| //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CodeGenFunction.h" | 
 | #include "CGObjCRuntime.h" | 
 | #include "CodeGenModule.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/DeclObjC.h" | 
 | #include "clang/AST/RecordLayout.h" | 
 | #include "clang/AST/StmtVisitor.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/GlobalVariable.h" | 
 | #include "llvm/Intrinsics.h" | 
 | #include "llvm/Module.h" | 
 | #include "llvm/Support/CFG.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include <cstdarg> | 
 |  | 
 | using namespace clang; | 
 | using namespace CodeGen; | 
 | using llvm::Value; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                         Scalar Expression Emitter | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | struct BinOpInfo { | 
 |   Value *LHS; | 
 |   Value *RHS; | 
 |   QualType Ty;  // Computation Type. | 
 |   const BinaryOperator *E; | 
 | }; | 
 |  | 
 | namespace { | 
 | class ScalarExprEmitter | 
 |   : public StmtVisitor<ScalarExprEmitter, Value*> { | 
 |   CodeGenFunction &CGF; | 
 |   CGBuilderTy &Builder; | 
 |   bool IgnoreResultAssign; | 
 |   llvm::LLVMContext &VMContext; | 
 | public: | 
 |  | 
 |   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) | 
 |     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), | 
 |       VMContext(cgf.getLLVMContext()) { | 
 |   } | 
 |  | 
 |   //===--------------------------------------------------------------------===// | 
 |   //                               Utilities | 
 |   //===--------------------------------------------------------------------===// | 
 |  | 
 |   bool TestAndClearIgnoreResultAssign() { | 
 |     bool I = IgnoreResultAssign; | 
 |     IgnoreResultAssign = false; | 
 |     return I; | 
 |   } | 
 |  | 
 |   const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } | 
 |   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } | 
 |  | 
 |   Value *EmitLoadOfLValue(LValue LV, QualType T) { | 
 |     return CGF.EmitLoadOfLValue(LV, T).getScalarVal(); | 
 |   } | 
 |  | 
 |   /// EmitLoadOfLValue - Given an expression with complex type that represents a | 
 |   /// value l-value, this method emits the address of the l-value, then loads | 
 |   /// and returns the result. | 
 |   Value *EmitLoadOfLValue(const Expr *E) { | 
 |     return EmitLoadOfLValue(EmitLValue(E), E->getType()); | 
 |   } | 
 |  | 
 |   /// EmitConversionToBool - Convert the specified expression value to a | 
 |   /// boolean (i1) truth value.  This is equivalent to "Val != 0". | 
 |   Value *EmitConversionToBool(Value *Src, QualType DstTy); | 
 |  | 
 |   /// EmitScalarConversion - Emit a conversion from the specified type to the | 
 |   /// specified destination type, both of which are LLVM scalar types. | 
 |   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); | 
 |  | 
 |   /// EmitComplexToScalarConversion - Emit a conversion from the specified | 
 |   /// complex type to the specified destination type, where the destination type | 
 |   /// is an LLVM scalar type. | 
 |   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, | 
 |                                        QualType SrcTy, QualType DstTy); | 
 |  | 
 |   //===--------------------------------------------------------------------===// | 
 |   //                            Visitor Methods | 
 |   //===--------------------------------------------------------------------===// | 
 |  | 
 |   Value *VisitStmt(Stmt *S) { | 
 |     S->dump(CGF.getContext().getSourceManager()); | 
 |     assert(0 && "Stmt can't have complex result type!"); | 
 |     return 0; | 
 |   } | 
 |   Value *VisitExpr(Expr *S); | 
 |    | 
 |   Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); } | 
 |  | 
 |   // Leaves. | 
 |   Value *VisitIntegerLiteral(const IntegerLiteral *E) { | 
 |     return llvm::ConstantInt::get(VMContext, E->getValue()); | 
 |   } | 
 |   Value *VisitFloatingLiteral(const FloatingLiteral *E) { | 
 |     return llvm::ConstantFP::get(VMContext, E->getValue()); | 
 |   } | 
 |   Value *VisitCharacterLiteral(const CharacterLiteral *E) { | 
 |     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); | 
 |   } | 
 |   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { | 
 |     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); | 
 |   } | 
 |   Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) { | 
 |     return llvm::Constant::getNullValue(ConvertType(E->getType())); | 
 |   } | 
 |   Value *VisitGNUNullExpr(const GNUNullExpr *E) { | 
 |     return llvm::Constant::getNullValue(ConvertType(E->getType())); | 
 |   } | 
 |   Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) { | 
 |     return llvm::ConstantInt::get(ConvertType(E->getType()), | 
 |                                   CGF.getContext().typesAreCompatible( | 
 |                                     E->getArgType1(), E->getArgType2())); | 
 |   } | 
 |   Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E); | 
 |   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { | 
 |     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); | 
 |     return Builder.CreateBitCast(V, ConvertType(E->getType())); | 
 |   } | 
 |  | 
 |   // l-values. | 
 |   Value *VisitDeclRefExpr(DeclRefExpr *E) { | 
 |     Expr::EvalResult Result; | 
 |     if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) { | 
 |       assert(!Result.HasSideEffects && "Constant declref with side-effect?!"); | 
 |       return llvm::ConstantInt::get(VMContext, Result.Val.getInt()); | 
 |     } | 
 |     return EmitLoadOfLValue(E); | 
 |   } | 
 |   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { | 
 |     return CGF.EmitObjCSelectorExpr(E); | 
 |   } | 
 |   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { | 
 |     return CGF.EmitObjCProtocolExpr(E); | 
 |   } | 
 |   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { | 
 |     return EmitLoadOfLValue(E); | 
 |   } | 
 |   Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { | 
 |     return EmitLoadOfLValue(E); | 
 |   } | 
 |   Value *VisitObjCImplicitSetterGetterRefExpr( | 
 |                         ObjCImplicitSetterGetterRefExpr *E) { | 
 |     return EmitLoadOfLValue(E); | 
 |   } | 
 |   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { | 
 |     return CGF.EmitObjCMessageExpr(E).getScalarVal(); | 
 |   } | 
 |  | 
 |   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); | 
 |   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); | 
 |   Value *VisitMemberExpr(MemberExpr *E); | 
 |   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } | 
 |   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { | 
 |     return EmitLoadOfLValue(E); | 
 |   } | 
 |   Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); } | 
 |   Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { | 
 |      return EmitLValue(E).getAddress(); | 
 |   } | 
 |  | 
 |   Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); } | 
 |  | 
 |   Value *VisitInitListExpr(InitListExpr *E); | 
 |  | 
 |   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { | 
 |     return llvm::Constant::getNullValue(ConvertType(E->getType())); | 
 |   } | 
 |   Value *VisitCastExpr(CastExpr *E) { | 
 |     // Make sure to evaluate VLA bounds now so that we have them for later. | 
 |     if (E->getType()->isVariablyModifiedType()) | 
 |       CGF.EmitVLASize(E->getType()); | 
 |  | 
 |     return EmitCastExpr(E); | 
 |   } | 
 |   Value *EmitCastExpr(CastExpr *E); | 
 |  | 
 |   Value *VisitCallExpr(const CallExpr *E) { | 
 |     if (E->getCallReturnType()->isReferenceType()) | 
 |       return EmitLoadOfLValue(E); | 
 |  | 
 |     return CGF.EmitCallExpr(E).getScalarVal(); | 
 |   } | 
 |  | 
 |   Value *VisitStmtExpr(const StmtExpr *E); | 
 |  | 
 |   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E); | 
 |  | 
 |   // Unary Operators. | 
 |   Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre); | 
 |   Value *VisitUnaryPostDec(const UnaryOperator *E) { | 
 |     return VisitPrePostIncDec(E, false, false); | 
 |   } | 
 |   Value *VisitUnaryPostInc(const UnaryOperator *E) { | 
 |     return VisitPrePostIncDec(E, true, false); | 
 |   } | 
 |   Value *VisitUnaryPreDec(const UnaryOperator *E) { | 
 |     return VisitPrePostIncDec(E, false, true); | 
 |   } | 
 |   Value *VisitUnaryPreInc(const UnaryOperator *E) { | 
 |     return VisitPrePostIncDec(E, true, true); | 
 |   } | 
 |   Value *VisitUnaryAddrOf(const UnaryOperator *E) { | 
 |     return EmitLValue(E->getSubExpr()).getAddress(); | 
 |   } | 
 |   Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } | 
 |   Value *VisitUnaryPlus(const UnaryOperator *E) { | 
 |     // This differs from gcc, though, most likely due to a bug in gcc. | 
 |     TestAndClearIgnoreResultAssign(); | 
 |     return Visit(E->getSubExpr()); | 
 |   } | 
 |   Value *VisitUnaryMinus    (const UnaryOperator *E); | 
 |   Value *VisitUnaryNot      (const UnaryOperator *E); | 
 |   Value *VisitUnaryLNot     (const UnaryOperator *E); | 
 |   Value *VisitUnaryReal     (const UnaryOperator *E); | 
 |   Value *VisitUnaryImag     (const UnaryOperator *E); | 
 |   Value *VisitUnaryExtension(const UnaryOperator *E) { | 
 |     return Visit(E->getSubExpr()); | 
 |   } | 
 |   Value *VisitUnaryOffsetOf(const UnaryOperator *E); | 
 |  | 
 |   // C++ | 
 |   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { | 
 |     return Visit(DAE->getExpr()); | 
 |   } | 
 |   Value *VisitCXXThisExpr(CXXThisExpr *TE) { | 
 |     return CGF.LoadCXXThis(); | 
 |   } | 
 |  | 
 |   Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { | 
 |     return CGF.EmitCXXExprWithTemporaries(E).getScalarVal(); | 
 |   } | 
 |   Value *VisitCXXNewExpr(const CXXNewExpr *E) { | 
 |     return CGF.EmitCXXNewExpr(E); | 
 |   } | 
 |   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { | 
 |     CGF.EmitCXXDeleteExpr(E); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { | 
 |     // C++ [expr.pseudo]p1: | 
 |     //   The result shall only be used as the operand for the function call | 
 |     //   operator (), and the result of such a call has type void. The only | 
 |     //   effect is the evaluation of the postfix-expression before the dot or | 
 |     //   arrow. | 
 |     CGF.EmitScalarExpr(E->getBase()); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { | 
 |     return llvm::Constant::getNullValue(ConvertType(E->getType())); | 
 |   } | 
 |  | 
 |   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { | 
 |     CGF.EmitCXXThrowExpr(E); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Binary Operators. | 
 |   Value *EmitMul(const BinOpInfo &Ops) { | 
 |     if (CGF.getContext().getLangOptions().OverflowChecking | 
 |         && Ops.Ty->isSignedIntegerType()) | 
 |       return EmitOverflowCheckedBinOp(Ops); | 
 |     if (Ops.LHS->getType()->isFPOrFPVector()) | 
 |       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); | 
 |     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); | 
 |   } | 
 |   /// Create a binary op that checks for overflow. | 
 |   /// Currently only supports +, - and *. | 
 |   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); | 
 |   Value *EmitDiv(const BinOpInfo &Ops); | 
 |   Value *EmitRem(const BinOpInfo &Ops); | 
 |   Value *EmitAdd(const BinOpInfo &Ops); | 
 |   Value *EmitSub(const BinOpInfo &Ops); | 
 |   Value *EmitShl(const BinOpInfo &Ops); | 
 |   Value *EmitShr(const BinOpInfo &Ops); | 
 |   Value *EmitAnd(const BinOpInfo &Ops) { | 
 |     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); | 
 |   } | 
 |   Value *EmitXor(const BinOpInfo &Ops) { | 
 |     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); | 
 |   } | 
 |   Value *EmitOr (const BinOpInfo &Ops) { | 
 |     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); | 
 |   } | 
 |  | 
 |   BinOpInfo EmitBinOps(const BinaryOperator *E); | 
 |   Value *EmitCompoundAssign(const CompoundAssignOperator *E, | 
 |                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); | 
 |  | 
 |   // Binary operators and binary compound assignment operators. | 
 | #define HANDLEBINOP(OP) \ | 
 |   Value *VisitBin ## OP(const BinaryOperator *E) {                         \ | 
 |     return Emit ## OP(EmitBinOps(E));                                      \ | 
 |   }                                                                        \ | 
 |   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \ | 
 |     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \ | 
 |   } | 
 |   HANDLEBINOP(Mul); | 
 |   HANDLEBINOP(Div); | 
 |   HANDLEBINOP(Rem); | 
 |   HANDLEBINOP(Add); | 
 |   HANDLEBINOP(Sub); | 
 |   HANDLEBINOP(Shl); | 
 |   HANDLEBINOP(Shr); | 
 |   HANDLEBINOP(And); | 
 |   HANDLEBINOP(Xor); | 
 |   HANDLEBINOP(Or); | 
 | #undef HANDLEBINOP | 
 |  | 
 |   // Comparisons. | 
 |   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, | 
 |                      unsigned SICmpOpc, unsigned FCmpOpc); | 
 | #define VISITCOMP(CODE, UI, SI, FP) \ | 
 |     Value *VisitBin##CODE(const BinaryOperator *E) { \ | 
 |       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ | 
 |                          llvm::FCmpInst::FP); } | 
 |   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT); | 
 |   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT); | 
 |   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE); | 
 |   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE); | 
 |   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ); | 
 |   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE); | 
 | #undef VISITCOMP | 
 |  | 
 |   Value *VisitBinAssign     (const BinaryOperator *E); | 
 |  | 
 |   Value *VisitBinLAnd       (const BinaryOperator *E); | 
 |   Value *VisitBinLOr        (const BinaryOperator *E); | 
 |   Value *VisitBinComma      (const BinaryOperator *E); | 
 |  | 
 |   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } | 
 |   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } | 
 |  | 
 |   // Other Operators. | 
 |   Value *VisitBlockExpr(const BlockExpr *BE); | 
 |   Value *VisitConditionalOperator(const ConditionalOperator *CO); | 
 |   Value *VisitChooseExpr(ChooseExpr *CE); | 
 |   Value *VisitVAArgExpr(VAArgExpr *VE); | 
 |   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { | 
 |     return CGF.EmitObjCStringLiteral(E); | 
 |   } | 
 | }; | 
 | }  // end anonymous namespace. | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                                Utilities | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// EmitConversionToBool - Convert the specified expression value to a | 
 | /// boolean (i1) truth value.  This is equivalent to "Val != 0". | 
 | Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { | 
 |   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); | 
 |  | 
 |   if (SrcType->isRealFloatingType()) { | 
 |     // Compare against 0.0 for fp scalars. | 
 |     llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType()); | 
 |     return Builder.CreateFCmpUNE(Src, Zero, "tobool"); | 
 |   } | 
 |  | 
 |   if (SrcType->isMemberPointerType()) { | 
 |     // FIXME: This is ABI specific. | 
 |  | 
 |     // Compare against -1. | 
 |     llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType()); | 
 |     return Builder.CreateICmpNE(Src, NegativeOne, "tobool"); | 
 |   } | 
 |  | 
 |   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && | 
 |          "Unknown scalar type to convert"); | 
 |  | 
 |   // Because of the type rules of C, we often end up computing a logical value, | 
 |   // then zero extending it to int, then wanting it as a logical value again. | 
 |   // Optimize this common case. | 
 |   if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) { | 
 |     if (ZI->getOperand(0)->getType() == | 
 |         llvm::Type::getInt1Ty(CGF.getLLVMContext())) { | 
 |       Value *Result = ZI->getOperand(0); | 
 |       // If there aren't any more uses, zap the instruction to save space. | 
 |       // Note that there can be more uses, for example if this | 
 |       // is the result of an assignment. | 
 |       if (ZI->use_empty()) | 
 |         ZI->eraseFromParent(); | 
 |       return Result; | 
 |     } | 
 |   } | 
 |  | 
 |   // Compare against an integer or pointer null. | 
 |   llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType()); | 
 |   return Builder.CreateICmpNE(Src, Zero, "tobool"); | 
 | } | 
 |  | 
 | /// EmitScalarConversion - Emit a conversion from the specified type to the | 
 | /// specified destination type, both of which are LLVM scalar types. | 
 | Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, | 
 |                                                QualType DstType) { | 
 |   SrcType = CGF.getContext().getCanonicalType(SrcType); | 
 |   DstType = CGF.getContext().getCanonicalType(DstType); | 
 |   if (SrcType == DstType) return Src; | 
 |  | 
 |   if (DstType->isVoidType()) return 0; | 
 |  | 
 |   llvm::LLVMContext &VMContext = CGF.getLLVMContext(); | 
 |  | 
 |   // Handle conversions to bool first, they are special: comparisons against 0. | 
 |   if (DstType->isBooleanType()) | 
 |     return EmitConversionToBool(Src, SrcType); | 
 |  | 
 |   const llvm::Type *DstTy = ConvertType(DstType); | 
 |  | 
 |   // Ignore conversions like int -> uint. | 
 |   if (Src->getType() == DstTy) | 
 |     return Src; | 
 |  | 
 |   // Handle pointer conversions next: pointers can only be converted to/from | 
 |   // other pointers and integers. Check for pointer types in terms of LLVM, as | 
 |   // some native types (like Obj-C id) may map to a pointer type. | 
 |   if (isa<llvm::PointerType>(DstTy)) { | 
 |     // The source value may be an integer, or a pointer. | 
 |     if (isa<llvm::PointerType>(Src->getType())) | 
 |       return Builder.CreateBitCast(Src, DstTy, "conv"); | 
 |  | 
 |     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); | 
 |     // First, convert to the correct width so that we control the kind of | 
 |     // extension. | 
 |     const llvm::Type *MiddleTy = | 
 |           llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); | 
 |     bool InputSigned = SrcType->isSignedIntegerType(); | 
 |     llvm::Value* IntResult = | 
 |         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); | 
 |     // Then, cast to pointer. | 
 |     return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); | 
 |   } | 
 |  | 
 |   if (isa<llvm::PointerType>(Src->getType())) { | 
 |     // Must be an ptr to int cast. | 
 |     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); | 
 |     return Builder.CreatePtrToInt(Src, DstTy, "conv"); | 
 |   } | 
 |  | 
 |   // A scalar can be splatted to an extended vector of the same element type | 
 |   if (DstType->isExtVectorType() && !SrcType->isVectorType()) { | 
 |     // Cast the scalar to element type | 
 |     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); | 
 |     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); | 
 |  | 
 |     // Insert the element in element zero of an undef vector | 
 |     llvm::Value *UnV = llvm::UndefValue::get(DstTy); | 
 |     llvm::Value *Idx = | 
 |         llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0); | 
 |     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp"); | 
 |  | 
 |     // Splat the element across to all elements | 
 |     llvm::SmallVector<llvm::Constant*, 16> Args; | 
 |     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); | 
 |     for (unsigned i = 0; i < NumElements; i++) | 
 |       Args.push_back(llvm::ConstantInt::get( | 
 |                                         llvm::Type::getInt32Ty(VMContext), 0)); | 
 |  | 
 |     llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements); | 
 |     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat"); | 
 |     return Yay; | 
 |   } | 
 |  | 
 |   // Allow bitcast from vector to integer/fp of the same size. | 
 |   if (isa<llvm::VectorType>(Src->getType()) || | 
 |       isa<llvm::VectorType>(DstTy)) | 
 |     return Builder.CreateBitCast(Src, DstTy, "conv"); | 
 |  | 
 |   // Finally, we have the arithmetic types: real int/float. | 
 |   if (isa<llvm::IntegerType>(Src->getType())) { | 
 |     bool InputSigned = SrcType->isSignedIntegerType(); | 
 |     if (isa<llvm::IntegerType>(DstTy)) | 
 |       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); | 
 |     else if (InputSigned) | 
 |       return Builder.CreateSIToFP(Src, DstTy, "conv"); | 
 |     else | 
 |       return Builder.CreateUIToFP(Src, DstTy, "conv"); | 
 |   } | 
 |  | 
 |   assert(Src->getType()->isFloatingPoint() && "Unknown real conversion"); | 
 |   if (isa<llvm::IntegerType>(DstTy)) { | 
 |     if (DstType->isSignedIntegerType()) | 
 |       return Builder.CreateFPToSI(Src, DstTy, "conv"); | 
 |     else | 
 |       return Builder.CreateFPToUI(Src, DstTy, "conv"); | 
 |   } | 
 |  | 
 |   assert(DstTy->isFloatingPoint() && "Unknown real conversion"); | 
 |   if (DstTy->getTypeID() < Src->getType()->getTypeID()) | 
 |     return Builder.CreateFPTrunc(Src, DstTy, "conv"); | 
 |   else | 
 |     return Builder.CreateFPExt(Src, DstTy, "conv"); | 
 | } | 
 |  | 
 | /// EmitComplexToScalarConversion - Emit a conversion from the specified complex | 
 | /// type to the specified destination type, where the destination type is an | 
 | /// LLVM scalar type. | 
 | Value *ScalarExprEmitter:: | 
 | EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, | 
 |                               QualType SrcTy, QualType DstTy) { | 
 |   // Get the source element type. | 
 |   SrcTy = SrcTy->getAs<ComplexType>()->getElementType(); | 
 |  | 
 |   // Handle conversions to bool first, they are special: comparisons against 0. | 
 |   if (DstTy->isBooleanType()) { | 
 |     //  Complex != 0  -> (Real != 0) | (Imag != 0) | 
 |     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy); | 
 |     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); | 
 |     return Builder.CreateOr(Src.first, Src.second, "tobool"); | 
 |   } | 
 |  | 
 |   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, | 
 |   // the imaginary part of the complex value is discarded and the value of the | 
 |   // real part is converted according to the conversion rules for the | 
 |   // corresponding real type. | 
 |   return EmitScalarConversion(Src.first, SrcTy, DstTy); | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                            Visitor Methods | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | Value *ScalarExprEmitter::VisitExpr(Expr *E) { | 
 |   CGF.ErrorUnsupported(E, "scalar expression"); | 
 |   if (E->getType()->isVoidType()) | 
 |     return 0; | 
 |   return llvm::UndefValue::get(CGF.ConvertType(E->getType())); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { | 
 |   llvm::SmallVector<llvm::Constant*, 32> indices; | 
 |   for (unsigned i = 2; i < E->getNumSubExprs(); i++) { | 
 |     indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)))); | 
 |   } | 
 |   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); | 
 |   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); | 
 |   Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size()); | 
 |   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); | 
 | } | 
 | Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { | 
 |   Expr::EvalResult Result; | 
 |   if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) { | 
 |     if (E->isArrow()) | 
 |       CGF.EmitScalarExpr(E->getBase()); | 
 |     else | 
 |       EmitLValue(E->getBase()); | 
 |     return llvm::ConstantInt::get(VMContext, Result.Val.getInt()); | 
 |   } | 
 |   return EmitLoadOfLValue(E); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { | 
 |   TestAndClearIgnoreResultAssign(); | 
 |  | 
 |   // Emit subscript expressions in rvalue context's.  For most cases, this just | 
 |   // loads the lvalue formed by the subscript expr.  However, we have to be | 
 |   // careful, because the base of a vector subscript is occasionally an rvalue, | 
 |   // so we can't get it as an lvalue. | 
 |   if (!E->getBase()->getType()->isVectorType()) | 
 |     return EmitLoadOfLValue(E); | 
 |  | 
 |   // Handle the vector case.  The base must be a vector, the index must be an | 
 |   // integer value. | 
 |   Value *Base = Visit(E->getBase()); | 
 |   Value *Idx  = Visit(E->getIdx()); | 
 |   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType(); | 
 |   Idx = Builder.CreateIntCast(Idx, | 
 |                               llvm::Type::getInt32Ty(CGF.getLLVMContext()), | 
 |                               IdxSigned, | 
 |                               "vecidxcast"); | 
 |   return Builder.CreateExtractElement(Base, Idx, "vecext"); | 
 | } | 
 |  | 
 | static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, | 
 |                                   unsigned Off, const llvm::Type *I32Ty) { | 
 |   int MV = SVI->getMaskValue(Idx); | 
 |   if (MV == -1)  | 
 |     return llvm::UndefValue::get(I32Ty); | 
 |   return llvm::ConstantInt::get(I32Ty, Off+MV); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { | 
 |   bool Ignore = TestAndClearIgnoreResultAssign(); | 
 |   (void)Ignore; | 
 |   assert (Ignore == false && "init list ignored"); | 
 |   unsigned NumInitElements = E->getNumInits(); | 
 |    | 
 |   if (E->hadArrayRangeDesignator()) | 
 |     CGF.ErrorUnsupported(E, "GNU array range designator extension"); | 
 |    | 
 |   const llvm::VectorType *VType = | 
 |     dyn_cast<llvm::VectorType>(ConvertType(E->getType())); | 
 |    | 
 |   // We have a scalar in braces. Just use the first element. | 
 |   if (!VType) | 
 |     return Visit(E->getInit(0)); | 
 |    | 
 |   unsigned ResElts = VType->getNumElements(); | 
 |   const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext()); | 
 |    | 
 |   // Loop over initializers collecting the Value for each, and remembering  | 
 |   // whether the source was swizzle (ExtVectorElementExpr).  This will allow | 
 |   // us to fold the shuffle for the swizzle into the shuffle for the vector | 
 |   // initializer, since LLVM optimizers generally do not want to touch | 
 |   // shuffles. | 
 |   unsigned CurIdx = 0; | 
 |   bool VIsUndefShuffle = false; | 
 |   llvm::Value *V = llvm::UndefValue::get(VType); | 
 |   for (unsigned i = 0; i != NumInitElements; ++i) { | 
 |     Expr *IE = E->getInit(i); | 
 |     Value *Init = Visit(IE); | 
 |     llvm::SmallVector<llvm::Constant*, 16> Args; | 
 |      | 
 |     const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); | 
 |      | 
 |     // Handle scalar elements.  If the scalar initializer is actually one | 
 |     // element of a different vector of the same width, use shuffle instead of  | 
 |     // extract+insert. | 
 |     if (!VVT) { | 
 |       if (isa<ExtVectorElementExpr>(IE)) { | 
 |         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); | 
 |  | 
 |         if (EI->getVectorOperandType()->getNumElements() == ResElts) { | 
 |           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); | 
 |           Value *LHS = 0, *RHS = 0; | 
 |           if (CurIdx == 0) { | 
 |             // insert into undef -> shuffle (src, undef) | 
 |             Args.push_back(C); | 
 |             for (unsigned j = 1; j != ResElts; ++j) | 
 |               Args.push_back(llvm::UndefValue::get(I32Ty)); | 
 |  | 
 |             LHS = EI->getVectorOperand(); | 
 |             RHS = V; | 
 |             VIsUndefShuffle = true; | 
 |           } else if (VIsUndefShuffle) { | 
 |             // insert into undefshuffle && size match -> shuffle (v, src) | 
 |             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); | 
 |             for (unsigned j = 0; j != CurIdx; ++j) | 
 |               Args.push_back(getMaskElt(SVV, j, 0, I32Ty)); | 
 |             Args.push_back(llvm::ConstantInt::get(I32Ty,  | 
 |                                                   ResElts + C->getZExtValue())); | 
 |             for (unsigned j = CurIdx + 1; j != ResElts; ++j) | 
 |               Args.push_back(llvm::UndefValue::get(I32Ty)); | 
 |              | 
 |             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); | 
 |             RHS = EI->getVectorOperand(); | 
 |             VIsUndefShuffle = false; | 
 |           } | 
 |           if (!Args.empty()) { | 
 |             llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts); | 
 |             V = Builder.CreateShuffleVector(LHS, RHS, Mask); | 
 |             ++CurIdx; | 
 |             continue; | 
 |           } | 
 |         } | 
 |       } | 
 |       Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx); | 
 |       V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); | 
 |       VIsUndefShuffle = false; | 
 |       ++CurIdx; | 
 |       continue; | 
 |     } | 
 |      | 
 |     unsigned InitElts = VVT->getNumElements(); | 
 |  | 
 |     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's  | 
 |     // input is the same width as the vector being constructed, generate an | 
 |     // optimized shuffle of the swizzle input into the result. | 
 |     unsigned Offset = (CurIdx == 0) ? 0 : ResElts; | 
 |     if (isa<ExtVectorElementExpr>(IE)) { | 
 |       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); | 
 |       Value *SVOp = SVI->getOperand(0); | 
 |       const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); | 
 |        | 
 |       if (OpTy->getNumElements() == ResElts) { | 
 |         for (unsigned j = 0; j != CurIdx; ++j) { | 
 |           // If the current vector initializer is a shuffle with undef, merge | 
 |           // this shuffle directly into it. | 
 |           if (VIsUndefShuffle) { | 
 |             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, | 
 |                                       I32Ty)); | 
 |           } else { | 
 |             Args.push_back(llvm::ConstantInt::get(I32Ty, j)); | 
 |           } | 
 |         } | 
 |         for (unsigned j = 0, je = InitElts; j != je; ++j) | 
 |           Args.push_back(getMaskElt(SVI, j, Offset, I32Ty)); | 
 |         for (unsigned j = CurIdx + InitElts; j != ResElts; ++j) | 
 |           Args.push_back(llvm::UndefValue::get(I32Ty)); | 
 |  | 
 |         if (VIsUndefShuffle) | 
 |           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); | 
 |  | 
 |         Init = SVOp; | 
 |       } | 
 |     } | 
 |  | 
 |     // Extend init to result vector length, and then shuffle its contribution | 
 |     // to the vector initializer into V. | 
 |     if (Args.empty()) { | 
 |       for (unsigned j = 0; j != InitElts; ++j) | 
 |         Args.push_back(llvm::ConstantInt::get(I32Ty, j)); | 
 |       for (unsigned j = InitElts; j != ResElts; ++j) | 
 |         Args.push_back(llvm::UndefValue::get(I32Ty)); | 
 |       llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts); | 
 |       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), | 
 |                                          Mask, "vext"); | 
 |  | 
 |       Args.clear(); | 
 |       for (unsigned j = 0; j != CurIdx; ++j) | 
 |         Args.push_back(llvm::ConstantInt::get(I32Ty, j)); | 
 |       for (unsigned j = 0; j != InitElts; ++j) | 
 |         Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset)); | 
 |       for (unsigned j = CurIdx + InitElts; j != ResElts; ++j) | 
 |         Args.push_back(llvm::UndefValue::get(I32Ty)); | 
 |     } | 
 |  | 
 |     // If V is undef, make sure it ends up on the RHS of the shuffle to aid | 
 |     // merging subsequent shuffles into this one. | 
 |     if (CurIdx == 0) | 
 |       std::swap(V, Init); | 
 |     llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts); | 
 |     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); | 
 |     VIsUndefShuffle = isa<llvm::UndefValue>(Init); | 
 |     CurIdx += InitElts; | 
 |   } | 
 |    | 
 |   // FIXME: evaluate codegen vs. shuffling against constant null vector. | 
 |   // Emit remaining default initializers. | 
 |   const llvm::Type *EltTy = VType->getElementType(); | 
 |    | 
 |   // Emit remaining default initializers | 
 |   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { | 
 |     Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx); | 
 |     llvm::Value *Init = llvm::Constant::getNullValue(EltTy); | 
 |     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); | 
 |   } | 
 |   return V; | 
 | } | 
 |  | 
 | static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { | 
 |   const Expr *E = CE->getSubExpr(); | 
 |    | 
 |   if (isa<CXXThisExpr>(E)) { | 
 |     // We always assume that 'this' is never null. | 
 |     return false; | 
 |   } | 
 |    | 
 |   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { | 
 |     // And that lvalue casts are never null. | 
 |     if (ICE->isLvalueCast()) | 
 |       return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts | 
 | // have to handle a more broad range of conversions than explicit casts, as they | 
 | // handle things like function to ptr-to-function decay etc. | 
 | Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) { | 
 |   Expr *E = CE->getSubExpr(); | 
 |   QualType DestTy = CE->getType(); | 
 |   CastExpr::CastKind Kind = CE->getCastKind(); | 
 |    | 
 |   if (!DestTy->isVoidType()) | 
 |     TestAndClearIgnoreResultAssign(); | 
 |  | 
 |   // Since almost all cast kinds apply to scalars, this switch doesn't have | 
 |   // a default case, so the compiler will warn on a missing case.  The cases | 
 |   // are in the same order as in the CastKind enum. | 
 |   switch (Kind) { | 
 |   case CastExpr::CK_Unknown: | 
 |     // FIXME: All casts should have a known kind! | 
 |     //assert(0 && "Unknown cast kind!"); | 
 |     break; | 
 |  | 
 |   case CastExpr::CK_BitCast: { | 
 |     Value *Src = Visit(const_cast<Expr*>(E)); | 
 |     return Builder.CreateBitCast(Src, ConvertType(DestTy)); | 
 |   } | 
 |   case CastExpr::CK_NoOp: | 
 |     return Visit(const_cast<Expr*>(E)); | 
 |  | 
 |   case CastExpr::CK_BaseToDerived: { | 
 |     const CXXRecordDecl *BaseClassDecl =  | 
 |       E->getType()->getCXXRecordDeclForPointerType(); | 
 |     const CXXRecordDecl *DerivedClassDecl =  | 
 |       DestTy->getCXXRecordDeclForPointerType(); | 
 |      | 
 |     Value *Src = Visit(const_cast<Expr*>(E)); | 
 |      | 
 |     bool NullCheckValue = ShouldNullCheckClassCastValue(CE); | 
 |     return CGF.GetAddressOfDerivedClass(Src, BaseClassDecl, DerivedClassDecl,  | 
 |                                         NullCheckValue); | 
 |   } | 
 |   case CastExpr::CK_DerivedToBase: { | 
 |     const RecordType *DerivedClassTy =  | 
 |       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>(); | 
 |     CXXRecordDecl *DerivedClassDecl =  | 
 |       cast<CXXRecordDecl>(DerivedClassTy->getDecl()); | 
 |  | 
 |     const RecordType *BaseClassTy =  | 
 |       DestTy->getAs<PointerType>()->getPointeeType()->getAs<RecordType>(); | 
 |     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl()); | 
 |      | 
 |     Value *Src = Visit(const_cast<Expr*>(E)); | 
 |  | 
 |     bool NullCheckValue = ShouldNullCheckClassCastValue(CE); | 
 |     return CGF.GetAddressOfBaseClass(Src, DerivedClassDecl, BaseClassDecl, | 
 |                                      NullCheckValue); | 
 |   } | 
 |   case CastExpr::CK_Dynamic: { | 
 |     Value *V = Visit(const_cast<Expr*>(E)); | 
 |     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); | 
 |     return CGF.EmitDynamicCast(V, DCE); | 
 |   } | 
 |   case CastExpr::CK_ToUnion: | 
 |     assert(0 && "Should be unreachable!"); | 
 |     break; | 
 |  | 
 |   case CastExpr::CK_ArrayToPointerDecay: { | 
 |     assert(E->getType()->isArrayType() && | 
 |            "Array to pointer decay must have array source type!"); | 
 |  | 
 |     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays. | 
 |  | 
 |     // Note that VLA pointers are always decayed, so we don't need to do | 
 |     // anything here. | 
 |     if (!E->getType()->isVariableArrayType()) { | 
 |       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); | 
 |       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) | 
 |                                  ->getElementType()) && | 
 |              "Expected pointer to array"); | 
 |       V = Builder.CreateStructGEP(V, 0, "arraydecay"); | 
 |     } | 
 |  | 
 |     return V; | 
 |   } | 
 |   case CastExpr::CK_FunctionToPointerDecay: | 
 |     return EmitLValue(E).getAddress(); | 
 |  | 
 |   case CastExpr::CK_NullToMemberPointer: | 
 |     return CGF.CGM.EmitNullConstant(DestTy); | 
 |  | 
 |   case CastExpr::CK_BaseToDerivedMemberPointer: | 
 |   case CastExpr::CK_DerivedToBaseMemberPointer: { | 
 |     Value *Src = Visit(E); | 
 |  | 
 |     // See if we need to adjust the pointer. | 
 |     const CXXRecordDecl *BaseDecl =  | 
 |       cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()-> | 
 |                           getClass()->getAs<RecordType>()->getDecl()); | 
 |     const CXXRecordDecl *DerivedDecl =  | 
 |       cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()-> | 
 |                           getClass()->getAs<RecordType>()->getDecl()); | 
 |     if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer) | 
 |       std::swap(DerivedDecl, BaseDecl); | 
 |  | 
 |     llvm::Constant *Adj = CGF.CGM.GetCXXBaseClassOffset(DerivedDecl, BaseDecl); | 
 |     if (Adj) { | 
 |       if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer) | 
 |         Src = Builder.CreateSub(Src, Adj, "adj"); | 
 |       else | 
 |         Src = Builder.CreateAdd(Src, Adj, "adj"); | 
 |     } | 
 |     return Src; | 
 |   } | 
 |  | 
 |   case CastExpr::CK_UserDefinedConversion: | 
 |   case CastExpr::CK_ConstructorConversion: | 
 |     assert(0 && "Should be unreachable!"); | 
 |     break; | 
 |  | 
 |   case CastExpr::CK_IntegralToPointer: { | 
 |     Value *Src = Visit(const_cast<Expr*>(E)); | 
 |      | 
 |     // First, convert to the correct width so that we control the kind of | 
 |     // extension. | 
 |     const llvm::Type *MiddleTy = | 
 |       llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); | 
 |     bool InputSigned = E->getType()->isSignedIntegerType(); | 
 |     llvm::Value* IntResult = | 
 |       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); | 
 |      | 
 |     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); | 
 |   } | 
 |   case CastExpr::CK_PointerToIntegral: { | 
 |     Value *Src = Visit(const_cast<Expr*>(E)); | 
 |     return Builder.CreatePtrToInt(Src, ConvertType(DestTy)); | 
 |   } | 
 |   case CastExpr::CK_ToVoid: { | 
 |     CGF.EmitAnyExpr(E, 0, false, true); | 
 |     return 0; | 
 |   } | 
 |   case CastExpr::CK_VectorSplat: { | 
 |     const llvm::Type *DstTy = ConvertType(DestTy); | 
 |     Value *Elt = Visit(const_cast<Expr*>(E)); | 
 |  | 
 |     // Insert the element in element zero of an undef vector | 
 |     llvm::Value *UnV = llvm::UndefValue::get(DstTy); | 
 |     llvm::Value *Idx = | 
 |         llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0); | 
 |     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp"); | 
 |  | 
 |     // Splat the element across to all elements | 
 |     llvm::SmallVector<llvm::Constant*, 16> Args; | 
 |     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); | 
 |     for (unsigned i = 0; i < NumElements; i++) | 
 |       Args.push_back(llvm::ConstantInt::get( | 
 |                                         llvm::Type::getInt32Ty(VMContext), 0)); | 
 |  | 
 |     llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements); | 
 |     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat"); | 
 |     return Yay; | 
 |   } | 
 |   case CastExpr::CK_IntegralCast: | 
 |   case CastExpr::CK_IntegralToFloating: | 
 |   case CastExpr::CK_FloatingToIntegral: | 
 |   case CastExpr::CK_FloatingCast: | 
 |     return EmitScalarConversion(Visit(E), E->getType(), DestTy); | 
 |  | 
 |   case CastExpr::CK_MemberPointerToBoolean: { | 
 |     const MemberPointerType* T = E->getType()->getAs<MemberPointerType>(); | 
 |      | 
 |     if (T->getPointeeType()->isFunctionType()) { | 
 |       // We have a member function pointer. | 
 |       llvm::Value *Ptr = CGF.CreateTempAlloca(ConvertType(E->getType())); | 
 |        | 
 |       CGF.EmitAggExpr(E, Ptr, /*VolatileDest=*/false); | 
 |        | 
 |       // Get the pointer. | 
 |       llvm::Value *FuncPtr = Builder.CreateStructGEP(Ptr, 0, "src.ptr"); | 
 |       FuncPtr = Builder.CreateLoad(FuncPtr); | 
 |        | 
 |       llvm::Value *IsNotNull =  | 
 |         Builder.CreateICmpNE(FuncPtr, | 
 |                              llvm::Constant::getNullValue(FuncPtr->getType()), | 
 |                              "tobool"); | 
 |        | 
 |       return IsNotNull; | 
 |     } | 
 |     | 
 |     // We have a regular member pointer. | 
 |     Value *Ptr = Visit(const_cast<Expr*>(E)); | 
 |     llvm::Value *IsNotNull =  | 
 |       Builder.CreateICmpNE(Ptr, CGF.CGM.EmitNullConstant(E->getType()), | 
 |                            "tobool"); | 
 |     return IsNotNull; | 
 |   } | 
 |   } | 
 |  | 
 |   // Handle cases where the source is an non-complex type. | 
 |  | 
 |   if (!CGF.hasAggregateLLVMType(E->getType())) { | 
 |     Value *Src = Visit(const_cast<Expr*>(E)); | 
 |  | 
 |     // Use EmitScalarConversion to perform the conversion. | 
 |     return EmitScalarConversion(Src, E->getType(), DestTy); | 
 |   } | 
 |  | 
 |   if (E->getType()->isAnyComplexType()) { | 
 |     // Handle cases where the source is a complex type. | 
 |     bool IgnoreImag = true; | 
 |     bool IgnoreImagAssign = true; | 
 |     bool IgnoreReal = IgnoreResultAssign; | 
 |     bool IgnoreRealAssign = IgnoreResultAssign; | 
 |     if (DestTy->isBooleanType()) | 
 |       IgnoreImagAssign = IgnoreImag = false; | 
 |     else if (DestTy->isVoidType()) { | 
 |       IgnoreReal = IgnoreImag = false; | 
 |       IgnoreRealAssign = IgnoreImagAssign = true; | 
 |     } | 
 |     CodeGenFunction::ComplexPairTy V | 
 |       = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign, | 
 |                             IgnoreImagAssign); | 
 |     return EmitComplexToScalarConversion(V, E->getType(), DestTy); | 
 |   } | 
 |  | 
 |   // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just | 
 |   // evaluate the result and return. | 
 |   CGF.EmitAggExpr(E, 0, false, true); | 
 |   return 0; | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { | 
 |   return CGF.EmitCompoundStmt(*E->getSubStmt(), | 
 |                               !E->getType()->isVoidType()).getScalarVal(); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { | 
 |   llvm::Value *V = CGF.GetAddrOfBlockDecl(E); | 
 |   if (E->getType().isObjCGCWeak()) | 
 |     return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V); | 
 |   return Builder.CreateLoad(V, "tmp"); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                             Unary Operators | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E, | 
 |                                              bool isInc, bool isPre) { | 
 |   LValue LV = EmitLValue(E->getSubExpr()); | 
 |   QualType ValTy = E->getSubExpr()->getType(); | 
 |   Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal(); | 
 |  | 
 |   llvm::LLVMContext &VMContext = CGF.getLLVMContext(); | 
 |  | 
 |   int AmountVal = isInc ? 1 : -1; | 
 |  | 
 |   if (ValTy->isPointerType() && | 
 |       ValTy->getAs<PointerType>()->isVariableArrayType()) { | 
 |     // The amount of the addition/subtraction needs to account for the VLA size | 
 |     CGF.ErrorUnsupported(E, "VLA pointer inc/dec"); | 
 |   } | 
 |  | 
 |   Value *NextVal; | 
 |   if (const llvm::PointerType *PT = | 
 |          dyn_cast<llvm::PointerType>(InVal->getType())) { | 
 |     llvm::Constant *Inc = | 
 |       llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal); | 
 |     if (!isa<llvm::FunctionType>(PT->getElementType())) { | 
 |       QualType PTEE = ValTy->getPointeeType(); | 
 |       if (const ObjCInterfaceType *OIT = | 
 |           dyn_cast<ObjCInterfaceType>(PTEE)) { | 
 |         // Handle interface types, which are not represented with a concrete type. | 
 |         int size = CGF.getContext().getTypeSize(OIT) / 8; | 
 |         if (!isInc) | 
 |           size = -size; | 
 |         Inc = llvm::ConstantInt::get(Inc->getType(), size); | 
 |         const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); | 
 |         InVal = Builder.CreateBitCast(InVal, i8Ty); | 
 |         NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr"); | 
 |         llvm::Value *lhs = LV.getAddress(); | 
 |         lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty)); | 
 |         LV = LValue::MakeAddr(lhs, CGF.MakeQualifiers(ValTy)); | 
 |       } else | 
 |         NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec"); | 
 |     } else { | 
 |       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); | 
 |       NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp"); | 
 |       NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec"); | 
 |       NextVal = Builder.CreateBitCast(NextVal, InVal->getType()); | 
 |     } | 
 |   } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) { | 
 |     // Bool++ is an interesting case, due to promotion rules, we get: | 
 |     // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 -> | 
 |     // Bool = ((int)Bool+1) != 0 | 
 |     // An interesting aspect of this is that increment is always true. | 
 |     // Decrement does not have this property. | 
 |     NextVal = llvm::ConstantInt::getTrue(VMContext); | 
 |   } else if (isa<llvm::IntegerType>(InVal->getType())) { | 
 |     NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal); | 
 |  | 
 |     // Signed integer overflow is undefined behavior. | 
 |     if (ValTy->isSignedIntegerType()) | 
 |       NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec"); | 
 |     else | 
 |       NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec"); | 
 |   } else { | 
 |     // Add the inc/dec to the real part. | 
 |     if (InVal->getType()->isFloatTy()) | 
 |       NextVal = | 
 |         llvm::ConstantFP::get(VMContext, | 
 |                               llvm::APFloat(static_cast<float>(AmountVal))); | 
 |     else if (InVal->getType()->isDoubleTy()) | 
 |       NextVal = | 
 |         llvm::ConstantFP::get(VMContext, | 
 |                               llvm::APFloat(static_cast<double>(AmountVal))); | 
 |     else { | 
 |       llvm::APFloat F(static_cast<float>(AmountVal)); | 
 |       bool ignored; | 
 |       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero, | 
 |                 &ignored); | 
 |       NextVal = llvm::ConstantFP::get(VMContext, F); | 
 |     } | 
 |     NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec"); | 
 |   } | 
 |  | 
 |   // Store the updated result through the lvalue. | 
 |   if (LV.isBitfield()) | 
 |     CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, | 
 |                                        &NextVal); | 
 |   else | 
 |     CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy); | 
 |  | 
 |   // If this is a postinc, return the value read from memory, otherwise use the | 
 |   // updated value. | 
 |   return isPre ? NextVal : InVal; | 
 | } | 
 |  | 
 |  | 
 | Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { | 
 |   TestAndClearIgnoreResultAssign(); | 
 |   Value *Op = Visit(E->getSubExpr()); | 
 |   if (Op->getType()->isFPOrFPVector()) | 
 |     return Builder.CreateFNeg(Op, "neg"); | 
 |   return Builder.CreateNeg(Op, "neg"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { | 
 |   TestAndClearIgnoreResultAssign(); | 
 |   Value *Op = Visit(E->getSubExpr()); | 
 |   return Builder.CreateNot(Op, "neg"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { | 
 |   // Compare operand to zero. | 
 |   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); | 
 |  | 
 |   // Invert value. | 
 |   // TODO: Could dynamically modify easy computations here.  For example, if | 
 |   // the operand is an icmp ne, turn into icmp eq. | 
 |   BoolVal = Builder.CreateNot(BoolVal, "lnot"); | 
 |  | 
 |   // ZExt result to the expr type. | 
 |   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); | 
 | } | 
 |  | 
 | /// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of | 
 | /// argument of the sizeof expression as an integer. | 
 | Value * | 
 | ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) { | 
 |   QualType TypeToSize = E->getTypeOfArgument(); | 
 |   if (E->isSizeOf()) { | 
 |     if (const VariableArrayType *VAT = | 
 |           CGF.getContext().getAsVariableArrayType(TypeToSize)) { | 
 |       if (E->isArgumentType()) { | 
 |         // sizeof(type) - make sure to emit the VLA size. | 
 |         CGF.EmitVLASize(TypeToSize); | 
 |       } else { | 
 |         // C99 6.5.3.4p2: If the argument is an expression of type | 
 |         // VLA, it is evaluated. | 
 |         CGF.EmitAnyExpr(E->getArgumentExpr()); | 
 |       } | 
 |  | 
 |       return CGF.GetVLASize(VAT); | 
 |     } | 
 |   } | 
 |  | 
 |   // If this isn't sizeof(vla), the result must be constant; use the constant | 
 |   // folding logic so we don't have to duplicate it here. | 
 |   Expr::EvalResult Result; | 
 |   E->Evaluate(Result, CGF.getContext()); | 
 |   return llvm::ConstantInt::get(VMContext, Result.Val.getInt()); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { | 
 |   Expr *Op = E->getSubExpr(); | 
 |   if (Op->getType()->isAnyComplexType()) | 
 |     return CGF.EmitComplexExpr(Op, false, true, false, true).first; | 
 |   return Visit(Op); | 
 | } | 
 | Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { | 
 |   Expr *Op = E->getSubExpr(); | 
 |   if (Op->getType()->isAnyComplexType()) | 
 |     return CGF.EmitComplexExpr(Op, true, false, true, false).second; | 
 |  | 
 |   // __imag on a scalar returns zero.  Emit the subexpr to ensure side | 
 |   // effects are evaluated, but not the actual value. | 
 |   if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid) | 
 |     CGF.EmitLValue(Op); | 
 |   else | 
 |     CGF.EmitScalarExpr(Op, true); | 
 |   return llvm::Constant::getNullValue(ConvertType(E->getType())); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) { | 
 |   Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress(); | 
 |   const llvm::Type* ResultType = ConvertType(E->getType()); | 
 |   return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof"); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                           Binary Operators | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { | 
 |   TestAndClearIgnoreResultAssign(); | 
 |   BinOpInfo Result; | 
 |   Result.LHS = Visit(E->getLHS()); | 
 |   Result.RHS = Visit(E->getRHS()); | 
 |   Result.Ty  = E->getType(); | 
 |   Result.E = E; | 
 |   return Result; | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, | 
 |                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { | 
 |   bool Ignore = TestAndClearIgnoreResultAssign(); | 
 |   QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType(); | 
 |  | 
 |   BinOpInfo OpInfo; | 
 |  | 
 |   if (E->getComputationResultType()->isAnyComplexType()) { | 
 |     // This needs to go through the complex expression emitter, but it's a tad | 
 |     // complicated to do that... I'm leaving it out for now.  (Note that we do | 
 |     // actually need the imaginary part of the RHS for multiplication and | 
 |     // division.) | 
 |     CGF.ErrorUnsupported(E, "complex compound assignment"); | 
 |     return llvm::UndefValue::get(CGF.ConvertType(E->getType())); | 
 |   } | 
 |  | 
 |   // Emit the RHS first.  __block variables need to have the rhs evaluated | 
 |   // first, plus this should improve codegen a little. | 
 |   OpInfo.RHS = Visit(E->getRHS()); | 
 |   OpInfo.Ty = E->getComputationResultType(); | 
 |   OpInfo.E = E; | 
 |   // Load/convert the LHS. | 
 |   LValue LHSLV = EmitLValue(E->getLHS()); | 
 |   OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy); | 
 |   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, | 
 |                                     E->getComputationLHSType()); | 
 |  | 
 |   // Expand the binary operator. | 
 |   Value *Result = (this->*Func)(OpInfo); | 
 |  | 
 |   // Convert the result back to the LHS type. | 
 |   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); | 
 |  | 
 |   // Store the result value into the LHS lvalue. Bit-fields are handled | 
 |   // specially because the result is altered by the store, i.e., [C99 6.5.16p1] | 
 |   // 'An assignment expression has the value of the left operand after the | 
 |   // assignment...'. | 
 |   if (LHSLV.isBitfield()) { | 
 |     if (!LHSLV.isVolatileQualified()) { | 
 |       CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy, | 
 |                                          &Result); | 
 |       return Result; | 
 |     } else | 
 |       CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy); | 
 |   } else | 
 |     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy); | 
 |   if (Ignore) | 
 |     return 0; | 
 |   return EmitLoadOfLValue(LHSLV, E->getType()); | 
 | } | 
 |  | 
 |  | 
 | Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { | 
 |   if (Ops.LHS->getType()->isFPOrFPVector()) | 
 |     return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); | 
 |   else if (Ops.Ty->isUnsignedIntegerType()) | 
 |     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); | 
 |   else | 
 |     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { | 
 |   // Rem in C can't be a floating point type: C99 6.5.5p2. | 
 |   if (Ops.Ty->isUnsignedIntegerType()) | 
 |     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); | 
 |   else | 
 |     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { | 
 |   unsigned IID; | 
 |   unsigned OpID = 0; | 
 |  | 
 |   switch (Ops.E->getOpcode()) { | 
 |   case BinaryOperator::Add: | 
 |   case BinaryOperator::AddAssign: | 
 |     OpID = 1; | 
 |     IID = llvm::Intrinsic::sadd_with_overflow; | 
 |     break; | 
 |   case BinaryOperator::Sub: | 
 |   case BinaryOperator::SubAssign: | 
 |     OpID = 2; | 
 |     IID = llvm::Intrinsic::ssub_with_overflow; | 
 |     break; | 
 |   case BinaryOperator::Mul: | 
 |   case BinaryOperator::MulAssign: | 
 |     OpID = 3; | 
 |     IID = llvm::Intrinsic::smul_with_overflow; | 
 |     break; | 
 |   default: | 
 |     assert(false && "Unsupported operation for overflow detection"); | 
 |     IID = 0; | 
 |   } | 
 |   OpID <<= 1; | 
 |   OpID |= 1; | 
 |  | 
 |   const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); | 
 |  | 
 |   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1); | 
 |  | 
 |   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); | 
 |   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); | 
 |   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); | 
 |  | 
 |   // Branch in case of overflow. | 
 |   llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); | 
 |   llvm::BasicBlock *overflowBB = | 
 |     CGF.createBasicBlock("overflow", CGF.CurFn); | 
 |   llvm::BasicBlock *continueBB = | 
 |     CGF.createBasicBlock("overflow.continue", CGF.CurFn); | 
 |  | 
 |   Builder.CreateCondBr(overflow, overflowBB, continueBB); | 
 |  | 
 |   // Handle overflow | 
 |  | 
 |   Builder.SetInsertPoint(overflowBB); | 
 |  | 
 |   // Handler is: | 
 |   // long long *__overflow_handler)(long long a, long long b, char op, | 
 |   // char width) | 
 |   std::vector<const llvm::Type*> handerArgTypes; | 
 |   handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext)); | 
 |   handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext)); | 
 |   handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext)); | 
 |   handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext)); | 
 |   llvm::FunctionType *handlerTy = llvm::FunctionType::get( | 
 |       llvm::Type::getInt64Ty(VMContext), handerArgTypes, false); | 
 |   llvm::Value *handlerFunction = | 
 |     CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler", | 
 |         llvm::PointerType::getUnqual(handlerTy)); | 
 |   handlerFunction = Builder.CreateLoad(handlerFunction); | 
 |  | 
 |   llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction, | 
 |       Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)), | 
 |       Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)), | 
 |       llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID), | 
 |       llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), | 
 |         cast<llvm::IntegerType>(opTy)->getBitWidth())); | 
 |  | 
 |   handlerResult = Builder.CreateTrunc(handlerResult, opTy); | 
 |  | 
 |   Builder.CreateBr(continueBB); | 
 |  | 
 |   // Set up the continuation | 
 |   Builder.SetInsertPoint(continueBB); | 
 |   // Get the correct result | 
 |   llvm::PHINode *phi = Builder.CreatePHI(opTy); | 
 |   phi->reserveOperandSpace(2); | 
 |   phi->addIncoming(result, initialBB); | 
 |   phi->addIncoming(handlerResult, overflowBB); | 
 |  | 
 |   return phi; | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) { | 
 |   if (!Ops.Ty->isAnyPointerType()) { | 
 |     if (CGF.getContext().getLangOptions().OverflowChecking && | 
 |         Ops.Ty->isSignedIntegerType()) | 
 |       return EmitOverflowCheckedBinOp(Ops); | 
 |  | 
 |     if (Ops.LHS->getType()->isFPOrFPVector()) | 
 |       return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add"); | 
 |  | 
 |     // Signed integer overflow is undefined behavior. | 
 |     if (Ops.Ty->isSignedIntegerType()) | 
 |       return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add"); | 
 |  | 
 |     return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add"); | 
 |   } | 
 |  | 
 |   if (Ops.Ty->isPointerType() && | 
 |       Ops.Ty->getAs<PointerType>()->isVariableArrayType()) { | 
 |     // The amount of the addition needs to account for the VLA size | 
 |     CGF.ErrorUnsupported(Ops.E, "VLA pointer addition"); | 
 |   } | 
 |   Value *Ptr, *Idx; | 
 |   Expr *IdxExp; | 
 |   const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>(); | 
 |   const ObjCObjectPointerType *OPT = | 
 |     Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>(); | 
 |   if (PT || OPT) { | 
 |     Ptr = Ops.LHS; | 
 |     Idx = Ops.RHS; | 
 |     IdxExp = Ops.E->getRHS(); | 
 |   } else {  // int + pointer | 
 |     PT = Ops.E->getRHS()->getType()->getAs<PointerType>(); | 
 |     OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>(); | 
 |     assert((PT || OPT) && "Invalid add expr"); | 
 |     Ptr = Ops.RHS; | 
 |     Idx = Ops.LHS; | 
 |     IdxExp = Ops.E->getLHS(); | 
 |   } | 
 |  | 
 |   unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); | 
 |   if (Width < CGF.LLVMPointerWidth) { | 
 |     // Zero or sign extend the pointer value based on whether the index is | 
 |     // signed or not. | 
 |     const llvm::Type *IdxType = | 
 |         llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); | 
 |     if (IdxExp->getType()->isSignedIntegerType()) | 
 |       Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext"); | 
 |     else | 
 |       Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext"); | 
 |   } | 
 |   const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType(); | 
 |   // Handle interface types, which are not represented with a concrete type. | 
 |   if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) { | 
 |     llvm::Value *InterfaceSize = | 
 |       llvm::ConstantInt::get(Idx->getType(), | 
 |                              CGF.getContext().getTypeSize(OIT) / 8); | 
 |     Idx = Builder.CreateMul(Idx, InterfaceSize); | 
 |     const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); | 
 |     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty); | 
 |     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr"); | 
 |     return Builder.CreateBitCast(Res, Ptr->getType()); | 
 |   } | 
 |  | 
 |   // Explicitly handle GNU void* and function pointer arithmetic extensions. The | 
 |   // GNU void* casts amount to no-ops since our void* type is i8*, but this is | 
 |   // future proof. | 
 |   if (ElementType->isVoidType() || ElementType->isFunctionType()) { | 
 |     const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); | 
 |     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty); | 
 |     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr"); | 
 |     return Builder.CreateBitCast(Res, Ptr->getType()); | 
 |   } | 
 |  | 
 |   return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) { | 
 |   if (!isa<llvm::PointerType>(Ops.LHS->getType())) { | 
 |     if (CGF.getContext().getLangOptions().OverflowChecking | 
 |         && Ops.Ty->isSignedIntegerType()) | 
 |       return EmitOverflowCheckedBinOp(Ops); | 
 |  | 
 |     if (Ops.LHS->getType()->isFPOrFPVector()) | 
 |       return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub"); | 
 |     return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub"); | 
 |   } | 
 |  | 
 |   if (Ops.E->getLHS()->getType()->isPointerType() && | 
 |       Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) { | 
 |     // The amount of the addition needs to account for the VLA size for | 
 |     // ptr-int | 
 |     // The amount of the division needs to account for the VLA size for | 
 |     // ptr-ptr. | 
 |     CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction"); | 
 |   } | 
 |  | 
 |   const QualType LHSType = Ops.E->getLHS()->getType(); | 
 |   const QualType LHSElementType = LHSType->getPointeeType(); | 
 |   if (!isa<llvm::PointerType>(Ops.RHS->getType())) { | 
 |     // pointer - int | 
 |     Value *Idx = Ops.RHS; | 
 |     unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); | 
 |     if (Width < CGF.LLVMPointerWidth) { | 
 |       // Zero or sign extend the pointer value based on whether the index is | 
 |       // signed or not. | 
 |       const llvm::Type *IdxType = | 
 |           llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); | 
 |       if (Ops.E->getRHS()->getType()->isSignedIntegerType()) | 
 |         Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext"); | 
 |       else | 
 |         Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext"); | 
 |     } | 
 |     Idx = Builder.CreateNeg(Idx, "sub.ptr.neg"); | 
 |  | 
 |     // Handle interface types, which are not represented with a concrete type. | 
 |     if (const ObjCInterfaceType *OIT = | 
 |         dyn_cast<ObjCInterfaceType>(LHSElementType)) { | 
 |       llvm::Value *InterfaceSize = | 
 |         llvm::ConstantInt::get(Idx->getType(), | 
 |                                CGF.getContext().getTypeSize(OIT) / 8); | 
 |       Idx = Builder.CreateMul(Idx, InterfaceSize); | 
 |       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); | 
 |       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty); | 
 |       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr"); | 
 |       return Builder.CreateBitCast(Res, Ops.LHS->getType()); | 
 |     } | 
 |  | 
 |     // Explicitly handle GNU void* and function pointer arithmetic | 
 |     // extensions. The GNU void* casts amount to no-ops since our void* type is | 
 |     // i8*, but this is future proof. | 
 |     if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) { | 
 |       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); | 
 |       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty); | 
 |       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr"); | 
 |       return Builder.CreateBitCast(Res, Ops.LHS->getType()); | 
 |     } | 
 |  | 
 |     return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr"); | 
 |   } else { | 
 |     // pointer - pointer | 
 |     Value *LHS = Ops.LHS; | 
 |     Value *RHS = Ops.RHS; | 
 |  | 
 |     uint64_t ElementSize; | 
 |  | 
 |     // Handle GCC extension for pointer arithmetic on void* and function pointer | 
 |     // types. | 
 |     if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) { | 
 |       ElementSize = 1; | 
 |     } else { | 
 |       ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8; | 
 |     } | 
 |  | 
 |     const llvm::Type *ResultType = ConvertType(Ops.Ty); | 
 |     LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast"); | 
 |     RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); | 
 |     Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); | 
 |  | 
 |     // Optimize out the shift for element size of 1. | 
 |     if (ElementSize == 1) | 
 |       return BytesBetween; | 
 |  | 
 |     // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since | 
 |     // pointer difference in C is only defined in the case where both operands | 
 |     // are pointing to elements of an array. | 
 |     Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize); | 
 |     return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div"); | 
 |   } | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { | 
 |   // LLVM requires the LHS and RHS to be the same type: promote or truncate the | 
 |   // RHS to the same size as the LHS. | 
 |   Value *RHS = Ops.RHS; | 
 |   if (Ops.LHS->getType() != RHS->getType()) | 
 |     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); | 
 |  | 
 |   return Builder.CreateShl(Ops.LHS, RHS, "shl"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { | 
 |   // LLVM requires the LHS and RHS to be the same type: promote or truncate the | 
 |   // RHS to the same size as the LHS. | 
 |   Value *RHS = Ops.RHS; | 
 |   if (Ops.LHS->getType() != RHS->getType()) | 
 |     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); | 
 |  | 
 |   if (Ops.Ty->isUnsignedIntegerType()) | 
 |     return Builder.CreateLShr(Ops.LHS, RHS, "shr"); | 
 |   return Builder.CreateAShr(Ops.LHS, RHS, "shr"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, | 
 |                                       unsigned SICmpOpc, unsigned FCmpOpc) { | 
 |   TestAndClearIgnoreResultAssign(); | 
 |   Value *Result; | 
 |   QualType LHSTy = E->getLHS()->getType(); | 
 |   if (!LHSTy->isAnyComplexType()) { | 
 |     Value *LHS = Visit(E->getLHS()); | 
 |     Value *RHS = Visit(E->getRHS()); | 
 |  | 
 |     if (LHS->getType()->isFPOrFPVector()) { | 
 |       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, | 
 |                                   LHS, RHS, "cmp"); | 
 |     } else if (LHSTy->isSignedIntegerType()) { | 
 |       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, | 
 |                                   LHS, RHS, "cmp"); | 
 |     } else { | 
 |       // Unsigned integers and pointers. | 
 |       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, | 
 |                                   LHS, RHS, "cmp"); | 
 |     } | 
 |  | 
 |     // If this is a vector comparison, sign extend the result to the appropriate | 
 |     // vector integer type and return it (don't convert to bool). | 
 |     if (LHSTy->isVectorType()) | 
 |       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); | 
 |  | 
 |   } else { | 
 |     // Complex Comparison: can only be an equality comparison. | 
 |     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); | 
 |     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); | 
 |  | 
 |     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); | 
 |  | 
 |     Value *ResultR, *ResultI; | 
 |     if (CETy->isRealFloatingType()) { | 
 |       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, | 
 |                                    LHS.first, RHS.first, "cmp.r"); | 
 |       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, | 
 |                                    LHS.second, RHS.second, "cmp.i"); | 
 |     } else { | 
 |       // Complex comparisons can only be equality comparisons.  As such, signed | 
 |       // and unsigned opcodes are the same. | 
 |       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, | 
 |                                    LHS.first, RHS.first, "cmp.r"); | 
 |       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, | 
 |                                    LHS.second, RHS.second, "cmp.i"); | 
 |     } | 
 |  | 
 |     if (E->getOpcode() == BinaryOperator::EQ) { | 
 |       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); | 
 |     } else { | 
 |       assert(E->getOpcode() == BinaryOperator::NE && | 
 |              "Complex comparison other than == or != ?"); | 
 |       Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); | 
 |     } | 
 |   } | 
 |  | 
 |   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { | 
 |   bool Ignore = TestAndClearIgnoreResultAssign(); | 
 |  | 
 |   // __block variables need to have the rhs evaluated first, plus this should | 
 |   // improve codegen just a little. | 
 |   Value *RHS = Visit(E->getRHS()); | 
 |   LValue LHS = EmitLValue(E->getLHS()); | 
 |  | 
 |   // Store the value into the LHS.  Bit-fields are handled specially | 
 |   // because the result is altered by the store, i.e., [C99 6.5.16p1] | 
 |   // 'An assignment expression has the value of the left operand after | 
 |   // the assignment...'. | 
 |   if (LHS.isBitfield()) { | 
 |     if (!LHS.isVolatileQualified()) { | 
 |       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(), | 
 |                                          &RHS); | 
 |       return RHS; | 
 |     } else | 
 |       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType()); | 
 |   } else | 
 |     CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType()); | 
 |   if (Ignore) | 
 |     return 0; | 
 |   return EmitLoadOfLValue(LHS, E->getType()); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { | 
 |   const llvm::Type *ResTy = ConvertType(E->getType()); | 
 |    | 
 |   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. | 
 |   // If we have 1 && X, just emit X without inserting the control flow. | 
 |   if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) { | 
 |     if (Cond == 1) { // If we have 1 && X, just emit X. | 
 |       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); | 
 |       // ZExt result to int or bool. | 
 |       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); | 
 |     } | 
 |  | 
 |     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. | 
 |     if (!CGF.ContainsLabel(E->getRHS())) | 
 |       return llvm::Constant::getNullValue(ResTy); | 
 |   } | 
 |  | 
 |   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); | 
 |   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs"); | 
 |  | 
 |   // Branch on the LHS first.  If it is false, go to the failure (cont) block. | 
 |   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock); | 
 |  | 
 |   // Any edges into the ContBlock are now from an (indeterminate number of) | 
 |   // edges from this first condition.  All of these values will be false.  Start | 
 |   // setting up the PHI node in the Cont Block for this. | 
 |   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), | 
 |                                             "", ContBlock); | 
 |   PN->reserveOperandSpace(2);  // Normal case, two inputs. | 
 |   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); | 
 |        PI != PE; ++PI) | 
 |     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); | 
 |  | 
 |   CGF.StartConditionalBranch(); | 
 |   CGF.EmitBlock(RHSBlock); | 
 |   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); | 
 |   CGF.FinishConditionalBranch(); | 
 |  | 
 |   // Reaquire the RHS block, as there may be subblocks inserted. | 
 |   RHSBlock = Builder.GetInsertBlock(); | 
 |  | 
 |   // Emit an unconditional branch from this block to ContBlock.  Insert an entry | 
 |   // into the phi node for the edge with the value of RHSCond. | 
 |   CGF.EmitBlock(ContBlock); | 
 |   PN->addIncoming(RHSCond, RHSBlock); | 
 |  | 
 |   // ZExt result to int. | 
 |   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { | 
 |   const llvm::Type *ResTy = ConvertType(E->getType()); | 
 |    | 
 |   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. | 
 |   // If we have 0 || X, just emit X without inserting the control flow. | 
 |   if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) { | 
 |     if (Cond == -1) { // If we have 0 || X, just emit X. | 
 |       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); | 
 |       // ZExt result to int or bool. | 
 |       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); | 
 |     } | 
 |  | 
 |     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. | 
 |     if (!CGF.ContainsLabel(E->getRHS())) | 
 |       return llvm::ConstantInt::get(ResTy, 1); | 
 |   } | 
 |  | 
 |   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); | 
 |   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); | 
 |  | 
 |   // Branch on the LHS first.  If it is true, go to the success (cont) block. | 
 |   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock); | 
 |  | 
 |   // Any edges into the ContBlock are now from an (indeterminate number of) | 
 |   // edges from this first condition.  All of these values will be true.  Start | 
 |   // setting up the PHI node in the Cont Block for this. | 
 |   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), | 
 |                                             "", ContBlock); | 
 |   PN->reserveOperandSpace(2);  // Normal case, two inputs. | 
 |   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); | 
 |        PI != PE; ++PI) | 
 |     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); | 
 |  | 
 |   CGF.StartConditionalBranch(); | 
 |  | 
 |   // Emit the RHS condition as a bool value. | 
 |   CGF.EmitBlock(RHSBlock); | 
 |   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); | 
 |  | 
 |   CGF.FinishConditionalBranch(); | 
 |  | 
 |   // Reaquire the RHS block, as there may be subblocks inserted. | 
 |   RHSBlock = Builder.GetInsertBlock(); | 
 |  | 
 |   // Emit an unconditional branch from this block to ContBlock.  Insert an entry | 
 |   // into the phi node for the edge with the value of RHSCond. | 
 |   CGF.EmitBlock(ContBlock); | 
 |   PN->addIncoming(RHSCond, RHSBlock); | 
 |  | 
 |   // ZExt result to int. | 
 |   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { | 
 |   CGF.EmitStmt(E->getLHS()); | 
 |   CGF.EnsureInsertPoint(); | 
 |   return Visit(E->getRHS()); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                             Other Operators | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified | 
 | /// expression is cheap enough and side-effect-free enough to evaluate | 
 | /// unconditionally instead of conditionally.  This is used to convert control | 
 | /// flow into selects in some cases. | 
 | static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, | 
 |                                                    CodeGenFunction &CGF) { | 
 |   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) | 
 |     return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF); | 
 |  | 
 |   // TODO: Allow anything we can constant fold to an integer or fp constant. | 
 |   if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) || | 
 |       isa<FloatingLiteral>(E)) | 
 |     return true; | 
 |  | 
 |   // Non-volatile automatic variables too, to get "cond ? X : Y" where | 
 |   // X and Y are local variables. | 
 |   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) | 
 |     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) | 
 |       if (VD->hasLocalStorage() && !(CGF.getContext() | 
 |                                      .getCanonicalType(VD->getType()) | 
 |                                      .isVolatileQualified())) | 
 |         return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | Value *ScalarExprEmitter:: | 
 | VisitConditionalOperator(const ConditionalOperator *E) { | 
 |   TestAndClearIgnoreResultAssign(); | 
 |   // If the condition constant folds and can be elided, try to avoid emitting | 
 |   // the condition and the dead arm. | 
 |   if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){ | 
 |     Expr *Live = E->getLHS(), *Dead = E->getRHS(); | 
 |     if (Cond == -1) | 
 |       std::swap(Live, Dead); | 
 |  | 
 |     // If the dead side doesn't have labels we need, and if the Live side isn't | 
 |     // the gnu missing ?: extension (which we could handle, but don't bother | 
 |     // to), just emit the Live part. | 
 |     if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part | 
 |         Live)                                   // Live part isn't missing. | 
 |       return Visit(Live); | 
 |   } | 
 |  | 
 |  | 
 |   // If this is a really simple expression (like x ? 4 : 5), emit this as a | 
 |   // select instead of as control flow.  We can only do this if it is cheap and | 
 |   // safe to evaluate the LHS and RHS unconditionally. | 
 |   if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(), | 
 |                                                             CGF) && | 
 |       isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) { | 
 |     llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond()); | 
 |     llvm::Value *LHS = Visit(E->getLHS()); | 
 |     llvm::Value *RHS = Visit(E->getRHS()); | 
 |     return Builder.CreateSelect(CondV, LHS, RHS, "cond"); | 
 |   } | 
 |  | 
 |  | 
 |   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); | 
 |   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); | 
 |   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); | 
 |   Value *CondVal = 0; | 
 |  | 
 |   // If we don't have the GNU missing condition extension, emit a branch on bool | 
 |   // the normal way. | 
 |   if (E->getLHS()) { | 
 |     // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for | 
 |     // the branch on bool. | 
 |     CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); | 
 |   } else { | 
 |     // Otherwise, for the ?: extension, evaluate the conditional and then | 
 |     // convert it to bool the hard way.  We do this explicitly because we need | 
 |     // the unconverted value for the missing middle value of the ?:. | 
 |     CondVal = CGF.EmitScalarExpr(E->getCond()); | 
 |  | 
 |     // In some cases, EmitScalarConversion will delete the "CondVal" expression | 
 |     // if there are no extra uses (an optimization).  Inhibit this by making an | 
 |     // extra dead use, because we're going to add a use of CondVal later.  We | 
 |     // don't use the builder for this, because we don't want it to get optimized | 
 |     // away.  This leaves dead code, but the ?: extension isn't common. | 
 |     new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder", | 
 |                           Builder.GetInsertBlock()); | 
 |  | 
 |     Value *CondBoolVal = | 
 |       CGF.EmitScalarConversion(CondVal, E->getCond()->getType(), | 
 |                                CGF.getContext().BoolTy); | 
 |     Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock); | 
 |   } | 
 |  | 
 |   CGF.StartConditionalBranch(); | 
 |   CGF.EmitBlock(LHSBlock); | 
 |  | 
 |   // Handle the GNU extension for missing LHS. | 
 |   Value *LHS; | 
 |   if (E->getLHS()) | 
 |     LHS = Visit(E->getLHS()); | 
 |   else    // Perform promotions, to handle cases like "short ?: int" | 
 |     LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType()); | 
 |  | 
 |   CGF.FinishConditionalBranch(); | 
 |   LHSBlock = Builder.GetInsertBlock(); | 
 |   CGF.EmitBranch(ContBlock); | 
 |  | 
 |   CGF.StartConditionalBranch(); | 
 |   CGF.EmitBlock(RHSBlock); | 
 |  | 
 |   Value *RHS = Visit(E->getRHS()); | 
 |   CGF.FinishConditionalBranch(); | 
 |   RHSBlock = Builder.GetInsertBlock(); | 
 |   CGF.EmitBranch(ContBlock); | 
 |  | 
 |   CGF.EmitBlock(ContBlock); | 
 |  | 
 |   if (!LHS || !RHS) { | 
 |     assert(E->getType()->isVoidType() && "Non-void value should have a value"); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Create a PHI node for the real part. | 
 |   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond"); | 
 |   PN->reserveOperandSpace(2); | 
 |   PN->addIncoming(LHS, LHSBlock); | 
 |   PN->addIncoming(RHS, RHSBlock); | 
 |   return PN; | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { | 
 |   return Visit(E->getChosenSubExpr(CGF.getContext())); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { | 
 |   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); | 
 |   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); | 
 |  | 
 |   // If EmitVAArg fails, we fall back to the LLVM instruction. | 
 |   if (!ArgPtr) | 
 |     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); | 
 |  | 
 |   // FIXME Volatility. | 
 |   return Builder.CreateLoad(ArgPtr); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) { | 
 |   return CGF.BuildBlockLiteralTmp(BE); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                         Entry Point into this File | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// EmitScalarExpr - Emit the computation of the specified expression of scalar | 
 | /// type, ignoring the result. | 
 | Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { | 
 |   assert(E && !hasAggregateLLVMType(E->getType()) && | 
 |          "Invalid scalar expression to emit"); | 
 |  | 
 |   return ScalarExprEmitter(*this, IgnoreResultAssign) | 
 |     .Visit(const_cast<Expr*>(E)); | 
 | } | 
 |  | 
 | /// EmitScalarConversion - Emit a conversion from the specified type to the | 
 | /// specified destination type, both of which are LLVM scalar types. | 
 | Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, | 
 |                                              QualType DstTy) { | 
 |   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) && | 
 |          "Invalid scalar expression to emit"); | 
 |   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); | 
 | } | 
 |  | 
 | /// EmitComplexToScalarConversion - Emit a conversion from the specified complex | 
 | /// type to the specified destination type, where the destination type is an | 
 | /// LLVM scalar type. | 
 | Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, | 
 |                                                       QualType SrcTy, | 
 |                                                       QualType DstTy) { | 
 |   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) && | 
 |          "Invalid complex -> scalar conversion"); | 
 |   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, | 
 |                                                                 DstTy); | 
 | } | 
 |  | 
 | Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) { | 
 |   assert(V1->getType() == V2->getType() && | 
 |          "Vector operands must be of the same type"); | 
 |   unsigned NumElements = | 
 |     cast<llvm::VectorType>(V1->getType())->getNumElements(); | 
 |  | 
 |   va_list va; | 
 |   va_start(va, V2); | 
 |  | 
 |   llvm::SmallVector<llvm::Constant*, 16> Args; | 
 |   for (unsigned i = 0; i < NumElements; i++) { | 
 |     int n = va_arg(va, int); | 
 |     assert(n >= 0 && n < (int)NumElements * 2 && | 
 |            "Vector shuffle index out of bounds!"); | 
 |     Args.push_back(llvm::ConstantInt::get( | 
 |                                          llvm::Type::getInt32Ty(VMContext), n)); | 
 |   } | 
 |  | 
 |   const char *Name = va_arg(va, const char *); | 
 |   va_end(va); | 
 |  | 
 |   llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements); | 
 |  | 
 |   return Builder.CreateShuffleVector(V1, V2, Mask, Name); | 
 | } | 
 |  | 
 | llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals, | 
 |                                          unsigned NumVals, bool isSplat) { | 
 |   llvm::Value *Vec | 
 |     = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals)); | 
 |  | 
 |   for (unsigned i = 0, e = NumVals; i != e; ++i) { | 
 |     llvm::Value *Val = isSplat ? Vals[0] : Vals[i]; | 
 |     llvm::Value *Idx = llvm::ConstantInt::get( | 
 |                                           llvm::Type::getInt32Ty(VMContext), i); | 
 |     Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp"); | 
 |   } | 
 |  | 
 |   return Vec; | 
 | } |