blob: 997f951d7c5438cdd99d6b6c1406c8c9f4ee0fe4 [file] [log] [blame]
//===--- ObjCMT.cpp - ObjC Migrate Tool -----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Transforms.h"
#include "clang/ARCMigrate/ARCMTActions.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/NSAPI.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/FileManager.h"
#include "clang/Edit/Commit.h"
#include "clang/Edit/EditedSource.h"
#include "clang/Edit/EditsReceiver.h"
#include "clang/Edit/Rewriters.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/MultiplexConsumer.h"
#include "clang/Lex/PPConditionalDirectiveRecord.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Rewrite/Core/Rewriter.h"
#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
#include "clang/StaticAnalyzer/Checkers/ObjCRetainCount.h"
#include "clang/AST/Attr.h"
#include "llvm/ADT/SmallString.h"
using namespace clang;
using namespace arcmt;
using namespace ento::objc_retain;
namespace {
class ObjCMigrateASTConsumer : public ASTConsumer {
enum CF_BRIDGING_KIND {
CF_BRIDGING_NONE,
CF_BRIDGING_ENABLE,
CF_BRIDGING_MAY_INCLUDE
};
void migrateDecl(Decl *D);
void migrateObjCInterfaceDecl(ASTContext &Ctx, ObjCContainerDecl *D);
void migrateProtocolConformance(ASTContext &Ctx,
const ObjCImplementationDecl *ImpDecl);
void migrateNSEnumDecl(ASTContext &Ctx, const EnumDecl *EnumDcl,
const TypedefDecl *TypedefDcl);
void migrateMethods(ASTContext &Ctx, ObjCContainerDecl *CDecl);
void migrateMethodInstanceType(ASTContext &Ctx, ObjCContainerDecl *CDecl,
ObjCMethodDecl *OM);
bool migrateProperty(ASTContext &Ctx, ObjCContainerDecl *D, ObjCMethodDecl *OM);
void migrateNsReturnsInnerPointer(ASTContext &Ctx, ObjCMethodDecl *OM);
void migratePropertyNsReturnsInnerPointer(ASTContext &Ctx, ObjCPropertyDecl *P);
void migrateFactoryMethod(ASTContext &Ctx, ObjCContainerDecl *CDecl,
ObjCMethodDecl *OM,
ObjCInstanceTypeFamily OIT_Family = OIT_None);
void migrateCFAnnotation(ASTContext &Ctx, const Decl *Decl);
void AddCFAnnotations(ASTContext &Ctx, const CallEffects &CE,
const FunctionDecl *FuncDecl, bool ResultAnnotated);
void AddCFAnnotations(ASTContext &Ctx, const CallEffects &CE,
const ObjCMethodDecl *MethodDecl, bool ResultAnnotated);
void AnnotateImplicitBridging(ASTContext &Ctx);
CF_BRIDGING_KIND migrateAddFunctionAnnotation(ASTContext &Ctx,
const FunctionDecl *FuncDecl);
void migrateARCSafeAnnotation(ASTContext &Ctx, ObjCContainerDecl *CDecl);
void migrateAddMethodAnnotation(ASTContext &Ctx,
const ObjCMethodDecl *MethodDecl);
public:
std::string MigrateDir;
bool MigrateLiterals;
bool MigrateSubscripting;
bool MigrateProperty;
bool MigrateReadonlyProperty;
unsigned FileId;
OwningPtr<NSAPI> NSAPIObj;
OwningPtr<edit::EditedSource> Editor;
FileRemapper &Remapper;
FileManager &FileMgr;
const PPConditionalDirectiveRecord *PPRec;
Preprocessor &PP;
bool IsOutputFile;
llvm::SmallPtrSet<ObjCProtocolDecl *, 32> ObjCProtocolDecls;
llvm::SmallVector<const Decl *, 8> CFFunctionIBCandidates;
ObjCMigrateASTConsumer(StringRef migrateDir,
bool migrateLiterals,
bool migrateSubscripting,
bool migrateProperty,
bool migrateReadonlyProperty,
FileRemapper &remapper,
FileManager &fileMgr,
const PPConditionalDirectiveRecord *PPRec,
Preprocessor &PP,
bool isOutputFile = false)
: MigrateDir(migrateDir),
MigrateLiterals(migrateLiterals),
MigrateSubscripting(migrateSubscripting),
MigrateProperty(migrateProperty),
MigrateReadonlyProperty(migrateReadonlyProperty),
FileId(0), Remapper(remapper), FileMgr(fileMgr), PPRec(PPRec), PP(PP),
IsOutputFile(isOutputFile) { }
protected:
virtual void Initialize(ASTContext &Context) {
NSAPIObj.reset(new NSAPI(Context));
Editor.reset(new edit::EditedSource(Context.getSourceManager(),
Context.getLangOpts(),
PPRec));
}
virtual bool HandleTopLevelDecl(DeclGroupRef DG) {
for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
migrateDecl(*I);
return true;
}
virtual void HandleInterestingDecl(DeclGroupRef DG) {
// Ignore decls from the PCH.
}
virtual void HandleTopLevelDeclInObjCContainer(DeclGroupRef DG) {
ObjCMigrateASTConsumer::HandleTopLevelDecl(DG);
}
virtual void HandleTranslationUnit(ASTContext &Ctx);
};
}
ObjCMigrateAction::ObjCMigrateAction(FrontendAction *WrappedAction,
StringRef migrateDir,
bool migrateLiterals,
bool migrateSubscripting,
bool migrateProperty,
bool migrateReadonlyProperty)
: WrapperFrontendAction(WrappedAction), MigrateDir(migrateDir),
MigrateLiterals(migrateLiterals), MigrateSubscripting(migrateSubscripting),
MigrateProperty(migrateProperty),
MigrateReadonlyProperty(migrateReadonlyProperty),
CompInst(0) {
if (MigrateDir.empty())
MigrateDir = "."; // user current directory if none is given.
}
ASTConsumer *ObjCMigrateAction::CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) {
PPConditionalDirectiveRecord *
PPRec = new PPConditionalDirectiveRecord(CompInst->getSourceManager());
CompInst->getPreprocessor().addPPCallbacks(PPRec);
ASTConsumer *
WrappedConsumer = WrapperFrontendAction::CreateASTConsumer(CI, InFile);
ASTConsumer *MTConsumer = new ObjCMigrateASTConsumer(MigrateDir,
MigrateLiterals,
MigrateSubscripting,
MigrateProperty,
MigrateReadonlyProperty,
Remapper,
CompInst->getFileManager(),
PPRec,
CompInst->getPreprocessor());
ASTConsumer *Consumers[] = { MTConsumer, WrappedConsumer };
return new MultiplexConsumer(Consumers);
}
bool ObjCMigrateAction::BeginInvocation(CompilerInstance &CI) {
Remapper.initFromDisk(MigrateDir, CI.getDiagnostics(),
/*ignoreIfFilesChanges=*/true);
CompInst = &CI;
CI.getDiagnostics().setIgnoreAllWarnings(true);
return true;
}
namespace {
class ObjCMigrator : public RecursiveASTVisitor<ObjCMigrator> {
ObjCMigrateASTConsumer &Consumer;
ParentMap &PMap;
public:
ObjCMigrator(ObjCMigrateASTConsumer &consumer, ParentMap &PMap)
: Consumer(consumer), PMap(PMap) { }
bool shouldVisitTemplateInstantiations() const { return false; }
bool shouldWalkTypesOfTypeLocs() const { return false; }
bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
if (Consumer.MigrateLiterals) {
edit::Commit commit(*Consumer.Editor);
edit::rewriteToObjCLiteralSyntax(E, *Consumer.NSAPIObj, commit, &PMap);
Consumer.Editor->commit(commit);
}
if (Consumer.MigrateSubscripting) {
edit::Commit commit(*Consumer.Editor);
edit::rewriteToObjCSubscriptSyntax(E, *Consumer.NSAPIObj, commit);
Consumer.Editor->commit(commit);
}
return true;
}
bool TraverseObjCMessageExpr(ObjCMessageExpr *E) {
// Do depth first; we want to rewrite the subexpressions first so that if
// we have to move expressions we will move them already rewritten.
for (Stmt::child_range range = E->children(); range; ++range)
if (!TraverseStmt(*range))
return false;
return WalkUpFromObjCMessageExpr(E);
}
};
class BodyMigrator : public RecursiveASTVisitor<BodyMigrator> {
ObjCMigrateASTConsumer &Consumer;
OwningPtr<ParentMap> PMap;
public:
BodyMigrator(ObjCMigrateASTConsumer &consumer) : Consumer(consumer) { }
bool shouldVisitTemplateInstantiations() const { return false; }
bool shouldWalkTypesOfTypeLocs() const { return false; }
bool TraverseStmt(Stmt *S) {
PMap.reset(new ParentMap(S));
ObjCMigrator(Consumer, *PMap).TraverseStmt(S);
return true;
}
};
}
void ObjCMigrateASTConsumer::migrateDecl(Decl *D) {
if (!D)
return;
if (isa<ObjCMethodDecl>(D))
return; // Wait for the ObjC container declaration.
BodyMigrator(*this).TraverseDecl(D);
}
static void append_attr(std::string &PropertyString, const char *attr) {
PropertyString += ", ";
PropertyString += attr;
}
static bool rewriteToObjCProperty(const ObjCMethodDecl *Getter,
const ObjCMethodDecl *Setter,
const NSAPI &NS, edit::Commit &commit,
unsigned LengthOfPrefix) {
ASTContext &Context = NS.getASTContext();
std::string PropertyString = "@property (nonatomic";
std::string PropertyNameString = Getter->getNameAsString();
StringRef PropertyName(PropertyNameString);
if (LengthOfPrefix > 0) {
PropertyString += ", getter=";
PropertyString += PropertyNameString;
}
// Property with no setter may be suggested as a 'readonly' property.
if (!Setter)
append_attr(PropertyString, "readonly");
// Short circuit properties that contain the name "delegate" or "dataSource",
// or have exact name "target" to have unsafe_unretained attribute.
if (PropertyName.equals("target") ||
(PropertyName.find("delegate") != StringRef::npos) ||
(PropertyName.find("dataSource") != StringRef::npos))
append_attr(PropertyString, "unsafe_unretained");
else if (Setter) {
const ParmVarDecl *argDecl = *Setter->param_begin();
QualType ArgType = Context.getCanonicalType(argDecl->getType());
Qualifiers::ObjCLifetime propertyLifetime = ArgType.getObjCLifetime();
bool RetainableObject = ArgType->isObjCRetainableType();
if (RetainableObject && propertyLifetime == Qualifiers::OCL_Strong) {
if (const ObjCObjectPointerType *ObjPtrTy =
ArgType->getAs<ObjCObjectPointerType>()) {
ObjCInterfaceDecl *IDecl = ObjPtrTy->getObjectType()->getInterface();
if (IDecl &&
IDecl->lookupNestedProtocol(&Context.Idents.get("NSCopying")))
append_attr(PropertyString, "copy");
else
append_attr(PropertyString, "retain");
}
} else if (propertyLifetime == Qualifiers::OCL_Weak)
// TODO. More precise determination of 'weak' attribute requires
// looking into setter's implementation for backing weak ivar.
append_attr(PropertyString, "weak");
else if (RetainableObject)
append_attr(PropertyString, "retain");
}
PropertyString += ')';
QualType RT = Getter->getResultType();
if (!isa<TypedefType>(RT)) {
// strip off any ARC lifetime qualifier.
QualType CanResultTy = Context.getCanonicalType(RT);
if (CanResultTy.getQualifiers().hasObjCLifetime()) {
Qualifiers Qs = CanResultTy.getQualifiers();
Qs.removeObjCLifetime();
RT = Context.getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
}
}
PropertyString += " ";
PropertyString += RT.getAsString(Context.getPrintingPolicy());
char LastChar = PropertyString[PropertyString.size()-1];
if (LastChar != '*')
PropertyString += " ";
if (LengthOfPrefix > 0) {
// property name must strip off "is" and lower case the first character
// after that; e.g. isContinuous will become continuous.
StringRef PropertyNameStringRef(PropertyNameString);
PropertyNameStringRef = PropertyNameStringRef.drop_front(LengthOfPrefix);
PropertyNameString = PropertyNameStringRef;
std::string NewPropertyNameString = PropertyNameString;
bool NoLowering = (isUppercase(NewPropertyNameString[0]) &&
NewPropertyNameString.size() > 1 &&
isUppercase(NewPropertyNameString[1]));
if (!NoLowering)
NewPropertyNameString[0] = toLowercase(NewPropertyNameString[0]);
PropertyString += NewPropertyNameString;
}
else
PropertyString += PropertyNameString;
SourceLocation StartGetterSelectorLoc = Getter->getSelectorStartLoc();
Selector GetterSelector = Getter->getSelector();
SourceLocation EndGetterSelectorLoc =
StartGetterSelectorLoc.getLocWithOffset(GetterSelector.getNameForSlot(0).size());
commit.replace(CharSourceRange::getCharRange(Getter->getLocStart(),
EndGetterSelectorLoc),
PropertyString);
if (Setter) {
SourceLocation EndLoc = Setter->getDeclaratorEndLoc();
// Get location past ';'
EndLoc = EndLoc.getLocWithOffset(1);
commit.remove(CharSourceRange::getCharRange(Setter->getLocStart(), EndLoc));
}
return true;
}
void ObjCMigrateASTConsumer::migrateObjCInterfaceDecl(ASTContext &Ctx,
ObjCContainerDecl *D) {
if (D->isDeprecated())
return;
for (ObjCContainerDecl::method_iterator M = D->meth_begin(), MEnd = D->meth_end();
M != MEnd; ++M) {
ObjCMethodDecl *Method = (*M);
if (Method->isDeprecated())
continue;
migrateProperty(Ctx, D, Method);
migrateNsReturnsInnerPointer(Ctx, Method);
}
for (ObjCContainerDecl::prop_iterator P = D->prop_begin(),
E = D->prop_end(); P != E; ++P) {
ObjCPropertyDecl *Prop = *P;
if (!P->isDeprecated())
migratePropertyNsReturnsInnerPointer(Ctx, Prop);
}
}
static bool
ClassImplementsAllMethodsAndProperties(ASTContext &Ctx,
const ObjCImplementationDecl *ImpDecl,
const ObjCInterfaceDecl *IDecl,
ObjCProtocolDecl *Protocol) {
// In auto-synthesis, protocol properties are not synthesized. So,
// a conforming protocol must have its required properties declared
// in class interface.
bool HasAtleastOneRequiredProperty = false;
if (const ObjCProtocolDecl *PDecl = Protocol->getDefinition())
for (ObjCProtocolDecl::prop_iterator P = PDecl->prop_begin(),
E = PDecl->prop_end(); P != E; ++P) {
ObjCPropertyDecl *Property = *P;
if (Property->getPropertyImplementation() == ObjCPropertyDecl::Optional)
continue;
HasAtleastOneRequiredProperty = true;
DeclContext::lookup_const_result R = IDecl->lookup(Property->getDeclName());
if (R.size() == 0) {
// Relax the rule and look into class's implementation for a synthesize
// or dynamic declaration. Class is implementing a property coming from
// another protocol. This still makes the target protocol as conforming.
if (!ImpDecl->FindPropertyImplDecl(
Property->getDeclName().getAsIdentifierInfo()))
return false;
}
else if (ObjCPropertyDecl *ClassProperty = dyn_cast<ObjCPropertyDecl>(R[0])) {
if ((ClassProperty->getPropertyAttributes()
!= Property->getPropertyAttributes()) ||
!Ctx.hasSameType(ClassProperty->getType(), Property->getType()))
return false;
}
else
return false;
}
// At this point, all required properties in this protocol conform to those
// declared in the class.
// Check that class implements the required methods of the protocol too.
bool HasAtleastOneRequiredMethod = false;
if (const ObjCProtocolDecl *PDecl = Protocol->getDefinition()) {
if (PDecl->meth_begin() == PDecl->meth_end())
return HasAtleastOneRequiredProperty;
for (ObjCContainerDecl::method_iterator M = PDecl->meth_begin(),
MEnd = PDecl->meth_end(); M != MEnd; ++M) {
ObjCMethodDecl *MD = (*M);
if (MD->isImplicit())
continue;
if (MD->getImplementationControl() == ObjCMethodDecl::Optional)
continue;
DeclContext::lookup_const_result R = ImpDecl->lookup(MD->getDeclName());
if (R.size() == 0)
return false;
bool match = false;
HasAtleastOneRequiredMethod = true;
for (unsigned I = 0, N = R.size(); I != N; ++I)
if (ObjCMethodDecl *ImpMD = dyn_cast<ObjCMethodDecl>(R[0]))
if (Ctx.ObjCMethodsAreEqual(MD, ImpMD)) {
match = true;
break;
}
if (!match)
return false;
}
}
if (HasAtleastOneRequiredProperty || HasAtleastOneRequiredMethod)
return true;
return false;
}
static bool rewriteToObjCInterfaceDecl(const ObjCInterfaceDecl *IDecl,
llvm::SmallVectorImpl<ObjCProtocolDecl*> &ConformingProtocols,
const NSAPI &NS, edit::Commit &commit) {
const ObjCList<ObjCProtocolDecl> &Protocols = IDecl->getReferencedProtocols();
std::string ClassString;
SourceLocation EndLoc =
IDecl->getSuperClass() ? IDecl->getSuperClassLoc() : IDecl->getLocation();
if (Protocols.empty()) {
ClassString = '<';
for (unsigned i = 0, e = ConformingProtocols.size(); i != e; i++) {
ClassString += ConformingProtocols[i]->getNameAsString();
if (i != (e-1))
ClassString += ", ";
}
ClassString += "> ";
}
else {
ClassString = ", ";
for (unsigned i = 0, e = ConformingProtocols.size(); i != e; i++) {
ClassString += ConformingProtocols[i]->getNameAsString();
if (i != (e-1))
ClassString += ", ";
}
ObjCInterfaceDecl::protocol_loc_iterator PL = IDecl->protocol_loc_end() - 1;
EndLoc = *PL;
}
commit.insertAfterToken(EndLoc, ClassString);
return true;
}
static bool rewriteToNSEnumDecl(const EnumDecl *EnumDcl,
const TypedefDecl *TypedefDcl,
const NSAPI &NS, edit::Commit &commit,
bool IsNSIntegerType,
bool NSOptions) {
std::string ClassString;
if (NSOptions)
ClassString = "typedef NS_OPTIONS(NSUInteger, ";
else
ClassString =
IsNSIntegerType ? "typedef NS_ENUM(NSInteger, "
: "typedef NS_ENUM(NSUInteger, ";
ClassString += TypedefDcl->getIdentifier()->getName();
ClassString += ')';
SourceRange R(EnumDcl->getLocStart(), EnumDcl->getLocStart());
commit.replace(R, ClassString);
SourceLocation EndOfTypedefLoc = TypedefDcl->getLocEnd();
EndOfTypedefLoc = trans::findLocationAfterSemi(EndOfTypedefLoc, NS.getASTContext());
if (!EndOfTypedefLoc.isInvalid()) {
commit.remove(SourceRange(TypedefDcl->getLocStart(), EndOfTypedefLoc));
return true;
}
return false;
}
static bool rewriteToNSMacroDecl(const EnumDecl *EnumDcl,
const TypedefDecl *TypedefDcl,
const NSAPI &NS, edit::Commit &commit,
bool IsNSIntegerType) {
std::string ClassString =
IsNSIntegerType ? "NS_ENUM(NSInteger, " : "NS_OPTIONS(NSUInteger, ";
ClassString += TypedefDcl->getIdentifier()->getName();
ClassString += ')';
SourceRange R(EnumDcl->getLocStart(), EnumDcl->getLocStart());
commit.replace(R, ClassString);
SourceLocation TypedefLoc = TypedefDcl->getLocEnd();
commit.remove(SourceRange(TypedefLoc, TypedefLoc));
return true;
}
static bool UseNSOptionsMacro(Preprocessor &PP, ASTContext &Ctx,
const EnumDecl *EnumDcl) {
bool PowerOfTwo = true;
bool AllHexdecimalEnumerator = true;
uint64_t MaxPowerOfTwoVal = 0;
for (EnumDecl::enumerator_iterator EI = EnumDcl->enumerator_begin(),
EE = EnumDcl->enumerator_end(); EI != EE; ++EI) {
EnumConstantDecl *Enumerator = (*EI);
const Expr *InitExpr = Enumerator->getInitExpr();
if (!InitExpr) {
PowerOfTwo = false;
AllHexdecimalEnumerator = false;
continue;
}
InitExpr = InitExpr->IgnoreParenCasts();
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr))
if (BO->isShiftOp() || BO->isBitwiseOp())
return true;
uint64_t EnumVal = Enumerator->getInitVal().getZExtValue();
if (PowerOfTwo && EnumVal) {
if (!llvm::isPowerOf2_64(EnumVal))
PowerOfTwo = false;
else if (EnumVal > MaxPowerOfTwoVal)
MaxPowerOfTwoVal = EnumVal;
}
if (AllHexdecimalEnumerator && EnumVal) {
bool FoundHexdecimalEnumerator = false;
SourceLocation EndLoc = Enumerator->getLocEnd();
Token Tok;
if (!PP.getRawToken(EndLoc, Tok, /*IgnoreWhiteSpace=*/true))
if (Tok.isLiteral() && Tok.getLength() > 2) {
if (const char *StringLit = Tok.getLiteralData())
FoundHexdecimalEnumerator =
(StringLit[0] == '0' && (toLowercase(StringLit[1]) == 'x'));
}
if (!FoundHexdecimalEnumerator)
AllHexdecimalEnumerator = false;
}
}
return AllHexdecimalEnumerator || (PowerOfTwo && (MaxPowerOfTwoVal > 2));
}
void ObjCMigrateASTConsumer::migrateProtocolConformance(ASTContext &Ctx,
const ObjCImplementationDecl *ImpDecl) {
const ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface();
if (!IDecl || ObjCProtocolDecls.empty() || IDecl->isDeprecated())
return;
// Find all implicit conforming protocols for this class
// and make them explicit.
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ExplicitProtocols;
Ctx.CollectInheritedProtocols(IDecl, ExplicitProtocols);
llvm::SmallVector<ObjCProtocolDecl *, 8> PotentialImplicitProtocols;
for (llvm::SmallPtrSet<ObjCProtocolDecl*, 32>::iterator I =
ObjCProtocolDecls.begin(),
E = ObjCProtocolDecls.end(); I != E; ++I)
if (!ExplicitProtocols.count(*I))
PotentialImplicitProtocols.push_back(*I);
if (PotentialImplicitProtocols.empty())
return;
// go through list of non-optional methods and properties in each protocol
// in the PotentialImplicitProtocols list. If class implements every one of the
// methods and properties, then this class conforms to this protocol.
llvm::SmallVector<ObjCProtocolDecl*, 8> ConformingProtocols;
for (unsigned i = 0, e = PotentialImplicitProtocols.size(); i != e; i++)
if (ClassImplementsAllMethodsAndProperties(Ctx, ImpDecl, IDecl,
PotentialImplicitProtocols[i]))
ConformingProtocols.push_back(PotentialImplicitProtocols[i]);
if (ConformingProtocols.empty())
return;
// Further reduce number of conforming protocols. If protocol P1 is in the list
// protocol P2 (P2<P1>), No need to include P1.
llvm::SmallVector<ObjCProtocolDecl*, 8> MinimalConformingProtocols;
for (unsigned i = 0, e = ConformingProtocols.size(); i != e; i++) {
bool DropIt = false;
ObjCProtocolDecl *TargetPDecl = ConformingProtocols[i];
for (unsigned i1 = 0, e1 = ConformingProtocols.size(); i1 != e1; i1++) {
ObjCProtocolDecl *PDecl = ConformingProtocols[i1];
if (PDecl == TargetPDecl)
continue;
if (PDecl->lookupProtocolNamed(
TargetPDecl->getDeclName().getAsIdentifierInfo())) {
DropIt = true;
break;
}
}
if (!DropIt)
MinimalConformingProtocols.push_back(TargetPDecl);
}
edit::Commit commit(*Editor);
rewriteToObjCInterfaceDecl(IDecl, MinimalConformingProtocols,
*NSAPIObj, commit);
Editor->commit(commit);
}
void ObjCMigrateASTConsumer::migrateNSEnumDecl(ASTContext &Ctx,
const EnumDecl *EnumDcl,
const TypedefDecl *TypedefDcl) {
if (!EnumDcl->isCompleteDefinition() || EnumDcl->getIdentifier() ||
!TypedefDcl->getIdentifier() ||
EnumDcl->isDeprecated() || TypedefDcl->isDeprecated())
return;
QualType qt = TypedefDcl->getTypeSourceInfo()->getType();
bool IsNSIntegerType = NSAPIObj->isObjCNSIntegerType(qt);
bool IsNSUIntegerType = !IsNSIntegerType && NSAPIObj->isObjCNSUIntegerType(qt);
if (!IsNSIntegerType && !IsNSUIntegerType) {
// Also check for typedef enum {...} TD;
if (const EnumType *EnumTy = qt->getAs<EnumType>()) {
if (EnumTy->getDecl() == EnumDcl) {
bool NSOptions = UseNSOptionsMacro(PP, Ctx, EnumDcl);
if (NSOptions) {
if (!Ctx.Idents.get("NS_OPTIONS").hasMacroDefinition())
return;
}
else if (!Ctx.Idents.get("NS_ENUM").hasMacroDefinition())
return;
edit::Commit commit(*Editor);
rewriteToNSMacroDecl(EnumDcl, TypedefDcl, *NSAPIObj, commit, !NSOptions);
Editor->commit(commit);
}
}
return;
}
// We may still use NS_OPTIONS based on what we find in the enumertor list.
bool NSOptions = UseNSOptionsMacro(PP, Ctx, EnumDcl);
// NS_ENUM must be available.
if (IsNSIntegerType && !Ctx.Idents.get("NS_ENUM").hasMacroDefinition())
return;
// NS_OPTIONS must be available.
if (IsNSUIntegerType && !Ctx.Idents.get("NS_OPTIONS").hasMacroDefinition())
return;
edit::Commit commit(*Editor);
rewriteToNSEnumDecl(EnumDcl, TypedefDcl, *NSAPIObj, commit, IsNSIntegerType, NSOptions);
Editor->commit(commit);
}
static void ReplaceWithInstancetype(const ObjCMigrateASTConsumer &ASTC,
ObjCMethodDecl *OM) {
SourceRange R;
std::string ClassString;
if (TypeSourceInfo *TSInfo = OM->getResultTypeSourceInfo()) {
TypeLoc TL = TSInfo->getTypeLoc();
R = SourceRange(TL.getBeginLoc(), TL.getEndLoc());
ClassString = "instancetype";
}
else {
R = SourceRange(OM->getLocStart(), OM->getLocStart());
ClassString = OM->isInstanceMethod() ? '-' : '+';
ClassString += " (instancetype)";
}
edit::Commit commit(*ASTC.Editor);
commit.replace(R, ClassString);
ASTC.Editor->commit(commit);
}
void ObjCMigrateASTConsumer::migrateMethodInstanceType(ASTContext &Ctx,
ObjCContainerDecl *CDecl,
ObjCMethodDecl *OM) {
ObjCInstanceTypeFamily OIT_Family =
Selector::getInstTypeMethodFamily(OM->getSelector());
std::string ClassName;
switch (OIT_Family) {
case OIT_None:
migrateFactoryMethod(Ctx, CDecl, OM);
return;
case OIT_Array:
ClassName = "NSArray";
break;
case OIT_Dictionary:
ClassName = "NSDictionary";
break;
case OIT_Singleton:
migrateFactoryMethod(Ctx, CDecl, OM, OIT_Singleton);
return;
case OIT_Init:
if (OM->getResultType()->isObjCIdType())
ReplaceWithInstancetype(*this, OM);
return;
}
if (!OM->getResultType()->isObjCIdType())
return;
ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
if (!IDecl) {
if (ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(CDecl))
IDecl = CatDecl->getClassInterface();
else if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(CDecl))
IDecl = ImpDecl->getClassInterface();
}
if (!IDecl ||
!IDecl->lookupInheritedClass(&Ctx.Idents.get(ClassName))) {
migrateFactoryMethod(Ctx, CDecl, OM);
return;
}
ReplaceWithInstancetype(*this, OM);
}
static bool TypeIsInnerPointer(QualType T) {
if (!T->isAnyPointerType())
return false;
if (T->isObjCObjectPointerType() || T->isObjCBuiltinType() ||
T->isBlockPointerType() || T->isFunctionPointerType() ||
ento::coreFoundation::isCFObjectRef(T))
return false;
// Also, typedef-of-pointer-to-incomplete-struct is something that we assume
// is not an innter pointer type.
QualType OrigT = T;
while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr()))
T = TD->getDecl()->getUnderlyingType();
if (OrigT == T || !T->isPointerType())
return true;
const PointerType* PT = T->getAs<PointerType>();
QualType UPointeeT = PT->getPointeeType().getUnqualifiedType();
if (UPointeeT->isRecordType()) {
const RecordType *RecordTy = UPointeeT->getAs<RecordType>();
if (!RecordTy->getDecl()->isCompleteDefinition())
return false;
}
return true;
}
static bool AttributesMatch(const Decl *Decl1, const Decl *Decl2) {
if (Decl1->hasAttrs() != Decl2->hasAttrs())
return false;
if (!Decl1->hasAttrs())
return true;
const AttrVec &Attrs1 = Decl1->getAttrs();
const AttrVec &Attrs2 = Decl2->getAttrs();
// This list is very small, so this need not be optimized.
for (unsigned i = 0, e = Attrs1.size(); i != e; i++) {
bool match = false;
for (unsigned j = 0, f = Attrs2.size(); j != f; j++) {
// Matching attribute kind only. We are not getting into
// details of the attributes. For all practical purposes
// this is sufficient.
if (Attrs1[i]->getKind() == Attrs2[j]->getKind()) {
match = true;
break;
}
}
if (!match)
return false;
}
return true;
}
bool ObjCMigrateASTConsumer::migrateProperty(ASTContext &Ctx,
ObjCContainerDecl *D,
ObjCMethodDecl *Method) {
if (Method->isPropertyAccessor() || !Method->isInstanceMethod() ||
Method->param_size() != 0)
return false;
// Is this method candidate to be a getter?
QualType GRT = Method->getResultType();
if (GRT->isVoidType())
return false;
Selector GetterSelector = Method->getSelector();
ObjCInstanceTypeFamily OIT_Family =
Selector::getInstTypeMethodFamily(GetterSelector);
if (OIT_Family != OIT_None)
return false;
IdentifierInfo *getterName = GetterSelector.getIdentifierInfoForSlot(0);
Selector SetterSelector =
SelectorTable::constructSetterSelector(PP.getIdentifierTable(),
PP.getSelectorTable(),
getterName);
ObjCMethodDecl *SetterMethod = D->getInstanceMethod(SetterSelector);
unsigned LengthOfPrefix = 0;
if (!SetterMethod) {
// try a different naming convention for getter: isXxxxx
StringRef getterNameString = getterName->getName();
bool IsPrefix = getterNameString.startswith("is");
// Note that we don't want to change an isXXX method of retainable object
// type to property (readonly or otherwise).
if (IsPrefix && GRT->isObjCRetainableType())
return false;
if (IsPrefix || getterNameString.startswith("get")) {
LengthOfPrefix = (IsPrefix ? 2 : 3);
const char *CGetterName = getterNameString.data() + LengthOfPrefix;
// Make sure that first character after "is" or "get" prefix can
// start an identifier.
if (!isIdentifierHead(CGetterName[0]))
return false;
if (CGetterName[0] && isUppercase(CGetterName[0])) {
getterName = &Ctx.Idents.get(CGetterName);
SetterSelector =
SelectorTable::constructSetterSelector(PP.getIdentifierTable(),
PP.getSelectorTable(),
getterName);
SetterMethod = D->getInstanceMethod(SetterSelector);
}
}
}
if (SetterMethod) {
if (SetterMethod->isDeprecated() ||
!AttributesMatch(Method, SetterMethod))
return false;
// Is this a valid setter, matching the target getter?
QualType SRT = SetterMethod->getResultType();
if (!SRT->isVoidType())
return false;
const ParmVarDecl *argDecl = *SetterMethod->param_begin();
QualType ArgType = argDecl->getType();
if (!Ctx.hasSameUnqualifiedType(ArgType, GRT))
return false;
edit::Commit commit(*Editor);
rewriteToObjCProperty(Method, SetterMethod, *NSAPIObj, commit,
LengthOfPrefix);
Editor->commit(commit);
return true;
}
else if (MigrateReadonlyProperty) {
// Try a non-void method with no argument (and no setter or property of same name
// as a 'readonly' property.
edit::Commit commit(*Editor);
rewriteToObjCProperty(Method, 0 /*SetterMethod*/, *NSAPIObj, commit,
LengthOfPrefix);
Editor->commit(commit);
return true;
}
return false;
}
void ObjCMigrateASTConsumer::migrateNsReturnsInnerPointer(ASTContext &Ctx,
ObjCMethodDecl *OM) {
if (OM->isImplicit() ||
OM->hasAttr<ObjCReturnsInnerPointerAttr>())
return;
QualType RT = OM->getResultType();
if (!TypeIsInnerPointer(RT) ||
!Ctx.Idents.get("NS_RETURNS_INNER_POINTER").hasMacroDefinition())
return;
edit::Commit commit(*Editor);
commit.insertBefore(OM->getLocEnd(), " NS_RETURNS_INNER_POINTER");
Editor->commit(commit);
}
void ObjCMigrateASTConsumer::migratePropertyNsReturnsInnerPointer(ASTContext &Ctx,
ObjCPropertyDecl *P) {
QualType T = P->getType();
if (!TypeIsInnerPointer(T) ||
!Ctx.Idents.get("NS_RETURNS_INNER_POINTER").hasMacroDefinition())
return;
edit::Commit commit(*Editor);
commit.insertBefore(P->getLocEnd(), " NS_RETURNS_INNER_POINTER ");
Editor->commit(commit);
}
void ObjCMigrateASTConsumer::migrateMethods(ASTContext &Ctx,
ObjCContainerDecl *CDecl) {
if (CDecl->isDeprecated())
return;
// migrate methods which can have instancetype as their result type.
for (ObjCContainerDecl::method_iterator M = CDecl->meth_begin(),
MEnd = CDecl->meth_end();
M != MEnd; ++M) {
ObjCMethodDecl *Method = (*M);
if (Method->isDeprecated())
continue;
migrateMethodInstanceType(Ctx, CDecl, Method);
}
}
void ObjCMigrateASTConsumer::migrateFactoryMethod(ASTContext &Ctx,
ObjCContainerDecl *CDecl,
ObjCMethodDecl *OM,
ObjCInstanceTypeFamily OIT_Family) {
if (OM->isInstanceMethod() ||
OM->getResultType() == Ctx.getObjCInstanceType() ||
!OM->getResultType()->isObjCIdType())
return;
// Candidate factory methods are + (id) NaMeXXX : ... which belong to a class
// NSYYYNamE with matching names be at least 3 characters long.
ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
if (!IDecl) {
if (ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(CDecl))
IDecl = CatDecl->getClassInterface();
else if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(CDecl))
IDecl = ImpDecl->getClassInterface();
}
if (!IDecl)
return;
std::string StringClassName = IDecl->getName();
StringRef LoweredClassName(StringClassName);
std::string StringLoweredClassName = LoweredClassName.lower();
LoweredClassName = StringLoweredClassName;
IdentifierInfo *MethodIdName = OM->getSelector().getIdentifierInfoForSlot(0);
// Handle method with no name at its first selector slot; e.g. + (id):(int)x.
if (!MethodIdName)
return;
std::string MethodName = MethodIdName->getName();
if (OIT_Family == OIT_Singleton) {
StringRef STRefMethodName(MethodName);
size_t len = 0;
if (STRefMethodName.startswith("standard"))
len = strlen("standard");
else if (STRefMethodName.startswith("shared"))
len = strlen("shared");
else if (STRefMethodName.startswith("default"))
len = strlen("default");
else
return;
MethodName = STRefMethodName.substr(len);
}
std::string MethodNameSubStr = MethodName.substr(0, 3);
StringRef MethodNamePrefix(MethodNameSubStr);
std::string StringLoweredMethodNamePrefix = MethodNamePrefix.lower();
MethodNamePrefix = StringLoweredMethodNamePrefix;
size_t Ix = LoweredClassName.rfind(MethodNamePrefix);
if (Ix == StringRef::npos)
return;
std::string ClassNamePostfix = LoweredClassName.substr(Ix);
StringRef LoweredMethodName(MethodName);
std::string StringLoweredMethodName = LoweredMethodName.lower();
LoweredMethodName = StringLoweredMethodName;
if (!LoweredMethodName.startswith(ClassNamePostfix))
return;
ReplaceWithInstancetype(*this, OM);
}
static bool IsVoidStarType(QualType Ty) {
if (!Ty->isPointerType())
return false;
while (const TypedefType *TD = dyn_cast<TypedefType>(Ty.getTypePtr()))
Ty = TD->getDecl()->getUnderlyingType();
// Is the type void*?
const PointerType* PT = Ty->getAs<PointerType>();
if (PT->getPointeeType().getUnqualifiedType()->isVoidType())
return true;
return IsVoidStarType(PT->getPointeeType());
}
/// AuditedType - This routine audits the type AT and returns false if it is one of known
/// CF object types or of the "void *" variety. It returns true if we don't care about the type
/// such as a non-pointer or pointers which have no ownership issues (such as "int *").
static bool AuditedType (QualType AT) {
if (!AT->isAnyPointerType() && !AT->isBlockPointerType())
return true;
// FIXME. There isn't much we can say about CF pointer type; or is there?
if (ento::coreFoundation::isCFObjectRef(AT) ||
IsVoidStarType(AT) ||
// If an ObjC object is type, assuming that it is not a CF function and
// that it is an un-audited function.
AT->isObjCObjectPointerType() || AT->isObjCBuiltinType())
return false;
// All other pointers are assumed audited as harmless.
return true;
}
void ObjCMigrateASTConsumer::AnnotateImplicitBridging(ASTContext &Ctx) {
if (CFFunctionIBCandidates.empty())
return;
if (!Ctx.Idents.get("CF_IMPLICIT_BRIDGING_ENABLED").hasMacroDefinition()) {
CFFunctionIBCandidates.clear();
FileId = 0;
return;
}
// Insert CF_IMPLICIT_BRIDGING_ENABLE/CF_IMPLICIT_BRIDGING_DISABLED
const Decl *FirstFD = CFFunctionIBCandidates[0];
const Decl *LastFD =
CFFunctionIBCandidates[CFFunctionIBCandidates.size()-1];
const char *PragmaString = "\nCF_IMPLICIT_BRIDGING_ENABLED\n\n";
edit::Commit commit(*Editor);
commit.insertBefore(FirstFD->getLocStart(), PragmaString);
PragmaString = "\n\nCF_IMPLICIT_BRIDGING_DISABLED\n";
SourceLocation EndLoc = LastFD->getLocEnd();
// get location just past end of function location.
EndLoc = PP.getLocForEndOfToken(EndLoc);
if (isa<FunctionDecl>(LastFD)) {
// For Methods, EndLoc points to the ending semcolon. So,
// not of these extra work is needed.
Token Tok;
// get locaiton of token that comes after end of function.
bool Failed = PP.getRawToken(EndLoc, Tok, /*IgnoreWhiteSpace=*/true);
if (!Failed)
EndLoc = Tok.getLocation();
}
commit.insertAfterToken(EndLoc, PragmaString);
Editor->commit(commit);
FileId = 0;
CFFunctionIBCandidates.clear();
}
void ObjCMigrateASTConsumer::migrateCFAnnotation(ASTContext &Ctx, const Decl *Decl) {
if (Decl->isDeprecated())
return;
if (Decl->hasAttr<CFAuditedTransferAttr>()) {
assert(CFFunctionIBCandidates.empty() &&
"Cannot have audited functions/methods inside user "
"provided CF_IMPLICIT_BRIDGING_ENABLE");
return;
}
// Finction must be annotated first.
if (const FunctionDecl *FuncDecl = dyn_cast<FunctionDecl>(Decl)) {
CF_BRIDGING_KIND AuditKind = migrateAddFunctionAnnotation(Ctx, FuncDecl);
if (AuditKind == CF_BRIDGING_ENABLE) {
CFFunctionIBCandidates.push_back(Decl);
if (!FileId)
FileId = PP.getSourceManager().getFileID(Decl->getLocation()).getHashValue();
}
else if (AuditKind == CF_BRIDGING_MAY_INCLUDE) {
if (!CFFunctionIBCandidates.empty()) {
CFFunctionIBCandidates.push_back(Decl);
if (!FileId)
FileId = PP.getSourceManager().getFileID(Decl->getLocation()).getHashValue();
}
}
else
AnnotateImplicitBridging(Ctx);
}
else {
migrateAddMethodAnnotation(Ctx, cast<ObjCMethodDecl>(Decl));
AnnotateImplicitBridging(Ctx);
}
}
void ObjCMigrateASTConsumer::AddCFAnnotations(ASTContext &Ctx,
const CallEffects &CE,
const FunctionDecl *FuncDecl,
bool ResultAnnotated) {
// Annotate function.
if (!ResultAnnotated) {
RetEffect Ret = CE.getReturnValue();
const char *AnnotationString = 0;
if (Ret.getObjKind() == RetEffect::CF) {
if (Ret.isOwned() &&
Ctx.Idents.get("CF_RETURNS_RETAINED").hasMacroDefinition())
AnnotationString = " CF_RETURNS_RETAINED";
else if (Ret.notOwned() &&
Ctx.Idents.get("CF_RETURNS_NOT_RETAINED").hasMacroDefinition())
AnnotationString = " CF_RETURNS_NOT_RETAINED";
}
else if (Ret.getObjKind() == RetEffect::ObjC) {
if (Ret.isOwned() &&
Ctx.Idents.get("NS_RETURNS_RETAINED").hasMacroDefinition())
AnnotationString = " NS_RETURNS_RETAINED";
}
if (AnnotationString) {
edit::Commit commit(*Editor);
commit.insertAfterToken(FuncDecl->getLocEnd(), AnnotationString);
Editor->commit(commit);
}
}
llvm::ArrayRef<ArgEffect> AEArgs = CE.getArgs();
unsigned i = 0;
for (FunctionDecl::param_const_iterator pi = FuncDecl->param_begin(),
pe = FuncDecl->param_end(); pi != pe; ++pi, ++i) {
const ParmVarDecl *pd = *pi;
ArgEffect AE = AEArgs[i];
if (AE == DecRef && !pd->getAttr<CFConsumedAttr>() &&
Ctx.Idents.get("CF_CONSUMED").hasMacroDefinition()) {
edit::Commit commit(*Editor);
commit.insertBefore(pd->getLocation(), "CF_CONSUMED ");
Editor->commit(commit);
}
else if (AE == DecRefMsg && !pd->getAttr<NSConsumedAttr>() &&
Ctx.Idents.get("NS_CONSUMED").hasMacroDefinition()) {
edit::Commit commit(*Editor);
commit.insertBefore(pd->getLocation(), "NS_CONSUMED ");
Editor->commit(commit);
}
}
}
ObjCMigrateASTConsumer::CF_BRIDGING_KIND
ObjCMigrateASTConsumer::migrateAddFunctionAnnotation(
ASTContext &Ctx,
const FunctionDecl *FuncDecl) {
if (FuncDecl->hasBody())
return CF_BRIDGING_NONE;
CallEffects CE = CallEffects::getEffect(FuncDecl);
bool FuncIsReturnAnnotated = (FuncDecl->getAttr<CFReturnsRetainedAttr>() ||
FuncDecl->getAttr<CFReturnsNotRetainedAttr>() ||
FuncDecl->getAttr<NSReturnsRetainedAttr>() ||
FuncDecl->getAttr<NSReturnsNotRetainedAttr>() ||
FuncDecl->getAttr<NSReturnsAutoreleasedAttr>());
// Trivial case of when funciton is annotated and has no argument.
if (FuncIsReturnAnnotated && FuncDecl->getNumParams() == 0)
return CF_BRIDGING_NONE;
bool ReturnCFAudited = false;
if (!FuncIsReturnAnnotated) {
RetEffect Ret = CE.getReturnValue();
if (Ret.getObjKind() == RetEffect::CF &&
(Ret.isOwned() || Ret.notOwned()))
ReturnCFAudited = true;
else if (!AuditedType(FuncDecl->getResultType()))
return CF_BRIDGING_NONE;
}
// At this point result type is audited for potential inclusion.
// Now, how about argument types.
llvm::ArrayRef<ArgEffect> AEArgs = CE.getArgs();
unsigned i = 0;
bool ArgCFAudited = false;
for (FunctionDecl::param_const_iterator pi = FuncDecl->param_begin(),
pe = FuncDecl->param_end(); pi != pe; ++pi, ++i) {
const ParmVarDecl *pd = *pi;
ArgEffect AE = AEArgs[i];
if (AE == DecRef /*CFConsumed annotated*/ || AE == IncRef) {
if (AE == DecRef && !pd->getAttr<CFConsumedAttr>())
ArgCFAudited = true;
else if (AE == IncRef)
ArgCFAudited = true;
}
else {
QualType AT = pd->getType();
if (!AuditedType(AT)) {
AddCFAnnotations(Ctx, CE, FuncDecl, FuncIsReturnAnnotated);
return CF_BRIDGING_NONE;
}
}
}
if (ReturnCFAudited || ArgCFAudited)
return CF_BRIDGING_ENABLE;
return CF_BRIDGING_MAY_INCLUDE;
}
void ObjCMigrateASTConsumer::migrateARCSafeAnnotation(ASTContext &Ctx,
ObjCContainerDecl *CDecl) {
if (!isa<ObjCInterfaceDecl>(CDecl) || CDecl->isDeprecated())
return;
// migrate methods which can have instancetype as their result type.
for (ObjCContainerDecl::method_iterator M = CDecl->meth_begin(),
MEnd = CDecl->meth_end();
M != MEnd; ++M) {
ObjCMethodDecl *Method = (*M);
migrateCFAnnotation(Ctx, Method);
}
}
void ObjCMigrateASTConsumer::AddCFAnnotations(ASTContext &Ctx,
const CallEffects &CE,
const ObjCMethodDecl *MethodDecl,
bool ResultAnnotated) {
// Annotate function.
if (!ResultAnnotated) {
RetEffect Ret = CE.getReturnValue();
const char *AnnotationString = 0;
if (Ret.getObjKind() == RetEffect::CF) {
if (Ret.isOwned() &&
Ctx.Idents.get("CF_RETURNS_RETAINED").hasMacroDefinition())
AnnotationString = " CF_RETURNS_RETAINED";
else if (Ret.notOwned() &&
Ctx.Idents.get("CF_RETURNS_NOT_RETAINED").hasMacroDefinition())
AnnotationString = " CF_RETURNS_NOT_RETAINED";
}
else if (Ret.getObjKind() == RetEffect::ObjC) {
ObjCMethodFamily OMF = MethodDecl->getMethodFamily();
switch (OMF) {
case clang::OMF_alloc:
case clang::OMF_new:
case clang::OMF_copy:
case clang::OMF_init:
case clang::OMF_mutableCopy:
break;
default:
if (Ret.isOwned() &&
Ctx.Idents.get("NS_RETURNS_RETAINED").hasMacroDefinition())
AnnotationString = " NS_RETURNS_RETAINED";
break;
}
}
if (AnnotationString) {
edit::Commit commit(*Editor);
commit.insertBefore(MethodDecl->getLocEnd(), AnnotationString);
Editor->commit(commit);
}
}
llvm::ArrayRef<ArgEffect> AEArgs = CE.getArgs();
unsigned i = 0;
for (ObjCMethodDecl::param_const_iterator pi = MethodDecl->param_begin(),
pe = MethodDecl->param_end(); pi != pe; ++pi, ++i) {
const ParmVarDecl *pd = *pi;
ArgEffect AE = AEArgs[i];
if (AE == DecRef && !pd->getAttr<CFConsumedAttr>() &&
Ctx.Idents.get("CF_CONSUMED").hasMacroDefinition()) {
edit::Commit commit(*Editor);
commit.insertBefore(pd->getLocation(), "CF_CONSUMED ");
Editor->commit(commit);
}
}
}
void ObjCMigrateASTConsumer::migrateAddMethodAnnotation(
ASTContext &Ctx,
const ObjCMethodDecl *MethodDecl) {
if (MethodDecl->hasBody() || MethodDecl->isImplicit())
return;
CallEffects CE = CallEffects::getEffect(MethodDecl);
bool MethodIsReturnAnnotated = (MethodDecl->getAttr<CFReturnsRetainedAttr>() ||
MethodDecl->getAttr<CFReturnsNotRetainedAttr>() ||
MethodDecl->getAttr<NSReturnsRetainedAttr>() ||
MethodDecl->getAttr<NSReturnsNotRetainedAttr>() ||
MethodDecl->getAttr<NSReturnsAutoreleasedAttr>());
if (CE.getReceiver() == DecRefMsg &&
!MethodDecl->getAttr<NSConsumesSelfAttr>() &&
MethodDecl->getMethodFamily() != OMF_init &&
MethodDecl->getMethodFamily() != OMF_release &&
Ctx.Idents.get("NS_CONSUMES_SELF").hasMacroDefinition()) {
edit::Commit commit(*Editor);
commit.insertBefore(MethodDecl->getLocEnd(), " NS_CONSUMES_SELF");
Editor->commit(commit);
}
// Trivial case of when funciton is annotated and has no argument.
if (MethodIsReturnAnnotated &&
(MethodDecl->param_begin() == MethodDecl->param_end()))
return;
if (!MethodIsReturnAnnotated) {
RetEffect Ret = CE.getReturnValue();
if ((Ret.getObjKind() == RetEffect::CF ||
Ret.getObjKind() == RetEffect::ObjC) &&
(Ret.isOwned() || Ret.notOwned())) {
AddCFAnnotations(Ctx, CE, MethodDecl, false);
return;
}
else if (!AuditedType(MethodDecl->getResultType()))
return;
}
// At this point result type is either annotated or audited.
// Now, how about argument types.
llvm::ArrayRef<ArgEffect> AEArgs = CE.getArgs();
unsigned i = 0;
for (ObjCMethodDecl::param_const_iterator pi = MethodDecl->param_begin(),
pe = MethodDecl->param_end(); pi != pe; ++pi, ++i) {
const ParmVarDecl *pd = *pi;
ArgEffect AE = AEArgs[i];
if ((AE == DecRef && !pd->getAttr<CFConsumedAttr>()) || AE == IncRef ||
!AuditedType(pd->getType())) {
AddCFAnnotations(Ctx, CE, MethodDecl, MethodIsReturnAnnotated);
return;
}
}
return;
}
namespace {
class RewritesReceiver : public edit::EditsReceiver {
Rewriter &Rewrite;
public:
RewritesReceiver(Rewriter &Rewrite) : Rewrite(Rewrite) { }
virtual void insert(SourceLocation loc, StringRef text) {
Rewrite.InsertText(loc, text);
}
virtual void replace(CharSourceRange range, StringRef text) {
Rewrite.ReplaceText(range.getBegin(), Rewrite.getRangeSize(range), text);
}
};
}
void ObjCMigrateASTConsumer::HandleTranslationUnit(ASTContext &Ctx) {
TranslationUnitDecl *TU = Ctx.getTranslationUnitDecl();
if (MigrateProperty) {
for (DeclContext::decl_iterator D = TU->decls_begin(), DEnd = TU->decls_end();
D != DEnd; ++D) {
if (unsigned FID =
PP.getSourceManager().getFileID((*D)->getLocation()).getHashValue())
if (FileId && FileId != FID)
AnnotateImplicitBridging(Ctx);
if (ObjCInterfaceDecl *CDecl = dyn_cast<ObjCInterfaceDecl>(*D))
migrateObjCInterfaceDecl(Ctx, CDecl);
if (ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(*D))
migrateObjCInterfaceDecl(Ctx, CatDecl);
else if (ObjCProtocolDecl *PDecl = dyn_cast<ObjCProtocolDecl>(*D))
ObjCProtocolDecls.insert(PDecl);
else if (const ObjCImplementationDecl *ImpDecl =
dyn_cast<ObjCImplementationDecl>(*D))
migrateProtocolConformance(Ctx, ImpDecl);
else if (const EnumDecl *ED = dyn_cast<EnumDecl>(*D)) {
DeclContext::decl_iterator N = D;
++N;
if (N != DEnd)
if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(*N))
migrateNSEnumDecl(Ctx, ED, TD);
}
else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*D))
migrateCFAnnotation(Ctx, FD);
if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(*D)) {
// migrate methods which can have instancetype as their result type.
migrateMethods(Ctx, CDecl);
// annotate methods with CF annotations.
migrateARCSafeAnnotation(Ctx, CDecl);
}
}
AnnotateImplicitBridging(Ctx);
}
Rewriter rewriter(Ctx.getSourceManager(), Ctx.getLangOpts());
RewritesReceiver Rec(rewriter);
Editor->applyRewrites(Rec);
for (Rewriter::buffer_iterator
I = rewriter.buffer_begin(), E = rewriter.buffer_end(); I != E; ++I) {
FileID FID = I->first;
RewriteBuffer &buf = I->second;
const FileEntry *file = Ctx.getSourceManager().getFileEntryForID(FID);
assert(file);
SmallString<512> newText;
llvm::raw_svector_ostream vecOS(newText);
buf.write(vecOS);
vecOS.flush();
llvm::MemoryBuffer *memBuf = llvm::MemoryBuffer::getMemBufferCopy(
StringRef(newText.data(), newText.size()), file->getName());
SmallString<64> filePath(file->getName());
FileMgr.FixupRelativePath(filePath);
Remapper.remap(filePath.str(), memBuf);
}
if (IsOutputFile) {
Remapper.flushToFile(MigrateDir, Ctx.getDiagnostics());
} else {
Remapper.flushToDisk(MigrateDir, Ctx.getDiagnostics());
}
}
bool MigrateSourceAction::BeginInvocation(CompilerInstance &CI) {
CI.getDiagnostics().setIgnoreAllWarnings(true);
return true;
}
ASTConsumer *MigrateSourceAction::CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) {
PPConditionalDirectiveRecord *
PPRec = new PPConditionalDirectiveRecord(CI.getSourceManager());
CI.getPreprocessor().addPPCallbacks(PPRec);
return new ObjCMigrateASTConsumer(CI.getFrontendOpts().OutputFile,
/*MigrateLiterals=*/true,
/*MigrateSubscripting=*/true,
/*MigrateProperty*/true,
/*MigrateReadonlyProperty*/true,
Remapper,
CI.getFileManager(),
PPRec,
CI.getPreprocessor(),
/*isOutputFile=*/true);
}