| //== BasicConstraintManager.cpp - Manage basic constraints.------*- C++ -*--==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines BasicConstraintManager, a class that tracks simple |
| // equality and inequality constraints on symbolic values of GRState. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Analysis/PathSensitive/ConstraintManager.h" |
| #include "clang/Analysis/PathSensitive/GRState.h" |
| #include "clang/Analysis/PathSensitive/GRStateTrait.h" |
| #include "clang/Analysis/PathSensitive/GRTransferFuncs.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace clang; |
| |
| |
| namespace { class VISIBILITY_HIDDEN ConstNotEq {}; } |
| namespace { class VISIBILITY_HIDDEN ConstEq {}; } |
| |
| typedef llvm::ImmutableMap<SymbolRef,GRState::IntSetTy> ConstNotEqTy; |
| typedef llvm::ImmutableMap<SymbolRef,const llvm::APSInt*> ConstEqTy; |
| |
| static int ConstEqIndex = 0; |
| static int ConstNotEqIndex = 0; |
| |
| namespace clang { |
| template<> |
| struct GRStateTrait<ConstNotEq> : public GRStatePartialTrait<ConstNotEqTy> { |
| static inline void* GDMIndex() { return &ConstNotEqIndex; } |
| }; |
| |
| template<> |
| struct GRStateTrait<ConstEq> : public GRStatePartialTrait<ConstEqTy> { |
| static inline void* GDMIndex() { return &ConstEqIndex; } |
| }; |
| } |
| |
| namespace { |
| // BasicConstraintManager only tracks equality and inequality constraints of |
| // constants and integer variables. |
| class VISIBILITY_HIDDEN BasicConstraintManager : public ConstraintManager { |
| GRStateManager& StateMgr; |
| GRState::IntSetTy::Factory ISetFactory; |
| public: |
| BasicConstraintManager(GRStateManager& statemgr) |
| : StateMgr(statemgr), ISetFactory(statemgr.getAllocator()) {} |
| |
| virtual const GRState* Assume(const GRState* St, SVal Cond, |
| bool Assumption, bool& isFeasible); |
| |
| const GRState* Assume(const GRState* St, Loc Cond, bool Assumption, |
| bool& isFeasible); |
| |
| const GRState* AssumeAux(const GRState* St, Loc Cond,bool Assumption, |
| bool& isFeasible); |
| |
| const GRState* Assume(const GRState* St, NonLoc Cond, bool Assumption, |
| bool& isFeasible); |
| |
| const GRState* AssumeAux(const GRState* St, NonLoc Cond, bool Assumption, |
| bool& isFeasible); |
| |
| const GRState* AssumeSymInt(const GRState* St, bool Assumption, |
| const SymIntConstraint& C, bool& isFeasible); |
| |
| const GRState* AssumeSymNE(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V, bool& isFeasible); |
| |
| const GRState* AssumeSymEQ(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V, bool& isFeasible); |
| |
| const GRState* AssumeSymLT(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V, bool& isFeasible); |
| |
| const GRState* AssumeSymGT(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V, bool& isFeasible); |
| |
| const GRState* AssumeSymGE(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V, bool& isFeasible); |
| |
| const GRState* AssumeSymLE(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V, bool& isFeasible); |
| |
| const GRState* AssumeInBound(const GRState* St, SVal Idx, SVal UpperBound, |
| bool Assumption, bool& isFeasible); |
| |
| const GRState* AddEQ(const GRState* St, SymbolRef sym, const llvm::APSInt& V); |
| |
| const GRState* AddNE(const GRState* St, SymbolRef sym, const llvm::APSInt& V); |
| |
| const llvm::APSInt* getSymVal(const GRState* St, SymbolRef sym); |
| bool isNotEqual(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const; |
| bool isEqual(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const; |
| |
| const GRState* RemoveDeadBindings(const GRState* St, SymbolReaper& SymReaper); |
| |
| |
| void print(const GRState* St, std::ostream& Out, |
| const char* nl, const char *sep); |
| |
| private: |
| BasicValueFactory& getBasicVals() { return StateMgr.getBasicVals(); } |
| }; |
| |
| } // end anonymous namespace |
| |
| ConstraintManager* clang::CreateBasicConstraintManager(GRStateManager& StateMgr) |
| { |
| return new BasicConstraintManager(StateMgr); |
| } |
| |
| const GRState* BasicConstraintManager::Assume(const GRState* St, SVal Cond, |
| bool Assumption, bool& isFeasible) { |
| if (Cond.isUnknown()) { |
| isFeasible = true; |
| return St; |
| } |
| |
| if (isa<NonLoc>(Cond)) |
| return Assume(St, cast<NonLoc>(Cond), Assumption, isFeasible); |
| else |
| return Assume(St, cast<Loc>(Cond), Assumption, isFeasible); |
| } |
| |
| const GRState* BasicConstraintManager::Assume(const GRState* St, Loc Cond, |
| bool Assumption, bool& isFeasible) { |
| St = AssumeAux(St, Cond, Assumption, isFeasible); |
| |
| if (!isFeasible) |
| return St; |
| |
| // EvalAssume is used to call into the GRTransferFunction object to perform |
| // any checker-specific update of the state based on this assumption being |
| // true or false. |
| return StateMgr.getTransferFuncs().EvalAssume(StateMgr, St, Cond, Assumption, |
| isFeasible); |
| } |
| |
| const GRState* BasicConstraintManager::AssumeAux(const GRState* St, Loc Cond, |
| bool Assumption, bool& isFeasible) { |
| BasicValueFactory& BasicVals = StateMgr.getBasicVals(); |
| |
| switch (Cond.getSubKind()) { |
| default: |
| assert (false && "'Assume' not implemented for this Loc."); |
| return St; |
| |
| case loc::SymbolValKind: |
| if (Assumption) |
| return AssumeSymNE(St, cast<loc::SymbolVal>(Cond).getSymbol(), |
| BasicVals.getZeroWithPtrWidth(), isFeasible); |
| else |
| return AssumeSymEQ(St, cast<loc::SymbolVal>(Cond).getSymbol(), |
| BasicVals.getZeroWithPtrWidth(), isFeasible); |
| |
| case loc::MemRegionKind: { |
| // FIXME: Should this go into the storemanager? |
| |
| const MemRegion* R = cast<loc::MemRegionVal>(Cond).getRegion(); |
| const SubRegion* SubR = dyn_cast<SubRegion>(R); |
| |
| while (SubR) { |
| // FIXME: now we only find the first symbolic region. |
| if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(SubR)) |
| return AssumeAux(St, loc::SymbolVal(SymR->getSymbol()), Assumption, |
| isFeasible); |
| SubR = dyn_cast<SubRegion>(SubR->getSuperRegion()); |
| } |
| |
| // FALL-THROUGH. |
| } |
| |
| case loc::FuncValKind: |
| case loc::GotoLabelKind: |
| isFeasible = Assumption; |
| return St; |
| |
| case loc::ConcreteIntKind: { |
| bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0; |
| isFeasible = b ? Assumption : !Assumption; |
| return St; |
| } |
| } // end switch |
| } |
| |
| const GRState* |
| BasicConstraintManager::Assume(const GRState* St, NonLoc Cond, bool Assumption, |
| bool& isFeasible) { |
| St = AssumeAux(St, Cond, Assumption, isFeasible); |
| |
| if (!isFeasible) |
| return St; |
| |
| // EvalAssume is used to call into the GRTransferFunction object to perform |
| // any checker-specific update of the state based on this assumption being |
| // true or false. |
| return StateMgr.getTransferFuncs().EvalAssume(StateMgr, St, Cond, Assumption, |
| isFeasible); |
| } |
| |
| const GRState* |
| BasicConstraintManager::AssumeAux(const GRState* St,NonLoc Cond, |
| bool Assumption, bool& isFeasible) { |
| BasicValueFactory& BasicVals = StateMgr.getBasicVals(); |
| SymbolManager& SymMgr = StateMgr.getSymbolManager(); |
| |
| switch (Cond.getSubKind()) { |
| default: |
| assert(false && "'Assume' not implemented for this NonLoc"); |
| |
| case nonloc::SymbolValKind: { |
| nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond); |
| SymbolRef sym = SV.getSymbol(); |
| QualType T = SymMgr.getType(sym); |
| |
| if (Assumption) |
| return AssumeSymNE(St, sym, BasicVals.getValue(0, T), isFeasible); |
| else |
| return AssumeSymEQ(St, sym, BasicVals.getValue(0, T), isFeasible); |
| } |
| |
| case nonloc::SymIntConstraintValKind: |
| return |
| AssumeSymInt(St, Assumption, |
| cast<nonloc::SymIntConstraintVal>(Cond).getConstraint(), |
| isFeasible); |
| |
| case nonloc::ConcreteIntKind: { |
| bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0; |
| isFeasible = b ? Assumption : !Assumption; |
| return St; |
| } |
| |
| case nonloc::LocAsIntegerKind: |
| return AssumeAux(St, cast<nonloc::LocAsInteger>(Cond).getLoc(), |
| Assumption, isFeasible); |
| } // end switch |
| } |
| |
| const GRState* |
| BasicConstraintManager::AssumeSymInt(const GRState* St, bool Assumption, |
| const SymIntConstraint& C, bool& isFeasible) { |
| |
| switch (C.getOpcode()) { |
| default: |
| // No logic yet for other operators. |
| isFeasible = true; |
| return St; |
| |
| case BinaryOperator::EQ: |
| if (Assumption) |
| return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible); |
| else |
| return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible); |
| |
| case BinaryOperator::NE: |
| if (Assumption) |
| return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible); |
| else |
| return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible); |
| |
| case BinaryOperator::GT: |
| if (Assumption) |
| return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible); |
| else |
| return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible); |
| |
| case BinaryOperator::GE: |
| if (Assumption) |
| return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible); |
| else |
| return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible); |
| |
| case BinaryOperator::LT: |
| if (Assumption) |
| return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible); |
| else |
| return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible); |
| |
| case BinaryOperator::LE: |
| if (Assumption) |
| return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible); |
| else |
| return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible); |
| } // end switch |
| } |
| |
| const GRState* |
| BasicConstraintManager::AssumeSymNE(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V, bool& isFeasible) { |
| // First, determine if sym == X, where X != V. |
| if (const llvm::APSInt* X = getSymVal(St, sym)) { |
| isFeasible = (*X != V); |
| return St; |
| } |
| |
| // Second, determine if sym != V. |
| if (isNotEqual(St, sym, V)) { |
| isFeasible = true; |
| return St; |
| } |
| |
| // If we reach here, sym is not a constant and we don't know if it is != V. |
| // Make that assumption. |
| isFeasible = true; |
| return AddNE(St, sym, V); |
| } |
| |
| const GRState* |
| BasicConstraintManager::AssumeSymEQ(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V, bool& isFeasible) { |
| // First, determine if sym == X, where X != V. |
| if (const llvm::APSInt* X = getSymVal(St, sym)) { |
| isFeasible = *X == V; |
| return St; |
| } |
| |
| // Second, determine if sym != V. |
| if (isNotEqual(St, sym, V)) { |
| isFeasible = false; |
| return St; |
| } |
| |
| // If we reach here, sym is not a constant and we don't know if it is == V. |
| // Make that assumption. |
| |
| isFeasible = true; |
| return AddEQ(St, sym, V); |
| } |
| |
| // These logic will be handled in another ConstraintManager. |
| const GRState* |
| BasicConstraintManager::AssumeSymLT(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V, bool& isFeasible) { |
| |
| // Is 'V' the smallest possible value? |
| if (V == llvm::APSInt::getMinValue(V.getBitWidth(), V.isUnsigned())) { |
| // sym cannot be any value less than 'V'. This path is infeasible. |
| isFeasible = false; |
| return St; |
| } |
| |
| // FIXME: For now have assuming x < y be the same as assuming sym != V; |
| return AssumeSymNE(St, sym, V, isFeasible); |
| } |
| |
| const GRState* |
| BasicConstraintManager::AssumeSymGT(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V, bool& isFeasible) { |
| |
| // Is 'V' the largest possible value? |
| if (V == llvm::APSInt::getMaxValue(V.getBitWidth(), V.isUnsigned())) { |
| // sym cannot be any value greater than 'V'. This path is infeasible. |
| isFeasible = false; |
| return St; |
| } |
| |
| // FIXME: For now have assuming x > y be the same as assuming sym != V; |
| return AssumeSymNE(St, sym, V, isFeasible); |
| } |
| |
| const GRState* |
| BasicConstraintManager::AssumeSymGE(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V, bool& isFeasible) { |
| |
| // Reject a path if the value of sym is a constant X and !(X >= V). |
| if (const llvm::APSInt* X = getSymVal(St, sym)) { |
| isFeasible = *X >= V; |
| return St; |
| } |
| |
| // Sym is not a constant, but it is worth looking to see if V is the |
| // maximum integer value. |
| if (V == llvm::APSInt::getMaxValue(V.getBitWidth(), V.isUnsigned())) { |
| // If we know that sym != V, then this condition is infeasible since |
| // there is no other value greater than V. |
| isFeasible = !isNotEqual(St, sym, V); |
| |
| // If the path is still feasible then as a consequence we know that |
| // 'sym == V' because we cannot have 'sym > V' (no larger values). |
| // Add this constraint. |
| if (isFeasible) |
| return AddEQ(St, sym, V); |
| } |
| else |
| isFeasible = true; |
| |
| return St; |
| } |
| |
| const GRState* |
| BasicConstraintManager::AssumeSymLE(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V, bool& isFeasible) { |
| |
| // Reject a path if the value of sym is a constant X and !(X <= V). |
| if (const llvm::APSInt* X = getSymVal(St, sym)) { |
| isFeasible = *X <= V; |
| return St; |
| } |
| |
| // Sym is not a constant, but it is worth looking to see if V is the |
| // minimum integer value. |
| if (V == llvm::APSInt::getMinValue(V.getBitWidth(), V.isUnsigned())) { |
| // If we know that sym != V, then this condition is infeasible since |
| // there is no other value less than V. |
| isFeasible = !isNotEqual(St, sym, V); |
| |
| // If the path is still feasible then as a consequence we know that |
| // 'sym == V' because we cannot have 'sym < V' (no smaller values). |
| // Add this constraint. |
| if (isFeasible) |
| return AddEQ(St, sym, V); |
| } |
| else |
| isFeasible = true; |
| |
| return St; |
| } |
| |
| const GRState* |
| BasicConstraintManager::AssumeInBound(const GRState* St, SVal Idx, |
| SVal UpperBound, bool Assumption, |
| bool& isFeasible) { |
| // Only support ConcreteInt for now. |
| if (!(isa<nonloc::ConcreteInt>(Idx) && isa<nonloc::ConcreteInt>(UpperBound))){ |
| isFeasible = true; |
| return St; |
| } |
| |
| const llvm::APSInt& Zero = getBasicVals().getZeroWithPtrWidth(false); |
| llvm::APSInt IdxV = cast<nonloc::ConcreteInt>(Idx).getValue(); |
| // IdxV might be too narrow. |
| if (IdxV.getBitWidth() < Zero.getBitWidth()) |
| IdxV.extend(Zero.getBitWidth()); |
| // UBV might be too narrow, too. |
| llvm::APSInt UBV = cast<nonloc::ConcreteInt>(UpperBound).getValue(); |
| if (UBV.getBitWidth() < Zero.getBitWidth()) |
| UBV.extend(Zero.getBitWidth()); |
| |
| bool InBound = (Zero <= IdxV) && (IdxV < UBV); |
| |
| isFeasible = Assumption ? InBound : !InBound; |
| |
| return St; |
| } |
| |
| |
| const GRState* BasicConstraintManager::AddEQ(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V) { |
| // Create a new state with the old binding replaced. |
| GRStateRef state(St, StateMgr); |
| return state.set<ConstEq>(sym, &V); |
| } |
| |
| const GRState* BasicConstraintManager::AddNE(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V) { |
| |
| GRStateRef state(St, StateMgr); |
| |
| // First, retrieve the NE-set associated with the given symbol. |
| ConstNotEqTy::data_type* T = state.get<ConstNotEq>(sym); |
| GRState::IntSetTy S = T ? *T : ISetFactory.GetEmptySet(); |
| |
| |
| // Now add V to the NE set. |
| S = ISetFactory.Add(S, &V); |
| |
| // Create a new state with the old binding replaced. |
| return state.set<ConstNotEq>(sym, S); |
| } |
| |
| const llvm::APSInt* BasicConstraintManager::getSymVal(const GRState* St, |
| SymbolRef sym) { |
| const ConstEqTy::data_type* T = St->get<ConstEq>(sym); |
| return T ? *T : NULL; |
| } |
| |
| bool BasicConstraintManager::isNotEqual(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V) const { |
| |
| // Retrieve the NE-set associated with the given symbol. |
| const ConstNotEqTy::data_type* T = St->get<ConstNotEq>(sym); |
| |
| // See if V is present in the NE-set. |
| return T ? T->contains(&V) : false; |
| } |
| |
| bool BasicConstraintManager::isEqual(const GRState* St, SymbolRef sym, |
| const llvm::APSInt& V) const { |
| // Retrieve the EQ-set associated with the given symbol. |
| const ConstEqTy::data_type* T = St->get<ConstEq>(sym); |
| // See if V is present in the EQ-set. |
| return T ? **T == V : false; |
| } |
| |
| /// Scan all symbols referenced by the constraints. If the symbol is not alive |
| /// as marked in LSymbols, mark it as dead in DSymbols. |
| const GRState* |
| BasicConstraintManager::RemoveDeadBindings(const GRState* St, |
| SymbolReaper& SymReaper) { |
| |
| GRStateRef state(St, StateMgr); |
| ConstEqTy CE = state.get<ConstEq>(); |
| ConstEqTy::Factory& CEFactory = state.get_context<ConstEq>(); |
| |
| for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) { |
| SymbolRef sym = I.getKey(); |
| if (SymReaper.maybeDead(sym)) CE = CEFactory.Remove(CE, sym); |
| } |
| state = state.set<ConstEq>(CE); |
| |
| ConstNotEqTy CNE = state.get<ConstNotEq>(); |
| ConstNotEqTy::Factory& CNEFactory = state.get_context<ConstNotEq>(); |
| |
| for (ConstNotEqTy::iterator I = CNE.begin(), E = CNE.end(); I != E; ++I) { |
| SymbolRef sym = I.getKey(); |
| if (SymReaper.maybeDead(sym)) CNE = CNEFactory.Remove(CNE, sym); |
| } |
| |
| return state.set<ConstNotEq>(CNE); |
| } |
| |
| void BasicConstraintManager::print(const GRState* St, std::ostream& Out, |
| const char* nl, const char *sep) { |
| // Print equality constraints. |
| |
| ConstEqTy CE = St->get<ConstEq>(); |
| |
| if (!CE.isEmpty()) { |
| Out << nl << sep << "'==' constraints:"; |
| |
| for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) { |
| Out << nl << " $" << I.getKey(); |
| llvm::raw_os_ostream OS(Out); |
| OS << " : " << *I.getData(); |
| } |
| } |
| |
| // Print != constraints. |
| |
| ConstNotEqTy CNE = St->get<ConstNotEq>(); |
| |
| if (!CNE.isEmpty()) { |
| Out << nl << sep << "'!=' constraints:"; |
| |
| for (ConstNotEqTy::iterator I = CNE.begin(), EI = CNE.end(); I!=EI; ++I) { |
| Out << nl << " $" << I.getKey() << " : "; |
| bool isFirst = true; |
| |
| GRState::IntSetTy::iterator J = I.getData().begin(), |
| EJ = I.getData().end(); |
| |
| for ( ; J != EJ; ++J) { |
| if (isFirst) isFirst = false; |
| else Out << ", "; |
| |
| Out << (*J)->getSExtValue(); // Hack: should print to raw_ostream. |
| } |
| } |
| } |
| } |