType(Result, SourceRange()); |
| } |
| |
| // <argument-list> ::= X # void |
| // ::= <type>+ @ |
| // ::= <type>* Z # varargs |
| if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) { |
| Out << 'X'; |
| } else { |
| if (D) { |
| // If we got a decl, use the type-as-written to make sure arrays |
| // get mangled right. Note that we can't rely on the TSI |
| // existing if (for example) the parameter was synthesized. |
| for (FunctionDecl::param_const_iterator Parm = D->param_begin(), |
| ParmEnd = D->param_end(); Parm != ParmEnd; ++Parm) { |
| TypeSourceInfo *TSI = (*Parm)->getTypeSourceInfo(); |
| QualType Type = TSI ? TSI->getType() : (*Parm)->getType(); |
| mangleArgumentType(Type, (*Parm)->getSourceRange()); |
| } |
| } else { |
| // Happens for function pointer type arguments for example. |
| for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(), |
| ArgEnd = Proto->arg_type_end(); |
| Arg != ArgEnd; ++Arg) |
| mangleArgumentType(*Arg, SourceRange()); |
| } |
| // <builtin-type> ::= Z # ellipsis |
| if (Proto->isVariadic()) |
| Out << 'Z'; |
| else |
| Out << '@'; |
| } |
| |
| mangleThrowSpecification(Proto); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { |
| // <function-class> ::= A # private: near |
| // ::= B # private: far |
| // ::= C # private: static near |
| // ::= D # private: static far |
| // ::= E # private: virtual near |
| // ::= F # private: virtual far |
| // ::= G # private: thunk near |
| // ::= H # private: thunk far |
| // ::= I # protected: near |
| // ::= J # protected: far |
| // ::= K # protected: static near |
| // ::= L # protected: static far |
| // ::= M # protected: virtual near |
| // ::= N # protected: virtual far |
| // ::= O # protected: thunk near |
| // ::= P # protected: thunk far |
| // ::= Q # public: near |
| // ::= R # public: far |
| // ::= S # public: static near |
| // ::= T # public: static far |
| // ::= U # public: virtual near |
| // ::= V # public: virtual far |
| // ::= W # public: thunk near |
| // ::= X # public: thunk far |
| // ::= Y # global near |
| // ::= Z # global far |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| switch (MD->getAccess()) { |
| default: |
| case AS_private: |
| if (MD->isStatic()) |
| Out << 'C'; |
| else if (MD->isVirtual()) |
| Out << 'E'; |
| else |
| Out << 'A'; |
| break; |
| case AS_protected: |
| if (MD->isStatic()) |
| Out << 'K'; |
| else if (MD->isVirtual()) |
| Out << 'M'; |
| else |
| Out << 'I'; |
| break; |
| case AS_public: |
| if (MD->isStatic()) |
| Out << 'S'; |
| else if (MD->isVirtual()) |
| Out << 'U'; |
| else |
| Out << 'Q'; |
| } |
| } else |
| Out << 'Y'; |
| } |
| void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T, |
| bool IsInstMethod) { |
| // <calling-convention> ::= A # __cdecl |
| // ::= B # __export __cdecl |
| // ::= C # __pascal |
| // ::= D # __export __pascal |
| // ::= E # __thiscall |
| // ::= F # __export __thiscall |
| // ::= G # __stdcall |
| // ::= H # __export __stdcall |
| // ::= I # __fastcall |
| // ::= J # __export __fastcall |
| // The 'export' calling conventions are from a bygone era |
| // (*cough*Win16*cough*) when functions were declared for export with |
| // that keyword. (It didn't actually export them, it just made them so |
| // that they could be in a DLL and somebody from another module could call |
| // them.) |
| CallingConv CC = T->getCallConv(); |
| if (CC == CC_Default) { |
| if (IsInstMethod) { |
| const FunctionProtoType *FPT = |
| T->getCanonicalTypeUnqualified().castAs<FunctionProtoType>(); |
| bool isVariadic = FPT->isVariadic(); |
| CC = getASTContext().getDefaultCXXMethodCallConv(isVariadic); |
| } else { |
| CC = CC_C; |
| } |
| } |
| switch (CC) { |
| default: |
| llvm_unreachable("Unsupported CC for mangling"); |
| case CC_Default: |
| case CC_C: Out << 'A'; break; |
| case CC_X86Pascal: Out << 'C'; break; |
| case CC_X86ThisCall: Out << 'E'; break; |
| case CC_X86StdCall: Out << 'G'; break; |
| case CC_X86FastCall: Out << 'I'; break; |
| } |
| } |
| void MicrosoftCXXNameMangler::mangleThrowSpecification( |
| const FunctionProtoType *FT) { |
| // <throw-spec> ::= Z # throw(...) (default) |
| // ::= @ # throw() or __declspec/__attribute__((nothrow)) |
| // ::= <type>+ |
| // NOTE: Since the Microsoft compiler ignores throw specifications, they are |
| // all actually mangled as 'Z'. (They're ignored because their associated |
| // functionality isn't implemented, and probably never will be.) |
| Out << 'Z'; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T, |
| SourceRange Range) { |
| // Probably should be mangled as a template instantiation; need to see what |
| // VC does first. |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this unresolved dependent type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type> |
| // <union-type> ::= T <name> |
| // <struct-type> ::= U <name> |
| // <class-type> ::= V <name> |
| // <enum-type> ::= W <size> <name> |
| void MicrosoftCXXNameMangler::mangleType(const EnumType *T, SourceRange) { |
| mangleType(cast<TagType>(T)); |
| } |
| void MicrosoftCXXNameMangler::mangleType(const RecordType *T, SourceRange) { |
| mangleType(cast<TagType>(T)); |
| } |
| void MicrosoftCXXNameMangler::mangleType(const TagType *T) { |
| switch (T->getDecl()->getTagKind()) { |
| case TTK_Union: |
| Out << 'T'; |
| break; |
| case TTK_Struct: |
| case TTK_Interface: |
| Out << 'U'; |
| break; |
| case TTK_Class: |
| Out << 'V'; |
| break; |
| case TTK_Enum: |
| Out << 'W'; |
| Out << getASTContext().getTypeSizeInChars( |
| cast<EnumDecl>(T->getDecl())->getIntegerType()).getQuantity(); |
| break; |
| } |
| mangleName(T->getDecl()); |
| } |
| |
| // <type> ::= <array-type> |
| // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> |
| // [Y <dimension-count> <dimension>+] |
| // <element-type> # as global |
| // ::= Q <cvr-qualifiers> [Y <dimension-count> <dimension>+] |
| // <element-type> # as param |
| // It's supposed to be the other way around, but for some strange reason, it |
| // isn't. Today this behavior is retained for the sole purpose of backwards |
| // compatibility. |
| void MicrosoftCXXNameMangler::mangleType(const ArrayType *T, bool IsGlobal) { |
| // This isn't a recursive mangling, so now we have to do it all in this |
| // one call. |
| if (IsGlobal) { |
| manglePointerQualifiers(T->getElementType().getQualifiers()); |
| } else { |
| Out << 'Q'; |
| } |
| mangleExtraDimensions(T->getElementType()); |
| } |
| void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, |
| SourceRange) { |
| mangleType(cast<ArrayType>(T), false); |
| } |
| void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, |
| SourceRange) { |
| mangleType(cast<ArrayType>(T), false); |
| } |
| void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T, |
| SourceRange) { |
| mangleType(cast<ArrayType>(T), false); |
| } |
| void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T, |
| SourceRange) { |
| mangleType(cast<ArrayType>(T), false); |
| } |
| void MicrosoftCXXNameMangler::mangleExtraDimensions(QualType ElementTy) { |
| SmallVector<llvm::APInt, 3> Dimensions; |
| for (;;) { |
| if (const ConstantArrayType *CAT = |
| getASTContext().getAsConstantArrayType(ElementTy)) { |
| Dimensions.push_back(CAT->getSize()); |
| ElementTy = CAT->getElementType(); |
| } else if (ElementTy->isVariableArrayType()) { |
| const VariableArrayType *VAT = |
| getASTContext().getAsVariableArrayType(ElementTy); |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this variable-length array yet"); |
| Diags.Report(VAT->getSizeExpr()->getExprLoc(), DiagID) |
| << VAT->getBracketsRange(); |
| return; |
| } else if (ElementTy->isDependentSizedArrayType()) { |
| // The dependent expression has to be folded into a constant (TODO). |
| const DependentSizedArrayType *DSAT = |
| getASTContext().getAsDependentSizedArrayType(ElementTy); |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this dependent-length array yet"); |
| Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID) |
| << DSAT->getBracketsRange(); |
| return; |
| } else if (ElementTy->isIncompleteArrayType()) continue; |
| else break; |
| } |
| mangleQualifiers(ElementTy.getQualifiers(), false); |
| // If there are any additional dimensions, mangle them now. |
| if (Dimensions.size() > 0) { |
| Out << 'Y'; |
| // <dimension-count> ::= <number> # number of extra dimensions |
| mangleNumber(Dimensions.size()); |
| for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim) { |
| mangleNumber(Dimensions[Dim].getLimitedValue()); |
| } |
| } |
| mangleType(ElementTy.getLocalUnqualifiedType(), SourceRange()); |
| } |
| |
| // <type> ::= <pointer-to-member-type> |
| // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> |
| // <class name> <type> |
| void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, |
| SourceRange Range) { |
| QualType PointeeType = T->getPointeeType(); |
| if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) { |
| Out << '8'; |
| mangleName(T->getClass()->castAs<RecordType>()->getDecl()); |
| mangleType(FPT, NULL, false, true); |
| } else { |
| mangleQualifiers(PointeeType.getQualifiers(), true); |
| mangleName(T->getClass()->castAs<RecordType>()->getDecl()); |
| mangleType(PointeeType.getLocalUnqualifiedType(), Range); |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this template type parameter type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType( |
| const SubstTemplateTypeParmPackType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this substituted parameter pack yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| // <type> ::= <pointer-type> |
| // <pointer-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> <type> |
| void MicrosoftCXXNameMangler::mangleType(const PointerType *T, |
| SourceRange Range) { |
| QualType PointeeTy = T->getPointeeType(); |
| if (PointeeTy->isArrayType()) { |
| // Pointers to arrays are mangled like arrays. |
| mangleExtraDimensions(PointeeTy); |
| } else if (const FunctionType *FT = PointeeTy->getAs<FunctionType>()) { |
| // Function pointers are special. |
| Out << '6'; |
| mangleType(FT, NULL, false, false); |
| } else { |
| mangleQualifiers(PointeeTy.getQualifiers(), false); |
| mangleType(PointeeTy, Range, false); |
| } |
| } |
| void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T, |
| SourceRange Range) { |
| // Object pointers never have qualifiers. |
| Out << 'A'; |
| mangleType(T->getPointeeType(), Range); |
| } |
| |
| // <type> ::= <reference-type> |
| // <reference-type> ::= A <cvr-qualifiers> <type> |
| void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T, |
| SourceRange Range) { |
| Out << 'A'; |
| QualType PointeeTy = T->getPointeeType(); |
| if (!PointeeTy.hasQualifiers()) |
| // Lack of qualifiers is mangled as 'A'. |
| Out << 'A'; |
| mangleType(PointeeTy, Range); |
| } |
| |
| // <type> ::= <r-value-reference-type> |
| // <r-value-reference-type> ::= $$Q <cvr-qualifiers> <type> |
| void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T, |
| SourceRange Range) { |
| Out << "$$Q"; |
| QualType PointeeTy = T->getPointeeType(); |
| if (!PointeeTy.hasQualifiers()) |
| // Lack of qualifiers is mangled as 'A'. |
| Out << 'A'; |
| mangleType(PointeeTy, Range); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this complex number type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const VectorType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this vector type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this extended vector type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this dependent-sized extended vector type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, |
| SourceRange) { |
| // ObjC interfaces have structs underlying them. |
| Out << 'U'; |
| mangleName(T->getDecl()); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, |
| SourceRange Range) { |
| // We don't allow overloading by different protocol qualification, |
| // so mangling them isn't necessary. |
| mangleType(T->getBaseType(), Range); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T, |
| SourceRange Range) { |
| Out << "_E"; |
| |
| QualType pointee = T->getPointeeType(); |
| mangleType(pointee->castAs<FunctionProtoType>(), NULL, false, false); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this injected class name type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this template specialization type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this dependent name type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType( |
| const DependentTemplateSpecializationType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this dependent template specialization type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this pack expansion yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this typeof(type) yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this typeof(expression) yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this decltype() yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this unary transform type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const AutoType *T, SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this 'auto' type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this C11 atomic type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftMangleContext::mangleName(const NamedDecl *D, |
| raw_ostream &Out) { |
| assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && |
| "Invalid mangleName() call, argument is not a variable or function!"); |
| assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && |
| "Invalid mangleName() call on 'structor decl!"); |
| |
| PrettyStackTraceDecl CrashInfo(D, SourceLocation(), |
| getASTContext().getSourceManager(), |
| "Mangling declaration"); |
| |
| MicrosoftCXXNameMangler Mangler(*this, Out); |
| return Mangler.mangle(D); |
| } |
| void MicrosoftMangleContext::mangleThunk(const CXXMethodDecl *MD, |
| const ThunkInfo &Thunk, |
| raw_ostream &) { |
| unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle thunk for this method yet"); |
| getDiags().Report(MD->getLocation(), DiagID); |
| } |
| void MicrosoftMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD, |
| CXXDtorType Type, |
| const ThisAdjustment &, |
| raw_ostream &) { |
| unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle thunk for this destructor yet"); |
| getDiags().Report(DD->getLocation(), DiagID); |
| } |
| void MicrosoftMangleContext::mangleCXXVTable(const CXXRecordDecl *RD, |
| raw_ostream &Out) { |
| // <mangled-name> ::= ? <operator-name> <class-name> <storage-class> |
| // <cvr-qualifiers> [<name>] @ |
| // <operator-name> ::= _7 # vftable |
| // ::= _8 # vbtable |
| // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> |
| // is always '6' for vftables and '7' for vbtables. (The difference is |
| // beyond me.) |
| // TODO: vbtables. |
| MicrosoftCXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "\01??_7"; |
| Mangler.mangleName(RD); |
| Mangler.getStream() << "6B"; |
| // TODO: If the class has more than one vtable, mangle in the class it came |
| // from. |
| Mangler.getStream() << '@'; |
| } |
| void MicrosoftMangleContext::mangleCXXVTT(const CXXRecordDecl *RD, |
| raw_ostream &) { |
| llvm_unreachable("The MS C++ ABI does not have virtual table tables!"); |
| } |
| void MicrosoftMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD, |
| int64_t Offset, |
| const CXXRecordDecl *Type, |
| raw_ostream &) { |
| llvm_unreachable("The MS C++ ABI does not have constructor vtables!"); |
| } |
| void MicrosoftMangleContext::mangleCXXRTTI(QualType T, |
| raw_ostream &) { |
| // FIXME: Give a location... |
| unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle RTTI descriptors for type %0 yet"); |
| getDiags().Report(DiagID) |
| << T.getBaseTypeIdentifier(); |
| } |
| void MicrosoftMangleContext::mangleCXXRTTIName(QualType T, |
| raw_ostream &) { |
| // FIXME: Give a location... |
| unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle the name of type %0 into RTTI descriptors yet"); |
| getDiags().Report(DiagID) |
| << T.getBaseTypeIdentifier(); |
| } |
| void MicrosoftMangleContext::mangleCXXCtor(const CXXConstructorDecl *D, |
| CXXCtorType Type, |
| raw_ostream & Out) { |
| MicrosoftCXXNameMangler mangler(*this, Out); |
| mangler.mangle(D); |
| } |
| void MicrosoftMangleContext::mangleCXXDtor(const CXXDestructorDecl *D, |
| CXXDtorType Type, |
| raw_ostream & Out) { |
| MicrosoftCXXNameMangler mangler(*this, Out); |
| mangler.mangle(D); |
| } |
| void MicrosoftMangleContext::mangleReferenceTemporary(const clang::VarDecl *VD, |
| raw_ostream &) { |
| unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this reference temporary yet"); |
| getDiags().Report(VD->getLocation(), DiagID); |
| } |
| |
| MangleContext *clang::createMicrosoftMangleContext(ASTContext &Context, |
| DiagnosticsEngine &Diags) { |
| return new MicrosoftMangleContext(Context, Diags); |
| } |