| //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | //  This file implements semantic analysis for C++ declarations. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "Sema.h" | 
 | #include "SemaInherit.h" | 
 | #include "clang/AST/ASTConsumer.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/DeclVisitor.h" | 
 | #include "clang/AST/TypeOrdering.h" | 
 | #include "clang/AST/StmtVisitor.h" | 
 | #include "clang/Lex/Preprocessor.h" | 
 | #include "clang/Parse/DeclSpec.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include <algorithm> // for std::equal | 
 | #include <map> | 
 |  | 
 | using namespace clang; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // CheckDefaultArgumentVisitor | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | namespace { | 
 |   /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses | 
 |   /// the default argument of a parameter to determine whether it | 
 |   /// contains any ill-formed subexpressions. For example, this will | 
 |   /// diagnose the use of local variables or parameters within the | 
 |   /// default argument expression. | 
 |   class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor  | 
 |     : public StmtVisitor<CheckDefaultArgumentVisitor, bool> { | 
 |     Expr *DefaultArg; | 
 |     Sema *S; | 
 |  | 
 |   public: | 
 |     CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)  | 
 |       : DefaultArg(defarg), S(s) {} | 
 |  | 
 |     bool VisitExpr(Expr *Node); | 
 |     bool VisitDeclRefExpr(DeclRefExpr *DRE); | 
 |     bool VisitCXXThisExpr(CXXThisExpr *ThisE); | 
 |   }; | 
 |  | 
 |   /// VisitExpr - Visit all of the children of this expression. | 
 |   bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { | 
 |     bool IsInvalid = false; | 
 |     for (Stmt::child_iterator I = Node->child_begin(),  | 
 |          E = Node->child_end(); I != E; ++I) | 
 |       IsInvalid |= Visit(*I); | 
 |     return IsInvalid; | 
 |   } | 
 |  | 
 |   /// VisitDeclRefExpr - Visit a reference to a declaration, to | 
 |   /// determine whether this declaration can be used in the default | 
 |   /// argument expression. | 
 |   bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { | 
 |     NamedDecl *Decl = DRE->getDecl(); | 
 |     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) { | 
 |       // C++ [dcl.fct.default]p9 | 
 |       //   Default arguments are evaluated each time the function is | 
 |       //   called. The order of evaluation of function arguments is | 
 |       //   unspecified. Consequently, parameters of a function shall not | 
 |       //   be used in default argument expressions, even if they are not | 
 |       //   evaluated. Parameters of a function declared before a default | 
 |       //   argument expression are in scope and can hide namespace and | 
 |       //   class member names. | 
 |       return S->Diag(DRE->getSourceRange().getBegin(),  | 
 |                      diag::err_param_default_argument_references_param) | 
 |          << Param->getDeclName() << DefaultArg->getSourceRange(); | 
 |     } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) { | 
 |       // C++ [dcl.fct.default]p7 | 
 |       //   Local variables shall not be used in default argument | 
 |       //   expressions. | 
 |       if (VDecl->isBlockVarDecl()) | 
 |         return S->Diag(DRE->getSourceRange().getBegin(),  | 
 |                        diag::err_param_default_argument_references_local) | 
 |           << VDecl->getDeclName() << DefaultArg->getSourceRange(); | 
 |     } | 
 |  | 
 |     return false; | 
 |   } | 
 |  | 
 |   /// VisitCXXThisExpr - Visit a C++ "this" expression. | 
 |   bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { | 
 |     // C++ [dcl.fct.default]p8: | 
 |     //   The keyword this shall not be used in a default argument of a | 
 |     //   member function. | 
 |     return S->Diag(ThisE->getSourceRange().getBegin(), | 
 |                    diag::err_param_default_argument_references_this) | 
 |                << ThisE->getSourceRange(); | 
 |   } | 
 | } | 
 |  | 
 | /// ActOnParamDefaultArgument - Check whether the default argument | 
 | /// provided for a function parameter is well-formed. If so, attach it | 
 | /// to the parameter declaration. | 
 | void | 
 | Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,  | 
 |                                 ExprArg defarg) { | 
 |   ParmVarDecl *Param = (ParmVarDecl *)param; | 
 |   ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg.release()); | 
 |   QualType ParamType = Param->getType(); | 
 |  | 
 |   // Default arguments are only permitted in C++ | 
 |   if (!getLangOptions().CPlusPlus) { | 
 |     Diag(EqualLoc, diag::err_param_default_argument) | 
 |       << DefaultArg->getSourceRange(); | 
 |     Param->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // C++ [dcl.fct.default]p5 | 
 |   //   A default argument expression is implicitly converted (clause | 
 |   //   4) to the parameter type. The default argument expression has | 
 |   //   the same semantic constraints as the initializer expression in | 
 |   //   a declaration of a variable of the parameter type, using the | 
 |   //   copy-initialization semantics (8.5). | 
 |   Expr *DefaultArgPtr = DefaultArg.get(); | 
 |   bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType, | 
 |                                                  EqualLoc, | 
 |                                                  Param->getDeclName(), | 
 |                                                  /*DirectInit=*/false); | 
 |   if (DefaultArgPtr != DefaultArg.get()) { | 
 |     DefaultArg.take(); | 
 |     DefaultArg.reset(DefaultArgPtr); | 
 |   } | 
 |   if (DefaultInitFailed) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // Check that the default argument is well-formed | 
 |   CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this); | 
 |   if (DefaultArgChecker.Visit(DefaultArg.get())) { | 
 |     Param->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Okay: add the default argument to the parameter | 
 |   Param->setDefaultArg(DefaultArg.take()); | 
 | } | 
 |  | 
 | /// ActOnParamUnparsedDefaultArgument - We've seen a default | 
 | /// argument for a function parameter, but we can't parse it yet | 
 | /// because we're inside a class definition. Note that this default | 
 | /// argument will be parsed later. | 
 | void Sema::ActOnParamUnparsedDefaultArgument(DeclTy *param,  | 
 |                                              SourceLocation EqualLoc) { | 
 |   ParmVarDecl *Param = (ParmVarDecl*)param; | 
 |   if (Param) | 
 |     Param->setUnparsedDefaultArg(); | 
 | } | 
 |  | 
 | /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of | 
 | /// the default argument for the parameter param failed. | 
 | void Sema::ActOnParamDefaultArgumentError(DeclTy *param) { | 
 |   ((ParmVarDecl*)param)->setInvalidDecl(); | 
 | } | 
 |  | 
 | /// CheckExtraCXXDefaultArguments - Check for any extra default | 
 | /// arguments in the declarator, which is not a function declaration | 
 | /// or definition and therefore is not permitted to have default | 
 | /// arguments. This routine should be invoked for every declarator | 
 | /// that is not a function declaration or definition. | 
 | void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { | 
 |   // C++ [dcl.fct.default]p3 | 
 |   //   A default argument expression shall be specified only in the | 
 |   //   parameter-declaration-clause of a function declaration or in a | 
 |   //   template-parameter (14.1). It shall not be specified for a | 
 |   //   parameter pack. If it is specified in a | 
 |   //   parameter-declaration-clause, it shall not occur within a | 
 |   //   declarator or abstract-declarator of a parameter-declaration. | 
 |   for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) { | 
 |     DeclaratorChunk &chunk = D.getTypeObject(i); | 
 |     if (chunk.Kind == DeclaratorChunk::Function) { | 
 |       for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) { | 
 |         ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param; | 
 |         if (Param->hasUnparsedDefaultArg()) { | 
 |           CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens; | 
 |           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | 
 |             << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation()); | 
 |           delete Toks; | 
 |           chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0; | 
 |         } else if (Param->getDefaultArg()) { | 
 |           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | 
 |             << Param->getDefaultArg()->getSourceRange(); | 
 |           Param->setDefaultArg(0); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // MergeCXXFunctionDecl - Merge two declarations of the same C++ | 
 | // function, once we already know that they have the same | 
 | // type. Subroutine of MergeFunctionDecl. Returns true if there was an | 
 | // error, false otherwise. | 
 | bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) { | 
 |   bool Invalid = false; | 
 |  | 
 |   // C++ [dcl.fct.default]p4: | 
 |   // | 
 |   //   For non-template functions, default arguments can be added in | 
 |   //   later declarations of a function in the same | 
 |   //   scope. Declarations in different scopes have completely | 
 |   //   distinct sets of default arguments. That is, declarations in | 
 |   //   inner scopes do not acquire default arguments from | 
 |   //   declarations in outer scopes, and vice versa. In a given | 
 |   //   function declaration, all parameters subsequent to a | 
 |   //   parameter with a default argument shall have default | 
 |   //   arguments supplied in this or previous declarations. A | 
 |   //   default argument shall not be redefined by a later | 
 |   //   declaration (not even to the same value). | 
 |   for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) { | 
 |     ParmVarDecl *OldParam = Old->getParamDecl(p); | 
 |     ParmVarDecl *NewParam = New->getParamDecl(p); | 
 |  | 
 |     if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) { | 
 |       Diag(NewParam->getLocation(),  | 
 |            diag::err_param_default_argument_redefinition) | 
 |         << NewParam->getDefaultArg()->getSourceRange(); | 
 |       Diag(OldParam->getLocation(), diag::note_previous_definition); | 
 |       Invalid = true; | 
 |     } else if (OldParam->getDefaultArg()) { | 
 |       // Merge the old default argument into the new parameter | 
 |       NewParam->setDefaultArg(OldParam->getDefaultArg()); | 
 |     } | 
 |   } | 
 |  | 
 |   return Invalid; | 
 | } | 
 |  | 
 | /// CheckCXXDefaultArguments - Verify that the default arguments for a | 
 | /// function declaration are well-formed according to C++ | 
 | /// [dcl.fct.default]. | 
 | void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { | 
 |   unsigned NumParams = FD->getNumParams(); | 
 |   unsigned p; | 
 |  | 
 |   // Find first parameter with a default argument | 
 |   for (p = 0; p < NumParams; ++p) { | 
 |     ParmVarDecl *Param = FD->getParamDecl(p); | 
 |     if (Param->getDefaultArg()) | 
 |       break; | 
 |   } | 
 |  | 
 |   // C++ [dcl.fct.default]p4: | 
 |   //   In a given function declaration, all parameters | 
 |   //   subsequent to a parameter with a default argument shall | 
 |   //   have default arguments supplied in this or previous | 
 |   //   declarations. A default argument shall not be redefined | 
 |   //   by a later declaration (not even to the same value). | 
 |   unsigned LastMissingDefaultArg = 0; | 
 |   for(; p < NumParams; ++p) { | 
 |     ParmVarDecl *Param = FD->getParamDecl(p); | 
 |     if (!Param->getDefaultArg()) { | 
 |       if (Param->isInvalidDecl()) | 
 |         /* We already complained about this parameter. */; | 
 |       else if (Param->getIdentifier()) | 
 |         Diag(Param->getLocation(),  | 
 |              diag::err_param_default_argument_missing_name) | 
 |           << Param->getIdentifier(); | 
 |       else | 
 |         Diag(Param->getLocation(),  | 
 |              diag::err_param_default_argument_missing); | 
 |      | 
 |       LastMissingDefaultArg = p; | 
 |     } | 
 |   } | 
 |  | 
 |   if (LastMissingDefaultArg > 0) { | 
 |     // Some default arguments were missing. Clear out all of the | 
 |     // default arguments up to (and including) the last missing | 
 |     // default argument, so that we leave the function parameters | 
 |     // in a semantically valid state. | 
 |     for (p = 0; p <= LastMissingDefaultArg; ++p) { | 
 |       ParmVarDecl *Param = FD->getParamDecl(p); | 
 |       if (Param->getDefaultArg()) { | 
 |         if (!Param->hasUnparsedDefaultArg()) | 
 |           Param->getDefaultArg()->Destroy(Context); | 
 |         Param->setDefaultArg(0); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// isCurrentClassName - Determine whether the identifier II is the | 
 | /// name of the class type currently being defined. In the case of | 
 | /// nested classes, this will only return true if II is the name of | 
 | /// the innermost class. | 
 | bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *, | 
 |                               const CXXScopeSpec *SS) { | 
 |   CXXRecordDecl *CurDecl; | 
 |   if (SS && SS->isSet() && !SS->isInvalid()) { | 
 |     DeclContext *DC = computeDeclContext(*SS); | 
 |     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); | 
 |   } else | 
 |     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); | 
 |  | 
 |   if (CurDecl) | 
 |     return &II == CurDecl->getIdentifier(); | 
 |   else | 
 |     return false; | 
 | } | 
 |  | 
 | /// \brief Check the validity of a C++ base class specifier.  | 
 | /// | 
 | /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics | 
 | /// and returns NULL otherwise. | 
 | CXXBaseSpecifier * | 
 | Sema::CheckBaseSpecifier(CXXRecordDecl *Class, | 
 |                          SourceRange SpecifierRange, | 
 |                          bool Virtual, AccessSpecifier Access, | 
 |                          QualType BaseType,  | 
 |                          SourceLocation BaseLoc) { | 
 |   // C++ [class.union]p1: | 
 |   //   A union shall not have base classes. | 
 |   if (Class->isUnion()) { | 
 |     Diag(Class->getLocation(), diag::err_base_clause_on_union) | 
 |       << SpecifierRange; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (BaseType->isDependentType()) | 
 |     return new CXXBaseSpecifier(SpecifierRange, Virtual,  | 
 |                                 Class->getTagKind() == RecordDecl::TK_class, | 
 |                                 Access, BaseType); | 
 |  | 
 |   // Base specifiers must be record types. | 
 |   if (!BaseType->isRecordType()) { | 
 |     Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // C++ [class.union]p1: | 
 |   //   A union shall not be used as a base class. | 
 |   if (BaseType->isUnionType()) { | 
 |     Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // C++ [class.derived]p2: | 
 |   //   The class-name in a base-specifier shall not be an incompletely | 
 |   //   defined class. | 
 |   if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class, | 
 |                           SpecifierRange)) | 
 |     return 0; | 
 |  | 
 |   // If the base class is polymorphic, the new one is, too. | 
 |   RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl(); | 
 |   assert(BaseDecl && "Record type has no declaration"); | 
 |   BaseDecl = BaseDecl->getDefinition(Context); | 
 |   assert(BaseDecl && "Base type is not incomplete, but has no definition"); | 
 |   if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic()) | 
 |     Class->setPolymorphic(true); | 
 |  | 
 |   // C++ [dcl.init.aggr]p1: | 
 |   //   An aggregate is [...] a class with [...] no base classes [...]. | 
 |   Class->setAggregate(false); | 
 |   Class->setPOD(false); | 
 |  | 
 |   // Create the base specifier. | 
 |   // FIXME: Allocate via ASTContext? | 
 |   return new CXXBaseSpecifier(SpecifierRange, Virtual,  | 
 |                               Class->getTagKind() == RecordDecl::TK_class,  | 
 |                               Access, BaseType); | 
 | } | 
 |  | 
 | /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is | 
 | /// one entry in the base class list of a class specifier, for | 
 | /// example:  | 
 | ///    class foo : public bar, virtual private baz {  | 
 | /// 'public bar' and 'virtual private baz' are each base-specifiers. | 
 | Sema::BaseResult  | 
 | Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange, | 
 |                          bool Virtual, AccessSpecifier Access, | 
 |                          TypeTy *basetype, SourceLocation BaseLoc) { | 
 |   AdjustDeclIfTemplate(classdecl); | 
 |   CXXRecordDecl *Class = cast<CXXRecordDecl>((Decl*)classdecl); | 
 |   QualType BaseType = QualType::getFromOpaquePtr(basetype); | 
 |   if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, | 
 |                                                       Virtual, Access, | 
 |                                                       BaseType, BaseLoc)) | 
 |     return BaseSpec; | 
 |    | 
 |   return true; | 
 | } | 
 |  | 
 | /// \brief Performs the actual work of attaching the given base class | 
 | /// specifiers to a C++ class. | 
 | bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, | 
 |                                 unsigned NumBases) { | 
 |  if (NumBases == 0) | 
 |     return false; | 
 |  | 
 |   // Used to keep track of which base types we have already seen, so | 
 |   // that we can properly diagnose redundant direct base types. Note | 
 |   // that the key is always the unqualified canonical type of the base | 
 |   // class. | 
 |   std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; | 
 |  | 
 |   // Copy non-redundant base specifiers into permanent storage. | 
 |   unsigned NumGoodBases = 0; | 
 |   bool Invalid = false; | 
 |   for (unsigned idx = 0; idx < NumBases; ++idx) { | 
 |     QualType NewBaseType  | 
 |       = Context.getCanonicalType(Bases[idx]->getType()); | 
 |     NewBaseType = NewBaseType.getUnqualifiedType(); | 
 |  | 
 |     if (KnownBaseTypes[NewBaseType]) { | 
 |       // C++ [class.mi]p3: | 
 |       //   A class shall not be specified as a direct base class of a | 
 |       //   derived class more than once. | 
 |       Diag(Bases[idx]->getSourceRange().getBegin(), | 
 |            diag::err_duplicate_base_class) | 
 |         << KnownBaseTypes[NewBaseType]->getType() | 
 |         << Bases[idx]->getSourceRange(); | 
 |  | 
 |       // Delete the duplicate base class specifier; we're going to | 
 |       // overwrite its pointer later. | 
 |       delete Bases[idx]; | 
 |  | 
 |       Invalid = true; | 
 |     } else { | 
 |       // Okay, add this new base class. | 
 |       KnownBaseTypes[NewBaseType] = Bases[idx]; | 
 |       Bases[NumGoodBases++] = Bases[idx]; | 
 |     } | 
 |   } | 
 |  | 
 |   // Attach the remaining base class specifiers to the derived class. | 
 |   Class->setBases(Bases, NumGoodBases); | 
 |  | 
 |   // Delete the remaining (good) base class specifiers, since their | 
 |   // data has been copied into the CXXRecordDecl. | 
 |   for (unsigned idx = 0; idx < NumGoodBases; ++idx) | 
 |     delete Bases[idx]; | 
 |  | 
 |   return Invalid; | 
 | } | 
 |  | 
 | /// ActOnBaseSpecifiers - Attach the given base specifiers to the | 
 | /// class, after checking whether there are any duplicate base | 
 | /// classes. | 
 | void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,  | 
 |                                unsigned NumBases) { | 
 |   if (!ClassDecl || !Bases || !NumBases) | 
 |     return; | 
 |  | 
 |   AdjustDeclIfTemplate(ClassDecl); | 
 |   AttachBaseSpecifiers(cast<CXXRecordDecl>((Decl*)ClassDecl), | 
 |                        (CXXBaseSpecifier**)(Bases), NumBases); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // C++ class member Handling | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member | 
 | /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the | 
 | /// bitfield width if there is one and 'InitExpr' specifies the initializer if | 
 | /// any. 'LastInGroup' is non-null for cases where one declspec has multiple | 
 | /// declarators on it. | 
 | Sema::DeclTy * | 
 | Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, | 
 |                                ExprTy *BW, ExprTy *InitExpr, | 
 |                                DeclTy *LastInGroup) { | 
 |   const DeclSpec &DS = D.getDeclSpec(); | 
 |   DeclarationName Name = GetNameForDeclarator(D); | 
 |   Expr *BitWidth = static_cast<Expr*>(BW); | 
 |   Expr *Init = static_cast<Expr*>(InitExpr); | 
 |   SourceLocation Loc = D.getIdentifierLoc(); | 
 |  | 
 |   bool isFunc = D.isFunctionDeclarator(); | 
 |  | 
 |   // C++ 9.2p6: A member shall not be declared to have automatic storage | 
 |   // duration (auto, register) or with the extern storage-class-specifier. | 
 |   // C++ 7.1.1p8: The mutable specifier can be applied only to names of class | 
 |   // data members and cannot be applied to names declared const or static, | 
 |   // and cannot be applied to reference members. | 
 |   switch (DS.getStorageClassSpec()) { | 
 |     case DeclSpec::SCS_unspecified: | 
 |     case DeclSpec::SCS_typedef: | 
 |     case DeclSpec::SCS_static: | 
 |       // FALL THROUGH. | 
 |       break; | 
 |     case DeclSpec::SCS_mutable: | 
 |       if (isFunc) { | 
 |         if (DS.getStorageClassSpecLoc().isValid()) | 
 |           Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); | 
 |         else | 
 |           Diag(DS.getThreadSpecLoc(), diag::err_mutable_function); | 
 |          | 
 |         // FIXME: It would be nicer if the keyword was ignored only for this | 
 |         // declarator. Otherwise we could get follow-up errors. | 
 |         D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
 |       } else { | 
 |         QualType T = GetTypeForDeclarator(D, S); | 
 |         diag::kind err = static_cast<diag::kind>(0); | 
 |         if (T->isReferenceType()) | 
 |           err = diag::err_mutable_reference; | 
 |         else if (T.isConstQualified()) | 
 |           err = diag::err_mutable_const; | 
 |         if (err != 0) { | 
 |           if (DS.getStorageClassSpecLoc().isValid()) | 
 |             Diag(DS.getStorageClassSpecLoc(), err); | 
 |           else | 
 |             Diag(DS.getThreadSpecLoc(), err); | 
 |           // FIXME: It would be nicer if the keyword was ignored only for this | 
 |           // declarator. Otherwise we could get follow-up errors. | 
 |           D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
 |         } | 
 |       } | 
 |       break; | 
 |     default: | 
 |       if (DS.getStorageClassSpecLoc().isValid()) | 
 |         Diag(DS.getStorageClassSpecLoc(), | 
 |              diag::err_storageclass_invalid_for_member); | 
 |       else | 
 |         Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member); | 
 |       D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
 |   } | 
 |  | 
 |   if (!isFunc && | 
 |       D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename && | 
 |       D.getNumTypeObjects() == 0) { | 
 |     // Check also for this case: | 
 |     // | 
 |     // typedef int f(); | 
 |     // f a; | 
 |     // | 
 |     QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep()); | 
 |     isFunc = TDType->isFunctionType(); | 
 |   } | 
 |  | 
 |   bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || | 
 |                        DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && | 
 |                       !isFunc); | 
 |  | 
 |   Decl *Member; | 
 |   if (isInstField) { | 
 |     Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth, | 
 |                          AS); | 
 |     assert(Member && "HandleField never returns null"); | 
 |   } else { | 
 |     Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup)); | 
 |     if (!Member) { | 
 |       if (BitWidth) DeleteExpr(BitWidth); | 
 |       return LastInGroup; | 
 |     } | 
 |  | 
 |     // Non-instance-fields can't have a bitfield. | 
 |     if (BitWidth) { | 
 |       if (Member->isInvalidDecl()) { | 
 |         // don't emit another diagnostic. | 
 |       } else if (isa<VarDecl>(Member)) { | 
 |         // C++ 9.6p3: A bit-field shall not be a static member. | 
 |         // "static member 'A' cannot be a bit-field" | 
 |         Diag(Loc, diag::err_static_not_bitfield) | 
 |           << Name << BitWidth->getSourceRange(); | 
 |       } else if (isa<TypedefDecl>(Member)) { | 
 |         // "typedef member 'x' cannot be a bit-field" | 
 |         Diag(Loc, diag::err_typedef_not_bitfield) | 
 |           << Name << BitWidth->getSourceRange(); | 
 |       } else { | 
 |         // A function typedef ("typedef int f(); f a;"). | 
 |         // C++ 9.6p3: A bit-field shall have integral or enumeration type. | 
 |         Diag(Loc, diag::err_not_integral_type_bitfield) | 
 |           << Name << cast<ValueDecl>(Member)->getType()  | 
 |           << BitWidth->getSourceRange(); | 
 |       } | 
 |        | 
 |       DeleteExpr(BitWidth); | 
 |       BitWidth = 0; | 
 |       Member->setInvalidDecl(); | 
 |     } | 
 |  | 
 |     Member->setAccess(AS); | 
 |   } | 
 |  | 
 |   assert((Name || isInstField) && "No identifier for non-field ?"); | 
 |  | 
 |   if (Init) | 
 |     AddInitializerToDecl(Member, ExprArg(*this, Init), false); | 
 |  | 
 |   if (isInstField) { | 
 |     FieldCollector->Add(cast<FieldDecl>(Member)); | 
 |     return LastInGroup; | 
 |   } | 
 |   return Member; | 
 | } | 
 |  | 
 | /// ActOnMemInitializer - Handle a C++ member initializer. | 
 | Sema::MemInitResult  | 
 | Sema::ActOnMemInitializer(DeclTy *ConstructorD, | 
 |                           Scope *S, | 
 |                           IdentifierInfo *MemberOrBase, | 
 |                           SourceLocation IdLoc, | 
 |                           SourceLocation LParenLoc, | 
 |                           ExprTy **Args, unsigned NumArgs, | 
 |                           SourceLocation *CommaLocs, | 
 |                           SourceLocation RParenLoc) { | 
 |   CXXConstructorDecl *Constructor  | 
 |     = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD); | 
 |   if (!Constructor) { | 
 |     // The user wrote a constructor initializer on a function that is | 
 |     // not a C++ constructor. Ignore the error for now, because we may | 
 |     // have more member initializers coming; we'll diagnose it just | 
 |     // once in ActOnMemInitializers. | 
 |     return true; | 
 |   } | 
 |  | 
 |   CXXRecordDecl *ClassDecl = Constructor->getParent(); | 
 |  | 
 |   // C++ [class.base.init]p2: | 
 |   //   Names in a mem-initializer-id are looked up in the scope of the | 
 |   //   constructor’s class and, if not found in that scope, are looked | 
 |   //   up in the scope containing the constructor’s | 
 |   //   definition. [Note: if the constructor’s class contains a member | 
 |   //   with the same name as a direct or virtual base class of the | 
 |   //   class, a mem-initializer-id naming the member or base class and | 
 |   //   composed of a single identifier refers to the class member. A | 
 |   //   mem-initializer-id for the hidden base class may be specified | 
 |   //   using a qualified name. ] | 
 |   // Look for a member, first. | 
 |   FieldDecl *Member = 0; | 
 |   DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase); | 
 |   if (Result.first != Result.second) | 
 |     Member = dyn_cast<FieldDecl>(*Result.first); | 
 |  | 
 |   // FIXME: Handle members of an anonymous union. | 
 |  | 
 |   if (Member) { | 
 |     // FIXME: Perform direct initialization of the member. | 
 |     return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs); | 
 |   } | 
 |  | 
 |   // It didn't name a member, so see if it names a class. | 
 |   TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/); | 
 |   if (!BaseTy) | 
 |     return Diag(IdLoc, diag::err_mem_init_not_member_or_class) | 
 |       << MemberOrBase << SourceRange(IdLoc, RParenLoc); | 
 |    | 
 |   QualType BaseType = QualType::getFromOpaquePtr(BaseTy); | 
 |   if (!BaseType->isRecordType()) | 
 |     return Diag(IdLoc, diag::err_base_init_does_not_name_class) | 
 |       << BaseType << SourceRange(IdLoc, RParenLoc); | 
 |  | 
 |   // C++ [class.base.init]p2: | 
 |   //   [...] Unless the mem-initializer-id names a nonstatic data | 
 |   //   member of the constructor’s class or a direct or virtual base | 
 |   //   of that class, the mem-initializer is ill-formed. A | 
 |   //   mem-initializer-list can initialize a base class using any | 
 |   //   name that denotes that base class type. | 
 |    | 
 |   // First, check for a direct base class. | 
 |   const CXXBaseSpecifier *DirectBaseSpec = 0; | 
 |   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); | 
 |        Base != ClassDecl->bases_end(); ++Base) { | 
 |     if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==  | 
 |         Context.getCanonicalType(Base->getType()).getUnqualifiedType()) { | 
 |       // We found a direct base of this type. That's what we're | 
 |       // initializing. | 
 |       DirectBaseSpec = &*Base; | 
 |       break; | 
 |     } | 
 |   } | 
 |    | 
 |   // Check for a virtual base class. | 
 |   // FIXME: We might be able to short-circuit this if we know in | 
 |   // advance that there are no virtual bases. | 
 |   const CXXBaseSpecifier *VirtualBaseSpec = 0; | 
 |   if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { | 
 |     // We haven't found a base yet; search the class hierarchy for a | 
 |     // virtual base class. | 
 |     BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
 |                     /*DetectVirtual=*/false); | 
 |     if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) { | 
 |       for (BasePaths::paths_iterator Path = Paths.begin();  | 
 |            Path != Paths.end(); ++Path) { | 
 |         if (Path->back().Base->isVirtual()) { | 
 |           VirtualBaseSpec = Path->back().Base; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // C++ [base.class.init]p2: | 
 |   //   If a mem-initializer-id is ambiguous because it designates both | 
 |   //   a direct non-virtual base class and an inherited virtual base | 
 |   //   class, the mem-initializer is ill-formed. | 
 |   if (DirectBaseSpec && VirtualBaseSpec) | 
 |     return Diag(IdLoc, diag::err_base_init_direct_and_virtual) | 
 |       << MemberOrBase << SourceRange(IdLoc, RParenLoc); | 
 |  | 
 |   return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs); | 
 | } | 
 |  | 
 | void Sema::ActOnMemInitializers(DeclTy *ConstructorDecl,  | 
 |                                 SourceLocation ColonLoc, | 
 |                                 MemInitTy **MemInits, unsigned NumMemInits) { | 
 |   CXXConstructorDecl *Constructor =  | 
 |   dyn_cast<CXXConstructorDecl>((Decl *)ConstructorDecl); | 
 |    | 
 |   if (!Constructor) { | 
 |     Diag(ColonLoc, diag::err_only_constructors_take_base_inits); | 
 |     return; | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |   /// PureVirtualMethodCollector - traverses a class and its superclasses | 
 |   /// and determines if it has any pure virtual methods. | 
 |   class VISIBILITY_HIDDEN PureVirtualMethodCollector { | 
 |     ASTContext &Context; | 
 |  | 
 |   public: | 
 |     typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList; | 
 |  | 
 |   private: | 
 |     MethodList Methods; | 
 |      | 
 |     void Collect(const CXXRecordDecl* RD, MethodList& Methods); | 
 |      | 
 |   public: | 
 |     PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)  | 
 |       : Context(Ctx) { | 
 |          | 
 |       MethodList List; | 
 |       Collect(RD, List); | 
 |          | 
 |       // Copy the temporary list to methods, and make sure to ignore any | 
 |       // null entries. | 
 |       for (size_t i = 0, e = List.size(); i != e; ++i) { | 
 |         if (List[i]) | 
 |           Methods.push_back(List[i]); | 
 |       }           | 
 |     } | 
 |      | 
 |     bool empty() const { return Methods.empty(); } | 
 |      | 
 |     MethodList::const_iterator methods_begin() { return Methods.begin(); } | 
 |     MethodList::const_iterator methods_end() { return Methods.end(); } | 
 |   }; | 
 |    | 
 |   void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,  | 
 |                                            MethodList& Methods) { | 
 |     // First, collect the pure virtual methods for the base classes. | 
 |     for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(), | 
 |          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) { | 
 |       if (const RecordType *RT = Base->getType()->getAsRecordType()) { | 
 |         const CXXRecordDecl *BaseDecl | 
 |           = cast<CXXRecordDecl>(RT->getDecl()); | 
 |         if (BaseDecl && BaseDecl->isAbstract()) | 
 |           Collect(BaseDecl, Methods); | 
 |       } | 
 |     } | 
 |      | 
 |     // Next, zero out any pure virtual methods that this class overrides. | 
 |     for (size_t i = 0, e = Methods.size(); i != e; ++i) { | 
 |       const CXXMethodDecl *VMD = dyn_cast_or_null<CXXMethodDecl>(Methods[i]); | 
 |       if (!VMD) | 
 |         continue; | 
 |        | 
 |       DeclContext::lookup_const_iterator I, E; | 
 |       for (llvm::tie(I, E) = RD->lookup(VMD->getDeclName()); I != E; ++I) { | 
 |         if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I)) { | 
 |           if (Context.getCanonicalType(MD->getType()) ==  | 
 |               Context.getCanonicalType(VMD->getType())) { | 
 |             // We did find a matching method, which means that this is not a | 
 |             // pure virtual method in the current class. Zero it out. | 
 |             Methods[i] = 0; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     // Finally, add pure virtual methods from this class. | 
 |     for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();  | 
 |          i != e; ++i) { | 
 |       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) { | 
 |         if (MD->isPure()) | 
 |           Methods.push_back(MD); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,  | 
 |                                   unsigned DiagID, AbstractDiagSelID SelID, | 
 |                                   const CXXRecordDecl *CurrentRD) { | 
 |    | 
 |   if (!getLangOptions().CPlusPlus) | 
 |     return false; | 
 |    | 
 |   if (const ArrayType *AT = Context.getAsArrayType(T)) | 
 |     return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID, | 
 |                                   CurrentRD); | 
 |    | 
 |   if (const PointerType *PT = T->getAsPointerType()) { | 
 |     // Find the innermost pointer type. | 
 |     while (const PointerType *T = PT->getPointeeType()->getAsPointerType()) | 
 |       PT = T; | 
 |      | 
 |     if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType())) | 
 |       return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID, | 
 |                                     CurrentRD); | 
 |   } | 
 |    | 
 |   const RecordType *RT = T->getAsRecordType(); | 
 |   if (!RT) | 
 |     return false; | 
 |    | 
 |   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); | 
 |   if (!RD) | 
 |     return false; | 
 |  | 
 |   if (CurrentRD && CurrentRD != RD) | 
 |     return false; | 
 |    | 
 |   if (!RD->isAbstract()) | 
 |     return false; | 
 |    | 
 |   Diag(Loc, DiagID) << RD->getDeclName() << SelID; | 
 |    | 
 |   // Check if we've already emitted the list of pure virtual functions for this | 
 |   // class. | 
 |   if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) | 
 |     return true; | 
 |    | 
 |   PureVirtualMethodCollector Collector(Context, RD); | 
 |    | 
 |   for (PureVirtualMethodCollector::MethodList::const_iterator I =  | 
 |        Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) { | 
 |     const CXXMethodDecl *MD = *I; | 
 |      | 
 |     Diag(MD->getLocation(), diag::note_pure_virtual_function) <<  | 
 |       MD->getDeclName(); | 
 |   } | 
 |  | 
 |   if (!PureVirtualClassDiagSet) | 
 |     PureVirtualClassDiagSet.reset(new RecordDeclSetTy); | 
 |   PureVirtualClassDiagSet->insert(RD); | 
 |    | 
 |   return true; | 
 | } | 
 |  | 
 | namespace { | 
 |   class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser  | 
 |     : public DeclVisitor<AbstractClassUsageDiagnoser, bool> { | 
 |     Sema &SemaRef; | 
 |     CXXRecordDecl *AbstractClass; | 
 |    | 
 |     bool VisitDeclContext(const DeclContext *DC) { | 
 |       bool Invalid = false; | 
 |  | 
 |       for (CXXRecordDecl::decl_iterator I = DC->decls_begin(), | 
 |            E = DC->decls_end(); I != E; ++I) | 
 |         Invalid |= Visit(*I); | 
 |  | 
 |       return Invalid; | 
 |     } | 
 |        | 
 |   public: | 
 |     AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac) | 
 |       : SemaRef(SemaRef), AbstractClass(ac) { | 
 |         Visit(SemaRef.Context.getTranslationUnitDecl()); | 
 |     } | 
 |  | 
 |     bool VisitFunctionDecl(const FunctionDecl *FD) { | 
 |       if (FD->isThisDeclarationADefinition()) { | 
 |         // No need to do the check if we're in a definition, because it requires | 
 |         // that the return/param types are complete. | 
 |         // because that requires  | 
 |         return VisitDeclContext(FD); | 
 |       } | 
 |        | 
 |       // Check the return type. | 
 |       QualType RTy = FD->getType()->getAsFunctionType()->getResultType(); | 
 |       bool Invalid =  | 
 |         SemaRef.RequireNonAbstractType(FD->getLocation(), RTy, | 
 |                                        diag::err_abstract_type_in_decl, | 
 |                                        Sema::AbstractReturnType, | 
 |                                        AbstractClass); | 
 |  | 
 |       for (FunctionDecl::param_const_iterator I = FD->param_begin(),  | 
 |            E = FD->param_end(); I != E; ++I) { | 
 |         const ParmVarDecl *VD = *I; | 
 |         Invalid |=  | 
 |           SemaRef.RequireNonAbstractType(VD->getLocation(), | 
 |                                          VD->getOriginalType(),  | 
 |                                          diag::err_abstract_type_in_decl,  | 
 |                                          Sema::AbstractParamType, | 
 |                                          AbstractClass); | 
 |       } | 
 |  | 
 |       return Invalid; | 
 |     } | 
 |      | 
 |     bool VisitDecl(const Decl* D) { | 
 |       if (const DeclContext *DC = dyn_cast<DeclContext>(D)) | 
 |         return VisitDeclContext(DC); | 
 |        | 
 |       return false; | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, | 
 |                                              DeclTy *TagDecl, | 
 |                                              SourceLocation LBrac, | 
 |                                              SourceLocation RBrac) { | 
 |   TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl); | 
 |   ActOnFields(S, RLoc, TagDecl, | 
 |               (DeclTy**)FieldCollector->getCurFields(), | 
 |               FieldCollector->getCurNumFields(), LBrac, RBrac, 0); | 
 |  | 
 |   CXXRecordDecl *RD = cast<CXXRecordDecl>((Decl*)TagDecl); | 
 |   if (!RD->isAbstract()) { | 
 |     // Collect all the pure virtual methods and see if this is an abstract | 
 |     // class after all. | 
 |     PureVirtualMethodCollector Collector(Context, RD); | 
 |     if (!Collector.empty())  | 
 |       RD->setAbstract(true); | 
 |   } | 
 |    | 
 |   if (RD->isAbstract())  | 
 |     AbstractClassUsageDiagnoser(*this, RD); | 
 |      | 
 |   if (!Template) | 
 |     AddImplicitlyDeclaredMembersToClass(RD); | 
 | } | 
 |  | 
 | /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared | 
 | /// special functions, such as the default constructor, copy | 
 | /// constructor, or destructor, to the given C++ class (C++ | 
 | /// [special]p1).  This routine can only be executed just before the | 
 | /// definition of the class is complete. | 
 | void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { | 
 |   QualType ClassType = Context.getTypeDeclType(ClassDecl); | 
 |   ClassType = Context.getCanonicalType(ClassType); | 
 |  | 
 |   if (!ClassDecl->hasUserDeclaredConstructor()) { | 
 |     // C++ [class.ctor]p5: | 
 |     //   A default constructor for a class X is a constructor of class X | 
 |     //   that can be called without an argument. If there is no | 
 |     //   user-declared constructor for class X, a default constructor is | 
 |     //   implicitly declared. An implicitly-declared default constructor | 
 |     //   is an inline public member of its class. | 
 |     DeclarationName Name  | 
 |       = Context.DeclarationNames.getCXXConstructorName(ClassType); | 
 |     CXXConstructorDecl *DefaultCon =  | 
 |       CXXConstructorDecl::Create(Context, ClassDecl, | 
 |                                  ClassDecl->getLocation(), Name, | 
 |                                  Context.getFunctionType(Context.VoidTy, | 
 |                                                          0, 0, false, 0), | 
 |                                  /*isExplicit=*/false, | 
 |                                  /*isInline=*/true, | 
 |                                  /*isImplicitlyDeclared=*/true); | 
 |     DefaultCon->setAccess(AS_public); | 
 |     DefaultCon->setImplicit(); | 
 |     ClassDecl->addDecl(DefaultCon); | 
 |  | 
 |     // Notify the class that we've added a constructor. | 
 |     ClassDecl->addedConstructor(Context, DefaultCon); | 
 |   } | 
 |  | 
 |   if (!ClassDecl->hasUserDeclaredCopyConstructor()) { | 
 |     // C++ [class.copy]p4: | 
 |     //   If the class definition does not explicitly declare a copy | 
 |     //   constructor, one is declared implicitly. | 
 |  | 
 |     // C++ [class.copy]p5: | 
 |     //   The implicitly-declared copy constructor for a class X will | 
 |     //   have the form | 
 |     // | 
 |     //       X::X(const X&) | 
 |     // | 
 |     //   if | 
 |     bool HasConstCopyConstructor = true; | 
 |  | 
 |     //     -- each direct or virtual base class B of X has a copy | 
 |     //        constructor whose first parameter is of type const B& or | 
 |     //        const volatile B&, and | 
 |     for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); | 
 |          HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) { | 
 |       const CXXRecordDecl *BaseClassDecl | 
 |         = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl()); | 
 |       HasConstCopyConstructor  | 
 |         = BaseClassDecl->hasConstCopyConstructor(Context); | 
 |     } | 
 |  | 
 |     //     -- for all the nonstatic data members of X that are of a | 
 |     //        class type M (or array thereof), each such class type | 
 |     //        has a copy constructor whose first parameter is of type | 
 |     //        const M& or const volatile M&. | 
 |     for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(); | 
 |          HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) { | 
 |       QualType FieldType = (*Field)->getType(); | 
 |       if (const ArrayType *Array = Context.getAsArrayType(FieldType)) | 
 |         FieldType = Array->getElementType(); | 
 |       if (const RecordType *FieldClassType = FieldType->getAsRecordType()) { | 
 |         const CXXRecordDecl *FieldClassDecl  | 
 |           = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
 |         HasConstCopyConstructor  | 
 |           = FieldClassDecl->hasConstCopyConstructor(Context); | 
 |       } | 
 |     } | 
 |  | 
 |     //   Otherwise, the implicitly declared copy constructor will have | 
 |     //   the form | 
 |     // | 
 |     //       X::X(X&) | 
 |     QualType ArgType = ClassType; | 
 |     if (HasConstCopyConstructor) | 
 |       ArgType = ArgType.withConst(); | 
 |     ArgType = Context.getLValueReferenceType(ArgType); | 
 |  | 
 |     //   An implicitly-declared copy constructor is an inline public | 
 |     //   member of its class. | 
 |     DeclarationName Name  | 
 |       = Context.DeclarationNames.getCXXConstructorName(ClassType); | 
 |     CXXConstructorDecl *CopyConstructor | 
 |       = CXXConstructorDecl::Create(Context, ClassDecl, | 
 |                                    ClassDecl->getLocation(), Name, | 
 |                                    Context.getFunctionType(Context.VoidTy, | 
 |                                                            &ArgType, 1, | 
 |                                                            false, 0), | 
 |                                    /*isExplicit=*/false, | 
 |                                    /*isInline=*/true, | 
 |                                    /*isImplicitlyDeclared=*/true); | 
 |     CopyConstructor->setAccess(AS_public); | 
 |     CopyConstructor->setImplicit(); | 
 |  | 
 |     // Add the parameter to the constructor. | 
 |     ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, | 
 |                                                  ClassDecl->getLocation(), | 
 |                                                  /*IdentifierInfo=*/0, | 
 |                                                  ArgType, VarDecl::None, 0); | 
 |     CopyConstructor->setParams(Context, &FromParam, 1); | 
 |  | 
 |     ClassDecl->addedConstructor(Context, CopyConstructor); | 
 |     ClassDecl->addDecl(CopyConstructor); | 
 |   } | 
 |  | 
 |   if (!ClassDecl->hasUserDeclaredCopyAssignment()) { | 
 |     // Note: The following rules are largely analoguous to the copy | 
 |     // constructor rules. Note that virtual bases are not taken into account | 
 |     // for determining the argument type of the operator. Note also that | 
 |     // operators taking an object instead of a reference are allowed. | 
 |     // | 
 |     // C++ [class.copy]p10: | 
 |     //   If the class definition does not explicitly declare a copy | 
 |     //   assignment operator, one is declared implicitly. | 
 |     //   The implicitly-defined copy assignment operator for a class X | 
 |     //   will have the form | 
 |     // | 
 |     //       X& X::operator=(const X&) | 
 |     // | 
 |     //   if | 
 |     bool HasConstCopyAssignment = true; | 
 |  | 
 |     //       -- each direct base class B of X has a copy assignment operator | 
 |     //          whose parameter is of type const B&, const volatile B& or B, | 
 |     //          and | 
 |     for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); | 
 |          HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) { | 
 |       const CXXRecordDecl *BaseClassDecl | 
 |         = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl()); | 
 |       HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context); | 
 |     } | 
 |  | 
 |     //       -- for all the nonstatic data members of X that are of a class | 
 |     //          type M (or array thereof), each such class type has a copy | 
 |     //          assignment operator whose parameter is of type const M&, | 
 |     //          const volatile M& or M. | 
 |     for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(); | 
 |          HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) { | 
 |       QualType FieldType = (*Field)->getType(); | 
 |       if (const ArrayType *Array = Context.getAsArrayType(FieldType)) | 
 |         FieldType = Array->getElementType(); | 
 |       if (const RecordType *FieldClassType = FieldType->getAsRecordType()) { | 
 |         const CXXRecordDecl *FieldClassDecl | 
 |           = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
 |         HasConstCopyAssignment | 
 |           = FieldClassDecl->hasConstCopyAssignment(Context); | 
 |       } | 
 |     } | 
 |  | 
 |     //   Otherwise, the implicitly declared copy assignment operator will | 
 |     //   have the form | 
 |     // | 
 |     //       X& X::operator=(X&) | 
 |     QualType ArgType = ClassType; | 
 |     QualType RetType = Context.getLValueReferenceType(ArgType); | 
 |     if (HasConstCopyAssignment) | 
 |       ArgType = ArgType.withConst(); | 
 |     ArgType = Context.getLValueReferenceType(ArgType); | 
 |  | 
 |     //   An implicitly-declared copy assignment operator is an inline public | 
 |     //   member of its class. | 
 |     DeclarationName Name = | 
 |       Context.DeclarationNames.getCXXOperatorName(OO_Equal); | 
 |     CXXMethodDecl *CopyAssignment = | 
 |       CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name, | 
 |                             Context.getFunctionType(RetType, &ArgType, 1, | 
 |                                                     false, 0), | 
 |                             /*isStatic=*/false, /*isInline=*/true); | 
 |     CopyAssignment->setAccess(AS_public); | 
 |     CopyAssignment->setImplicit(); | 
 |  | 
 |     // Add the parameter to the operator. | 
 |     ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, | 
 |                                                  ClassDecl->getLocation(), | 
 |                                                  /*IdentifierInfo=*/0, | 
 |                                                  ArgType, VarDecl::None, 0); | 
 |     CopyAssignment->setParams(Context, &FromParam, 1); | 
 |  | 
 |     // Don't call addedAssignmentOperator. There is no way to distinguish an | 
 |     // implicit from an explicit assignment operator. | 
 |     ClassDecl->addDecl(CopyAssignment); | 
 |   } | 
 |  | 
 |   if (!ClassDecl->hasUserDeclaredDestructor()) { | 
 |     // C++ [class.dtor]p2: | 
 |     //   If a class has no user-declared destructor, a destructor is | 
 |     //   declared implicitly. An implicitly-declared destructor is an | 
 |     //   inline public member of its class. | 
 |     DeclarationName Name  | 
 |       = Context.DeclarationNames.getCXXDestructorName(ClassType); | 
 |     CXXDestructorDecl *Destructor  | 
 |       = CXXDestructorDecl::Create(Context, ClassDecl, | 
 |                                   ClassDecl->getLocation(), Name, | 
 |                                   Context.getFunctionType(Context.VoidTy, | 
 |                                                           0, 0, false, 0), | 
 |                                   /*isInline=*/true, | 
 |                                   /*isImplicitlyDeclared=*/true); | 
 |     Destructor->setAccess(AS_public); | 
 |     Destructor->setImplicit(); | 
 |     ClassDecl->addDecl(Destructor); | 
 |   } | 
 | } | 
 |  | 
 | /// ActOnStartDelayedCXXMethodDeclaration - We have completed | 
 | /// parsing a top-level (non-nested) C++ class, and we are now | 
 | /// parsing those parts of the given Method declaration that could | 
 | /// not be parsed earlier (C++ [class.mem]p2), such as default | 
 | /// arguments. This action should enter the scope of the given | 
 | /// Method declaration as if we had just parsed the qualified method | 
 | /// name. However, it should not bring the parameters into scope; | 
 | /// that will be performed by ActOnDelayedCXXMethodParameter. | 
 | void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) { | 
 |   CXXScopeSpec SS; | 
 |   FunctionDecl *Method = (FunctionDecl*)MethodD; | 
 |   QualType ClassTy  | 
 |     = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); | 
 |   SS.setScopeRep( | 
 |     NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr())); | 
 |   ActOnCXXEnterDeclaratorScope(S, SS); | 
 | } | 
 |  | 
 | /// ActOnDelayedCXXMethodParameter - We've already started a delayed | 
 | /// C++ method declaration. We're (re-)introducing the given | 
 | /// function parameter into scope for use in parsing later parts of | 
 | /// the method declaration. For example, we could see an | 
 | /// ActOnParamDefaultArgument event for this parameter. | 
 | void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *ParamD) { | 
 |   ParmVarDecl *Param = (ParmVarDecl*)ParamD; | 
 |  | 
 |   // If this parameter has an unparsed default argument, clear it out | 
 |   // to make way for the parsed default argument. | 
 |   if (Param->hasUnparsedDefaultArg()) | 
 |     Param->setDefaultArg(0); | 
 |  | 
 |   S->AddDecl(Param); | 
 |   if (Param->getDeclName()) | 
 |     IdResolver.AddDecl(Param); | 
 | } | 
 |  | 
 | /// ActOnFinishDelayedCXXMethodDeclaration - We have finished | 
 | /// processing the delayed method declaration for Method. The method | 
 | /// declaration is now considered finished. There may be a separate | 
 | /// ActOnStartOfFunctionDef action later (not necessarily | 
 | /// immediately!) for this method, if it was also defined inside the | 
 | /// class body. | 
 | void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) { | 
 |   FunctionDecl *Method = (FunctionDecl*)MethodD; | 
 |   CXXScopeSpec SS; | 
 |   QualType ClassTy  | 
 |     = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); | 
 |   SS.setScopeRep( | 
 |     NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr())); | 
 |   ActOnCXXExitDeclaratorScope(S, SS); | 
 |  | 
 |   // Now that we have our default arguments, check the constructor | 
 |   // again. It could produce additional diagnostics or affect whether | 
 |   // the class has implicitly-declared destructors, among other | 
 |   // things. | 
 |   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) { | 
 |     if (CheckConstructor(Constructor)) | 
 |       Constructor->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   // Check the default arguments, which we may have added. | 
 |   if (!Method->isInvalidDecl()) | 
 |     CheckCXXDefaultArguments(Method); | 
 | } | 
 |  | 
 | /// CheckConstructorDeclarator - Called by ActOnDeclarator to check | 
 | /// the well-formedness of the constructor declarator @p D with type @p | 
 | /// R. If there are any errors in the declarator, this routine will | 
 | /// emit diagnostics and return true. Otherwise, it will return | 
 | /// false. Either way, the type @p R will be updated to reflect a | 
 | /// well-formed type for the constructor. | 
 | bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R, | 
 |                                       FunctionDecl::StorageClass& SC) { | 
 |   bool isVirtual = D.getDeclSpec().isVirtualSpecified(); | 
 |   bool isInvalid = false; | 
 |  | 
 |   // C++ [class.ctor]p3: | 
 |   //   A constructor shall not be virtual (10.3) or static (9.4). A | 
 |   //   constructor can be invoked for a const, volatile or const | 
 |   //   volatile object. A constructor shall not be declared const, | 
 |   //   volatile, or const volatile (9.3.2). | 
 |   if (isVirtual) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) | 
 |       << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) | 
 |       << SourceRange(D.getIdentifierLoc()); | 
 |     isInvalid = true; | 
 |   } | 
 |   if (SC == FunctionDecl::Static) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) | 
 |       << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
 |       << SourceRange(D.getIdentifierLoc()); | 
 |     isInvalid = true; | 
 |     SC = FunctionDecl::None; | 
 |   } | 
 |   if (D.getDeclSpec().hasTypeSpecifier()) { | 
 |     // Constructors don't have return types, but the parser will | 
 |     // happily parse something like: | 
 |     // | 
 |     //   class X { | 
 |     //     float X(float); | 
 |     //   }; | 
 |     // | 
 |     // The return type will be eliminated later. | 
 |     Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) | 
 |       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | 
 |       << SourceRange(D.getIdentifierLoc()); | 
 |   }  | 
 |   if (R->getAsFunctionProtoType()->getTypeQuals() != 0) { | 
 |     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; | 
 |     if (FTI.TypeQuals & QualType::Const) | 
 |       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) | 
 |         << "const" << SourceRange(D.getIdentifierLoc()); | 
 |     if (FTI.TypeQuals & QualType::Volatile) | 
 |       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) | 
 |         << "volatile" << SourceRange(D.getIdentifierLoc()); | 
 |     if (FTI.TypeQuals & QualType::Restrict) | 
 |       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) | 
 |         << "restrict" << SourceRange(D.getIdentifierLoc()); | 
 |   } | 
 |        | 
 |   // Rebuild the function type "R" without any type qualifiers (in | 
 |   // case any of the errors above fired) and with "void" as the | 
 |   // return type, since constructors don't have return types. We | 
 |   // *always* have to do this, because GetTypeForDeclarator will | 
 |   // put in a result type of "int" when none was specified. | 
 |   const FunctionProtoType *Proto = R->getAsFunctionProtoType(); | 
 |   R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(), | 
 |                               Proto->getNumArgs(), | 
 |                               Proto->isVariadic(), | 
 |                               0); | 
 |  | 
 |   return isInvalid; | 
 | } | 
 |  | 
 | /// CheckConstructor - Checks a fully-formed constructor for | 
 | /// well-formedness, issuing any diagnostics required. Returns true if | 
 | /// the constructor declarator is invalid. | 
 | bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) { | 
 |   CXXRecordDecl *ClassDecl  | 
 |     = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); | 
 |   if (!ClassDecl) | 
 |     return true; | 
 |  | 
 |   bool Invalid = Constructor->isInvalidDecl(); | 
 |  | 
 |   // C++ [class.copy]p3: | 
 |   //   A declaration of a constructor for a class X is ill-formed if | 
 |   //   its first parameter is of type (optionally cv-qualified) X and | 
 |   //   either there are no other parameters or else all other | 
 |   //   parameters have default arguments. | 
 |   if (!Constructor->isInvalidDecl() && | 
 |       ((Constructor->getNumParams() == 1) ||  | 
 |        (Constructor->getNumParams() > 1 &&  | 
 |         Constructor->getParamDecl(1)->getDefaultArg() != 0))) { | 
 |     QualType ParamType = Constructor->getParamDecl(0)->getType(); | 
 |     QualType ClassTy = Context.getTagDeclType(ClassDecl); | 
 |     if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { | 
 |       Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg) | 
 |         << SourceRange(Constructor->getParamDecl(0)->getLocation()); | 
 |       Invalid = true; | 
 |     } | 
 |   } | 
 |    | 
 |   // Notify the class that we've added a constructor. | 
 |   ClassDecl->addedConstructor(Context, Constructor); | 
 |  | 
 |   return Invalid; | 
 | } | 
 |  | 
 | /// CheckDestructorDeclarator - Called by ActOnDeclarator to check | 
 | /// the well-formednes of the destructor declarator @p D with type @p | 
 | /// R. If there are any errors in the declarator, this routine will | 
 | /// emit diagnostics and return true. Otherwise, it will return | 
 | /// false. Either way, the type @p R will be updated to reflect a | 
 | /// well-formed type for the destructor. | 
 | bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R, | 
 |                                      FunctionDecl::StorageClass& SC) { | 
 |   bool isInvalid = false; | 
 |  | 
 |   // C++ [class.dtor]p1: | 
 |   //   [...] A typedef-name that names a class is a class-name | 
 |   //   (7.1.3); however, a typedef-name that names a class shall not | 
 |   //   be used as the identifier in the declarator for a destructor | 
 |   //   declaration. | 
 |   QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType()); | 
 |   if (DeclaratorType->getAsTypedefType()) { | 
 |     Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name) | 
 |       << DeclaratorType; | 
 |     isInvalid = true; | 
 |   } | 
 |  | 
 |   // C++ [class.dtor]p2: | 
 |   //   A destructor is used to destroy objects of its class type. A | 
 |   //   destructor takes no parameters, and no return type can be | 
 |   //   specified for it (not even void). The address of a destructor | 
 |   //   shall not be taken. A destructor shall not be static. A | 
 |   //   destructor can be invoked for a const, volatile or const | 
 |   //   volatile object. A destructor shall not be declared const, | 
 |   //   volatile or const volatile (9.3.2). | 
 |   if (SC == FunctionDecl::Static) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) | 
 |       << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
 |       << SourceRange(D.getIdentifierLoc()); | 
 |     isInvalid = true; | 
 |     SC = FunctionDecl::None; | 
 |   } | 
 |   if (D.getDeclSpec().hasTypeSpecifier()) { | 
 |     // Destructors don't have return types, but the parser will | 
 |     // happily parse something like: | 
 |     // | 
 |     //   class X { | 
 |     //     float ~X(); | 
 |     //   }; | 
 |     // | 
 |     // The return type will be eliminated later. | 
 |     Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) | 
 |       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | 
 |       << SourceRange(D.getIdentifierLoc()); | 
 |   } | 
 |   if (R->getAsFunctionProtoType()->getTypeQuals() != 0) { | 
 |     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; | 
 |     if (FTI.TypeQuals & QualType::Const) | 
 |       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) | 
 |         << "const" << SourceRange(D.getIdentifierLoc()); | 
 |     if (FTI.TypeQuals & QualType::Volatile) | 
 |       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) | 
 |         << "volatile" << SourceRange(D.getIdentifierLoc()); | 
 |     if (FTI.TypeQuals & QualType::Restrict) | 
 |       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) | 
 |         << "restrict" << SourceRange(D.getIdentifierLoc()); | 
 |   } | 
 |  | 
 |   // Make sure we don't have any parameters. | 
 |   if (R->getAsFunctionProtoType()->getNumArgs() > 0) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); | 
 |  | 
 |     // Delete the parameters. | 
 |     D.getTypeObject(0).Fun.freeArgs(); | 
 |   } | 
 |  | 
 |   // Make sure the destructor isn't variadic.   | 
 |   if (R->getAsFunctionProtoType()->isVariadic()) | 
 |     Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); | 
 |  | 
 |   // Rebuild the function type "R" without any type qualifiers or | 
 |   // parameters (in case any of the errors above fired) and with | 
 |   // "void" as the return type, since destructors don't have return | 
 |   // types. We *always* have to do this, because GetTypeForDeclarator | 
 |   // will put in a result type of "int" when none was specified. | 
 |   R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0); | 
 |  | 
 |   return isInvalid; | 
 | } | 
 |  | 
 | /// CheckConversionDeclarator - Called by ActOnDeclarator to check the | 
 | /// well-formednes of the conversion function declarator @p D with | 
 | /// type @p R. If there are any errors in the declarator, this routine | 
 | /// will emit diagnostics and return true. Otherwise, it will return | 
 | /// false. Either way, the type @p R will be updated to reflect a | 
 | /// well-formed type for the conversion operator. | 
 | bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R, | 
 |                                      FunctionDecl::StorageClass& SC) { | 
 |   bool isInvalid = false; | 
 |  | 
 |   // C++ [class.conv.fct]p1: | 
 |   //   Neither parameter types nor return type can be specified. The | 
 |   //   type of a conversion function (8.3.5) is “function taking no | 
 |   //   parameter returning conversion-type-id.”  | 
 |   if (SC == FunctionDecl::Static) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) | 
 |       << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
 |       << SourceRange(D.getIdentifierLoc()); | 
 |     isInvalid = true; | 
 |     SC = FunctionDecl::None; | 
 |   } | 
 |   if (D.getDeclSpec().hasTypeSpecifier()) { | 
 |     // Conversion functions don't have return types, but the parser will | 
 |     // happily parse something like: | 
 |     // | 
 |     //   class X { | 
 |     //     float operator bool(); | 
 |     //   }; | 
 |     // | 
 |     // The return type will be changed later anyway. | 
 |     Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) | 
 |       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | 
 |       << SourceRange(D.getIdentifierLoc()); | 
 |   } | 
 |  | 
 |   // Make sure we don't have any parameters. | 
 |   if (R->getAsFunctionProtoType()->getNumArgs() > 0) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); | 
 |  | 
 |     // Delete the parameters. | 
 |     D.getTypeObject(0).Fun.freeArgs(); | 
 |   } | 
 |  | 
 |   // Make sure the conversion function isn't variadic.   | 
 |   if (R->getAsFunctionProtoType()->isVariadic()) | 
 |     Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); | 
 |  | 
 |   // C++ [class.conv.fct]p4: | 
 |   //   The conversion-type-id shall not represent a function type nor | 
 |   //   an array type. | 
 |   QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType()); | 
 |   if (ConvType->isArrayType()) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); | 
 |     ConvType = Context.getPointerType(ConvType); | 
 |   } else if (ConvType->isFunctionType()) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); | 
 |     ConvType = Context.getPointerType(ConvType); | 
 |   } | 
 |  | 
 |   // Rebuild the function type "R" without any parameters (in case any | 
 |   // of the errors above fired) and with the conversion type as the | 
 |   // return type.  | 
 |   R = Context.getFunctionType(ConvType, 0, 0, false,  | 
 |                               R->getAsFunctionProtoType()->getTypeQuals()); | 
 |  | 
 |   // C++0x explicit conversion operators. | 
 |   if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x) | 
 |     Diag(D.getDeclSpec().getExplicitSpecLoc(),  | 
 |          diag::warn_explicit_conversion_functions) | 
 |       << SourceRange(D.getDeclSpec().getExplicitSpecLoc()); | 
 |  | 
 |   return isInvalid; | 
 | } | 
 |  | 
 | /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete | 
 | /// the declaration of the given C++ conversion function. This routine | 
 | /// is responsible for recording the conversion function in the C++ | 
 | /// class, if possible. | 
 | Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { | 
 |   assert(Conversion && "Expected to receive a conversion function declaration"); | 
 |  | 
 |   // Set the lexical context of this conversion function | 
 |   Conversion->setLexicalDeclContext(CurContext); | 
 |  | 
 |   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); | 
 |  | 
 |   // Make sure we aren't redeclaring the conversion function. | 
 |   QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); | 
 |  | 
 |   // C++ [class.conv.fct]p1: | 
 |   //   [...] A conversion function is never used to convert a | 
 |   //   (possibly cv-qualified) object to the (possibly cv-qualified) | 
 |   //   same object type (or a reference to it), to a (possibly | 
 |   //   cv-qualified) base class of that type (or a reference to it), | 
 |   //   or to (possibly cv-qualified) void. | 
 |   // FIXME: Suppress this warning if the conversion function ends up | 
 |   // being a virtual function that overrides a virtual function in a  | 
 |   // base class. | 
 |   QualType ClassType  | 
 |     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | 
 |   if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType()) | 
 |     ConvType = ConvTypeRef->getPointeeType(); | 
 |   if (ConvType->isRecordType()) { | 
 |     ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); | 
 |     if (ConvType == ClassType) | 
 |       Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) | 
 |         << ClassType; | 
 |     else if (IsDerivedFrom(ClassType, ConvType)) | 
 |       Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) | 
 |         <<  ClassType << ConvType; | 
 |   } else if (ConvType->isVoidType()) { | 
 |     Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) | 
 |       << ClassType << ConvType; | 
 |   } | 
 |  | 
 |   if (Conversion->getPreviousDeclaration()) { | 
 |     OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions(); | 
 |     for (OverloadedFunctionDecl::function_iterator  | 
 |            Conv = Conversions->function_begin(), | 
 |            ConvEnd = Conversions->function_end(); | 
 |          Conv != ConvEnd; ++Conv) { | 
 |       if (*Conv == Conversion->getPreviousDeclaration()) { | 
 |         *Conv = Conversion; | 
 |         return (DeclTy *)Conversion; | 
 |       } | 
 |     } | 
 |     assert(Conversion->isInvalidDecl() && "Conversion should not get here."); | 
 |   } else  | 
 |     ClassDecl->addConversionFunction(Context, Conversion); | 
 |  | 
 |   return (DeclTy *)Conversion; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Namespace Handling | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// ActOnStartNamespaceDef - This is called at the start of a namespace | 
 | /// definition. | 
 | Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, | 
 |                                            SourceLocation IdentLoc, | 
 |                                            IdentifierInfo *II, | 
 |                                            SourceLocation LBrace) { | 
 |   NamespaceDecl *Namespc = | 
 |       NamespaceDecl::Create(Context, CurContext, IdentLoc, II); | 
 |   Namespc->setLBracLoc(LBrace); | 
 |  | 
 |   Scope *DeclRegionScope = NamespcScope->getParent(); | 
 |  | 
 |   if (II) { | 
 |     // C++ [namespace.def]p2: | 
 |     // The identifier in an original-namespace-definition shall not have been | 
 |     // previously defined in the declarative region in which the | 
 |     // original-namespace-definition appears. The identifier in an | 
 |     // original-namespace-definition is the name of the namespace. Subsequently | 
 |     // in that declarative region, it is treated as an original-namespace-name. | 
 |  | 
 |     NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName, | 
 |                                      true); | 
 |      | 
 |     if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) { | 
 |       // This is an extended namespace definition. | 
 |       // Attach this namespace decl to the chain of extended namespace | 
 |       // definitions. | 
 |       OrigNS->setNextNamespace(Namespc); | 
 |       Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace()); | 
 |  | 
 |       // Remove the previous declaration from the scope.       | 
 |       if (DeclRegionScope->isDeclScope(OrigNS)) { | 
 |         IdResolver.RemoveDecl(OrigNS); | 
 |         DeclRegionScope->RemoveDecl(OrigNS); | 
 |       } | 
 |     } else if (PrevDecl) { | 
 |       // This is an invalid name redefinition. | 
 |       Diag(Namespc->getLocation(), diag::err_redefinition_different_kind) | 
 |        << Namespc->getDeclName(); | 
 |       Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
 |       Namespc->setInvalidDecl(); | 
 |       // Continue on to push Namespc as current DeclContext and return it. | 
 |     }  | 
 |  | 
 |     PushOnScopeChains(Namespc, DeclRegionScope); | 
 |   } else { | 
 |     // FIXME: Handle anonymous namespaces | 
 |   } | 
 |  | 
 |   // Although we could have an invalid decl (i.e. the namespace name is a | 
 |   // redefinition), push it as current DeclContext and try to continue parsing. | 
 |   // FIXME: We should be able to push Namespc here, so that the | 
 |   // each DeclContext for the namespace has the declarations | 
 |   // that showed up in that particular namespace definition. | 
 |   PushDeclContext(NamespcScope, Namespc); | 
 |   return Namespc; | 
 | } | 
 |  | 
 | /// ActOnFinishNamespaceDef - This callback is called after a namespace is | 
 | /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. | 
 | void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) { | 
 |   Decl *Dcl = static_cast<Decl *>(D); | 
 |   NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); | 
 |   assert(Namespc && "Invalid parameter, expected NamespaceDecl"); | 
 |   Namespc->setRBracLoc(RBrace); | 
 |   PopDeclContext(); | 
 | } | 
 |  | 
 | Sema::DeclTy *Sema::ActOnUsingDirective(Scope *S, | 
 |                                         SourceLocation UsingLoc, | 
 |                                         SourceLocation NamespcLoc, | 
 |                                         const CXXScopeSpec &SS, | 
 |                                         SourceLocation IdentLoc, | 
 |                                         IdentifierInfo *NamespcName, | 
 |                                         AttributeList *AttrList) { | 
 |   assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); | 
 |   assert(NamespcName && "Invalid NamespcName."); | 
 |   assert(IdentLoc.isValid() && "Invalid NamespceName location."); | 
 |   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); | 
 |  | 
 |   UsingDirectiveDecl *UDir = 0; | 
 |  | 
 |   // Lookup namespace name. | 
 |   LookupResult R = LookupParsedName(S, &SS, NamespcName, | 
 |                                     LookupNamespaceName, false); | 
 |   if (R.isAmbiguous()) { | 
 |     DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc); | 
 |     return 0; | 
 |   } | 
 |   if (NamedDecl *NS = R) { | 
 |     assert(isa<NamespaceDecl>(NS) && "expected namespace decl"); | 
 |     // C++ [namespace.udir]p1: | 
 |     //   A using-directive specifies that the names in the nominated | 
 |     //   namespace can be used in the scope in which the | 
 |     //   using-directive appears after the using-directive. During | 
 |     //   unqualified name lookup (3.4.1), the names appear as if they | 
 |     //   were declared in the nearest enclosing namespace which | 
 |     //   contains both the using-directive and the nominated | 
 |     //   namespace. [Note: in this context, “contains” means “contains | 
 |     //   directly or indirectly”. ] | 
 |  | 
 |     // Find enclosing context containing both using-directive and | 
 |     // nominated namespace. | 
 |     DeclContext *CommonAncestor = cast<DeclContext>(NS); | 
 |     while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) | 
 |       CommonAncestor = CommonAncestor->getParent(); | 
 |  | 
 |     UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, | 
 |                                       NamespcLoc, IdentLoc, | 
 |                                       cast<NamespaceDecl>(NS), | 
 |                                       CommonAncestor); | 
 |     PushUsingDirective(S, UDir); | 
 |   } else { | 
 |     Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); | 
 |   } | 
 |  | 
 |   // FIXME: We ignore attributes for now. | 
 |   delete AttrList; | 
 |   return UDir; | 
 | } | 
 |  | 
 | void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { | 
 |   // If scope has associated entity, then using directive is at namespace | 
 |   // or translation unit scope. We add UsingDirectiveDecls, into | 
 |   // it's lookup structure. | 
 |   if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) | 
 |     Ctx->addDecl(UDir); | 
 |   else | 
 |     // Otherwise it is block-sope. using-directives will affect lookup | 
 |     // only to the end of scope. | 
 |     S->PushUsingDirective(UDir); | 
 | } | 
 |  | 
 | /// AddCXXDirectInitializerToDecl - This action is called immediately after  | 
 | /// ActOnDeclarator, when a C++ direct initializer is present. | 
 | /// e.g: "int x(1);" | 
 | void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc, | 
 |                                          MultiExprArg Exprs, | 
 |                                          SourceLocation *CommaLocs, | 
 |                                          SourceLocation RParenLoc) { | 
 |   unsigned NumExprs = Exprs.size(); | 
 |   assert(NumExprs != 0 && Exprs.get() && "missing expressions"); | 
 |   Decl *RealDecl = static_cast<Decl *>(Dcl); | 
 |  | 
 |   // If there is no declaration, there was an error parsing it.  Just ignore | 
 |   // the initializer. | 
 |   if (RealDecl == 0) { | 
 |     return; | 
 |   } | 
 |    | 
 |   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); | 
 |   if (!VDecl) { | 
 |     Diag(RealDecl->getLocation(), diag::err_illegal_initializer); | 
 |     RealDecl->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // FIXME: Need to handle dependent types and expressions here. | 
 |  | 
 |   // We will treat direct-initialization as a copy-initialization: | 
 |   //    int x(1);  -as-> int x = 1; | 
 |   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); | 
 |   // | 
 |   // Clients that want to distinguish between the two forms, can check for | 
 |   // direct initializer using VarDecl::hasCXXDirectInitializer(). | 
 |   // A major benefit is that clients that don't particularly care about which | 
 |   // exactly form was it (like the CodeGen) can handle both cases without | 
 |   // special case code. | 
 |  | 
 |   // C++ 8.5p11: | 
 |   // The form of initialization (using parentheses or '=') is generally | 
 |   // insignificant, but does matter when the entity being initialized has a | 
 |   // class type. | 
 |   QualType DeclInitType = VDecl->getType(); | 
 |   if (const ArrayType *Array = Context.getAsArrayType(DeclInitType)) | 
 |     DeclInitType = Array->getElementType(); | 
 |  | 
 |   // FIXME: This isn't the right place to complete the type. | 
 |   if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(), | 
 |                           diag::err_typecheck_decl_incomplete_type)) { | 
 |     VDecl->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (VDecl->getType()->isRecordType()) { | 
 |     CXXConstructorDecl *Constructor | 
 |       = PerformInitializationByConstructor(DeclInitType, | 
 |                                            (Expr **)Exprs.get(), NumExprs, | 
 |                                            VDecl->getLocation(), | 
 |                                            SourceRange(VDecl->getLocation(), | 
 |                                                        RParenLoc), | 
 |                                            VDecl->getDeclName(), | 
 |                                            IK_Direct); | 
 |     if (!Constructor) | 
 |       RealDecl->setInvalidDecl(); | 
 |     else | 
 |       Exprs.release(); | 
 |  | 
 |     // Let clients know that initialization was done with a direct | 
 |     // initializer. | 
 |     VDecl->setCXXDirectInitializer(true); | 
 |  | 
 |     // FIXME: Add ExprTys and Constructor to the RealDecl as part of | 
 |     // the initializer. | 
 |     return; | 
 |   } | 
 |  | 
 |   if (NumExprs > 1) { | 
 |     Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg) | 
 |       << SourceRange(VDecl->getLocation(), RParenLoc); | 
 |     RealDecl->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Let clients know that initialization was done with a direct initializer. | 
 |   VDecl->setCXXDirectInitializer(true); | 
 |  | 
 |   assert(NumExprs == 1 && "Expected 1 expression"); | 
 |   // Set the init expression, handles conversions. | 
 |   AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]), | 
 |                        /*DirectInit=*/true); | 
 | } | 
 |  | 
 | /// PerformInitializationByConstructor - Perform initialization by | 
 | /// constructor (C++ [dcl.init]p14), which may occur as part of | 
 | /// direct-initialization or copy-initialization. We are initializing | 
 | /// an object of type @p ClassType with the given arguments @p | 
 | /// Args. @p Loc is the location in the source code where the | 
 | /// initializer occurs (e.g., a declaration, member initializer, | 
 | /// functional cast, etc.) while @p Range covers the whole | 
 | /// initialization. @p InitEntity is the entity being initialized, | 
 | /// which may by the name of a declaration or a type. @p Kind is the | 
 | /// kind of initialization we're performing, which affects whether | 
 | /// explicit constructors will be considered. When successful, returns | 
 | /// the constructor that will be used to perform the initialization; | 
 | /// when the initialization fails, emits a diagnostic and returns | 
 | /// null. | 
 | CXXConstructorDecl * | 
 | Sema::PerformInitializationByConstructor(QualType ClassType, | 
 |                                          Expr **Args, unsigned NumArgs, | 
 |                                          SourceLocation Loc, SourceRange Range, | 
 |                                          DeclarationName InitEntity, | 
 |                                          InitializationKind Kind) { | 
 |   const RecordType *ClassRec = ClassType->getAsRecordType(); | 
 |   assert(ClassRec && "Can only initialize a class type here"); | 
 |  | 
 |   // C++ [dcl.init]p14:  | 
 |   // | 
 |   //   If the initialization is direct-initialization, or if it is | 
 |   //   copy-initialization where the cv-unqualified version of the | 
 |   //   source type is the same class as, or a derived class of, the | 
 |   //   class of the destination, constructors are considered. The | 
 |   //   applicable constructors are enumerated (13.3.1.3), and the | 
 |   //   best one is chosen through overload resolution (13.3). The | 
 |   //   constructor so selected is called to initialize the object, | 
 |   //   with the initializer expression(s) as its argument(s). If no | 
 |   //   constructor applies, or the overload resolution is ambiguous, | 
 |   //   the initialization is ill-formed. | 
 |   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl()); | 
 |   OverloadCandidateSet CandidateSet; | 
 |  | 
 |   // Add constructors to the overload set. | 
 |   DeclarationName ConstructorName  | 
 |     = Context.DeclarationNames.getCXXConstructorName( | 
 |                        Context.getCanonicalType(ClassType.getUnqualifiedType())); | 
 |   DeclContext::lookup_const_iterator Con, ConEnd; | 
 |   for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName); | 
 |        Con != ConEnd; ++Con) { | 
 |     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); | 
 |     if ((Kind == IK_Direct) || | 
 |         (Kind == IK_Copy && Constructor->isConvertingConstructor()) || | 
 |         (Kind == IK_Default && Constructor->isDefaultConstructor())) | 
 |       AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet); | 
 |   } | 
 |  | 
 |   // FIXME: When we decide not to synthesize the implicitly-declared | 
 |   // constructors, we'll need to make them appear here. | 
 |  | 
 |   OverloadCandidateSet::iterator Best; | 
 |   switch (BestViableFunction(CandidateSet, Best)) { | 
 |   case OR_Success: | 
 |     // We found a constructor. Return it. | 
 |     return cast<CXXConstructorDecl>(Best->Function); | 
 |      | 
 |   case OR_No_Viable_Function: | 
 |     if (InitEntity) | 
 |       Diag(Loc, diag::err_ovl_no_viable_function_in_init) | 
 |         << InitEntity << Range; | 
 |     else | 
 |       Diag(Loc, diag::err_ovl_no_viable_function_in_init) | 
 |         << ClassType << Range; | 
 |     PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); | 
 |     return 0; | 
 |      | 
 |   case OR_Ambiguous: | 
 |     if (InitEntity) | 
 |       Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range; | 
 |     else | 
 |       Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range; | 
 |     PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); | 
 |     return 0; | 
 |  | 
 |   case OR_Deleted: | 
 |     if (InitEntity) | 
 |       Diag(Loc, diag::err_ovl_deleted_init) | 
 |         << Best->Function->isDeleted() | 
 |         << InitEntity << Range; | 
 |     else | 
 |       Diag(Loc, diag::err_ovl_deleted_init) | 
 |         << Best->Function->isDeleted() | 
 |         << InitEntity << Range; | 
 |     PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); | 
 |     return 0; | 
 |   } | 
 |    | 
 |   return 0; | 
 | } | 
 |  | 
 | /// CompareReferenceRelationship - Compare the two types T1 and T2 to | 
 | /// determine whether they are reference-related, | 
 | /// reference-compatible, reference-compatible with added | 
 | /// qualification, or incompatible, for use in C++ initialization by | 
 | /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference | 
 | /// type, and the first type (T1) is the pointee type of the reference | 
 | /// type being initialized. | 
 | Sema::ReferenceCompareResult  | 
 | Sema::CompareReferenceRelationship(QualType T1, QualType T2,  | 
 |                                    bool& DerivedToBase) { | 
 |   assert(!T1->isReferenceType() && | 
 |     "T1 must be the pointee type of the reference type"); | 
 |   assert(!T2->isReferenceType() && "T2 cannot be a reference type"); | 
 |  | 
 |   T1 = Context.getCanonicalType(T1); | 
 |   T2 = Context.getCanonicalType(T2); | 
 |   QualType UnqualT1 = T1.getUnqualifiedType(); | 
 |   QualType UnqualT2 = T2.getUnqualifiedType(); | 
 |  | 
 |   // C++ [dcl.init.ref]p4: | 
 |   //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is | 
 |   //   reference-related to “cv2 T2” if T1 is the same type as T2, or  | 
 |   //   T1 is a base class of T2. | 
 |   if (UnqualT1 == UnqualT2) | 
 |     DerivedToBase = false; | 
 |   else if (IsDerivedFrom(UnqualT2, UnqualT1)) | 
 |     DerivedToBase = true; | 
 |   else | 
 |     return Ref_Incompatible; | 
 |  | 
 |   // At this point, we know that T1 and T2 are reference-related (at | 
 |   // least). | 
 |  | 
 |   // C++ [dcl.init.ref]p4: | 
 |   //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is | 
 |   //   reference-related to T2 and cv1 is the same cv-qualification | 
 |   //   as, or greater cv-qualification than, cv2. For purposes of | 
 |   //   overload resolution, cases for which cv1 is greater | 
 |   //   cv-qualification than cv2 are identified as | 
 |   //   reference-compatible with added qualification (see 13.3.3.2). | 
 |   if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) | 
 |     return Ref_Compatible; | 
 |   else if (T1.isMoreQualifiedThan(T2)) | 
 |     return Ref_Compatible_With_Added_Qualification; | 
 |   else | 
 |     return Ref_Related; | 
 | } | 
 |  | 
 | /// CheckReferenceInit - Check the initialization of a reference | 
 | /// variable with the given initializer (C++ [dcl.init.ref]). Init is | 
 | /// the initializer (either a simple initializer or an initializer | 
 | /// list), and DeclType is the type of the declaration. When ICS is | 
 | /// non-null, this routine will compute the implicit conversion | 
 | /// sequence according to C++ [over.ics.ref] and will not produce any | 
 | /// diagnostics; when ICS is null, it will emit diagnostics when any | 
 | /// errors are found. Either way, a return value of true indicates | 
 | /// that there was a failure, a return value of false indicates that | 
 | /// the reference initialization succeeded. | 
 | /// | 
 | /// When @p SuppressUserConversions, user-defined conversions are | 
 | /// suppressed. | 
 | /// When @p AllowExplicit, we also permit explicit user-defined | 
 | /// conversion functions. | 
 | bool  | 
 | Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,  | 
 |                          ImplicitConversionSequence *ICS, | 
 |                          bool SuppressUserConversions, | 
 |                          bool AllowExplicit) { | 
 |   assert(DeclType->isReferenceType() && "Reference init needs a reference"); | 
 |  | 
 |   QualType T1 = DeclType->getAsReferenceType()->getPointeeType(); | 
 |   QualType T2 = Init->getType(); | 
 |  | 
 |   // If the initializer is the address of an overloaded function, try | 
 |   // to resolve the overloaded function. If all goes well, T2 is the | 
 |   // type of the resulting function. | 
 |   if (Context.getCanonicalType(T2) == Context.OverloadTy) { | 
 |     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,  | 
 |                                                           ICS != 0); | 
 |     if (Fn) { | 
 |       // Since we're performing this reference-initialization for | 
 |       // real, update the initializer with the resulting function. | 
 |       if (!ICS) { | 
 |         if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin())) | 
 |           return true; | 
 |  | 
 |         FixOverloadedFunctionReference(Init, Fn); | 
 |       } | 
 |  | 
 |       T2 = Fn->getType(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Compute some basic properties of the types and the initializer. | 
 |   bool isRValRef = DeclType->isRValueReferenceType(); | 
 |   bool DerivedToBase = false; | 
 |   Expr::isLvalueResult InitLvalue = Init->isLvalue(Context); | 
 |   ReferenceCompareResult RefRelationship  | 
 |     = CompareReferenceRelationship(T1, T2, DerivedToBase); | 
 |  | 
 |   // Most paths end in a failed conversion. | 
 |   if (ICS) | 
 |     ICS->ConversionKind = ImplicitConversionSequence::BadConversion; | 
 |  | 
 |   // C++ [dcl.init.ref]p5: | 
 |   //   A reference to type “cv1 T1” is initialized by an expression | 
 |   //   of type “cv2 T2” as follows: | 
 |  | 
 |   //     -- If the initializer expression | 
 |  | 
 |   bool BindsDirectly = false; | 
 |   //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is | 
 |   //          reference-compatible with “cv2 T2,” or | 
 |   // | 
 |   // Note that the bit-field check is skipped if we are just computing | 
 |   // the implicit conversion sequence (C++ [over.best.ics]p2). | 
 |   if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) && | 
 |       RefRelationship >= Ref_Compatible_With_Added_Qualification) { | 
 |     BindsDirectly = true; | 
 |  | 
 |     // Rvalue references cannot bind to lvalues (N2812). | 
 |     if (isRValRef) { | 
 |       if (!ICS) | 
 |         Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref) | 
 |           << Init->getSourceRange(); | 
 |       return true; | 
 |     } | 
 |  | 
 |     if (ICS) { | 
 |       // C++ [over.ics.ref]p1: | 
 |       //   When a parameter of reference type binds directly (8.5.3) | 
 |       //   to an argument expression, the implicit conversion sequence | 
 |       //   is the identity conversion, unless the argument expression | 
 |       //   has a type that is a derived class of the parameter type, | 
 |       //   in which case the implicit conversion sequence is a | 
 |       //   derived-to-base Conversion (13.3.3.1). | 
 |       ICS->ConversionKind = ImplicitConversionSequence::StandardConversion; | 
 |       ICS->Standard.First = ICK_Identity; | 
 |       ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; | 
 |       ICS->Standard.Third = ICK_Identity; | 
 |       ICS->Standard.FromTypePtr = T2.getAsOpaquePtr(); | 
 |       ICS->Standard.ToTypePtr = T1.getAsOpaquePtr(); | 
 |       ICS->Standard.ReferenceBinding = true; | 
 |       ICS->Standard.DirectBinding = true; | 
 |  | 
 |       // Nothing more to do: the inaccessibility/ambiguity check for | 
 |       // derived-to-base conversions is suppressed when we're | 
 |       // computing the implicit conversion sequence (C++ | 
 |       // [over.best.ics]p2). | 
 |       return false; | 
 |     } else { | 
 |       // Perform the conversion. | 
 |       // FIXME: Binding to a subobject of the lvalue is going to require | 
 |       // more AST annotation than this. | 
 |       ImpCastExprToType(Init, T1, /*isLvalue=*/true);     | 
 |     } | 
 |   } | 
 |  | 
 |   //       -- has a class type (i.e., T2 is a class type) and can be | 
 |   //          implicitly converted to an lvalue of type “cv3 T3,” | 
 |   //          where “cv1 T1” is reference-compatible with “cv3 T3” | 
 |   //          92) (this conversion is selected by enumerating the | 
 |   //          applicable conversion functions (13.3.1.6) and choosing | 
 |   //          the best one through overload resolution (13.3)), | 
 |   if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) { | 
 |     // FIXME: Look for conversions in base classes! | 
 |     CXXRecordDecl *T2RecordDecl  | 
 |       = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl()); | 
 |  | 
 |     OverloadCandidateSet CandidateSet; | 
 |     OverloadedFunctionDecl *Conversions  | 
 |       = T2RecordDecl->getConversionFunctions(); | 
 |     for (OverloadedFunctionDecl::function_iterator Func  | 
 |            = Conversions->function_begin(); | 
 |          Func != Conversions->function_end(); ++Func) { | 
 |       CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func); | 
 |  | 
 |       // If the conversion function doesn't return a reference type, | 
 |       // it can't be considered for this conversion. | 
 |       if (Conv->getConversionType()->isLValueReferenceType() && | 
 |           (AllowExplicit || !Conv->isExplicit())) | 
 |         AddConversionCandidate(Conv, Init, DeclType, CandidateSet); | 
 |     } | 
 |  | 
 |     OverloadCandidateSet::iterator Best; | 
 |     switch (BestViableFunction(CandidateSet, Best)) { | 
 |     case OR_Success: | 
 |       // This is a direct binding. | 
 |       BindsDirectly = true; | 
 |  | 
 |       if (ICS) { | 
 |         // C++ [over.ics.ref]p1: | 
 |         // | 
 |         //   [...] If the parameter binds directly to the result of | 
 |         //   applying a conversion function to the argument | 
 |         //   expression, the implicit conversion sequence is a | 
 |         //   user-defined conversion sequence (13.3.3.1.2), with the | 
 |         //   second standard conversion sequence either an identity | 
 |         //   conversion or, if the conversion function returns an | 
 |         //   entity of a type that is a derived class of the parameter | 
 |         //   type, a derived-to-base Conversion. | 
 |         ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion; | 
 |         ICS->UserDefined.Before = Best->Conversions[0].Standard; | 
 |         ICS->UserDefined.After = Best->FinalConversion; | 
 |         ICS->UserDefined.ConversionFunction = Best->Function; | 
 |         assert(ICS->UserDefined.After.ReferenceBinding && | 
 |                ICS->UserDefined.After.DirectBinding && | 
 |                "Expected a direct reference binding!"); | 
 |         return false; | 
 |       } else { | 
 |         // Perform the conversion. | 
 |         // FIXME: Binding to a subobject of the lvalue is going to require | 
 |         // more AST annotation than this. | 
 |         ImpCastExprToType(Init, T1, /*isLvalue=*/true); | 
 |       } | 
 |       break; | 
 |  | 
 |     case OR_Ambiguous: | 
 |       assert(false && "Ambiguous reference binding conversions not implemented."); | 
 |       return true; | 
 |        | 
 |     case OR_No_Viable_Function: | 
 |     case OR_Deleted: | 
 |       // There was no suitable conversion, or we found a deleted | 
 |       // conversion; continue with other checks. | 
 |       break; | 
 |     } | 
 |   } | 
 |        | 
 |   if (BindsDirectly) { | 
 |     // C++ [dcl.init.ref]p4: | 
 |     //   [...] In all cases where the reference-related or | 
 |     //   reference-compatible relationship of two types is used to | 
 |     //   establish the validity of a reference binding, and T1 is a | 
 |     //   base class of T2, a program that necessitates such a binding | 
 |     //   is ill-formed if T1 is an inaccessible (clause 11) or | 
 |     //   ambiguous (10.2) base class of T2. | 
 |     // | 
 |     // Note that we only check this condition when we're allowed to | 
 |     // complain about errors, because we should not be checking for | 
 |     // ambiguity (or inaccessibility) unless the reference binding | 
 |     // actually happens. | 
 |     if (DerivedToBase)  | 
 |       return CheckDerivedToBaseConversion(T2, T1,  | 
 |                                           Init->getSourceRange().getBegin(), | 
 |                                           Init->getSourceRange()); | 
 |     else | 
 |       return false; | 
 |   } | 
 |  | 
 |   //     -- Otherwise, the reference shall be to a non-volatile const | 
 |   //        type (i.e., cv1 shall be const), or shall be an rvalue reference. | 
 |   if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) { | 
 |     if (!ICS) | 
 |       Diag(Init->getSourceRange().getBegin(), | 
 |            diag::err_not_reference_to_const_init) | 
 |         << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value") | 
 |         << T2 << Init->getSourceRange(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   //       -- If the initializer expression is an rvalue, with T2 a | 
 |   //          class type, and “cv1 T1” is reference-compatible with | 
 |   //          “cv2 T2,” the reference is bound in one of the | 
 |   //          following ways (the choice is implementation-defined): | 
 |   // | 
 |   //          -- The reference is bound to the object represented by | 
 |   //             the rvalue (see 3.10) or to a sub-object within that | 
 |   //             object. | 
 |   // | 
 |   //          -- A temporary of type “cv1 T2” [sic] is created, and | 
 |   //             a constructor is called to copy the entire rvalue | 
 |   //             object into the temporary. The reference is bound to | 
 |   //             the temporary or to a sub-object within the | 
 |   //             temporary. | 
 |   // | 
 |   //          The constructor that would be used to make the copy | 
 |   //          shall be callable whether or not the copy is actually | 
 |   //          done. | 
 |   // | 
 |   // Note that C++0x [dcl.ref.init]p5 takes away this implementation | 
 |   // freedom, so we will always take the first option and never build | 
 |   // a temporary in this case. FIXME: We will, however, have to check | 
 |   // for the presence of a copy constructor in C++98/03 mode. | 
 |   if (InitLvalue != Expr::LV_Valid && T2->isRecordType() && | 
 |       RefRelationship >= Ref_Compatible_With_Added_Qualification) { | 
 |     if (ICS) { | 
 |       ICS->ConversionKind = ImplicitConversionSequence::StandardConversion; | 
 |       ICS->Standard.First = ICK_Identity; | 
 |       ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; | 
 |       ICS->Standard.Third = ICK_Identity; | 
 |       ICS->Standard.FromTypePtr = T2.getAsOpaquePtr(); | 
 |       ICS->Standard.ToTypePtr = T1.getAsOpaquePtr(); | 
 |       ICS->Standard.ReferenceBinding = true; | 
 |       ICS->Standard.DirectBinding = false;       | 
 |     } else { | 
 |       // FIXME: Binding to a subobject of the rvalue is going to require | 
 |       // more AST annotation than this. | 
 |       ImpCastExprToType(Init, T1, /*isLvalue=*/true); | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   //       -- Otherwise, a temporary of type “cv1 T1” is created and | 
 |   //          initialized from the initializer expression using the | 
 |   //          rules for a non-reference copy initialization (8.5). The | 
 |   //          reference is then bound to the temporary. If T1 is | 
 |   //          reference-related to T2, cv1 must be the same | 
 |   //          cv-qualification as, or greater cv-qualification than, | 
 |   //          cv2; otherwise, the program is ill-formed. | 
 |   if (RefRelationship == Ref_Related) { | 
 |     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then | 
 |     // we would be reference-compatible or reference-compatible with | 
 |     // added qualification. But that wasn't the case, so the reference | 
 |     // initialization fails. | 
 |     if (!ICS) | 
 |       Diag(Init->getSourceRange().getBegin(), | 
 |            diag::err_reference_init_drops_quals) | 
 |         << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value") | 
 |         << T2 << Init->getSourceRange(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // If at least one of the types is a class type, the types are not | 
 |   // related, and we aren't allowed any user conversions, the | 
 |   // reference binding fails. This case is important for breaking | 
 |   // recursion, since TryImplicitConversion below will attempt to | 
 |   // create a temporary through the use of a copy constructor. | 
 |   if (SuppressUserConversions && RefRelationship == Ref_Incompatible && | 
 |       (T1->isRecordType() || T2->isRecordType())) { | 
 |     if (!ICS) | 
 |       Diag(Init->getSourceRange().getBegin(), | 
 |            diag::err_typecheck_convert_incompatible) | 
 |         << DeclType << Init->getType() << "initializing" << Init->getSourceRange(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Actually try to convert the initializer to T1. | 
 |   if (ICS) { | 
 |     /// C++ [over.ics.ref]p2: | 
 |     ///  | 
 |     ///   When a parameter of reference type is not bound directly to | 
 |     ///   an argument expression, the conversion sequence is the one | 
 |     ///   required to convert the argument expression to the | 
 |     ///   underlying type of the reference according to | 
 |     ///   13.3.3.1. Conceptually, this conversion sequence corresponds | 
 |     ///   to copy-initializing a temporary of the underlying type with | 
 |     ///   the argument expression. Any difference in top-level | 
 |     ///   cv-qualification is subsumed by the initialization itself | 
 |     ///   and does not constitute a conversion. | 
 |     *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions); | 
 |     return ICS->ConversionKind == ImplicitConversionSequence::BadConversion; | 
 |   } else { | 
 |     return PerformImplicitConversion(Init, T1, "initializing"); | 
 |   } | 
 | } | 
 |  | 
 | /// CheckOverloadedOperatorDeclaration - Check whether the declaration | 
 | /// of this overloaded operator is well-formed. If so, returns false; | 
 | /// otherwise, emits appropriate diagnostics and returns true. | 
 | bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { | 
 |   assert(FnDecl && FnDecl->isOverloadedOperator() && | 
 |          "Expected an overloaded operator declaration"); | 
 |  | 
 |   OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); | 
 |  | 
 |   // C++ [over.oper]p5:  | 
 |   //   The allocation and deallocation functions, operator new, | 
 |   //   operator new[], operator delete and operator delete[], are | 
 |   //   described completely in 3.7.3. The attributes and restrictions | 
 |   //   found in the rest of this subclause do not apply to them unless | 
 |   //   explicitly stated in 3.7.3. | 
 |   // FIXME: Write a separate routine for checking this. For now, just  | 
 |   // allow it. | 
 |   if (Op == OO_New || Op == OO_Array_New || | 
 |       Op == OO_Delete || Op == OO_Array_Delete) | 
 |     return false; | 
 |  | 
 |   // C++ [over.oper]p6: | 
 |   //   An operator function shall either be a non-static member | 
 |   //   function or be a non-member function and have at least one | 
 |   //   parameter whose type is a class, a reference to a class, an | 
 |   //   enumeration, or a reference to an enumeration. | 
 |   if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { | 
 |     if (MethodDecl->isStatic()) | 
 |       return Diag(FnDecl->getLocation(), | 
 |                   diag::err_operator_overload_static) << FnDecl->getDeclName(); | 
 |   } else { | 
 |     bool ClassOrEnumParam = false; | 
 |     for (FunctionDecl::param_iterator Param = FnDecl->param_begin(), | 
 |                                    ParamEnd = FnDecl->param_end(); | 
 |          Param != ParamEnd; ++Param) { | 
 |       QualType ParamType = (*Param)->getType().getNonReferenceType(); | 
 |       if (ParamType->isRecordType() || ParamType->isEnumeralType()) { | 
 |         ClassOrEnumParam = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     if (!ClassOrEnumParam) | 
 |       return Diag(FnDecl->getLocation(), | 
 |                   diag::err_operator_overload_needs_class_or_enum) | 
 |         << FnDecl->getDeclName(); | 
 |   } | 
 |  | 
 |   // C++ [over.oper]p8: | 
 |   //   An operator function cannot have default arguments (8.3.6), | 
 |   //   except where explicitly stated below. | 
 |   // | 
 |   // Only the function-call operator allows default arguments  | 
 |   // (C++ [over.call]p1). | 
 |   if (Op != OO_Call) { | 
 |     for (FunctionDecl::param_iterator Param = FnDecl->param_begin(); | 
 |          Param != FnDecl->param_end(); ++Param) { | 
 |       if ((*Param)->hasUnparsedDefaultArg()) | 
 |         return Diag((*Param)->getLocation(),  | 
 |                     diag::err_operator_overload_default_arg) | 
 |           << FnDecl->getDeclName(); | 
 |       else if (Expr *DefArg = (*Param)->getDefaultArg()) | 
 |         return Diag((*Param)->getLocation(), | 
 |                     diag::err_operator_overload_default_arg) | 
 |           << FnDecl->getDeclName() << DefArg->getSourceRange(); | 
 |     } | 
 |   } | 
 |  | 
 |   static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { | 
 |     { false, false, false } | 
 | #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ | 
 |     , { Unary, Binary, MemberOnly } | 
 | #include "clang/Basic/OperatorKinds.def" | 
 |   }; | 
 |  | 
 |   bool CanBeUnaryOperator = OperatorUses[Op][0]; | 
 |   bool CanBeBinaryOperator = OperatorUses[Op][1]; | 
 |   bool MustBeMemberOperator = OperatorUses[Op][2]; | 
 |  | 
 |   // C++ [over.oper]p8: | 
 |   //   [...] Operator functions cannot have more or fewer parameters | 
 |   //   than the number required for the corresponding operator, as | 
 |   //   described in the rest of this subclause. | 
 |   unsigned NumParams = FnDecl->getNumParams()  | 
 |                      + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); | 
 |   if (Op != OO_Call && | 
 |       ((NumParams == 1 && !CanBeUnaryOperator) || | 
 |        (NumParams == 2 && !CanBeBinaryOperator) || | 
 |        (NumParams < 1) || (NumParams > 2))) { | 
 |     // We have the wrong number of parameters. | 
 |     unsigned ErrorKind; | 
 |     if (CanBeUnaryOperator && CanBeBinaryOperator) { | 
 |       ErrorKind = 2;  // 2 -> unary or binary. | 
 |     } else if (CanBeUnaryOperator) { | 
 |       ErrorKind = 0;  // 0 -> unary | 
 |     } else { | 
 |       assert(CanBeBinaryOperator && | 
 |              "All non-call overloaded operators are unary or binary!"); | 
 |       ErrorKind = 1;  // 1 -> binary | 
 |     } | 
 |  | 
 |     return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) | 
 |       << FnDecl->getDeclName() << NumParams << ErrorKind; | 
 |   } | 
 |  | 
 |   // Overloaded operators other than operator() cannot be variadic. | 
 |   if (Op != OO_Call && | 
 |       FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) { | 
 |     return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) | 
 |       << FnDecl->getDeclName(); | 
 |   } | 
 |  | 
 |   // Some operators must be non-static member functions. | 
 |   if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { | 
 |     return Diag(FnDecl->getLocation(), | 
 |                 diag::err_operator_overload_must_be_member) | 
 |       << FnDecl->getDeclName(); | 
 |   } | 
 |  | 
 |   // C++ [over.inc]p1: | 
 |   //   The user-defined function called operator++ implements the | 
 |   //   prefix and postfix ++ operator. If this function is a member | 
 |   //   function with no parameters, or a non-member function with one | 
 |   //   parameter of class or enumeration type, it defines the prefix | 
 |   //   increment operator ++ for objects of that type. If the function | 
 |   //   is a member function with one parameter (which shall be of type | 
 |   //   int) or a non-member function with two parameters (the second | 
 |   //   of which shall be of type int), it defines the postfix | 
 |   //   increment operator ++ for objects of that type. | 
 |   if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { | 
 |     ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); | 
 |     bool ParamIsInt = false; | 
 |     if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType()) | 
 |       ParamIsInt = BT->getKind() == BuiltinType::Int; | 
 |  | 
 |     if (!ParamIsInt) | 
 |       return Diag(LastParam->getLocation(), | 
 |                   diag::err_operator_overload_post_incdec_must_be_int)  | 
 |         << LastParam->getType() << (Op == OO_MinusMinus); | 
 |   } | 
 |  | 
 |   // Notify the class if it got an assignment operator. | 
 |   if (Op == OO_Equal) { | 
 |     // Would have returned earlier otherwise. | 
 |     assert(isa<CXXMethodDecl>(FnDecl) && | 
 |       "Overloaded = not member, but not filtered."); | 
 |     CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); | 
 |     Method->getParent()->addedAssignmentOperator(Context, Method); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ | 
 | /// linkage specification, including the language and (if present) | 
 | /// the '{'. ExternLoc is the location of the 'extern', LangLoc is | 
 | /// the location of the language string literal, which is provided | 
 | /// by Lang/StrSize. LBraceLoc, if valid, provides the location of | 
 | /// the '{' brace. Otherwise, this linkage specification does not | 
 | /// have any braces. | 
 | Sema::DeclTy *Sema::ActOnStartLinkageSpecification(Scope *S, | 
 |                                                    SourceLocation ExternLoc, | 
 |                                                    SourceLocation LangLoc, | 
 |                                                    const char *Lang, | 
 |                                                    unsigned StrSize, | 
 |                                                    SourceLocation LBraceLoc) { | 
 |   LinkageSpecDecl::LanguageIDs Language; | 
 |   if (strncmp(Lang, "\"C\"", StrSize) == 0) | 
 |     Language = LinkageSpecDecl::lang_c; | 
 |   else if (strncmp(Lang, "\"C++\"", StrSize) == 0) | 
 |     Language = LinkageSpecDecl::lang_cxx; | 
 |   else { | 
 |     Diag(LangLoc, diag::err_bad_language); | 
 |     return 0; | 
 |   } | 
 |    | 
 |   // FIXME: Add all the various semantics of linkage specifications | 
 |    | 
 |   LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, | 
 |                                                LangLoc, Language,  | 
 |                                                LBraceLoc.isValid()); | 
 |   CurContext->addDecl(D); | 
 |   PushDeclContext(S, D); | 
 |   return D; | 
 | } | 
 |  | 
 | /// ActOnFinishLinkageSpecification - Completely the definition of | 
 | /// the C++ linkage specification LinkageSpec. If RBraceLoc is | 
 | /// valid, it's the position of the closing '}' brace in a linkage | 
 | /// specification that uses braces. | 
 | Sema::DeclTy *Sema::ActOnFinishLinkageSpecification(Scope *S, | 
 |                                                     DeclTy *LinkageSpec, | 
 |                                                     SourceLocation RBraceLoc) { | 
 |   if (LinkageSpec) | 
 |     PopDeclContext(); | 
 |   return LinkageSpec; | 
 | } | 
 |  | 
 | /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch | 
 | /// handler. | 
 | Sema::DeclTy *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) | 
 | { | 
 |   QualType ExDeclType = GetTypeForDeclarator(D, S); | 
 |   SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin(); | 
 |  | 
 |   bool Invalid = false; | 
 |  | 
 |   // Arrays and functions decay. | 
 |   if (ExDeclType->isArrayType()) | 
 |     ExDeclType = Context.getArrayDecayedType(ExDeclType); | 
 |   else if (ExDeclType->isFunctionType()) | 
 |     ExDeclType = Context.getPointerType(ExDeclType); | 
 |  | 
 |   // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. | 
 |   // The exception-declaration shall not denote a pointer or reference to an | 
 |   // incomplete type, other than [cv] void*. | 
 |   // N2844 forbids rvalue references. | 
 |   if(ExDeclType->isRValueReferenceType()) { | 
 |     Diag(Begin, diag::err_catch_rvalue_ref) << D.getSourceRange(); | 
 |     Invalid = true; | 
 |   } | 
 |   QualType BaseType = ExDeclType; | 
 |   int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference | 
 |   unsigned DK = diag::err_catch_incomplete; | 
 |   if (const PointerType *Ptr = BaseType->getAsPointerType()) { | 
 |     BaseType = Ptr->getPointeeType(); | 
 |     Mode = 1; | 
 |     DK = diag::err_catch_incomplete_ptr; | 
 |   } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) { | 
 |     // For the purpose of error recovery, we treat rvalue refs like lvalue refs. | 
 |     BaseType = Ref->getPointeeType(); | 
 |     Mode = 2; | 
 |     DK = diag::err_catch_incomplete_ref; | 
 |   } | 
 |   if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && | 
 |       RequireCompleteType(Begin, BaseType, DK)) | 
 |     Invalid = true; | 
 |  | 
 |   // FIXME: Need to test for ability to copy-construct and destroy the | 
 |   // exception variable. | 
 |   // FIXME: Need to check for abstract classes. | 
 |  | 
 |   IdentifierInfo *II = D.getIdentifier(); | 
 |   if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) { | 
 |     // The scope should be freshly made just for us. There is just no way | 
 |     // it contains any previous declaration. | 
 |     assert(!S->isDeclScope(PrevDecl)); | 
 |     if (PrevDecl->isTemplateParameter()) { | 
 |       // Maybe we will complain about the shadowed template parameter. | 
 |       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | 
 |  | 
 |     } | 
 |   } | 
 |  | 
 |   VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(), | 
 |                                     II, ExDeclType, VarDecl::None, Begin); | 
 |   if (D.getInvalidType() || Invalid) | 
 |     ExDecl->setInvalidDecl(); | 
 |  | 
 |   if (D.getCXXScopeSpec().isSet()) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) | 
 |       << D.getCXXScopeSpec().getRange(); | 
 |     ExDecl->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   // Add the exception declaration into this scope. | 
 |   S->AddDecl(ExDecl); | 
 |   if (II) | 
 |     IdResolver.AddDecl(ExDecl); | 
 |  | 
 |   ProcessDeclAttributes(ExDecl, D); | 
 |   return ExDecl; | 
 | } | 
 |  | 
 | Sema::DeclTy *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,  | 
 |                                                  ExprArg assertexpr, | 
 |                                                  ExprArg assertmessageexpr) { | 
 |   Expr *AssertExpr = (Expr *)assertexpr.get(); | 
 |   StringLiteral *AssertMessage =  | 
 |     cast<StringLiteral>((Expr *)assertmessageexpr.get()); | 
 |  | 
 |   if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) { | 
 |     llvm::APSInt Value(32); | 
 |     if (!AssertExpr->isIntegerConstantExpr(Value, Context)) { | 
 |       Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) << | 
 |         AssertExpr->getSourceRange(); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     if (Value == 0) { | 
 |       std::string str(AssertMessage->getStrData(),  | 
 |                       AssertMessage->getByteLength()); | 
 |       Diag(AssertLoc, diag::err_static_assert_failed)  | 
 |         << str << AssertExpr->getSourceRange(); | 
 |     } | 
 |   } | 
 |    | 
 |   assertexpr.release(); | 
 |   assertmessageexpr.release(); | 
 |   Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,  | 
 |                                         AssertExpr, AssertMessage); | 
 |    | 
 |   CurContext->addDecl(Decl); | 
 |   return Decl; | 
 | } | 
 |  | 
 | void Sema::SetDeclDeleted(DeclTy *dcl, SourceLocation DelLoc) { | 
 |   Decl *Dcl = static_cast<Decl*>(dcl); | 
 |   FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl); | 
 |   if (!Fn) { | 
 |     Diag(DelLoc, diag::err_deleted_non_function); | 
 |     return; | 
 |   } | 
 |   if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) { | 
 |     Diag(DelLoc, diag::err_deleted_decl_not_first); | 
 |     Diag(Prev->getLocation(), diag::note_previous_declaration); | 
 |     // If the declaration wasn't the first, we delete the function anyway for | 
 |     // recovery. | 
 |   } | 
 |   Fn->setDeleted(); | 
 | } |