| //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Lex/LiteralSupport.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringExtras.h" |
| using namespace clang; |
| |
| /// ParseStringLiteral - The specified tokens were lexed as pasted string |
| /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string |
| /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from |
| /// multiple tokens. However, the common case is that StringToks points to one |
| /// string. |
| /// |
| Action::ExprResult |
| Sema::ParseStringLiteral(const Token *StringToks, unsigned NumStringToks) { |
| assert(NumStringToks && "Must have at least one string!"); |
| |
| StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target); |
| if (Literal.hadError) |
| return ExprResult(true); |
| |
| llvm::SmallVector<SourceLocation, 4> StringTokLocs; |
| for (unsigned i = 0; i != NumStringToks; ++i) |
| StringTokLocs.push_back(StringToks[i].getLocation()); |
| |
| // FIXME: handle wchar_t |
| QualType t = Context.getPointerType(Context.CharTy); |
| |
| // Pass &StringTokLocs[0], StringTokLocs.size() to factory! |
| return new StringLiteral(Literal.GetString(), Literal.GetStringLength(), |
| Literal.AnyWide, t, StringToks[0].getLocation(), |
| StringToks[NumStringToks-1].getLocation()); |
| } |
| |
| |
| /// ParseIdentifierExpr - The parser read an identifier in expression context, |
| /// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this |
| /// identifier is used in an function call context. |
| Sema::ExprResult Sema::ParseIdentifierExpr(Scope *S, SourceLocation Loc, |
| IdentifierInfo &II, |
| bool HasTrailingLParen) { |
| // Could be enum-constant or decl. |
| Decl *D = LookupScopedDecl(&II, Decl::IDNS_Ordinary, Loc, S); |
| if (D == 0) { |
| // Otherwise, this could be an implicitly declared function reference (legal |
| // in C90, extension in C99). |
| if (HasTrailingLParen && |
| // Not in C++. |
| !getLangOptions().CPlusPlus) |
| D = ImplicitlyDefineFunction(Loc, II, S); |
| else { |
| // If this name wasn't predeclared and if this is not a function call, |
| // diagnose the problem. |
| return Diag(Loc, diag::err_undeclared_var_use, II.getName()); |
| } |
| } |
| if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) |
| return new DeclRefExpr(VD, VD->getType(), Loc); |
| if (isa<TypedefDecl>(D)) |
| return Diag(Loc, diag::err_unexpected_typedef, II.getName()); |
| |
| assert(0 && "Invalid decl"); |
| abort(); |
| } |
| |
| Sema::ExprResult Sema::ParsePreDefinedExpr(SourceLocation Loc, |
| tok::TokenKind Kind) { |
| PreDefinedExpr::IdentType IT; |
| |
| switch (Kind) { |
| default: |
| assert(0 && "Unknown simple primary expr!"); |
| case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2] |
| IT = PreDefinedExpr::Func; |
| break; |
| case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU] |
| IT = PreDefinedExpr::Function; |
| break; |
| case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU] |
| IT = PreDefinedExpr::PrettyFunction; |
| break; |
| } |
| |
| // Pre-defined identifiers are always of type char *. |
| return new PreDefinedExpr(Loc, Context.getPointerType(Context.CharTy), IT); |
| } |
| |
| Sema::ExprResult Sema::ParseCharacterConstant(const Token &Tok) { |
| llvm::SmallString<16> CharBuffer; |
| CharBuffer.resize(Tok.getLength()); |
| const char *ThisTokBegin = &CharBuffer[0]; |
| unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); |
| |
| CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, |
| Tok.getLocation(), PP); |
| if (Literal.hadError()) |
| return ExprResult(true); |
| return new CharacterLiteral(Literal.getValue(), Context.IntTy, |
| Tok.getLocation()); |
| } |
| |
| Action::ExprResult Sema::ParseNumericConstant(const Token &Tok) { |
| // fast path for a single digit (which is quite common). A single digit |
| // cannot have a trigraph, escaped newline, radix prefix, or type suffix. |
| if (Tok.getLength() == 1) { |
| const char *t = PP.getSourceManager().getCharacterData(Tok.getLocation()); |
| |
| unsigned IntSize = Context.getTypeSize(Context.IntTy, Tok.getLocation()); |
| return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *t-'0'), |
| Context.IntTy, |
| Tok.getLocation())); |
| } |
| llvm::SmallString<512> IntegerBuffer; |
| IntegerBuffer.resize(Tok.getLength()); |
| const char *ThisTokBegin = &IntegerBuffer[0]; |
| |
| // Get the spelling of the token, which eliminates trigraphs, etc. |
| unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); |
| NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, |
| Tok.getLocation(), PP); |
| if (Literal.hadError) |
| return ExprResult(true); |
| |
| Expr *Res; |
| |
| if (Literal.isFloatingLiteral()) { |
| // FIXME: handle float values > 32 (including compute the real type...). |
| QualType Ty = Literal.isFloat ? Context.FloatTy : Context.DoubleTy; |
| Res = new FloatingLiteral(Literal.GetFloatValue(), Ty, Tok.getLocation()); |
| } else if (!Literal.isIntegerLiteral()) { |
| return ExprResult(true); |
| } else { |
| QualType t; |
| |
| // Get the value in the widest-possible width. |
| llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(Tok.getLocation()), 0); |
| |
| if (Literal.GetIntegerValue(ResultVal)) { |
| // If this value didn't fit into uintmax_t, warn and force to ull. |
| Diag(Tok.getLocation(), diag::warn_integer_too_large); |
| t = Context.UnsignedLongLongTy; |
| assert(Context.getTypeSize(t, Tok.getLocation()) == |
| ResultVal.getBitWidth() && "long long is not intmax_t?"); |
| } else { |
| // If this value fits into a ULL, try to figure out what else it fits into |
| // according to the rules of C99 6.4.4.1p5. |
| |
| // Octal, Hexadecimal, and integers with a U suffix are allowed to |
| // be an unsigned int. |
| bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; |
| |
| // Check from smallest to largest, picking the smallest type we can. |
| if (!Literal.isLong && !Literal.isLongLong) { |
| // Are int/unsigned possibilities? |
| unsigned IntSize = Context.getTypeSize(Context.IntTy,Tok.getLocation()); |
| // Does it fit in a unsigned int? |
| if (ResultVal.isIntN(IntSize)) { |
| // Does it fit in a signed int? |
| if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) |
| t = Context.IntTy; |
| else if (AllowUnsigned) |
| t = Context.UnsignedIntTy; |
| } |
| |
| if (!t.isNull()) |
| ResultVal.trunc(IntSize); |
| } |
| |
| // Are long/unsigned long possibilities? |
| if (t.isNull() && !Literal.isLongLong) { |
| unsigned LongSize = Context.getTypeSize(Context.LongTy, |
| Tok.getLocation()); |
| |
| // Does it fit in a unsigned long? |
| if (ResultVal.isIntN(LongSize)) { |
| // Does it fit in a signed long? |
| if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) |
| t = Context.LongTy; |
| else if (AllowUnsigned) |
| t = Context.UnsignedLongTy; |
| } |
| if (!t.isNull()) |
| ResultVal.trunc(LongSize); |
| } |
| |
| // Finally, check long long if needed. |
| if (t.isNull()) { |
| unsigned LongLongSize = |
| Context.getTypeSize(Context.LongLongTy, Tok.getLocation()); |
| |
| // Does it fit in a unsigned long long? |
| if (ResultVal.isIntN(LongLongSize)) { |
| // Does it fit in a signed long long? |
| if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0) |
| t = Context.LongLongTy; |
| else if (AllowUnsigned) |
| t = Context.UnsignedLongLongTy; |
| } |
| } |
| |
| // If we still couldn't decide a type, we probably have something that |
| // does not fit in a signed long long, but has no U suffix. |
| if (t.isNull()) { |
| Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed); |
| t = Context.UnsignedLongLongTy; |
| } |
| } |
| |
| Res = new IntegerLiteral(ResultVal, t, Tok.getLocation()); |
| } |
| |
| // If this is an imaginary literal, create the ImaginaryLiteral wrapper. |
| if (Literal.isImaginary) |
| Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType())); |
| |
| return Res; |
| } |
| |
| Action::ExprResult Sema::ParseParenExpr(SourceLocation L, SourceLocation R, |
| ExprTy *Val) { |
| Expr *e = (Expr *)Val; |
| assert((e != 0) && "ParseParenExpr() missing expr"); |
| return new ParenExpr(L, R, e); |
| } |
| |
| /// The UsualUnaryConversions() function is *not* called by this routine. |
| /// See C99 6.3.2.1p[2-4] for more details. |
| QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType, |
| SourceLocation OpLoc, bool isSizeof) { |
| // C99 6.5.3.4p1: |
| if (isa<FunctionType>(exprType) && isSizeof) |
| // alignof(function) is allowed. |
| Diag(OpLoc, diag::ext_sizeof_function_type); |
| else if (exprType->isVoidType()) |
| Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof"); |
| else if (exprType->isIncompleteType()) { |
| Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type : |
| diag::err_alignof_incomplete_type, |
| exprType.getAsString()); |
| return QualType(); // error |
| } |
| // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. |
| return Context.getSizeType(); |
| } |
| |
| Action::ExprResult Sema:: |
| ParseSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof, |
| SourceLocation LPLoc, TypeTy *Ty, |
| SourceLocation RPLoc) { |
| // If error parsing type, ignore. |
| if (Ty == 0) return true; |
| |
| // Verify that this is a valid expression. |
| QualType ArgTy = QualType::getFromOpaquePtr(Ty); |
| |
| QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof); |
| |
| if (resultType.isNull()) |
| return true; |
| return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc); |
| } |
| |
| QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) { |
| DefaultFunctionArrayConversion(V); |
| |
| // These operators return the element type of a complex type. |
| if (const ComplexType *CT = V->getType()->getAsComplexType()) |
| return CT->getElementType(); |
| |
| // Otherwise they pass through real integer and floating point types here. |
| if (V->getType()->isArithmeticType()) |
| return V->getType(); |
| |
| // Reject anything else. |
| Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString()); |
| return QualType(); |
| } |
| |
| |
| |
| Action::ExprResult Sema::ParsePostfixUnaryOp(SourceLocation OpLoc, |
| tok::TokenKind Kind, |
| ExprTy *Input) { |
| UnaryOperator::Opcode Opc; |
| switch (Kind) { |
| default: assert(0 && "Unknown unary op!"); |
| case tok::plusplus: Opc = UnaryOperator::PostInc; break; |
| case tok::minusminus: Opc = UnaryOperator::PostDec; break; |
| } |
| QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc); |
| if (result.isNull()) |
| return true; |
| return new UnaryOperator((Expr *)Input, Opc, result, OpLoc); |
| } |
| |
| Action::ExprResult Sema:: |
| ParseArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc, |
| ExprTy *Idx, SourceLocation RLoc) { |
| Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx); |
| |
| // Perform default conversions. |
| DefaultFunctionArrayConversion(LHSExp); |
| DefaultFunctionArrayConversion(RHSExp); |
| |
| QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); |
| |
| // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent |
| // to the expression *((e1)+(e2)). This means the array "Base" may actually be |
| // in the subscript position. As a result, we need to derive the array base |
| // and index from the expression types. |
| Expr *BaseExpr, *IndexExpr; |
| QualType ResultType; |
| if (const PointerType *PTy = LHSTy->getAsPointerType()) { |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| // FIXME: need to deal with const... |
| ResultType = PTy->getPointeeType(); |
| } else if (const PointerType *PTy = RHSTy->getAsPointerType()) { |
| // Handle the uncommon case of "123[Ptr]". |
| BaseExpr = RHSExp; |
| IndexExpr = LHSExp; |
| // FIXME: need to deal with const... |
| ResultType = PTy->getPointeeType(); |
| } else if (const VectorType *VTy = LHSTy->getAsVectorType()) { |
| BaseExpr = LHSExp; // vectors: V[123] |
| IndexExpr = RHSExp; |
| |
| // Component access limited to variables (reject vec4.rg[1]). |
| if (!isa<DeclRefExpr>(BaseExpr)) |
| return Diag(LLoc, diag::err_ocuvector_component_access, |
| SourceRange(LLoc, RLoc)); |
| // FIXME: need to deal with const... |
| ResultType = VTy->getElementType(); |
| } else { |
| return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value, |
| RHSExp->getSourceRange()); |
| } |
| // C99 6.5.2.1p1 |
| if (!IndexExpr->getType()->isIntegerType()) |
| return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript, |
| IndexExpr->getSourceRange()); |
| |
| // C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice, |
| // the following check catches trying to index a pointer to a function (e.g. |
| // void (*)(int)). Functions are not objects in C99. |
| if (!ResultType->isObjectType()) |
| return Diag(BaseExpr->getLocStart(), |
| diag::err_typecheck_subscript_not_object, |
| BaseExpr->getType().getAsString(), BaseExpr->getSourceRange()); |
| |
| return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc); |
| } |
| |
| QualType Sema:: |
| CheckOCUVectorComponent(QualType baseType, SourceLocation OpLoc, |
| IdentifierInfo &CompName, SourceLocation CompLoc) { |
| const OCUVectorType *vecType = baseType->getAsOCUVectorType(); |
| |
| // The vector accessor can't exceed the number of elements. |
| const char *compStr = CompName.getName(); |
| if (strlen(compStr) > vecType->getNumElements()) { |
| Diag(OpLoc, diag::err_ocuvector_component_exceeds_length, |
| baseType.getAsString(), SourceRange(CompLoc)); |
| return QualType(); |
| } |
| // The component names must come from the same set. |
| if (vecType->getPointAccessorIdx(*compStr) != -1) { |
| do |
| compStr++; |
| while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1); |
| } else if (vecType->getColorAccessorIdx(*compStr) != -1) { |
| do |
| compStr++; |
| while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1); |
| } else if (vecType->getTextureAccessorIdx(*compStr) != -1) { |
| do |
| compStr++; |
| while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1); |
| } |
| |
| if (*compStr) { |
| // We didn't get to the end of the string. This means the component names |
| // didn't come from the same set *or* we encountered an illegal name. |
| Diag(OpLoc, diag::err_ocuvector_component_name_illegal, |
| std::string(compStr,compStr+1), SourceRange(CompLoc)); |
| return QualType(); |
| } |
| // Each component accessor can't exceed the vector type. |
| compStr = CompName.getName(); |
| while (*compStr) { |
| if (vecType->isAccessorWithinNumElements(*compStr)) |
| compStr++; |
| else |
| break; |
| } |
| if (*compStr) { |
| // We didn't get to the end of the string. This means a component accessor |
| // exceeds the number of elements in the vector. |
| Diag(OpLoc, diag::err_ocuvector_component_exceeds_length, |
| baseType.getAsString(), SourceRange(CompLoc)); |
| return QualType(); |
| } |
| // The component accessor looks fine - now we need to compute the actual type. |
| // The vector type is implied by the component accessor. For example, |
| // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. |
| unsigned CompSize = strlen(CompName.getName()); |
| if (CompSize == 1) |
| return vecType->getElementType(); |
| |
| QualType VT = Context.getOCUVectorType(vecType->getElementType(), CompSize); |
| // Now look up the TypeDefDecl from the vector type. Without this, |
| // diagostics look bad. We want OCU vector types to appear built-in. |
| for (unsigned i = 0, e = OCUVectorDecls.size(); i != e; ++i) { |
| if (OCUVectorDecls[i]->getUnderlyingType() == VT) |
| return Context.getTypedefType(OCUVectorDecls[i]); |
| } |
| return VT; // should never get here (a typedef type should always be found). |
| } |
| |
| Action::ExprResult Sema:: |
| ParseMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc, |
| tok::TokenKind OpKind, SourceLocation MemberLoc, |
| IdentifierInfo &Member) { |
| Expr *BaseExpr = static_cast<Expr *>(Base); |
| assert(BaseExpr && "no record expression"); |
| |
| QualType BaseType = BaseExpr->getType(); |
| assert(!BaseType.isNull() && "no type for member expression"); |
| |
| if (OpKind == tok::arrow) { |
| if (const PointerType *PT = BaseType->getAsPointerType()) |
| BaseType = PT->getPointeeType(); |
| else |
| return Diag(OpLoc, diag::err_typecheck_member_reference_arrow, |
| SourceRange(MemberLoc)); |
| } |
| // The base type is either a record or an OCUVectorType. |
| if (const RecordType *RTy = BaseType->getAsRecordType()) { |
| RecordDecl *RDecl = RTy->getDecl(); |
| if (RTy->isIncompleteType()) |
| return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(), |
| BaseExpr->getSourceRange()); |
| // The record definition is complete, now make sure the member is valid. |
| FieldDecl *MemberDecl = RDecl->getMember(&Member); |
| if (!MemberDecl) |
| return Diag(OpLoc, diag::err_typecheck_no_member, Member.getName(), |
| SourceRange(MemberLoc)); |
| return new MemberExpr(BaseExpr, OpKind==tok::arrow, MemberDecl, MemberLoc); |
| } else if (BaseType->isOCUVectorType() && OpKind == tok::period) { |
| // Component access limited to variables (reject vec4.rg.g). |
| if (!isa<DeclRefExpr>(BaseExpr)) |
| return Diag(OpLoc, diag::err_ocuvector_component_access, |
| SourceRange(MemberLoc)); |
| QualType ret = CheckOCUVectorComponent(BaseType, OpLoc, Member, MemberLoc); |
| if (ret.isNull()) |
| return true; |
| return new OCUVectorElementExpr(ret, BaseExpr, Member, MemberLoc); |
| } else |
| return Diag(OpLoc, diag::err_typecheck_member_reference_structUnion, |
| SourceRange(MemberLoc)); |
| } |
| |
| /// ParseCallExpr - Handle a call to Fn with the specified array of arguments. |
| /// This provides the location of the left/right parens and a list of comma |
| /// locations. |
| Action::ExprResult Sema:: |
| ParseCallExpr(ExprTy *fn, SourceLocation LParenLoc, |
| ExprTy **args, unsigned NumArgsInCall, |
| SourceLocation *CommaLocs, SourceLocation RParenLoc) { |
| Expr *Fn = static_cast<Expr *>(fn); |
| Expr **Args = reinterpret_cast<Expr**>(args); |
| assert(Fn && "no function call expression"); |
| |
| UsualUnaryConversions(Fn); |
| QualType funcType = Fn->getType(); |
| |
| // C99 6.5.2.2p1 - "The expression that denotes the called function shall have |
| // type pointer to function". |
| const PointerType *PT = funcType->getAsPointerType(); |
| if (PT == 0) |
| return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function, |
| SourceRange(Fn->getLocStart(), RParenLoc)); |
| |
| const FunctionType *funcT = PT->getPointeeType()->getAsFunctionType(); |
| if (funcT == 0) |
| return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function, |
| SourceRange(Fn->getLocStart(), RParenLoc)); |
| |
| // If a prototype isn't declared, the parser implicitly defines a func decl |
| QualType resultType = funcT->getResultType(); |
| |
| if (const FunctionTypeProto *proto = dyn_cast<FunctionTypeProto>(funcT)) { |
| // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by |
| // assignment, to the types of the corresponding parameter, ... |
| |
| unsigned NumArgsInProto = proto->getNumArgs(); |
| unsigned NumArgsToCheck = NumArgsInCall; |
| |
| if (NumArgsInCall < NumArgsInProto) |
| Diag(RParenLoc, diag::err_typecheck_call_too_few_args, |
| Fn->getSourceRange()); |
| else if (NumArgsInCall > NumArgsInProto) { |
| if (!proto->isVariadic()) { |
| Diag(Args[NumArgsInProto]->getLocStart(), |
| diag::err_typecheck_call_too_many_args, Fn->getSourceRange(), |
| SourceRange(Args[NumArgsInProto]->getLocStart(), |
| Args[NumArgsInCall-1]->getLocEnd())); |
| } |
| NumArgsToCheck = NumArgsInProto; |
| } |
| // Continue to check argument types (even if we have too few/many args). |
| for (unsigned i = 0; i < NumArgsToCheck; i++) { |
| Expr *argExpr = Args[i]; |
| assert(argExpr && "ParseCallExpr(): missing argument expression"); |
| |
| QualType lhsType = proto->getArgType(i); |
| QualType rhsType = argExpr->getType(); |
| |
| // If necessary, apply function/array conversion. C99 6.7.5.3p[7,8]. |
| if (const ArrayType *ary = lhsType->getAsArrayType()) |
| lhsType = Context.getPointerType(ary->getElementType()); |
| else if (lhsType->isFunctionType()) |
| lhsType = Context.getPointerType(lhsType); |
| |
| AssignmentCheckResult result = CheckSingleAssignmentConstraints(lhsType, |
| argExpr); |
| if (Args[i] != argExpr) // The expression was converted. |
| Args[i] = argExpr; // Make sure we store the converted expression. |
| SourceLocation l = argExpr->getLocStart(); |
| |
| // decode the result (notice that AST's are still created for extensions). |
| switch (result) { |
| case Compatible: |
| break; |
| case PointerFromInt: |
| // check for null pointer constant (C99 6.3.2.3p3) |
| if (!argExpr->isNullPointerConstant(Context)) { |
| Diag(l, diag::ext_typecheck_passing_pointer_int, |
| lhsType.getAsString(), rhsType.getAsString(), |
| Fn->getSourceRange(), argExpr->getSourceRange()); |
| } |
| break; |
| case IntFromPointer: |
| Diag(l, diag::ext_typecheck_passing_pointer_int, |
| lhsType.getAsString(), rhsType.getAsString(), |
| Fn->getSourceRange(), argExpr->getSourceRange()); |
| break; |
| case IncompatiblePointer: |
| Diag(l, diag::ext_typecheck_passing_incompatible_pointer, |
| rhsType.getAsString(), lhsType.getAsString(), |
| Fn->getSourceRange(), argExpr->getSourceRange()); |
| break; |
| case CompatiblePointerDiscardsQualifiers: |
| Diag(l, diag::ext_typecheck_passing_discards_qualifiers, |
| rhsType.getAsString(), lhsType.getAsString(), |
| Fn->getSourceRange(), argExpr->getSourceRange()); |
| break; |
| case Incompatible: |
| return Diag(l, diag::err_typecheck_passing_incompatible, |
| rhsType.getAsString(), lhsType.getAsString(), |
| Fn->getSourceRange(), argExpr->getSourceRange()); |
| } |
| } |
| // Even if the types checked, bail if we had the wrong number of arguments. |
| if (NumArgsInCall != NumArgsInProto && !proto->isVariadic()) |
| return true; |
| } |
| |
| // Do special checking on direct calls to functions. |
| if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn)) |
| if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr())) |
| if (FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl())) |
| if (CheckFunctionCall(Fn, LParenLoc, RParenLoc, FDecl, Args, NumArgsInCall)) |
| return true; |
| |
| return new CallExpr(Fn, Args, NumArgsInCall, resultType, RParenLoc); |
| } |
| |
| Action::ExprResult Sema:: |
| ParseCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty, |
| SourceLocation RParenLoc, ExprTy *InitExpr) { |
| assert((Ty != 0) && "ParseCompoundLiteral(): missing type"); |
| QualType literalType = QualType::getFromOpaquePtr(Ty); |
| // FIXME: put back this assert when initializers are worked out. |
| //assert((InitExpr != 0) && "ParseCompoundLiteral(): missing expression"); |
| Expr *literalExpr = static_cast<Expr*>(InitExpr); |
| |
| // FIXME: add semantic analysis (C99 6.5.2.5). |
| return new CompoundLiteralExpr(literalType, literalExpr); |
| } |
| |
| Action::ExprResult Sema:: |
| ParseInitList(SourceLocation LParenLoc, ExprTy **InitList, unsigned NumInit, |
| SourceLocation RParenLoc) { |
| // FIXME: add semantic analysis (C99 6.7.8). This involves |
| // knowledge of the object being intialized. As a result, the code for |
| // doing the semantic analysis will likely be located elsewhere (i.e. in |
| // consumers of InitListExpr (e.g. ParseDeclarator, ParseCompoundLiteral). |
| return false; // FIXME instantiate an InitListExpr. |
| } |
| |
| Action::ExprResult Sema:: |
| ParseCastExpr(SourceLocation LParenLoc, TypeTy *Ty, |
| SourceLocation RParenLoc, ExprTy *Op) { |
| assert((Ty != 0) && (Op != 0) && "ParseCastExpr(): missing type or expr"); |
| |
| Expr *castExpr = static_cast<Expr*>(Op); |
| QualType castType = QualType::getFromOpaquePtr(Ty); |
| |
| // C99 6.5.4p2: the cast type needs to be void or scalar and the expression |
| // type needs to be scalar. |
| if (!castType->isScalarType() && !castType->isVoidType()) { |
| return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar, |
| castType.getAsString(), SourceRange(LParenLoc, RParenLoc)); |
| } |
| if (!castExpr->getType()->isScalarType()) { |
| return Diag(castExpr->getLocStart(), |
| diag::err_typecheck_expect_scalar_operand, |
| castExpr->getType().getAsString(), castExpr->getSourceRange()); |
| } |
| return new CastExpr(castType, castExpr, LParenLoc); |
| } |
| |
| inline QualType Sema::CheckConditionalOperands( // C99 6.5.15 |
| Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) { |
| UsualUnaryConversions(cond); |
| UsualUnaryConversions(lex); |
| UsualUnaryConversions(rex); |
| QualType condT = cond->getType(); |
| QualType lexT = lex->getType(); |
| QualType rexT = rex->getType(); |
| |
| // first, check the condition. |
| if (!condT->isScalarType()) { // C99 6.5.15p2 |
| Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar, |
| condT.getAsString()); |
| return QualType(); |
| } |
| // now check the two expressions. |
| if (lexT->isArithmeticType() && rexT->isArithmeticType()) { // C99 6.5.15p3,5 |
| UsualArithmeticConversions(lex, rex); |
| return lex->getType(); |
| } |
| if (const RecordType *LHSRT = lexT->getAsRecordType()) { // C99 6.5.15p3 |
| if (const RecordType *RHSRT = rexT->getAsRecordType()) { |
| |
| if (LHSRT->getDecl()->getIdentifier() ==RHSRT->getDecl()->getIdentifier()) |
| return lexT; |
| |
| Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands, |
| lexT.getAsString(), rexT.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| return QualType(); |
| } |
| } |
| // C99 6.5.15p3 |
| if (lexT->isPointerType() && rex->isNullPointerConstant(Context)) |
| return lexT; |
| if (rexT->isPointerType() && lex->isNullPointerConstant(Context)) |
| return rexT; |
| |
| if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6 |
| if (const PointerType *RHSPT = rexT->getAsPointerType()) { |
| // get the "pointed to" types |
| QualType lhptee = LHSPT->getPointeeType(); |
| QualType rhptee = RHSPT->getPointeeType(); |
| |
| // ignore qualifiers on void (C99 6.5.15p3, clause 6) |
| if (lhptee->isVoidType() && |
| (rhptee->isObjectType() || rhptee->isIncompleteType())) |
| return lexT; |
| if (rhptee->isVoidType() && |
| (lhptee->isObjectType() || lhptee->isIncompleteType())) |
| return rexT; |
| |
| if (!Type::typesAreCompatible(lhptee.getUnqualifiedType(), |
| rhptee.getUnqualifiedType())) { |
| Diag(questionLoc, diag::ext_typecheck_cond_incompatible_pointers, |
| lexT.getAsString(), rexT.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| return lexT; // FIXME: this is an _ext - is this return o.k? |
| } |
| // The pointer types are compatible. |
| // C99 6.5.15p6: If both operands are pointers to compatible types *or* to |
| // differently qualified versions of compatible types, the result type is a |
| // pointer to an appropriately qualified version of the *composite* type. |
| return lexT; // FIXME: Need to return the composite type. |
| } |
| } |
| |
| if (lexT->isVoidType() && rexT->isVoidType()) // C99 6.5.15p3 |
| return lexT; |
| |
| Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands, |
| lexT.getAsString(), rexT.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| return QualType(); |
| } |
| |
| /// ParseConditionalOp - Parse a ?: operation. Note that 'LHS' may be null |
| /// in the case of a the GNU conditional expr extension. |
| Action::ExprResult Sema::ParseConditionalOp(SourceLocation QuestionLoc, |
| SourceLocation ColonLoc, |
| ExprTy *Cond, ExprTy *LHS, |
| ExprTy *RHS) { |
| Expr *CondExpr = (Expr *) Cond; |
| Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS; |
| QualType result = CheckConditionalOperands(CondExpr, LHSExpr, |
| RHSExpr, QuestionLoc); |
| if (result.isNull()) |
| return true; |
| return new ConditionalOperator(CondExpr, LHSExpr, RHSExpr, result); |
| } |
| |
| // promoteExprToType - a helper function to ensure we create exactly one |
| // ImplicitCastExpr. As a convenience (to the caller), we return the type. |
| static void promoteExprToType(Expr *&expr, QualType type) { |
| if (ImplicitCastExpr *impCast = dyn_cast<ImplicitCastExpr>(expr)) |
| impCast->setType(type); |
| else |
| expr = new ImplicitCastExpr(type, expr); |
| return; |
| } |
| |
| /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). |
| void Sema::DefaultFunctionArrayConversion(Expr *&e) { |
| QualType t = e->getType(); |
| assert(!t.isNull() && "DefaultFunctionArrayConversion - missing type"); |
| |
| if (const ReferenceType *ref = t->getAsReferenceType()) { |
| promoteExprToType(e, ref->getReferenceeType()); // C++ [expr] |
| t = e->getType(); |
| } |
| if (t->isFunctionType()) |
| promoteExprToType(e, Context.getPointerType(t)); |
| else if (const ArrayType *ary = t->getAsArrayType()) |
| promoteExprToType(e, Context.getPointerType(ary->getElementType())); |
| } |
| |
| /// UsualUnaryConversion - Performs various conversions that are common to most |
| /// operators (C99 6.3). The conversions of array and function types are |
| /// sometimes surpressed. For example, the array->pointer conversion doesn't |
| /// apply if the array is an argument to the sizeof or address (&) operators. |
| /// In these instances, this routine should *not* be called. |
| void Sema::UsualUnaryConversions(Expr *&expr) { |
| QualType t = expr->getType(); |
| assert(!t.isNull() && "UsualUnaryConversions - missing type"); |
| |
| if (const ReferenceType *ref = t->getAsReferenceType()) { |
| promoteExprToType(expr, ref->getReferenceeType()); // C++ [expr] |
| t = expr->getType(); |
| } |
| if (t->isPromotableIntegerType()) // C99 6.3.1.1p2 |
| promoteExprToType(expr, Context.IntTy); |
| else |
| DefaultFunctionArrayConversion(expr); |
| } |
| |
| /// UsualArithmeticConversions - Performs various conversions that are common to |
| /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this |
| /// routine returns the first non-arithmetic type found. The client is |
| /// responsible for emitting appropriate error diagnostics. |
| QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr, |
| bool isCompAssign) { |
| if (!isCompAssign) { |
| UsualUnaryConversions(lhsExpr); |
| UsualUnaryConversions(rhsExpr); |
| } |
| QualType lhs = lhsExpr->getType(); |
| QualType rhs = rhsExpr->getType(); |
| |
| // If both types are identical, no conversion is needed. |
| if (lhs == rhs) |
| return lhs; |
| |
| // If either side is a non-arithmetic type (e.g. a pointer), we are done. |
| // The caller can deal with this (e.g. pointer + int). |
| if (!lhs->isArithmeticType() || !rhs->isArithmeticType()) |
| return lhs; |
| |
| // At this point, we have two different arithmetic types. |
| |
| // Handle complex types first (C99 6.3.1.8p1). |
| if (lhs->isComplexType() || rhs->isComplexType()) { |
| // if we have an integer operand, the result is the complex type. |
| if (rhs->isIntegerType()) { // convert the rhs to the lhs complex type. |
| if (!isCompAssign) promoteExprToType(rhsExpr, lhs); |
| return lhs; |
| } |
| if (lhs->isIntegerType()) { // convert the lhs to the rhs complex type. |
| if (!isCompAssign) promoteExprToType(lhsExpr, rhs); |
| return rhs; |
| } |
| // This handles complex/complex, complex/float, or float/complex. |
| // When both operands are complex, the shorter operand is converted to the |
| // type of the longer, and that is the type of the result. This corresponds |
| // to what is done when combining two real floating-point operands. |
| // The fun begins when size promotion occur across type domains. |
| // From H&S 6.3.4: When one operand is complex and the other is a real |
| // floating-point type, the less precise type is converted, within it's |
| // real or complex domain, to the precision of the other type. For example, |
| // when combining a "long double" with a "double _Complex", the |
| // "double _Complex" is promoted to "long double _Complex". |
| int result = Context.compareFloatingType(lhs, rhs); |
| |
| if (result > 0) { // The left side is bigger, convert rhs. |
| rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs); |
| if (!isCompAssign) |
| promoteExprToType(rhsExpr, rhs); |
| } else if (result < 0) { // The right side is bigger, convert lhs. |
| lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs); |
| if (!isCompAssign) |
| promoteExprToType(lhsExpr, lhs); |
| } |
| // At this point, lhs and rhs have the same rank/size. Now, make sure the |
| // domains match. This is a requirement for our implementation, C99 |
| // does not require this promotion. |
| if (lhs != rhs) { // Domains don't match, we have complex/float mix. |
| if (lhs->isRealFloatingType()) { // handle "double, _Complex double". |
| if (!isCompAssign) |
| promoteExprToType(lhsExpr, rhs); |
| return rhs; |
| } else { // handle "_Complex double, double". |
| if (!isCompAssign) |
| promoteExprToType(rhsExpr, lhs); |
| return lhs; |
| } |
| } |
| return lhs; // The domain/size match exactly. |
| } |
| // Now handle "real" floating types (i.e. float, double, long double). |
| if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) { |
| // if we have an integer operand, the result is the real floating type. |
| if (rhs->isIntegerType()) { // convert rhs to the lhs floating point type. |
| if (!isCompAssign) promoteExprToType(rhsExpr, lhs); |
| return lhs; |
| } |
| if (lhs->isIntegerType()) { // convert lhs to the rhs floating point type. |
| if (!isCompAssign) promoteExprToType(lhsExpr, rhs); |
| return rhs; |
| } |
| // We have two real floating types, float/complex combos were handled above. |
| // Convert the smaller operand to the bigger result. |
| int result = Context.compareFloatingType(lhs, rhs); |
| |
| if (result > 0) { // convert the rhs |
| if (!isCompAssign) promoteExprToType(rhsExpr, lhs); |
| return lhs; |
| } |
| if (result < 0) { // convert the lhs |
| if (!isCompAssign) promoteExprToType(lhsExpr, rhs); // convert the lhs |
| return rhs; |
| } |
| assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison"); |
| } |
| // Finally, we have two differing integer types. |
| if (Context.maxIntegerType(lhs, rhs) == lhs) { // convert the rhs |
| if (!isCompAssign) promoteExprToType(rhsExpr, lhs); |
| return lhs; |
| } |
| if (!isCompAssign) promoteExprToType(lhsExpr, rhs); // convert the lhs |
| return rhs; |
| } |
| |
| // CheckPointerTypesForAssignment - This is a very tricky routine (despite |
| // being closely modeled after the C99 spec:-). The odd characteristic of this |
| // routine is it effectively iqnores the qualifiers on the top level pointee. |
| // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. |
| // FIXME: add a couple examples in this comment. |
| Sema::AssignmentCheckResult |
| Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) { |
| QualType lhptee, rhptee; |
| |
| // get the "pointed to" type (ignoring qualifiers at the top level) |
| lhptee = lhsType->getAsPointerType()->getPointeeType(); |
| rhptee = rhsType->getAsPointerType()->getPointeeType(); |
| |
| // make sure we operate on the canonical type |
| lhptee = lhptee.getCanonicalType(); |
| rhptee = rhptee.getCanonicalType(); |
| |
| AssignmentCheckResult r = Compatible; |
| |
| // C99 6.5.16.1p1: This following citation is common to constraints |
| // 3 & 4 (below). ...and the type *pointed to* by the left has all the |
| // qualifiers of the type *pointed to* by the right; |
| if ((lhptee.getQualifiers() & rhptee.getQualifiers()) != |
| rhptee.getQualifiers()) |
| r = CompatiblePointerDiscardsQualifiers; |
| |
| // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or |
| // incomplete type and the other is a pointer to a qualified or unqualified |
| // version of void... |
| if (lhptee.getUnqualifiedType()->isVoidType() && |
| (rhptee->isObjectType() || rhptee->isIncompleteType())) |
| ; |
| else if (rhptee.getUnqualifiedType()->isVoidType() && |
| (lhptee->isObjectType() || lhptee->isIncompleteType())) |
| ; |
| // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or |
| // unqualified versions of compatible types, ... |
| else if (!Type::typesAreCompatible(lhptee.getUnqualifiedType(), |
| rhptee.getUnqualifiedType())) |
| r = IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers |
| return r; |
| } |
| |
| /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently |
| /// has code to accommodate several GCC extensions when type checking |
| /// pointers. Here are some objectionable examples that GCC considers warnings: |
| /// |
| /// int a, *pint; |
| /// short *pshort; |
| /// struct foo *pfoo; |
| /// |
| /// pint = pshort; // warning: assignment from incompatible pointer type |
| /// a = pint; // warning: assignment makes integer from pointer without a cast |
| /// pint = a; // warning: assignment makes pointer from integer without a cast |
| /// pint = pfoo; // warning: assignment from incompatible pointer type |
| /// |
| /// As a result, the code for dealing with pointers is more complex than the |
| /// C99 spec dictates. |
| /// Note: the warning above turn into errors when -pedantic-errors is enabled. |
| /// |
| Sema::AssignmentCheckResult |
| Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) { |
| if (lhsType == rhsType) // common case, fast path... |
| return Compatible; |
| |
| if (lhsType->isArithmeticType() && rhsType->isArithmeticType()) { |
| if (lhsType->isVectorType() || rhsType->isVectorType()) { |
| if (lhsType.getCanonicalType() != rhsType.getCanonicalType()) |
| return Incompatible; |
| } |
| return Compatible; |
| } else if (lhsType->isPointerType()) { |
| if (rhsType->isIntegerType()) |
| return PointerFromInt; |
| |
| if (rhsType->isPointerType()) |
| return CheckPointerTypesForAssignment(lhsType, rhsType); |
| } else if (rhsType->isPointerType()) { |
| // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer. |
| if ((lhsType->isIntegerType()) && (lhsType != Context.BoolTy)) |
| return IntFromPointer; |
| |
| if (lhsType->isPointerType()) |
| return CheckPointerTypesForAssignment(lhsType, rhsType); |
| } else if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) { |
| if (Type::tagTypesAreCompatible(lhsType, rhsType)) |
| return Compatible; |
| } else if (lhsType->isReferenceType() || rhsType->isReferenceType()) { |
| if (Type::referenceTypesAreCompatible(lhsType, rhsType)) |
| return Compatible; |
| } |
| return Incompatible; |
| } |
| |
| Sema::AssignmentCheckResult |
| Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) { |
| // This check seems unnatural, however it is necessary to insure the proper |
| // conversion of functions/arrays. If the conversion were done for all |
| // DeclExpr's (created by ParseIdentifierExpr), it would mess up the unary |
| // expressions that surpress this implicit conversion (&, sizeof). |
| DefaultFunctionArrayConversion(rExpr); |
| |
| Sema::AssignmentCheckResult result; |
| |
| result = CheckAssignmentConstraints(lhsType, rExpr->getType()); |
| |
| // C99 6.5.16.1p2: The value of the right operand is converted to the |
| // type of the assignment expression. |
| if (rExpr->getType() != lhsType) |
| promoteExprToType(rExpr, lhsType); |
| return result; |
| } |
| |
| Sema::AssignmentCheckResult |
| Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) { |
| return CheckAssignmentConstraints(lhsType, rhsType); |
| } |
| |
| inline void Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) { |
| Diag(loc, diag::err_typecheck_invalid_operands, |
| lex->getType().getAsString(), rex->getType().getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| } |
| |
| inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex, |
| Expr *&rex) { |
| QualType lhsType = lex->getType(), rhsType = rex->getType(); |
| |
| // make sure the vector types are identical. |
| if (lhsType == rhsType) |
| return lhsType; |
| // You cannot convert between vector values of different size. |
| Diag(loc, diag::err_typecheck_vector_not_convertable, |
| lex->getType().getAsString(), rex->getType().getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| return QualType(); |
| } |
| |
| inline QualType Sema::CheckMultiplyDivideOperands( |
| Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) |
| { |
| QualType lhsType = lex->getType(), rhsType = rex->getType(); |
| |
| if (lhsType->isVectorType() || rhsType->isVectorType()) |
| return CheckVectorOperands(loc, lex, rex); |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) |
| return compType; |
| InvalidOperands(loc, lex, rex); |
| return QualType(); |
| } |
| |
| inline QualType Sema::CheckRemainderOperands( |
| Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) |
| { |
| QualType lhsType = lex->getType(), rhsType = rex->getType(); |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) |
| return compType; |
| InvalidOperands(loc, lex, rex); |
| return QualType(); |
| } |
| |
| inline QualType Sema::CheckAdditionOperands( // C99 6.5.6 |
| Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) |
| { |
| if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) |
| return CheckVectorOperands(loc, lex, rex); |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| // handle the common case first (both operands are arithmetic). |
| if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) |
| return compType; |
| |
| if (lex->getType()->isPointerType() && rex->getType()->isIntegerType()) |
| return lex->getType(); |
| if (lex->getType()->isIntegerType() && rex->getType()->isPointerType()) |
| return rex->getType(); |
| InvalidOperands(loc, lex, rex); |
| return QualType(); |
| } |
| |
| inline QualType Sema::CheckSubtractionOperands( // C99 6.5.6 |
| Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) |
| { |
| if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) |
| return CheckVectorOperands(loc, lex, rex); |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| // handle the common case first (both operands are arithmetic). |
| if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) |
| return compType; |
| |
| if (lex->getType()->isPointerType() && rex->getType()->isIntegerType()) |
| return compType; |
| if (lex->getType()->isPointerType() && rex->getType()->isPointerType()) |
| return Context.getPointerDiffType(); |
| InvalidOperands(loc, lex, rex); |
| return QualType(); |
| } |
| |
| inline QualType Sema::CheckShiftOperands( // C99 6.5.7 |
| Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) |
| { |
| // FIXME: Shifts don't perform usual arithmetic conversions. This is wrong |
| // for int << longlong -> the result type should be int, not long long. |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| // handle the common case first (both operands are arithmetic). |
| if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) |
| return compType; |
| InvalidOperands(loc, lex, rex); |
| return QualType(); |
| } |
| |
| inline QualType Sema::CheckCompareOperands( // C99 6.5.8 |
| Expr *&lex, Expr *&rex, SourceLocation loc, bool isRelational) |
| { |
| // C99 6.5.8p3 / C99 6.5.9p4 |
| if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) |
| UsualArithmeticConversions(lex, rex); |
| else { |
| UsualUnaryConversions(lex); |
| UsualUnaryConversions(rex); |
| } |
| QualType lType = lex->getType(); |
| QualType rType = rex->getType(); |
| |
| if (isRelational) { |
| if (lType->isRealType() && rType->isRealType()) |
| return Context.IntTy; |
| } else { |
| if (lType->isArithmeticType() && rType->isArithmeticType()) |
| return Context.IntTy; |
| } |
| |
| bool LHSIsNull = lex->isNullPointerConstant(Context); |
| bool RHSIsNull = rex->isNullPointerConstant(Context); |
| |
| // All of the following pointer related warnings are GCC extensions, except |
| // when handling null pointer constants. One day, we can consider making them |
| // errors (when -pedantic-errors is enabled). |
| if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2 |
| if (!LHSIsNull && !RHSIsNull && |
| !Type::pointerTypesAreCompatible(lType.getUnqualifiedType(), |
| rType.getUnqualifiedType())) { |
| Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers, |
| lType.getAsString(), rType.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| } |
| promoteExprToType(rex, lType); // promote the pointer to pointer |
| return Context.IntTy; |
| } |
| if (lType->isPointerType() && rType->isIntegerType()) { |
| if (!RHSIsNull) |
| Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer, |
| lType.getAsString(), rType.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| promoteExprToType(rex, lType); // promote the integer to pointer |
| return Context.IntTy; |
| } |
| if (lType->isIntegerType() && rType->isPointerType()) { |
| if (!LHSIsNull) |
| Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer, |
| lType.getAsString(), rType.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| promoteExprToType(lex, rType); // promote the integer to pointer |
| return Context.IntTy; |
| } |
| InvalidOperands(loc, lex, rex); |
| return QualType(); |
| } |
| |
| inline QualType Sema::CheckBitwiseOperands( |
| Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) |
| { |
| if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) |
| return CheckVectorOperands(loc, lex, rex); |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) |
| return compType; |
| InvalidOperands(loc, lex, rex); |
| return QualType(); |
| } |
| |
| inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14] |
| Expr *&lex, Expr *&rex, SourceLocation loc) |
| { |
| UsualUnaryConversions(lex); |
| UsualUnaryConversions(rex); |
| |
| if (lex->getType()->isScalarType() || rex->getType()->isScalarType()) |
| return Context.IntTy; |
| InvalidOperands(loc, lex, rex); |
| return QualType(); |
| } |
| |
| inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1 |
| Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType) |
| { |
| QualType lhsType = lex->getType(); |
| QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType; |
| bool hadError = false; |
| Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue(); |
| |
| switch (mlval) { // C99 6.5.16p2 |
| case Expr::MLV_Valid: |
| break; |
| case Expr::MLV_ConstQualified: |
| Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange()); |
| hadError = true; |
| break; |
| case Expr::MLV_ArrayType: |
| Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue, |
| lhsType.getAsString(), lex->getSourceRange()); |
| return QualType(); |
| case Expr::MLV_NotObjectType: |
| Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue, |
| lhsType.getAsString(), lex->getSourceRange()); |
| return QualType(); |
| case Expr::MLV_InvalidExpression: |
| Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue, |
| lex->getSourceRange()); |
| return QualType(); |
| case Expr::MLV_IncompleteType: |
| case Expr::MLV_IncompleteVoidType: |
| Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue, |
| lhsType.getAsString(), lex->getSourceRange()); |
| return QualType(); |
| case Expr::MLV_DuplicateVectorComponents: |
| Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue, |
| lex->getSourceRange()); |
| return QualType(); |
| } |
| AssignmentCheckResult result; |
| |
| if (compoundType.isNull()) |
| result = CheckSingleAssignmentConstraints(lhsType, rex); |
| else |
| result = CheckCompoundAssignmentConstraints(lhsType, rhsType); |
| |
| // decode the result (notice that extensions still return a type). |
| switch (result) { |
| case Compatible: |
| break; |
| case Incompatible: |
| Diag(loc, diag::err_typecheck_assign_incompatible, |
| lhsType.getAsString(), rhsType.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| hadError = true; |
| break; |
| case PointerFromInt: |
| // check for null pointer constant (C99 6.3.2.3p3) |
| if (compoundType.isNull() && !rex->isNullPointerConstant(Context)) { |
| Diag(loc, diag::ext_typecheck_assign_pointer_int, |
| lhsType.getAsString(), rhsType.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| } |
| break; |
| case IntFromPointer: |
| Diag(loc, diag::ext_typecheck_assign_pointer_int, |
| lhsType.getAsString(), rhsType.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| break; |
| case IncompatiblePointer: |
| Diag(loc, diag::ext_typecheck_assign_incompatible_pointer, |
| lhsType.getAsString(), rhsType.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| break; |
| case CompatiblePointerDiscardsQualifiers: |
| Diag(loc, diag::ext_typecheck_assign_discards_qualifiers, |
| lhsType.getAsString(), rhsType.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| break; |
| } |
| // C99 6.5.16p3: The type of an assignment expression is the type of the |
| // left operand unless the left operand has qualified type, in which case |
| // it is the unqualified version of the type of the left operand. |
| // C99 6.5.16.1p2: In simple assignment, the value of the right operand |
| // is converted to the type of the assignment expression (above). |
| // C++ 5.17p1: the type of the assignment expression is that of its left oprdu. |
| return hadError ? QualType() : lhsType.getUnqualifiedType(); |
| } |
| |
| inline QualType Sema::CheckCommaOperands( // C99 6.5.17 |
| Expr *&lex, Expr *&rex, SourceLocation loc) { |
| UsualUnaryConversions(rex); |
| return rex->getType(); |
| } |
| |
| /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine |
| /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. |
| QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) { |
| QualType resType = op->getType(); |
| assert(!resType.isNull() && "no type for increment/decrement expression"); |
| |
| // C99 6.5.2.4p1: We allow complex as a GCC extension. |
| if (const PointerType *pt = dyn_cast<PointerType>(resType)) { |
| if (!pt->getPointeeType()->isObjectType()) { // C99 6.5.2.4p2, 6.5.6p2 |
| Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type, |
| resType.getAsString(), op->getSourceRange()); |
| return QualType(); |
| } |
| } else if (!resType->isRealType()) { |
| if (resType->isComplexType()) |
| // C99 does not support ++/-- on complex types. |
| Diag(OpLoc, diag::ext_integer_increment_complex, |
| resType.getAsString(), op->getSourceRange()); |
| else { |
| Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement, |
| resType.getAsString(), op->getSourceRange()); |
| return QualType(); |
| } |
| } |
| // At this point, we know we have a real, complex or pointer type. |
| // Now make sure the operand is a modifiable lvalue. |
| Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue(); |
| if (mlval != Expr::MLV_Valid) { |
| // FIXME: emit a more precise diagnostic... |
| Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr, |
| op->getSourceRange()); |
| return QualType(); |
| } |
| return resType; |
| } |
| |
| /// getPrimaryDeclaration - Helper function for CheckAddressOfOperand(). |
| /// This routine allows us to typecheck complex/recursive expressions |
| /// where the declaration is needed for type checking. Here are some |
| /// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2]. |
| static Decl *getPrimaryDeclaration(Expr *e) { |
| switch (e->getStmtClass()) { |
| case Stmt::DeclRefExprClass: |
| return cast<DeclRefExpr>(e)->getDecl(); |
| case Stmt::MemberExprClass: |
| return getPrimaryDeclaration(cast<MemberExpr>(e)->getBase()); |
| case Stmt::ArraySubscriptExprClass: |
| return getPrimaryDeclaration(cast<ArraySubscriptExpr>(e)->getBase()); |
| case Stmt::CallExprClass: |
| return getPrimaryDeclaration(cast<CallExpr>(e)->getCallee()); |
| case Stmt::UnaryOperatorClass: |
| return getPrimaryDeclaration(cast<UnaryOperator>(e)->getSubExpr()); |
| case Stmt::ParenExprClass: |
| return getPrimaryDeclaration(cast<ParenExpr>(e)->getSubExpr()); |
| default: |
| return 0; |
| } |
| } |
| |
| /// CheckAddressOfOperand - The operand of & must be either a function |
| /// designator or an lvalue designating an object. If it is an lvalue, the |
| /// object cannot be declared with storage class register or be a bit field. |
| /// Note: The usual conversions are *not* applied to the operand of the & |
| /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. |
| QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) { |
| Decl *dcl = getPrimaryDeclaration(op); |
| Expr::isLvalueResult lval = op->isLvalue(); |
| |
| if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1 |
| if (dcl && isa<FunctionDecl>(dcl)) // allow function designators |
| ; |
| else { // FIXME: emit more specific diag... |
| Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof, |
| op->getSourceRange()); |
| return QualType(); |
| } |
| } else if (dcl) { |
| // We have an lvalue with a decl. Make sure the decl is not declared |
| // with the register storage-class specifier. |
| if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) { |
| if (vd->getStorageClass() == VarDecl::Register) { |
| Diag(OpLoc, diag::err_typecheck_address_of_register, |
| op->getSourceRange()); |
| return QualType(); |
| } |
| } else |
| assert(0 && "Unknown/unexpected decl type"); |
| |
| // FIXME: add check for bitfields! |
| } |
| // If the operand has type "type", the result has type "pointer to type". |
| return Context.getPointerType(op->getType()); |
| } |
| |
| QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) { |
| UsualUnaryConversions(op); |
| QualType qType = op->getType(); |
| |
| if (const PointerType *PT = qType->getAsPointerType()) { |
| QualType ptype = PT->getPointeeType(); |
| // C99 6.5.3.2p4. "if it points to an object,...". |
| if (ptype->isIncompleteType()) { // An incomplete type is not an object |
| // GCC compat: special case 'void *' (treat as warning). |
| if (ptype->isVoidType()) { |
| Diag(OpLoc, diag::ext_typecheck_deref_ptr_to_void, |
| qType.getAsString(), op->getSourceRange()); |
| } else { |
| Diag(OpLoc, diag::err_typecheck_deref_incomplete_type, |
| ptype.getAsString(), op->getSourceRange()); |
| return QualType(); |
| } |
| } |
| return ptype; |
| } |
| Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer, |
| qType.getAsString(), op->getSourceRange()); |
| return QualType(); |
| } |
| |
| static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode( |
| tok::TokenKind Kind) { |
| BinaryOperator::Opcode Opc; |
| switch (Kind) { |
| default: assert(0 && "Unknown binop!"); |
| case tok::star: Opc = BinaryOperator::Mul; break; |
| case tok::slash: Opc = BinaryOperator::Div; break; |
| case tok::percent: Opc = BinaryOperator::Rem; break; |
| case tok::plus: Opc = BinaryOperator::Add; break; |
| case tok::minus: Opc = BinaryOperator::Sub; break; |
| case tok::lessless: Opc = BinaryOperator::Shl; break; |
| case tok::greatergreater: Opc = BinaryOperator::Shr; break; |
| case tok::lessequal: Opc = BinaryOperator::LE; break; |
| case tok::less: Opc = BinaryOperator::LT; break; |
| case tok::greaterequal: Opc = BinaryOperator::GE; break; |
| case tok::greater: Opc = BinaryOperator::GT; break; |
| case tok::exclaimequal: Opc = BinaryOperator::NE; break; |
| case tok::equalequal: Opc = BinaryOperator::EQ; break; |
| case tok::amp: Opc = BinaryOperator::And; break; |
| case tok::caret: Opc = BinaryOperator::Xor; break; |
| case tok::pipe: Opc = BinaryOperator::Or; break; |
| case tok::ampamp: Opc = BinaryOperator::LAnd; break; |
| case tok::pipepipe: Opc = BinaryOperator::LOr; break; |
| case tok::equal: Opc = BinaryOperator::Assign; break; |
| case tok::starequal: Opc = BinaryOperator::MulAssign; break; |
| case tok::slashequal: Opc = BinaryOperator::DivAssign; break; |
| case tok::percentequal: Opc = BinaryOperator::RemAssign; break; |
| case tok::plusequal: Opc = BinaryOperator::AddAssign; break; |
| case tok::minusequal: Opc = BinaryOperator::SubAssign; break; |
| case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break; |
| case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break; |
| case tok::ampequal: Opc = BinaryOperator::AndAssign; break; |
| case tok::caretequal: Opc = BinaryOperator::XorAssign; break; |
| case tok::pipeequal: Opc = BinaryOperator::OrAssign; break; |
| case tok::comma: Opc = BinaryOperator::Comma; break; |
| } |
| return Opc; |
| } |
| |
| static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode( |
| tok::TokenKind Kind) { |
| UnaryOperator::Opcode Opc; |
| switch (Kind) { |
| default: assert(0 && "Unknown unary op!"); |
| case tok::plusplus: Opc = UnaryOperator::PreInc; break; |
| case tok::minusminus: Opc = UnaryOperator::PreDec; break; |
| case tok::amp: Opc = UnaryOperator::AddrOf; break; |
| case tok::star: Opc = UnaryOperator::Deref; break; |
| case tok::plus: Opc = UnaryOperator::Plus; break; |
| case tok::minus: Opc = UnaryOperator::Minus; break; |
| case tok::tilde: Opc = UnaryOperator::Not; break; |
| case tok::exclaim: Opc = UnaryOperator::LNot; break; |
| case tok::kw_sizeof: Opc = UnaryOperator::SizeOf; break; |
| case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break; |
| case tok::kw___real: Opc = UnaryOperator::Real; break; |
| case tok::kw___imag: Opc = UnaryOperator::Imag; break; |
| case tok::kw___extension__: Opc = UnaryOperator::Extension; break; |
| } |
| return Opc; |
| } |
| |
| // Binary Operators. 'Tok' is the token for the operator. |
| Action::ExprResult Sema::ParseBinOp(SourceLocation TokLoc, tok::TokenKind Kind, |
| ExprTy *LHS, ExprTy *RHS) { |
| BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind); |
| Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS; |
| |
| assert((lhs != 0) && "ParseBinOp(): missing left expression"); |
| assert((rhs != 0) && "ParseBinOp(): missing right expression"); |
| |
| QualType ResultTy; // Result type of the binary operator. |
| QualType CompTy; // Computation type for compound assignments (e.g. '+=') |
| |
| switch (Opc) { |
| default: |
| assert(0 && "Unknown binary expr!"); |
| case BinaryOperator::Assign: |
| ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType()); |
| break; |
| case BinaryOperator::Mul: |
| case BinaryOperator::Div: |
| ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc); |
| break; |
| case BinaryOperator::Rem: |
| ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc); |
| break; |
| case BinaryOperator::Add: |
| ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc); |
| break; |
| case BinaryOperator::Sub: |
| ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc); |
| break; |
| case BinaryOperator::Shl: |
| case BinaryOperator::Shr: |
| ResultTy = CheckShiftOperands(lhs, rhs, TokLoc); |
| break; |
| case BinaryOperator::LE: |
| case BinaryOperator::LT: |
| case BinaryOperator::GE: |
| case BinaryOperator::GT: |
| ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true); |
| break; |
| case BinaryOperator::EQ: |
| case BinaryOperator::NE: |
| ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false); |
| break; |
| case BinaryOperator::And: |
| case BinaryOperator::Xor: |
| case BinaryOperator::Or: |
| ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc); |
| break; |
| case BinaryOperator::LAnd: |
| case BinaryOperator::LOr: |
| ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc); |
| break; |
| case BinaryOperator::MulAssign: |
| case BinaryOperator::DivAssign: |
| CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); |
| break; |
| case BinaryOperator::RemAssign: |
| CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); |
| break; |
| case BinaryOperator::AddAssign: |
| CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); |
| break; |
| case BinaryOperator::SubAssign: |
| CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); |
| break; |
| case BinaryOperator::ShlAssign: |
| case BinaryOperator::ShrAssign: |
| CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); |
| break; |
| case BinaryOperator::AndAssign: |
| case BinaryOperator::XorAssign: |
| case BinaryOperator::OrAssign: |
| CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); |
| break; |
| case BinaryOperator::Comma: |
| ResultTy = CheckCommaOperands(lhs, rhs, TokLoc); |
| break; |
| } |
| if (ResultTy.isNull()) |
| return true; |
| if (CompTy.isNull()) |
| return new BinaryOperator(lhs, rhs, Opc, ResultTy); |
| else |
| return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy); |
| } |
| |
| // Unary Operators. 'Tok' is the token for the operator. |
| Action::ExprResult Sema::ParseUnaryOp(SourceLocation OpLoc, tok::TokenKind Op, |
| ExprTy *input) { |
| Expr *Input = (Expr*)input; |
| UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op); |
| QualType resultType; |
| switch (Opc) { |
| default: |
| assert(0 && "Unimplemented unary expr!"); |
| case UnaryOperator::PreInc: |
| case UnaryOperator::PreDec: |
| resultType = CheckIncrementDecrementOperand(Input, OpLoc); |
| break; |
| case UnaryOperator::AddrOf: |
| resultType = CheckAddressOfOperand(Input, OpLoc); |
| break; |
| case UnaryOperator::Deref: |
| resultType = CheckIndirectionOperand(Input, OpLoc); |
| break; |
| case UnaryOperator::Plus: |
| case UnaryOperator::Minus: |
| UsualUnaryConversions(Input); |
| resultType = Input->getType(); |
| if (!resultType->isArithmeticType()) // C99 6.5.3.3p1 |
| return Diag(OpLoc, diag::err_typecheck_unary_expr, |
| resultType.getAsString()); |
| break; |
| case UnaryOperator::Not: // bitwise complement |
| UsualUnaryConversions(Input); |
| resultType = Input->getType(); |
| // C99 6.5.3.3p1. We allow complex as a GCC extension. |
| if (!resultType->isIntegerType()) { |
| if (resultType->isComplexType()) |
| // C99 does not support '~' for complex conjugation. |
| Diag(OpLoc, diag::ext_integer_complement_complex, |
| resultType.getAsString()); |
| else |
| return Diag(OpLoc, diag::err_typecheck_unary_expr, |
| resultType.getAsString()); |
| } |
| break; |
| case UnaryOperator::LNot: // logical negation |
| // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). |
| DefaultFunctionArrayConversion(Input); |
| resultType = Input->getType(); |
| if (!resultType->isScalarType()) // C99 6.5.3.3p1 |
| return Diag(OpLoc, diag::err_typecheck_unary_expr, |
| resultType.getAsString()); |
| // LNot always has type int. C99 6.5.3.3p5. |
| resultType = Context.IntTy; |
| break; |
| case UnaryOperator::SizeOf: |
| resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, true); |
| break; |
| case UnaryOperator::AlignOf: |
| resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, false); |
| break; |
| case UnaryOperator::Real: |
| case UnaryOperator::Imag: |
| resultType = CheckRealImagOperand(Input, OpLoc); |
| break; |
| case UnaryOperator::Extension: |
| resultType = Input->getType(); |
| break; |
| } |
| if (resultType.isNull()) |
| return true; |
| return new UnaryOperator(Input, Opc, resultType, OpLoc); |
| } |
| |
| /// ParseAddrLabel - Parse the GNU address of label extension: "&&foo". |
| Sema::ExprResult Sema::ParseAddrLabel(SourceLocation OpLoc, |
| SourceLocation LabLoc, |
| IdentifierInfo *LabelII) { |
| // Look up the record for this label identifier. |
| LabelStmt *&LabelDecl = LabelMap[LabelII]; |
| |
| // If we haven't seen this label yet, create a forward reference. |
| if (LabelDecl == 0) |
| LabelDecl = new LabelStmt(LabLoc, LabelII, 0); |
| |
| // Create the AST node. The address of a label always has type 'void*'. |
| return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl, |
| Context.getPointerType(Context.VoidTy)); |
| } |
| |
| Sema::ExprResult Sema::ParseStmtExpr(SourceLocation LPLoc, StmtTy *substmt, |
| SourceLocation RPLoc) { // "({..})" |
| Stmt *SubStmt = static_cast<Stmt*>(substmt); |
| assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!"); |
| CompoundStmt *Compound = cast<CompoundStmt>(SubStmt); |
| |
| // FIXME: there are a variety of strange constraints to enforce here, for |
| // example, it is not possible to goto into a stmt expression apparently. |
| // More semantic analysis is needed. |
| |
| // FIXME: the last statement in the compount stmt has its value used. We |
| // should not warn about it being unused. |
| |
| // If there are sub stmts in the compound stmt, take the type of the last one |
| // as the type of the stmtexpr. |
| QualType Ty = Context.VoidTy; |
| |
| if (!Compound->body_empty()) |
| if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back())) |
| Ty = LastExpr->getType(); |
| |
| return new StmtExpr(Compound, Ty, LPLoc, RPLoc); |
| } |
| |
| Sema::ExprResult Sema::ParseTypesCompatibleExpr(SourceLocation BuiltinLoc, |
| TypeTy *arg1, TypeTy *arg2, |
| SourceLocation RPLoc) { |
| QualType argT1 = QualType::getFromOpaquePtr(arg1); |
| QualType argT2 = QualType::getFromOpaquePtr(arg2); |
| |
| assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)"); |
| |
| return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2, RPLoc); |
| } |
| |
| Sema::ExprResult Sema::ParseChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond, |
| ExprTy *expr1, ExprTy *expr2, |
| SourceLocation RPLoc) { |
| Expr *CondExpr = static_cast<Expr*>(cond); |
| Expr *LHSExpr = static_cast<Expr*>(expr1); |
| Expr *RHSExpr = static_cast<Expr*>(expr2); |
| |
| assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); |
| |
| // The conditional expression is required to be a constant expression. |
| llvm::APSInt condEval(32); |
| SourceLocation ExpLoc; |
| if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc)) |
| return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant, |
| CondExpr->getSourceRange()); |
| |
| // If the condition is > zero, then the AST type is the same as the LSHExpr. |
| QualType resType = condEval.getZExtValue() ? LHSExpr->getType() : |
| RHSExpr->getType(); |
| return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc); |
| } |
| |
| // TODO: Move this to SemaObjC.cpp |
| Sema::ExprResult Sema::ParseObjCStringLiteral(ExprTy *string) { |
| StringLiteral* S = static_cast<StringLiteral *>(string); |
| |
| if (CheckBuiltinCFStringArgument(S)) |
| return true; |
| |
| QualType t = Context.getCFConstantStringType(); |
| t = t.getQualifiedType(QualType::Const); |
| t = Context.getPointerType(t); |
| |
| return new ObjCStringLiteral(S, t); |
| } |
| |
| Sema::ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc, |
| SourceLocation LParenLoc, |
| TypeTy *Ty, |
| SourceLocation RParenLoc) { |
| QualType EncodedType = QualType::getFromOpaquePtr(Ty); |
| |
| QualType t = Context.getPointerType(Context.CharTy); |
| return new ObjCEncodeExpr(t, EncodedType, AtLoc, RParenLoc); |
| } |