| // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines BugReporter, a utility class for generating |
| // PathDiagnostics. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Analysis/PathSensitive/BugReporter.h" |
| #include "clang/Analysis/PathSensitive/GRExprEngine.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/Analysis/CFG.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ParentMap.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Analysis/ProgramPoint.h" |
| #include "clang/Analysis/PathDiagnostic.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/OwningPtr.h" |
| #include <queue> |
| |
| using namespace clang; |
| |
| BugReporterVisitor::~BugReporterVisitor() {} |
| BugReporterContext::~BugReporterContext() { |
| for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) |
| if ((*I)->isOwnedByReporterContext()) delete *I; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper routines for walking the ExplodedGraph and fetching statements. |
| //===----------------------------------------------------------------------===// |
| |
| static inline const Stmt* GetStmt(ProgramPoint P) { |
| if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P)) |
| return SP->getStmt(); |
| else if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P)) |
| return BE->getSrc()->getTerminator(); |
| |
| return 0; |
| } |
| |
| static inline const ExplodedNode* |
| GetPredecessorNode(const ExplodedNode* N) { |
| return N->pred_empty() ? NULL : *(N->pred_begin()); |
| } |
| |
| static inline const ExplodedNode* |
| GetSuccessorNode(const ExplodedNode* N) { |
| return N->succ_empty() ? NULL : *(N->succ_begin()); |
| } |
| |
| static const Stmt* GetPreviousStmt(const ExplodedNode* N) { |
| for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N)) |
| if (const Stmt *S = GetStmt(N->getLocation())) |
| return S; |
| |
| return 0; |
| } |
| |
| static const Stmt* GetNextStmt(const ExplodedNode* N) { |
| for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N)) |
| if (const Stmt *S = GetStmt(N->getLocation())) { |
| // Check if the statement is '?' or '&&'/'||'. These are "merges", |
| // not actual statement points. |
| switch (S->getStmtClass()) { |
| case Stmt::ChooseExprClass: |
| case Stmt::ConditionalOperatorClass: continue; |
| case Stmt::BinaryOperatorClass: { |
| BinaryOperator::Opcode Op = cast<BinaryOperator>(S)->getOpcode(); |
| if (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr) |
| continue; |
| break; |
| } |
| default: |
| break; |
| } |
| |
| // Some expressions don't have locations. |
| if (S->getLocStart().isInvalid()) |
| continue; |
| |
| return S; |
| } |
| |
| return 0; |
| } |
| |
| static inline const Stmt* |
| GetCurrentOrPreviousStmt(const ExplodedNode* N) { |
| if (const Stmt *S = GetStmt(N->getLocation())) |
| return S; |
| |
| return GetPreviousStmt(N); |
| } |
| |
| static inline const Stmt* |
| GetCurrentOrNextStmt(const ExplodedNode* N) { |
| if (const Stmt *S = GetStmt(N->getLocation())) |
| return S; |
| |
| return GetNextStmt(N); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PathDiagnosticBuilder and its associated routines and helper objects. |
| //===----------------------------------------------------------------------===// |
| |
| typedef llvm::DenseMap<const ExplodedNode*, |
| const ExplodedNode*> NodeBackMap; |
| |
| namespace { |
| class VISIBILITY_HIDDEN NodeMapClosure : public BugReport::NodeResolver { |
| NodeBackMap& M; |
| public: |
| NodeMapClosure(NodeBackMap *m) : M(*m) {} |
| ~NodeMapClosure() {} |
| |
| const ExplodedNode* getOriginalNode(const ExplodedNode* N) { |
| NodeBackMap::iterator I = M.find(N); |
| return I == M.end() ? 0 : I->second; |
| } |
| }; |
| |
| class VISIBILITY_HIDDEN PathDiagnosticBuilder : public BugReporterContext { |
| BugReport *R; |
| PathDiagnosticClient *PDC; |
| llvm::OwningPtr<ParentMap> PM; |
| NodeMapClosure NMC; |
| public: |
| PathDiagnosticBuilder(GRBugReporter &br, |
| BugReport *r, NodeBackMap *Backmap, |
| PathDiagnosticClient *pdc) |
| : BugReporterContext(br), |
| R(r), PDC(pdc), NMC(Backmap) { |
| addVisitor(R); |
| } |
| |
| PathDiagnosticLocation ExecutionContinues(const ExplodedNode* N); |
| |
| PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream& os, |
| const ExplodedNode* N); |
| |
| Decl const &getCodeDecl() { return R->getEndNode()->getCodeDecl(); } |
| |
| ParentMap& getParentMap() { return R->getEndNode()->getParentMap(); } |
| |
| const Stmt *getParent(const Stmt *S) { |
| return getParentMap().getParent(S); |
| } |
| |
| virtual NodeMapClosure& getNodeResolver() { return NMC; } |
| BugReport& getReport() { return *R; } |
| |
| PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S); |
| |
| PathDiagnosticLocation |
| getEnclosingStmtLocation(const PathDiagnosticLocation &L) { |
| if (const Stmt *S = L.asStmt()) |
| return getEnclosingStmtLocation(S); |
| |
| return L; |
| } |
| |
| PathDiagnosticClient::PathGenerationScheme getGenerationScheme() const { |
| return PDC ? PDC->getGenerationScheme() : PathDiagnosticClient::Extensive; |
| } |
| |
| bool supportsLogicalOpControlFlow() const { |
| return PDC ? PDC->supportsLogicalOpControlFlow() : true; |
| } |
| }; |
| } // end anonymous namespace |
| |
| PathDiagnosticLocation |
| PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode* N) { |
| if (const Stmt *S = GetNextStmt(N)) |
| return PathDiagnosticLocation(S, getSourceManager()); |
| |
| return FullSourceLoc(N->getLocationContext()->getDecl()->getBodyRBrace(), |
| getSourceManager()); |
| } |
| |
| PathDiagnosticLocation |
| PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream& os, |
| const ExplodedNode* N) { |
| |
| // Slow, but probably doesn't matter. |
| if (os.str().empty()) |
| os << ' '; |
| |
| const PathDiagnosticLocation &Loc = ExecutionContinues(N); |
| |
| if (Loc.asStmt()) |
| os << "Execution continues on line " |
| << getSourceManager().getInstantiationLineNumber(Loc.asLocation()) |
| << '.'; |
| else |
| os << "Execution jumps to the end of the " |
| << (isa<ObjCMethodDecl>(N->getLocationContext()->getDecl()) ? |
| "method" : "function") << '.'; |
| |
| return Loc; |
| } |
| |
| static bool IsNested(const Stmt *S, ParentMap &PM) { |
| if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S))) |
| return true; |
| |
| const Stmt *Parent = PM.getParentIgnoreParens(S); |
| |
| if (Parent) |
| switch (Parent->getStmtClass()) { |
| case Stmt::ForStmtClass: |
| case Stmt::DoStmtClass: |
| case Stmt::WhileStmtClass: |
| return true; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| PathDiagnosticLocation |
| PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) { |
| assert(S && "Null Stmt* passed to getEnclosingStmtLocation"); |
| ParentMap &P = getParentMap(); |
| SourceManager &SMgr = getSourceManager(); |
| |
| while (IsNested(S, P)) { |
| const Stmt *Parent = P.getParentIgnoreParens(S); |
| |
| if (!Parent) |
| break; |
| |
| switch (Parent->getStmtClass()) { |
| case Stmt::BinaryOperatorClass: { |
| const BinaryOperator *B = cast<BinaryOperator>(Parent); |
| if (B->isLogicalOp()) |
| return PathDiagnosticLocation(S, SMgr); |
| break; |
| } |
| case Stmt::CompoundStmtClass: |
| case Stmt::StmtExprClass: |
| return PathDiagnosticLocation(S, SMgr); |
| case Stmt::ChooseExprClass: |
| // Similar to '?' if we are referring to condition, just have the edge |
| // point to the entire choose expression. |
| if (cast<ChooseExpr>(Parent)->getCond() == S) |
| return PathDiagnosticLocation(Parent, SMgr); |
| else |
| return PathDiagnosticLocation(S, SMgr); |
| case Stmt::ConditionalOperatorClass: |
| // For '?', if we are referring to condition, just have the edge point |
| // to the entire '?' expression. |
| if (cast<ConditionalOperator>(Parent)->getCond() == S) |
| return PathDiagnosticLocation(Parent, SMgr); |
| else |
| return PathDiagnosticLocation(S, SMgr); |
| case Stmt::DoStmtClass: |
| return PathDiagnosticLocation(S, SMgr); |
| case Stmt::ForStmtClass: |
| if (cast<ForStmt>(Parent)->getBody() == S) |
| return PathDiagnosticLocation(S, SMgr); |
| break; |
| case Stmt::IfStmtClass: |
| if (cast<IfStmt>(Parent)->getCond() != S) |
| return PathDiagnosticLocation(S, SMgr); |
| break; |
| case Stmt::ObjCForCollectionStmtClass: |
| if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S) |
| return PathDiagnosticLocation(S, SMgr); |
| break; |
| case Stmt::WhileStmtClass: |
| if (cast<WhileStmt>(Parent)->getCond() != S) |
| return PathDiagnosticLocation(S, SMgr); |
| break; |
| default: |
| break; |
| } |
| |
| S = Parent; |
| } |
| |
| assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); |
| |
| // Special case: DeclStmts can appear in for statement declarations, in which |
| // case the ForStmt is the context. |
| if (isa<DeclStmt>(S)) { |
| if (const Stmt *Parent = P.getParent(S)) { |
| switch (Parent->getStmtClass()) { |
| case Stmt::ForStmtClass: |
| case Stmt::ObjCForCollectionStmtClass: |
| return PathDiagnosticLocation(Parent, SMgr); |
| default: |
| break; |
| } |
| } |
| } |
| else if (isa<BinaryOperator>(S)) { |
| // Special case: the binary operator represents the initialization |
| // code in a for statement (this can happen when the variable being |
| // initialized is an old variable. |
| if (const ForStmt *FS = |
| dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) { |
| if (FS->getInit() == S) |
| return PathDiagnosticLocation(FS, SMgr); |
| } |
| } |
| |
| return PathDiagnosticLocation(S, SMgr); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ScanNotableSymbols: closure-like callback for scanning Store bindings. |
| //===----------------------------------------------------------------------===// |
| |
| static const VarDecl* |
| GetMostRecentVarDeclBinding(const ExplodedNode* N, |
| GRStateManager& VMgr, SVal X) { |
| |
| for ( ; N ; N = N->pred_empty() ? 0 : *N->pred_begin()) { |
| |
| ProgramPoint P = N->getLocation(); |
| |
| if (!isa<PostStmt>(P)) |
| continue; |
| |
| const DeclRefExpr* DR = dyn_cast<DeclRefExpr>(cast<PostStmt>(P).getStmt()); |
| |
| if (!DR) |
| continue; |
| |
| SVal Y = N->getState()->getSVal(DR); |
| |
| if (X != Y) |
| continue; |
| |
| const VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl()); |
| |
| if (!VD) |
| continue; |
| |
| return VD; |
| } |
| |
| return 0; |
| } |
| |
| namespace { |
| class VISIBILITY_HIDDEN NotableSymbolHandler |
| : public StoreManager::BindingsHandler { |
| |
| SymbolRef Sym; |
| const GRState* PrevSt; |
| const Stmt* S; |
| GRStateManager& VMgr; |
| const ExplodedNode* Pred; |
| PathDiagnostic& PD; |
| BugReporter& BR; |
| |
| public: |
| |
| NotableSymbolHandler(SymbolRef sym, const GRState* prevst, const Stmt* s, |
| GRStateManager& vmgr, const ExplodedNode* pred, |
| PathDiagnostic& pd, BugReporter& br) |
| : Sym(sym), PrevSt(prevst), S(s), VMgr(vmgr), Pred(pred), PD(pd), BR(br) {} |
| |
| bool HandleBinding(StoreManager& SMgr, Store store, const MemRegion* R, |
| SVal V) { |
| |
| SymbolRef ScanSym = V.getAsSymbol(); |
| |
| if (ScanSym != Sym) |
| return true; |
| |
| // Check if the previous state has this binding. |
| SVal X = PrevSt->getSVal(loc::MemRegionVal(R)); |
| |
| if (X == V) // Same binding? |
| return true; |
| |
| // Different binding. Only handle assignments for now. We don't pull |
| // this check out of the loop because we will eventually handle other |
| // cases. |
| |
| VarDecl *VD = 0; |
| |
| if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) { |
| if (!B->isAssignmentOp()) |
| return true; |
| |
| // What variable did we assign to? |
| DeclRefExpr* DR = dyn_cast<DeclRefExpr>(B->getLHS()->IgnoreParenCasts()); |
| |
| if (!DR) |
| return true; |
| |
| VD = dyn_cast<VarDecl>(DR->getDecl()); |
| } |
| else if (const DeclStmt* DS = dyn_cast<DeclStmt>(S)) { |
| // FIXME: Eventually CFGs won't have DeclStmts. Right now we |
| // assume that each DeclStmt has a single Decl. This invariant |
| // holds by contruction in the CFG. |
| VD = dyn_cast<VarDecl>(*DS->decl_begin()); |
| } |
| |
| if (!VD) |
| return true; |
| |
| // What is the most recently referenced variable with this binding? |
| const VarDecl* MostRecent = GetMostRecentVarDeclBinding(Pred, VMgr, V); |
| |
| if (!MostRecent) |
| return true; |
| |
| // Create the diagnostic. |
| FullSourceLoc L(S->getLocStart(), BR.getSourceManager()); |
| |
| if (Loc::IsLocType(VD->getType())) { |
| std::string msg = "'" + std::string(VD->getNameAsString()) + |
| "' now aliases '" + MostRecent->getNameAsString() + "'"; |
| |
| PD.push_front(new PathDiagnosticEventPiece(L, msg)); |
| } |
| |
| return true; |
| } |
| }; |
| } |
| |
| static void HandleNotableSymbol(const ExplodedNode* N, |
| const Stmt* S, |
| SymbolRef Sym, BugReporter& BR, |
| PathDiagnostic& PD) { |
| |
| const ExplodedNode* Pred = N->pred_empty() ? 0 : *N->pred_begin(); |
| const GRState* PrevSt = Pred ? Pred->getState() : 0; |
| |
| if (!PrevSt) |
| return; |
| |
| // Look at the region bindings of the current state that map to the |
| // specified symbol. Are any of them not in the previous state? |
| GRStateManager& VMgr = cast<GRBugReporter>(BR).getStateManager(); |
| NotableSymbolHandler H(Sym, PrevSt, S, VMgr, Pred, PD, BR); |
| cast<GRBugReporter>(BR).getStateManager().iterBindings(N->getState(), H); |
| } |
| |
| namespace { |
| class VISIBILITY_HIDDEN ScanNotableSymbols |
| : public StoreManager::BindingsHandler { |
| |
| llvm::SmallSet<SymbolRef, 10> AlreadyProcessed; |
| const ExplodedNode* N; |
| const Stmt* S; |
| GRBugReporter& BR; |
| PathDiagnostic& PD; |
| |
| public: |
| ScanNotableSymbols(const ExplodedNode* n, const Stmt* s, |
| GRBugReporter& br, PathDiagnostic& pd) |
| : N(n), S(s), BR(br), PD(pd) {} |
| |
| bool HandleBinding(StoreManager& SMgr, Store store, |
| const MemRegion* R, SVal V) { |
| |
| SymbolRef ScanSym = V.getAsSymbol(); |
| |
| if (!ScanSym) |
| return true; |
| |
| if (!BR.isNotable(ScanSym)) |
| return true; |
| |
| if (AlreadyProcessed.count(ScanSym)) |
| return true; |
| |
| AlreadyProcessed.insert(ScanSym); |
| |
| HandleNotableSymbol(N, S, ScanSym, BR, PD); |
| return true; |
| } |
| }; |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // "Minimal" path diagnostic generation algorithm. |
| //===----------------------------------------------------------------------===// |
| |
| static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM); |
| |
| static void GenerateMinimalPathDiagnostic(PathDiagnostic& PD, |
| PathDiagnosticBuilder &PDB, |
| const ExplodedNode *N) { |
| |
| SourceManager& SMgr = PDB.getSourceManager(); |
| const ExplodedNode* NextNode = N->pred_empty() |
| ? NULL : *(N->pred_begin()); |
| while (NextNode) { |
| N = NextNode; |
| NextNode = GetPredecessorNode(N); |
| |
| ProgramPoint P = N->getLocation(); |
| |
| if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P)) { |
| CFGBlock* Src = BE->getSrc(); |
| CFGBlock* Dst = BE->getDst(); |
| Stmt* T = Src->getTerminator(); |
| |
| if (!T) |
| continue; |
| |
| FullSourceLoc Start(T->getLocStart(), SMgr); |
| |
| switch (T->getStmtClass()) { |
| default: |
| break; |
| |
| case Stmt::GotoStmtClass: |
| case Stmt::IndirectGotoStmtClass: { |
| const Stmt* S = GetNextStmt(N); |
| |
| if (!S) |
| continue; |
| |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S); |
| |
| os << "Control jumps to line " |
| << End.asLocation().getInstantiationLineNumber(); |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| break; |
| } |
| |
| case Stmt::SwitchStmtClass: { |
| // Figure out what case arm we took. |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| |
| if (Stmt* S = Dst->getLabel()) { |
| PathDiagnosticLocation End(S, SMgr); |
| |
| switch (S->getStmtClass()) { |
| default: |
| os << "No cases match in the switch statement. " |
| "Control jumps to line " |
| << End.asLocation().getInstantiationLineNumber(); |
| break; |
| case Stmt::DefaultStmtClass: |
| os << "Control jumps to the 'default' case at line " |
| << End.asLocation().getInstantiationLineNumber(); |
| break; |
| |
| case Stmt::CaseStmtClass: { |
| os << "Control jumps to 'case "; |
| CaseStmt* Case = cast<CaseStmt>(S); |
| Expr* LHS = Case->getLHS()->IgnoreParenCasts(); |
| |
| // Determine if it is an enum. |
| bool GetRawInt = true; |
| |
| if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(LHS)) { |
| // FIXME: Maybe this should be an assertion. Are there cases |
| // were it is not an EnumConstantDecl? |
| EnumConstantDecl* D = |
| dyn_cast<EnumConstantDecl>(DR->getDecl()); |
| |
| if (D) { |
| GetRawInt = false; |
| os << D->getNameAsString(); |
| } |
| } |
| |
| if (GetRawInt) |
| os << LHS->EvaluateAsInt(PDB.getASTContext()); |
| |
| os << ":' at line " |
| << End.asLocation().getInstantiationLineNumber(); |
| break; |
| } |
| } |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| } |
| else { |
| os << "'Default' branch taken. "; |
| const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N); |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| } |
| |
| break; |
| } |
| |
| case Stmt::BreakStmtClass: |
| case Stmt::ContinueStmtClass: { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| break; |
| } |
| |
| // Determine control-flow for ternary '?'. |
| case Stmt::ConditionalOperatorClass: { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| os << "'?' condition is "; |
| |
| if (*(Src->succ_begin()+1) == Dst) |
| os << "false"; |
| else |
| os << "true"; |
| |
| PathDiagnosticLocation End = PDB.ExecutionContinues(N); |
| |
| if (const Stmt *S = End.asStmt()) |
| End = PDB.getEnclosingStmtLocation(S); |
| |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| break; |
| } |
| |
| // Determine control-flow for short-circuited '&&' and '||'. |
| case Stmt::BinaryOperatorClass: { |
| if (!PDB.supportsLogicalOpControlFlow()) |
| break; |
| |
| BinaryOperator *B = cast<BinaryOperator>(T); |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| os << "Left side of '"; |
| |
| if (B->getOpcode() == BinaryOperator::LAnd) { |
| os << "&&" << "' is "; |
| |
| if (*(Src->succ_begin()+1) == Dst) { |
| os << "false"; |
| PathDiagnosticLocation End(B->getLHS(), SMgr); |
| PathDiagnosticLocation Start(B->getOperatorLoc(), SMgr); |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| } |
| else { |
| os << "true"; |
| PathDiagnosticLocation Start(B->getLHS(), SMgr); |
| PathDiagnosticLocation End = PDB.ExecutionContinues(N); |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| } |
| } |
| else { |
| assert(B->getOpcode() == BinaryOperator::LOr); |
| os << "||" << "' is "; |
| |
| if (*(Src->succ_begin()+1) == Dst) { |
| os << "false"; |
| PathDiagnosticLocation Start(B->getLHS(), SMgr); |
| PathDiagnosticLocation End = PDB.ExecutionContinues(N); |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| } |
| else { |
| os << "true"; |
| PathDiagnosticLocation End(B->getLHS(), SMgr); |
| PathDiagnosticLocation Start(B->getOperatorLoc(), SMgr); |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| } |
| } |
| |
| break; |
| } |
| |
| case Stmt::DoStmtClass: { |
| if (*(Src->succ_begin()) == Dst) { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| |
| os << "Loop condition is true. "; |
| PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); |
| |
| if (const Stmt *S = End.asStmt()) |
| End = PDB.getEnclosingStmtLocation(S); |
| |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| } |
| else { |
| PathDiagnosticLocation End = PDB.ExecutionContinues(N); |
| |
| if (const Stmt *S = End.asStmt()) |
| End = PDB.getEnclosingStmtLocation(S); |
| |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| "Loop condition is false. Exiting loop")); |
| } |
| |
| break; |
| } |
| |
| case Stmt::WhileStmtClass: |
| case Stmt::ForStmtClass: { |
| if (*(Src->succ_begin()+1) == Dst) { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| |
| os << "Loop condition is false. "; |
| PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); |
| if (const Stmt *S = End.asStmt()) |
| End = PDB.getEnclosingStmtLocation(S); |
| |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| } |
| else { |
| PathDiagnosticLocation End = PDB.ExecutionContinues(N); |
| if (const Stmt *S = End.asStmt()) |
| End = PDB.getEnclosingStmtLocation(S); |
| |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| "Loop condition is true. Entering loop body")); |
| } |
| |
| break; |
| } |
| |
| case Stmt::IfStmtClass: { |
| PathDiagnosticLocation End = PDB.ExecutionContinues(N); |
| |
| if (const Stmt *S = End.asStmt()) |
| End = PDB.getEnclosingStmtLocation(S); |
| |
| if (*(Src->succ_begin()+1) == Dst) |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| "Taking false branch")); |
| else |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| "Taking true branch")); |
| |
| break; |
| } |
| } |
| } |
| |
| if (NextNode) { |
| for (BugReporterContext::visitor_iterator I = PDB.visitor_begin(), |
| E = PDB.visitor_end(); I!=E; ++I) { |
| if (PathDiagnosticPiece* p = (*I)->VisitNode(N, NextNode, PDB)) |
| PD.push_front(p); |
| } |
| } |
| |
| if (const PostStmt* PS = dyn_cast<PostStmt>(&P)) { |
| // Scan the region bindings, and see if a "notable" symbol has a new |
| // lval binding. |
| ScanNotableSymbols SNS(N, PS->getStmt(), PDB.getBugReporter(), PD); |
| PDB.getStateManager().iterBindings(N->getState(), SNS); |
| } |
| } |
| |
| // After constructing the full PathDiagnostic, do a pass over it to compact |
| // PathDiagnosticPieces that occur within a macro. |
| CompactPathDiagnostic(PD, PDB.getSourceManager()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // "Extensive" PathDiagnostic generation. |
| //===----------------------------------------------------------------------===// |
| |
| static bool IsControlFlowExpr(const Stmt *S) { |
| const Expr *E = dyn_cast<Expr>(S); |
| |
| if (!E) |
| return false; |
| |
| E = E->IgnoreParenCasts(); |
| |
| if (isa<ConditionalOperator>(E)) |
| return true; |
| |
| if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E)) |
| if (B->isLogicalOp()) |
| return true; |
| |
| return false; |
| } |
| |
| namespace { |
| class VISIBILITY_HIDDEN ContextLocation : public PathDiagnosticLocation { |
| bool IsDead; |
| public: |
| ContextLocation(const PathDiagnosticLocation &L, bool isdead = false) |
| : PathDiagnosticLocation(L), IsDead(isdead) {} |
| |
| void markDead() { IsDead = true; } |
| bool isDead() const { return IsDead; } |
| }; |
| |
| class VISIBILITY_HIDDEN EdgeBuilder { |
| std::vector<ContextLocation> CLocs; |
| typedef std::vector<ContextLocation>::iterator iterator; |
| PathDiagnostic &PD; |
| PathDiagnosticBuilder &PDB; |
| PathDiagnosticLocation PrevLoc; |
| |
| bool IsConsumedExpr(const PathDiagnosticLocation &L); |
| |
| bool containsLocation(const PathDiagnosticLocation &Container, |
| const PathDiagnosticLocation &Containee); |
| |
| PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L); |
| |
| PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L, |
| bool firstCharOnly = false) { |
| if (const Stmt *S = L.asStmt()) { |
| const Stmt *Original = S; |
| while (1) { |
| // Adjust the location for some expressions that are best referenced |
| // by one of their subexpressions. |
| switch (S->getStmtClass()) { |
| default: |
| break; |
| case Stmt::ParenExprClass: |
| S = cast<ParenExpr>(S)->IgnoreParens(); |
| firstCharOnly = true; |
| continue; |
| case Stmt::ConditionalOperatorClass: |
| S = cast<ConditionalOperator>(S)->getCond(); |
| firstCharOnly = true; |
| continue; |
| case Stmt::ChooseExprClass: |
| S = cast<ChooseExpr>(S)->getCond(); |
| firstCharOnly = true; |
| continue; |
| case Stmt::BinaryOperatorClass: |
| S = cast<BinaryOperator>(S)->getLHS(); |
| firstCharOnly = true; |
| continue; |
| } |
| |
| break; |
| } |
| |
| if (S != Original) |
| L = PathDiagnosticLocation(S, L.getManager()); |
| } |
| |
| if (firstCharOnly) |
| L = PathDiagnosticLocation(L.asLocation()); |
| |
| return L; |
| } |
| |
| void popLocation() { |
| if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) { |
| // For contexts, we only one the first character as the range. |
| rawAddEdge(cleanUpLocation(CLocs.back(), true)); |
| } |
| CLocs.pop_back(); |
| } |
| |
| PathDiagnosticLocation IgnoreParens(const PathDiagnosticLocation &L); |
| |
| public: |
| EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb) |
| : PD(pd), PDB(pdb) { |
| |
| // If the PathDiagnostic already has pieces, add the enclosing statement |
| // of the first piece as a context as well. |
| if (!PD.empty()) { |
| PrevLoc = PD.begin()->getLocation(); |
| |
| if (const Stmt *S = PrevLoc.asStmt()) |
| addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); |
| } |
| } |
| |
| ~EdgeBuilder() { |
| while (!CLocs.empty()) popLocation(); |
| |
| // Finally, add an initial edge from the start location of the first |
| // statement (if it doesn't already exist). |
| // FIXME: Should handle CXXTryStmt if analyser starts supporting C++. |
| if (const CompoundStmt *CS = |
| PDB.getCodeDecl().getCompoundBody()) |
| if (!CS->body_empty()) { |
| SourceLocation Loc = (*CS->body_begin())->getLocStart(); |
| rawAddEdge(PathDiagnosticLocation(Loc, PDB.getSourceManager())); |
| } |
| |
| } |
| |
| void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false); |
| |
| void addEdge(const Stmt *S, bool alwaysAdd = false) { |
| addEdge(PathDiagnosticLocation(S, PDB.getSourceManager()), alwaysAdd); |
| } |
| |
| void rawAddEdge(PathDiagnosticLocation NewLoc); |
| |
| void addContext(const Stmt *S); |
| void addExtendedContext(const Stmt *S); |
| }; |
| } // end anonymous namespace |
| |
| |
| PathDiagnosticLocation |
| EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) { |
| if (const Stmt *S = L.asStmt()) { |
| if (IsControlFlowExpr(S)) |
| return L; |
| |
| return PDB.getEnclosingStmtLocation(S); |
| } |
| |
| return L; |
| } |
| |
| bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container, |
| const PathDiagnosticLocation &Containee) { |
| |
| if (Container == Containee) |
| return true; |
| |
| if (Container.asDecl()) |
| return true; |
| |
| if (const Stmt *S = Containee.asStmt()) |
| if (const Stmt *ContainerS = Container.asStmt()) { |
| while (S) { |
| if (S == ContainerS) |
| return true; |
| S = PDB.getParent(S); |
| } |
| return false; |
| } |
| |
| // Less accurate: compare using source ranges. |
| SourceRange ContainerR = Container.asRange(); |
| SourceRange ContaineeR = Containee.asRange(); |
| |
| SourceManager &SM = PDB.getSourceManager(); |
| SourceLocation ContainerRBeg = SM.getInstantiationLoc(ContainerR.getBegin()); |
| SourceLocation ContainerREnd = SM.getInstantiationLoc(ContainerR.getEnd()); |
| SourceLocation ContaineeRBeg = SM.getInstantiationLoc(ContaineeR.getBegin()); |
| SourceLocation ContaineeREnd = SM.getInstantiationLoc(ContaineeR.getEnd()); |
| |
| unsigned ContainerBegLine = SM.getInstantiationLineNumber(ContainerRBeg); |
| unsigned ContainerEndLine = SM.getInstantiationLineNumber(ContainerREnd); |
| unsigned ContaineeBegLine = SM.getInstantiationLineNumber(ContaineeRBeg); |
| unsigned ContaineeEndLine = SM.getInstantiationLineNumber(ContaineeREnd); |
| |
| assert(ContainerBegLine <= ContainerEndLine); |
| assert(ContaineeBegLine <= ContaineeEndLine); |
| |
| return (ContainerBegLine <= ContaineeBegLine && |
| ContainerEndLine >= ContaineeEndLine && |
| (ContainerBegLine != ContaineeBegLine || |
| SM.getInstantiationColumnNumber(ContainerRBeg) <= |
| SM.getInstantiationColumnNumber(ContaineeRBeg)) && |
| (ContainerEndLine != ContaineeEndLine || |
| SM.getInstantiationColumnNumber(ContainerREnd) >= |
| SM.getInstantiationColumnNumber(ContainerREnd))); |
| } |
| |
| PathDiagnosticLocation |
| EdgeBuilder::IgnoreParens(const PathDiagnosticLocation &L) { |
| if (const Expr* E = dyn_cast_or_null<Expr>(L.asStmt())) |
| return PathDiagnosticLocation(E->IgnoreParenCasts(), |
| PDB.getSourceManager()); |
| return L; |
| } |
| |
| void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) { |
| if (!PrevLoc.isValid()) { |
| PrevLoc = NewLoc; |
| return; |
| } |
| |
| const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc); |
| const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc); |
| |
| if (NewLocClean.asLocation() == PrevLocClean.asLocation()) |
| return; |
| |
| // FIXME: Ignore intra-macro edges for now. |
| if (NewLocClean.asLocation().getInstantiationLoc() == |
| PrevLocClean.asLocation().getInstantiationLoc()) |
| return; |
| |
| PD.push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean)); |
| PrevLoc = NewLoc; |
| } |
| |
| void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) { |
| |
| if (!alwaysAdd && NewLoc.asLocation().isMacroID()) |
| return; |
| |
| const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc); |
| |
| while (!CLocs.empty()) { |
| ContextLocation &TopContextLoc = CLocs.back(); |
| |
| // Is the top location context the same as the one for the new location? |
| if (TopContextLoc == CLoc) { |
| if (alwaysAdd) { |
| if (IsConsumedExpr(TopContextLoc) && |
| !IsControlFlowExpr(TopContextLoc.asStmt())) |
| TopContextLoc.markDead(); |
| |
| rawAddEdge(NewLoc); |
| } |
| |
| return; |
| } |
| |
| if (containsLocation(TopContextLoc, CLoc)) { |
| if (alwaysAdd) { |
| rawAddEdge(NewLoc); |
| |
| if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) { |
| CLocs.push_back(ContextLocation(CLoc, true)); |
| return; |
| } |
| } |
| |
| CLocs.push_back(CLoc); |
| return; |
| } |
| |
| // Context does not contain the location. Flush it. |
| popLocation(); |
| } |
| |
| // If we reach here, there is no enclosing context. Just add the edge. |
| rawAddEdge(NewLoc); |
| } |
| |
| bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) { |
| if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt())) |
| return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X); |
| |
| return false; |
| } |
| |
| void EdgeBuilder::addExtendedContext(const Stmt *S) { |
| if (!S) |
| return; |
| |
| const Stmt *Parent = PDB.getParent(S); |
| while (Parent) { |
| if (isa<CompoundStmt>(Parent)) |
| Parent = PDB.getParent(Parent); |
| else |
| break; |
| } |
| |
| if (Parent) { |
| switch (Parent->getStmtClass()) { |
| case Stmt::DoStmtClass: |
| case Stmt::ObjCAtSynchronizedStmtClass: |
| addContext(Parent); |
| default: |
| break; |
| } |
| } |
| |
| addContext(S); |
| } |
| |
| void EdgeBuilder::addContext(const Stmt *S) { |
| if (!S) |
| return; |
| |
| PathDiagnosticLocation L(S, PDB.getSourceManager()); |
| |
| while (!CLocs.empty()) { |
| const PathDiagnosticLocation &TopContextLoc = CLocs.back(); |
| |
| // Is the top location context the same as the one for the new location? |
| if (TopContextLoc == L) |
| return; |
| |
| if (containsLocation(TopContextLoc, L)) { |
| CLocs.push_back(L); |
| return; |
| } |
| |
| // Context does not contain the location. Flush it. |
| popLocation(); |
| } |
| |
| CLocs.push_back(L); |
| } |
| |
| static void GenerateExtensivePathDiagnostic(PathDiagnostic& PD, |
| PathDiagnosticBuilder &PDB, |
| const ExplodedNode *N) { |
| |
| |
| EdgeBuilder EB(PD, PDB); |
| |
| const ExplodedNode* NextNode = N->pred_empty() |
| ? NULL : *(N->pred_begin()); |
| while (NextNode) { |
| N = NextNode; |
| NextNode = GetPredecessorNode(N); |
| ProgramPoint P = N->getLocation(); |
| |
| do { |
| // Block edges. |
| if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) { |
| const CFGBlock &Blk = *BE->getSrc(); |
| const Stmt *Term = Blk.getTerminator(); |
| |
| // Are we jumping to the head of a loop? Add a special diagnostic. |
| if (const Stmt *Loop = BE->getDst()->getLoopTarget()) { |
| PathDiagnosticLocation L(Loop, PDB.getSourceManager()); |
| const CompoundStmt *CS = NULL; |
| |
| if (!Term) { |
| if (const ForStmt *FS = dyn_cast<ForStmt>(Loop)) |
| CS = dyn_cast<CompoundStmt>(FS->getBody()); |
| else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop)) |
| CS = dyn_cast<CompoundStmt>(WS->getBody()); |
| } |
| |
| PathDiagnosticEventPiece *p = |
| new PathDiagnosticEventPiece(L, |
| "Looping back to the head of the loop"); |
| |
| EB.addEdge(p->getLocation(), true); |
| PD.push_front(p); |
| |
| if (CS) { |
| PathDiagnosticLocation BL(CS->getRBracLoc(), |
| PDB.getSourceManager()); |
| BL = PathDiagnosticLocation(BL.asLocation()); |
| EB.addEdge(BL); |
| } |
| } |
| |
| if (Term) |
| EB.addContext(Term); |
| |
| break; |
| } |
| |
| if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) { |
| if (const Stmt* S = BE->getFirstStmt()) { |
| if (IsControlFlowExpr(S)) { |
| // Add the proper context for '&&', '||', and '?'. |
| EB.addContext(S); |
| } |
| else |
| EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); |
| } |
| |
| break; |
| } |
| } while (0); |
| |
| if (!NextNode) |
| continue; |
| |
| for (BugReporterContext::visitor_iterator I = PDB.visitor_begin(), |
| E = PDB.visitor_end(); I!=E; ++I) { |
| if (PathDiagnosticPiece* p = (*I)->VisitNode(N, NextNode, PDB)) { |
| const PathDiagnosticLocation &Loc = p->getLocation(); |
| EB.addEdge(Loc, true); |
| PD.push_front(p); |
| if (const Stmt *S = Loc.asStmt()) |
| EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); |
| } |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Methods for BugType and subclasses. |
| //===----------------------------------------------------------------------===// |
| BugType::~BugType() { |
| // Free up the equivalence class objects. Observe that we get a pointer to |
| // the object first before incrementing the iterator, as destroying the |
| // node before doing so means we will read from freed memory. |
| for (iterator I = begin(), E = end(); I !=E; ) { |
| BugReportEquivClass *EQ = &*I; |
| ++I; |
| delete EQ; |
| } |
| } |
| void BugType::FlushReports(BugReporter &BR) {} |
| |
| //===----------------------------------------------------------------------===// |
| // Methods for BugReport and subclasses. |
| //===----------------------------------------------------------------------===// |
| BugReport::~BugReport() {} |
| RangedBugReport::~RangedBugReport() {} |
| |
| const Stmt* BugReport::getStmt() const { |
| ProgramPoint ProgP = EndNode->getLocation(); |
| const Stmt *S = NULL; |
| |
| if (BlockEntrance* BE = dyn_cast<BlockEntrance>(&ProgP)) { |
| CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); |
| if (BE->getBlock() == &Exit) |
| S = GetPreviousStmt(EndNode); |
| } |
| if (!S) |
| S = GetStmt(ProgP); |
| |
| return S; |
| } |
| |
| PathDiagnosticPiece* |
| BugReport::getEndPath(BugReporterContext& BRC, |
| const ExplodedNode* EndPathNode) { |
| |
| const Stmt* S = getStmt(); |
| |
| if (!S) |
| return NULL; |
| |
| const SourceRange *Beg, *End; |
| getRanges(Beg, End); |
| PathDiagnosticLocation L(S, BRC.getSourceManager()); |
| |
| // Only add the statement itself as a range if we didn't specify any |
| // special ranges for this report. |
| PathDiagnosticPiece* P = new PathDiagnosticEventPiece(L, getDescription(), |
| Beg == End); |
| |
| for (; Beg != End; ++Beg) |
| P->addRange(*Beg); |
| |
| return P; |
| } |
| |
| void BugReport::getRanges(const SourceRange*& beg, const SourceRange*& end) { |
| if (const Expr* E = dyn_cast_or_null<Expr>(getStmt())) { |
| R = E->getSourceRange(); |
| assert(R.isValid()); |
| beg = &R; |
| end = beg+1; |
| } |
| else |
| beg = end = 0; |
| } |
| |
| SourceLocation BugReport::getLocation() const { |
| if (EndNode) |
| if (const Stmt* S = GetCurrentOrPreviousStmt(EndNode)) { |
| // For member expressions, return the location of the '.' or '->'. |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) |
| return ME->getMemberLoc(); |
| // For binary operators, return the location of the operator. |
| if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S)) |
| return B->getOperatorLoc(); |
| |
| return S->getLocStart(); |
| } |
| |
| return FullSourceLoc(); |
| } |
| |
| PathDiagnosticPiece* BugReport::VisitNode(const ExplodedNode* N, |
| const ExplodedNode* PrevN, |
| BugReporterContext &BRC) { |
| return NULL; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Methods for BugReporter and subclasses. |
| //===----------------------------------------------------------------------===// |
| |
| BugReportEquivClass::~BugReportEquivClass() { |
| for (iterator I=begin(), E=end(); I!=E; ++I) delete *I; |
| } |
| |
| GRBugReporter::~GRBugReporter() { } |
| BugReporterData::~BugReporterData() {} |
| |
| ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); } |
| |
| GRStateManager& |
| GRBugReporter::getStateManager() { return Eng.getStateManager(); } |
| |
| BugReporter::~BugReporter() { FlushReports(); } |
| |
| void BugReporter::FlushReports() { |
| if (BugTypes.isEmpty()) |
| return; |
| |
| // First flush the warnings for each BugType. This may end up creating new |
| // warnings and new BugTypes. Because ImmutableSet is a functional data |
| // structure, we do not need to worry about the iterators being invalidated. |
| for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) |
| const_cast<BugType*>(*I)->FlushReports(*this); |
| |
| // Iterate through BugTypes a second time. BugTypes may have been updated |
| // with new BugType objects and new warnings. |
| for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) { |
| BugType *BT = const_cast<BugType*>(*I); |
| |
| typedef llvm::FoldingSet<BugReportEquivClass> SetTy; |
| SetTy& EQClasses = BT->EQClasses; |
| |
| for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){ |
| BugReportEquivClass& EQ = *EI; |
| FlushReport(EQ); |
| } |
| |
| // Delete the BugType object. |
| delete BT; |
| } |
| |
| // Remove all references to the BugType objects. |
| BugTypes = F.GetEmptySet(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PathDiagnostics generation. |
| //===----------------------------------------------------------------------===// |
| |
| static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>, |
| std::pair<ExplodedNode*, unsigned> > |
| MakeReportGraph(const ExplodedGraph* G, |
| const ExplodedNode** NStart, |
| const ExplodedNode** NEnd) { |
| |
| // Create the trimmed graph. It will contain the shortest paths from the |
| // error nodes to the root. In the new graph we should only have one |
| // error node unless there are two or more error nodes with the same minimum |
| // path length. |
| ExplodedGraph* GTrim; |
| InterExplodedGraphMap* NMap; |
| |
| llvm::DenseMap<const void*, const void*> InverseMap; |
| llvm::tie(GTrim, NMap) = G->Trim(NStart, NEnd, &InverseMap); |
| |
| // Create owning pointers for GTrim and NMap just to ensure that they are |
| // released when this function exists. |
| llvm::OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim); |
| llvm::OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap); |
| |
| // Find the (first) error node in the trimmed graph. We just need to consult |
| // the node map (NMap) which maps from nodes in the original graph to nodes |
| // in the new graph. |
| |
| std::queue<const ExplodedNode*> WS; |
| typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy; |
| IndexMapTy IndexMap; |
| |
| for (const ExplodedNode** I = NStart; I != NEnd; ++I) |
| if (const ExplodedNode *N = NMap->getMappedNode(*I)) { |
| unsigned NodeIndex = (I - NStart) / sizeof(*I); |
| WS.push(N); |
| IndexMap[*I] = NodeIndex; |
| } |
| |
| assert(!WS.empty() && "No error node found in the trimmed graph."); |
| |
| // Create a new (third!) graph with a single path. This is the graph |
| // that will be returned to the caller. |
| ExplodedGraph *GNew = new ExplodedGraph(GTrim->getContext()); |
| |
| // Sometimes the trimmed graph can contain a cycle. Perform a reverse BFS |
| // to the root node, and then construct a new graph that contains only |
| // a single path. |
| llvm::DenseMap<const void*,unsigned> Visited; |
| |
| unsigned cnt = 0; |
| const ExplodedNode* Root = 0; |
| |
| while (!WS.empty()) { |
| const ExplodedNode* Node = WS.front(); |
| WS.pop(); |
| |
| if (Visited.find(Node) != Visited.end()) |
| continue; |
| |
| Visited[Node] = cnt++; |
| |
| if (Node->pred_empty()) { |
| Root = Node; |
| break; |
| } |
| |
| for (ExplodedNode::const_pred_iterator I=Node->pred_begin(), |
| E=Node->pred_end(); I!=E; ++I) |
| WS.push(*I); |
| } |
| |
| assert(Root); |
| |
| // Now walk from the root down the BFS path, always taking the successor |
| // with the lowest number. |
| ExplodedNode *Last = 0, *First = 0; |
| NodeBackMap *BM = new NodeBackMap(); |
| unsigned NodeIndex = 0; |
| |
| for ( const ExplodedNode *N = Root ;;) { |
| // Lookup the number associated with the current node. |
| llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N); |
| assert(I != Visited.end()); |
| |
| // Create the equivalent node in the new graph with the same state |
| // and location. |
| ExplodedNode* NewN = GNew->getNode(N->getLocation(), N->getState()); |
| |
| // Store the mapping to the original node. |
| llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N); |
| assert(IMitr != InverseMap.end() && "No mapping to original node."); |
| (*BM)[NewN] = (const ExplodedNode*) IMitr->second; |
| |
| // Link up the new node with the previous node. |
| if (Last) |
| NewN->addPredecessor(Last); |
| |
| Last = NewN; |
| |
| // Are we at the final node? |
| IndexMapTy::iterator IMI = |
| IndexMap.find((const ExplodedNode*)(IMitr->second)); |
| if (IMI != IndexMap.end()) { |
| First = NewN; |
| NodeIndex = IMI->second; |
| break; |
| } |
| |
| // Find the next successor node. We choose the node that is marked |
| // with the lowest DFS number. |
| ExplodedNode::const_succ_iterator SI = N->succ_begin(); |
| ExplodedNode::const_succ_iterator SE = N->succ_end(); |
| N = 0; |
| |
| for (unsigned MinVal = 0; SI != SE; ++SI) { |
| |
| I = Visited.find(*SI); |
| |
| if (I == Visited.end()) |
| continue; |
| |
| if (!N || I->second < MinVal) { |
| N = *SI; |
| MinVal = I->second; |
| } |
| } |
| |
| assert(N); |
| } |
| |
| assert(First); |
| |
| return std::make_pair(std::make_pair(GNew, BM), |
| std::make_pair(First, NodeIndex)); |
| } |
| |
| /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object |
| /// and collapses PathDiagosticPieces that are expanded by macros. |
| static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM) { |
| typedef std::vector<std::pair<PathDiagnosticMacroPiece*, SourceLocation> > |
| MacroStackTy; |
| |
| typedef std::vector<PathDiagnosticPiece*> |
| PiecesTy; |
| |
| MacroStackTy MacroStack; |
| PiecesTy Pieces; |
| |
| for (PathDiagnostic::iterator I = PD.begin(), E = PD.end(); I!=E; ++I) { |
| // Get the location of the PathDiagnosticPiece. |
| const FullSourceLoc Loc = I->getLocation().asLocation(); |
| |
| // Determine the instantiation location, which is the location we group |
| // related PathDiagnosticPieces. |
| SourceLocation InstantiationLoc = Loc.isMacroID() ? |
| SM.getInstantiationLoc(Loc) : |
| SourceLocation(); |
| |
| if (Loc.isFileID()) { |
| MacroStack.clear(); |
| Pieces.push_back(&*I); |
| continue; |
| } |
| |
| assert(Loc.isMacroID()); |
| |
| // Is the PathDiagnosticPiece within the same macro group? |
| if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { |
| MacroStack.back().first->push_back(&*I); |
| continue; |
| } |
| |
| // We aren't in the same group. Are we descending into a new macro |
| // or are part of an old one? |
| PathDiagnosticMacroPiece *MacroGroup = 0; |
| |
| SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? |
| SM.getInstantiationLoc(Loc) : |
| SourceLocation(); |
| |
| // Walk the entire macro stack. |
| while (!MacroStack.empty()) { |
| if (InstantiationLoc == MacroStack.back().second) { |
| MacroGroup = MacroStack.back().first; |
| break; |
| } |
| |
| if (ParentInstantiationLoc == MacroStack.back().second) { |
| MacroGroup = MacroStack.back().first; |
| break; |
| } |
| |
| MacroStack.pop_back(); |
| } |
| |
| if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { |
| // Create a new macro group and add it to the stack. |
| PathDiagnosticMacroPiece *NewGroup = new PathDiagnosticMacroPiece(Loc); |
| |
| if (MacroGroup) |
| MacroGroup->push_back(NewGroup); |
| else { |
| assert(InstantiationLoc.isFileID()); |
| Pieces.push_back(NewGroup); |
| } |
| |
| MacroGroup = NewGroup; |
| MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); |
| } |
| |
| // Finally, add the PathDiagnosticPiece to the group. |
| MacroGroup->push_back(&*I); |
| } |
| |
| // Now take the pieces and construct a new PathDiagnostic. |
| PD.resetPath(false); |
| |
| for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I) { |
| if (PathDiagnosticMacroPiece *MP=dyn_cast<PathDiagnosticMacroPiece>(*I)) |
| if (!MP->containsEvent()) { |
| delete MP; |
| continue; |
| } |
| |
| PD.push_back(*I); |
| } |
| } |
| |
| void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD, |
| BugReportEquivClass& EQ) { |
| |
| std::vector<const ExplodedNode*> Nodes; |
| |
| for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) { |
| const ExplodedNode* N = I->getEndNode(); |
| if (N) Nodes.push_back(N); |
| } |
| |
| if (Nodes.empty()) |
| return; |
| |
| // Construct a new graph that contains only a single path from the error |
| // node to a root. |
| const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>, |
| std::pair<ExplodedNode*, unsigned> >& |
| GPair = MakeReportGraph(&getGraph(), &Nodes[0], &Nodes[0] + Nodes.size()); |
| |
| // Find the BugReport with the original location. |
| BugReport *R = 0; |
| unsigned i = 0; |
| for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I, ++i) |
| if (i == GPair.second.second) { R = *I; break; } |
| |
| assert(R && "No original report found for sliced graph."); |
| |
| llvm::OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first); |
| llvm::OwningPtr<NodeBackMap> BackMap(GPair.first.second); |
| const ExplodedNode *N = GPair.second.first; |
| |
| // Start building the path diagnostic... |
| PathDiagnosticBuilder PDB(*this, R, BackMap.get(), getPathDiagnosticClient()); |
| |
| if (PathDiagnosticPiece* Piece = R->getEndPath(PDB, N)) |
| PD.push_back(Piece); |
| else |
| return; |
| |
| R->registerInitialVisitors(PDB, N); |
| |
| switch (PDB.getGenerationScheme()) { |
| case PathDiagnosticClient::Extensive: |
| GenerateExtensivePathDiagnostic(PD, PDB, N); |
| break; |
| case PathDiagnosticClient::Minimal: |
| GenerateMinimalPathDiagnostic(PD, PDB, N); |
| break; |
| } |
| } |
| |
| void BugReporter::Register(BugType *BT) { |
| BugTypes = F.Add(BugTypes, BT); |
| } |
| |
| void BugReporter::EmitReport(BugReport* R) { |
| // Compute the bug report's hash to determine its equivalence class. |
| llvm::FoldingSetNodeID ID; |
| R->Profile(ID); |
| |
| // Lookup the equivance class. If there isn't one, create it. |
| BugType& BT = R->getBugType(); |
| Register(&BT); |
| void *InsertPos; |
| BugReportEquivClass* EQ = BT.EQClasses.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!EQ) { |
| EQ = new BugReportEquivClass(R); |
| BT.EQClasses.InsertNode(EQ, InsertPos); |
| } |
| else |
| EQ->AddReport(R); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Emitting reports in equivalence classes. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| struct VISIBILITY_HIDDEN FRIEC_WLItem { |
| const ExplodedNode *N; |
| ExplodedNode::const_succ_iterator I, E; |
| |
| FRIEC_WLItem(const ExplodedNode *n) |
| : N(n), I(N->succ_begin()), E(N->succ_end()) {} |
| }; |
| } |
| |
| static BugReport *FindReportInEquivalenceClass(BugReportEquivClass& EQ) { |
| BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end(); |
| assert(I != E); |
| BugReport *R = *I; |
| BugType& BT = R->getBugType(); |
| |
| if (!BT.isSuppressOnSink()) |
| return R; |
| |
| // For bug reports that should be suppressed when all paths are post-dominated |
| // by a sink node, iterate through the reports in the equivalence class |
| // until we find one that isn't post-dominated (if one exists). We use a |
| // DFS traversal of the ExplodedGraph to find a non-sink node. We could write |
| // this as a recursive function, but we don't want to risk blowing out the |
| // stack for very long paths. |
| for (; I != E; ++I) { |
| R = *I; |
| const ExplodedNode *N = R->getEndNode(); |
| |
| if (!N) |
| continue; |
| |
| if (N->isSink()) { |
| assert(false && |
| "BugType::isSuppressSink() should not be 'true' for sink end nodes"); |
| return R; |
| } |
| |
| if (N->succ_empty()) |
| return R; |
| |
| // At this point we know that 'N' is not a sink and it has at least one |
| // successor. Use a DFS worklist to find a non-sink end-of-path node. |
| typedef FRIEC_WLItem WLItem; |
| typedef llvm::SmallVector<WLItem, 10> DFSWorkList; |
| llvm::DenseMap<const ExplodedNode *, unsigned> Visited; |
| |
| DFSWorkList WL; |
| WL.push_back(N); |
| Visited[N] = 1; |
| |
| while (!WL.empty()) { |
| WLItem &WI = WL.back(); |
| assert(!WI.N->succ_empty()); |
| |
| for (; WI.I != WI.E; ++WI.I) { |
| const ExplodedNode *Succ = *WI.I; |
| // End-of-path node? |
| if (Succ->succ_empty()) { |
| // If we found an end-of-path node that is not a sink, then return |
| // this report. |
| if (!Succ->isSink()) |
| return R; |
| |
| // Found a sink? Continue on to the next successor. |
| continue; |
| } |
| |
| // Mark the successor as visited. If it hasn't been explored, |
| // enqueue it to the DFS worklist. |
| unsigned &mark = Visited[Succ]; |
| if (!mark) { |
| mark = 1; |
| WL.push_back(Succ); |
| break; |
| } |
| } |
| |
| if (&WL.back() == &WI) |
| WL.pop_back(); |
| } |
| } |
| |
| // If we reach here, the end nodes for all reports in the equiavalence |
| // class are post-dominated by a sink node. |
| return NULL; |
| } |
| |
| void BugReporter::FlushReport(BugReportEquivClass& EQ) { |
| BugReport *R = FindReportInEquivalenceClass(EQ); |
| |
| if (!R) |
| return; |
| |
| PathDiagnosticClient* PD = getPathDiagnosticClient(); |
| |
| // FIXME: Make sure we use the 'R' for the path that was actually used. |
| // Probably doesn't make a difference in practice. |
| BugType& BT = R->getBugType(); |
| |
| llvm::OwningPtr<PathDiagnostic> |
| D(new PathDiagnostic(R->getBugType().getName(), |
| !PD || PD->useVerboseDescription() |
| ? R->getDescription() : R->getShortDescription(), |
| BT.getCategory())); |
| |
| GeneratePathDiagnostic(*D.get(), EQ); |
| |
| // Get the meta data. |
| std::pair<const char**, const char**> Meta = R->getExtraDescriptiveText(); |
| for (const char** s = Meta.first; s != Meta.second; ++s) |
| D->addMeta(*s); |
| |
| // Emit a summary diagnostic to the regular Diagnostics engine. |
| const SourceRange *Beg = 0, *End = 0; |
| R->getRanges(Beg, End); |
| Diagnostic& Diag = getDiagnostic(); |
| FullSourceLoc L(R->getLocation(), getSourceManager()); |
| unsigned ErrorDiag = Diag.getCustomDiagID(Diagnostic::Warning, |
| R->getShortDescription().c_str()); |
| |
| switch (End-Beg) { |
| default: assert(0 && "Don't handle this many ranges yet!"); |
| case 0: Diag.Report(L, ErrorDiag); break; |
| case 1: Diag.Report(L, ErrorDiag) << Beg[0]; break; |
| case 2: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1]; break; |
| case 3: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1] << Beg[2]; break; |
| } |
| |
| // Emit a full diagnostic for the path if we have a PathDiagnosticClient. |
| if (!PD) |
| return; |
| |
| if (D->empty()) { |
| PathDiagnosticPiece* piece = |
| new PathDiagnosticEventPiece(L, R->getDescription()); |
| |
| for ( ; Beg != End; ++Beg) piece->addRange(*Beg); |
| D->push_back(piece); |
| } |
| |
| PD->HandlePathDiagnostic(D.take()); |
| } |
| |
| void BugReporter::EmitBasicReport(const char* name, const char* str, |
| SourceLocation Loc, |
| SourceRange* RBeg, unsigned NumRanges) { |
| EmitBasicReport(name, "", str, Loc, RBeg, NumRanges); |
| } |
| |
| void BugReporter::EmitBasicReport(const char* name, const char* category, |
| const char* str, SourceLocation Loc, |
| SourceRange* RBeg, unsigned NumRanges) { |
| |
| // 'BT' will be owned by BugReporter as soon as we call 'EmitReport'. |
| BugType *BT = new BugType(name, category); |
| FullSourceLoc L = getContext().getFullLoc(Loc); |
| RangedBugReport *R = new DiagBugReport(*BT, str, L); |
| for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg); |
| EmitReport(R); |
| } |