| //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "clang/AST/AST.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/Support/Compiler.h" |
| using namespace clang; |
| using namespace CodeGen; |
| using llvm::Value; |
| |
| //===----------------------------------------------------------------------===// |
| // Scalar Expression Emitter |
| //===----------------------------------------------------------------------===// |
| |
| struct BinOpInfo { |
| Value *LHS; |
| Value *RHS; |
| QualType Ty; // Computation Type. |
| const BinaryOperator *E; |
| }; |
| |
| namespace { |
| class VISIBILITY_HIDDEN ScalarExprEmitter |
| : public StmtVisitor<ScalarExprEmitter, Value*> { |
| CodeGenFunction &CGF; |
| llvm::LLVMBuilder &Builder; |
| public: |
| |
| ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf), Builder(CGF.Builder) { |
| } |
| |
| |
| //===--------------------------------------------------------------------===// |
| // Utilities |
| //===--------------------------------------------------------------------===// |
| |
| const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } |
| LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } |
| |
| Value *EmitLoadOfLValue(LValue LV, QualType T) { |
| return CGF.EmitLoadOfLValue(LV, T).getVal(); |
| } |
| |
| /// EmitLoadOfLValue - Given an expression with complex type that represents a |
| /// value l-value, this method emits the address of the l-value, then loads |
| /// and returns the result. |
| Value *EmitLoadOfLValue(const Expr *E) { |
| // FIXME: Volatile |
| return EmitLoadOfLValue(EmitLValue(E), E->getType()); |
| } |
| |
| /// EmitConversionToBool - Convert the specified expression value to a |
| /// boolean (i1) truth value. This is equivalent to "Val != 0". |
| Value *EmitConversionToBool(Value *Src, QualType DstTy); |
| |
| /// EmitScalarConversion - Emit a conversion from the specified type to the |
| /// specified destination type, both of which are LLVM scalar types. |
| Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); |
| |
| /// EmitComplexToScalarConversion - Emit a conversion from the specified |
| /// complex type to the specified destination type, where the destination |
| /// type is an LLVM scalar type. |
| Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, |
| QualType SrcTy, QualType DstTy); |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| Value *VisitStmt(Stmt *S) { |
| S->dump(); |
| assert(0 && "Stmt can't have complex result type!"); |
| return 0; |
| } |
| Value *VisitExpr(Expr *S); |
| Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); } |
| |
| // Leaves. |
| Value *VisitIntegerLiteral(const IntegerLiteral *E) { |
| return llvm::ConstantInt::get(E->getValue()); |
| } |
| Value *VisitFloatingLiteral(const FloatingLiteral *E) { |
| return llvm::ConstantFP::get(ConvertType(E->getType()), E->getValue()); |
| } |
| Value *VisitCharacterLiteral(const CharacterLiteral *E) { |
| return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); |
| } |
| Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) { |
| return llvm::ConstantInt::get(ConvertType(E->getType()), |
| E->typesAreCompatible()); |
| } |
| Value *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) { |
| return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf()); |
| } |
| |
| // l-values. |
| Value *VisitDeclRefExpr(DeclRefExpr *E) { |
| if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl())) |
| return llvm::ConstantInt::get(EC->getInitVal()); |
| return EmitLoadOfLValue(E); |
| } |
| Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); |
| Value *VisitMemberExpr(Expr *E) { return EmitLoadOfLValue(E); } |
| Value *VisitOCUVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } |
| Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); } |
| Value *VisitPreDefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); } |
| |
| // FIXME: CompoundLiteralExpr |
| Value *VisitImplicitCastExpr(const ImplicitCastExpr *E); |
| Value *VisitCastExpr(const CastExpr *E) { |
| return EmitCastExpr(E->getSubExpr(), E->getType()); |
| } |
| Value *EmitCastExpr(const Expr *E, QualType T); |
| |
| Value *VisitCallExpr(const CallExpr *E) { |
| return CGF.EmitCallExpr(E).getVal(); |
| } |
| |
| // Unary Operators. |
| Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre); |
| Value *VisitUnaryPostDec(const UnaryOperator *E) { |
| return VisitPrePostIncDec(E, false, false); |
| } |
| Value *VisitUnaryPostInc(const UnaryOperator *E) { |
| return VisitPrePostIncDec(E, true, false); |
| } |
| Value *VisitUnaryPreDec(const UnaryOperator *E) { |
| return VisitPrePostIncDec(E, false, true); |
| } |
| Value *VisitUnaryPreInc(const UnaryOperator *E) { |
| return VisitPrePostIncDec(E, true, true); |
| } |
| Value *VisitUnaryAddrOf(const UnaryOperator *E) { |
| return EmitLValue(E->getSubExpr()).getAddress(); |
| } |
| Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } |
| Value *VisitUnaryPlus(const UnaryOperator *E) { |
| return Visit(E->getSubExpr()); |
| } |
| Value *VisitUnaryMinus (const UnaryOperator *E); |
| Value *VisitUnaryNot (const UnaryOperator *E); |
| Value *VisitUnaryLNot (const UnaryOperator *E); |
| Value *VisitUnarySizeOf (const UnaryOperator *E) { |
| return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true); |
| } |
| Value *VisitUnaryAlignOf (const UnaryOperator *E) { |
| return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false); |
| } |
| Value *EmitSizeAlignOf(QualType TypeToSize, QualType RetType, |
| bool isSizeOf); |
| Value *VisitUnaryReal (const UnaryOperator *E); |
| Value *VisitUnaryImag (const UnaryOperator *E); |
| Value *VisitUnaryExtension(const UnaryOperator *E) { |
| return Visit(E->getSubExpr()); |
| } |
| |
| // Binary Operators. |
| Value *EmitMul(const BinOpInfo &Ops) { |
| return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); |
| } |
| Value *EmitDiv(const BinOpInfo &Ops); |
| Value *EmitRem(const BinOpInfo &Ops); |
| Value *EmitAdd(const BinOpInfo &Ops); |
| Value *EmitSub(const BinOpInfo &Ops); |
| Value *EmitShl(const BinOpInfo &Ops); |
| Value *EmitShr(const BinOpInfo &Ops); |
| Value *EmitAnd(const BinOpInfo &Ops) { |
| return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); |
| } |
| Value *EmitXor(const BinOpInfo &Ops) { |
| return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); |
| } |
| Value *EmitOr (const BinOpInfo &Ops) { |
| return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); |
| } |
| |
| BinOpInfo EmitBinOps(const BinaryOperator *E); |
| Value *EmitCompoundAssign(const CompoundAssignOperator *E, |
| Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); |
| |
| // Binary operators and binary compound assignment operators. |
| #define HANDLEBINOP(OP) \ |
| Value *VisitBin ## OP(const BinaryOperator *E) { \ |
| return Emit ## OP(EmitBinOps(E)); \ |
| } \ |
| Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ |
| return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ |
| } |
| HANDLEBINOP(Mul); |
| HANDLEBINOP(Div); |
| HANDLEBINOP(Rem); |
| HANDLEBINOP(Add); |
| // (Sub) - Sub is handled specially below for ptr-ptr subtract. |
| HANDLEBINOP(Shl); |
| HANDLEBINOP(Shr); |
| HANDLEBINOP(And); |
| HANDLEBINOP(Xor); |
| HANDLEBINOP(Or); |
| #undef HANDLEBINOP |
| Value *VisitBinSub(const BinaryOperator *E); |
| Value *VisitBinSubAssign(const CompoundAssignOperator *E) { |
| return EmitCompoundAssign(E, &ScalarExprEmitter::EmitSub); |
| } |
| |
| // Comparisons. |
| Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, |
| unsigned SICmpOpc, unsigned FCmpOpc); |
| #define VISITCOMP(CODE, UI, SI, FP) \ |
| Value *VisitBin##CODE(const BinaryOperator *E) { \ |
| return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ |
| llvm::FCmpInst::FP); } |
| VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT); |
| VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT); |
| VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE); |
| VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE); |
| VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ); |
| VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE); |
| #undef VISITCOMP |
| |
| Value *VisitBinAssign (const BinaryOperator *E); |
| |
| Value *VisitBinLAnd (const BinaryOperator *E); |
| Value *VisitBinLOr (const BinaryOperator *E); |
| Value *VisitBinComma (const BinaryOperator *E); |
| |
| // Other Operators. |
| Value *VisitConditionalOperator(const ConditionalOperator *CO); |
| Value *VisitChooseExpr(ChooseExpr *CE); |
| Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { |
| return CGF.EmitObjCStringLiteral(E); |
| } |
| }; |
| } // end anonymous namespace. |
| |
| //===----------------------------------------------------------------------===// |
| // Utilities |
| //===----------------------------------------------------------------------===// |
| |
| /// EmitConversionToBool - Convert the specified expression value to a |
| /// boolean (i1) truth value. This is equivalent to "Val != 0". |
| Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { |
| assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs"); |
| |
| if (SrcType->isRealFloatingType()) { |
| // Compare against 0.0 for fp scalars. |
| llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType()); |
| return Builder.CreateFCmpUNE(Src, Zero, "tobool"); |
| } |
| |
| assert((SrcType->isIntegerType() || SrcType->isPointerType()) && |
| "Unknown scalar type to convert"); |
| |
| // Because of the type rules of C, we often end up computing a logical value, |
| // then zero extending it to int, then wanting it as a logical value again. |
| // Optimize this common case. |
| if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) { |
| if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) { |
| Value *Result = ZI->getOperand(0); |
| ZI->eraseFromParent(); |
| return Result; |
| } |
| } |
| |
| // Compare against an integer or pointer null. |
| llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType()); |
| return Builder.CreateICmpNE(Src, Zero, "tobool"); |
| } |
| |
| /// EmitScalarConversion - Emit a conversion from the specified type to the |
| /// specified destination type, both of which are LLVM scalar types. |
| Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, |
| QualType DstType) { |
| SrcType = SrcType.getCanonicalType(); |
| DstType = DstType.getCanonicalType(); |
| if (SrcType == DstType) return Src; |
| |
| if (DstType->isVoidType()) return 0; |
| |
| // Handle conversions to bool first, they are special: comparisons against 0. |
| if (DstType->isBooleanType()) |
| return EmitConversionToBool(Src, SrcType); |
| |
| const llvm::Type *DstTy = ConvertType(DstType); |
| |
| // Ignore conversions like int -> uint. |
| if (Src->getType() == DstTy) |
| return Src; |
| |
| // Handle pointer conversions next: pointers can only be converted to/from |
| // other pointers and integers. |
| if (isa<PointerType>(DstType)) { |
| // The source value may be an integer, or a pointer. |
| if (isa<llvm::PointerType>(Src->getType())) |
| return Builder.CreateBitCast(Src, DstTy, "conv"); |
| assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); |
| return Builder.CreateIntToPtr(Src, DstTy, "conv"); |
| } |
| |
| if (isa<PointerType>(SrcType)) { |
| // Must be an ptr to int cast. |
| assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); |
| return Builder.CreateIntToPtr(Src, DstTy, "conv"); |
| } |
| |
| // Finally, we have the arithmetic types: real int/float. |
| if (isa<llvm::IntegerType>(Src->getType())) { |
| bool InputSigned = SrcType->isSignedIntegerType(); |
| if (isa<llvm::IntegerType>(DstTy)) |
| return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); |
| else if (InputSigned) |
| return Builder.CreateSIToFP(Src, DstTy, "conv"); |
| else |
| return Builder.CreateUIToFP(Src, DstTy, "conv"); |
| } |
| |
| assert(Src->getType()->isFloatingPoint() && "Unknown real conversion"); |
| if (isa<llvm::IntegerType>(DstTy)) { |
| if (DstType->isSignedIntegerType()) |
| return Builder.CreateFPToSI(Src, DstTy, "conv"); |
| else |
| return Builder.CreateFPToUI(Src, DstTy, "conv"); |
| } |
| |
| assert(DstTy->isFloatingPoint() && "Unknown real conversion"); |
| if (DstTy->getTypeID() < Src->getType()->getTypeID()) |
| return Builder.CreateFPTrunc(Src, DstTy, "conv"); |
| else |
| return Builder.CreateFPExt(Src, DstTy, "conv"); |
| } |
| |
| /// EmitComplexToScalarConversion - Emit a conversion from the specified |
| /// complex type to the specified destination type, where the destination |
| /// type is an LLVM scalar type. |
| Value *ScalarExprEmitter:: |
| EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, |
| QualType SrcTy, QualType DstTy) { |
| // Get the source element type. |
| SrcTy = cast<ComplexType>(SrcTy.getCanonicalType())->getElementType(); |
| |
| // Handle conversions to bool first, they are special: comparisons against 0. |
| if (DstTy->isBooleanType()) { |
| // Complex != 0 -> (Real != 0) | (Imag != 0) |
| Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); |
| Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); |
| return Builder.CreateOr(Src.first, Src.second, "tobool"); |
| } |
| |
| // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, |
| // the imaginary part of the complex value is discarded and the value of the |
| // real part is converted according to the conversion rules for the |
| // corresponding real type. |
| return EmitScalarConversion(Src.first, SrcTy, DstTy); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Visitor Methods |
| //===----------------------------------------------------------------------===// |
| |
| Value *ScalarExprEmitter::VisitExpr(Expr *E) { |
| fprintf(stderr, "Unimplemented scalar expr!\n"); |
| E->dump(); |
| if (E->getType()->isVoidType()) |
| return 0; |
| return llvm::UndefValue::get(CGF.ConvertType(E->getType())); |
| } |
| |
| Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { |
| // Emit subscript expressions in rvalue context's. For most cases, this just |
| // loads the lvalue formed by the subscript expr. However, we have to be |
| // careful, because the base of a vector subscript is occasionally an rvalue, |
| // so we can't get it as an lvalue. |
| if (!E->getBase()->getType()->isVectorType()) |
| return EmitLoadOfLValue(E); |
| |
| // Handle the vector case. The base must be a vector, the index must be an |
| // integer value. |
| Value *Base = Visit(E->getBase()); |
| Value *Idx = Visit(E->getIdx()); |
| |
| // FIXME: Convert Idx to i32 type. |
| return Builder.CreateExtractElement(Base, Idx, "vecext"); |
| } |
| |
| /// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but |
| /// also handle things like function to pointer-to-function decay, and array to |
| /// pointer decay. |
| Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) { |
| const Expr *Op = E->getSubExpr(); |
| |
| // If this is due to array->pointer conversion, emit the array expression as |
| // an l-value. |
| if (Op->getType()->isArrayType()) { |
| // FIXME: For now we assume that all source arrays map to LLVM arrays. This |
| // will not true when we add support for VLAs. |
| Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays. |
| |
| assert(isa<llvm::PointerType>(V->getType()) && |
| isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) |
| ->getElementType()) && |
| "Doesn't support VLAs yet!"); |
| llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); |
| return Builder.CreateGEP(V, Idx0, Idx0, "arraydecay"); |
| } |
| |
| return EmitCastExpr(Op, E->getType()); |
| } |
| |
| |
| // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts |
| // have to handle a more broad range of conversions than explicit casts, as they |
| // handle things like function to ptr-to-function decay etc. |
| Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) { |
| // Handle cases where the source is an non-complex type. |
| if (!E->getType()->isComplexType()) { |
| Value *Src = Visit(const_cast<Expr*>(E)); |
| |
| // Use EmitScalarConversion to perform the conversion. |
| return EmitScalarConversion(Src, E->getType(), DestTy); |
| } |
| |
| // Handle cases where the source is a complex type. |
| return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(), |
| DestTy); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Unary Operators |
| //===----------------------------------------------------------------------===// |
| |
| Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E, |
| bool isInc, bool isPre) { |
| LValue LV = EmitLValue(E->getSubExpr()); |
| // FIXME: Handle volatile! |
| Value *InVal = CGF.EmitLoadOfLValue(LV, // false |
| E->getSubExpr()->getType()).getVal(); |
| |
| int AmountVal = isInc ? 1 : -1; |
| |
| Value *NextVal; |
| if (isa<llvm::PointerType>(InVal->getType())) { |
| // FIXME: This isn't right for VLAs. |
| NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal); |
| NextVal = Builder.CreateGEP(InVal, NextVal); |
| } else { |
| // Add the inc/dec to the real part. |
| if (isa<llvm::IntegerType>(InVal->getType())) |
| NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal); |
| else |
| NextVal = llvm::ConstantFP::get(InVal->getType(), AmountVal); |
| NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec"); |
| } |
| |
| // Store the updated result through the lvalue. |
| CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, |
| E->getSubExpr()->getType()); |
| |
| // If this is a postinc, return the value read from memory, otherwise use the |
| // updated value. |
| return isPre ? NextVal : InVal; |
| } |
| |
| |
| Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { |
| Value *Op = Visit(E->getSubExpr()); |
| return Builder.CreateNeg(Op, "neg"); |
| } |
| |
| Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { |
| Value *Op = Visit(E->getSubExpr()); |
| return Builder.CreateNot(Op, "neg"); |
| } |
| |
| Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { |
| // Compare operand to zero. |
| Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); |
| |
| // Invert value. |
| // TODO: Could dynamically modify easy computations here. For example, if |
| // the operand is an icmp ne, turn into icmp eq. |
| BoolVal = Builder.CreateNot(BoolVal, "lnot"); |
| |
| // ZExt result to int. |
| return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext"); |
| } |
| |
| /// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as |
| /// an integer (RetType). |
| Value *ScalarExprEmitter::EmitSizeAlignOf(QualType TypeToSize, |
| QualType RetType,bool isSizeOf){ |
| /// FIXME: This doesn't handle VLAs yet! |
| std::pair<uint64_t, unsigned> Info = |
| CGF.getContext().getTypeInfo(TypeToSize, SourceLocation()); |
| |
| uint64_t Val = isSizeOf ? Info.first : Info.second; |
| Val /= 8; // Return size in bytes, not bits. |
| |
| assert(RetType->isIntegerType() && "Result type must be an integer!"); |
| |
| unsigned ResultWidth = CGF.getContext().getTypeSize(RetType,SourceLocation()); |
| return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val)); |
| } |
| |
| Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { |
| Expr *Op = E->getSubExpr(); |
| if (Op->getType()->isComplexType()) |
| return CGF.EmitComplexExpr(Op).first; |
| return Visit(Op); |
| } |
| Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { |
| Expr *Op = E->getSubExpr(); |
| if (Op->getType()->isComplexType()) |
| return CGF.EmitComplexExpr(Op).second; |
| |
| // __imag on a scalar returns zero. Emit it the subexpr to ensure side |
| // effects are evaluated. |
| CGF.EmitScalarExpr(Op); |
| return llvm::Constant::getNullValue(ConvertType(E->getType())); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Binary Operators |
| //===----------------------------------------------------------------------===// |
| |
| BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { |
| BinOpInfo Result; |
| Result.LHS = Visit(E->getLHS()); |
| Result.RHS = Visit(E->getRHS()); |
| Result.Ty = E->getType(); |
| Result.E = E; |
| return Result; |
| } |
| |
| Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, |
| Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { |
| QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType(); |
| |
| BinOpInfo OpInfo; |
| |
| // Load the LHS and RHS operands. |
| LValue LHSLV = EmitLValue(E->getLHS()); |
| OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy); |
| |
| // Determine the computation type. If the RHS is complex, then this is one of |
| // the add/sub/mul/div operators. All of these operators can be computed in |
| // with just their real component even though the computation domain really is |
| // complex. |
| QualType ComputeType = E->getComputationType(); |
| |
| // If the computation type is complex, then the RHS is complex. Emit the RHS. |
| if (const ComplexType *CT = ComputeType->getAsComplexType()) { |
| ComputeType = CT->getElementType(); |
| |
| // Emit the RHS, only keeping the real component. |
| OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first; |
| RHSTy = RHSTy->getAsComplexType()->getElementType(); |
| } else { |
| // Otherwise the RHS is a simple scalar value. |
| OpInfo.RHS = Visit(E->getRHS()); |
| } |
| |
| // Convert the LHS/RHS values to the computation type. |
| OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, ComputeType); |
| |
| // Do not merge types for -= where the LHS is a pointer. |
| if (E->getOpcode() != BinaryOperator::SubAssign || |
| !E->getLHS()->getType()->isPointerType()) { |
| OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, ComputeType); |
| } |
| OpInfo.Ty = ComputeType; |
| OpInfo.E = E; |
| |
| // Expand the binary operator. |
| Value *Result = (this->*Func)(OpInfo); |
| |
| // Truncate the result back to the LHS type. |
| Result = EmitScalarConversion(Result, ComputeType, LHSTy); |
| |
| // Store the result value into the LHS lvalue. |
| CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, E->getType()); |
| |
| return Result; |
| } |
| |
| |
| Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { |
| if (Ops.LHS->getType()->isFloatingPoint()) |
| return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); |
| else if (Ops.Ty->isUnsignedIntegerType()) |
| return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); |
| else |
| return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); |
| } |
| |
| Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { |
| // Rem in C can't be a floating point type: C99 6.5.5p2. |
| if (Ops.Ty->isUnsignedIntegerType()) |
| return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); |
| else |
| return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); |
| } |
| |
| |
| Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) { |
| if (!Ops.Ty->isPointerType()) |
| return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add"); |
| |
| // FIXME: What about a pointer to a VLA? |
| if (isa<llvm::PointerType>(Ops.LHS->getType())) // pointer + int |
| return Builder.CreateGEP(Ops.LHS, Ops.RHS, "add.ptr"); |
| // int + pointer |
| return Builder.CreateGEP(Ops.RHS, Ops.LHS, "add.ptr"); |
| } |
| |
| Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) { |
| if (!isa<llvm::PointerType>(Ops.LHS->getType())) |
| return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub"); |
| |
| // pointer - int |
| assert(!isa<llvm::PointerType>(Ops.RHS->getType()) && |
| "ptr-ptr shouldn't get here"); |
| // FIXME: The pointer could point to a VLA. |
| Value *NegatedRHS = Builder.CreateNeg(Ops.RHS, "sub.ptr.neg"); |
| return Builder.CreateGEP(Ops.LHS, NegatedRHS, "sub.ptr"); |
| } |
| |
| Value *ScalarExprEmitter::VisitBinSub(const BinaryOperator *E) { |
| // "X - Y" is different from "X -= Y" in one case: when Y is a pointer. In |
| // the compound assignment case it is invalid, so just handle it here. |
| if (!E->getRHS()->getType()->isPointerType()) |
| return EmitSub(EmitBinOps(E)); |
| |
| // pointer - pointer |
| Value *LHS = Visit(E->getLHS()); |
| Value *RHS = Visit(E->getRHS()); |
| |
| const PointerType *LHSPtrType = E->getLHS()->getType()->getAsPointerType(); |
| assert(LHSPtrType == E->getRHS()->getType()->getAsPointerType() && |
| "Can't subtract different pointer types"); |
| |
| QualType LHSElementType = LHSPtrType->getPointeeType(); |
| uint64_t ElementSize = CGF.getContext().getTypeSize(LHSElementType, |
| SourceLocation()) / 8; |
| |
| const llvm::Type *ResultType = ConvertType(E->getType()); |
| LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast"); |
| RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); |
| Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); |
| |
| // HACK: LLVM doesn't have an divide instruction that 'knows' there is no |
| // remainder. As such, we handle common power-of-two cases here to generate |
| // better code. |
| if (llvm::isPowerOf2_64(ElementSize)) { |
| Value *ShAmt = |
| llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize)); |
| return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr"); |
| } |
| |
| // Otherwise, do a full sdiv. |
| Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize); |
| return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div"); |
| } |
| |
| |
| Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { |
| // LLVM requires the LHS and RHS to be the same type: promote or truncate the |
| // RHS to the same size as the LHS. |
| Value *RHS = Ops.RHS; |
| if (Ops.LHS->getType() != RHS->getType()) |
| RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); |
| |
| return Builder.CreateShl(Ops.LHS, RHS, "shl"); |
| } |
| |
| Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { |
| // LLVM requires the LHS and RHS to be the same type: promote or truncate the |
| // RHS to the same size as the LHS. |
| Value *RHS = Ops.RHS; |
| if (Ops.LHS->getType() != RHS->getType()) |
| RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); |
| |
| if (Ops.Ty->isUnsignedIntegerType()) |
| return Builder.CreateLShr(Ops.LHS, RHS, "shr"); |
| return Builder.CreateAShr(Ops.LHS, RHS, "shr"); |
| } |
| |
| Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, |
| unsigned SICmpOpc, unsigned FCmpOpc) { |
| Value *Result; |
| QualType LHSTy = E->getLHS()->getType(); |
| if (!LHSTy->isComplexType()) { |
| Value *LHS = Visit(E->getLHS()); |
| Value *RHS = Visit(E->getRHS()); |
| |
| if (LHS->getType()->isFloatingPoint()) { |
| Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, |
| LHS, RHS, "cmp"); |
| } else if (LHSTy->isUnsignedIntegerType()) { |
| Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, |
| LHS, RHS, "cmp"); |
| } else { |
| // Signed integers and pointers. |
| Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, |
| LHS, RHS, "cmp"); |
| } |
| } else { |
| // Complex Comparison: can only be an equality comparison. |
| CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); |
| CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); |
| |
| QualType CETy = |
| cast<ComplexType>(LHSTy.getCanonicalType())->getElementType(); |
| |
| Value *ResultR, *ResultI; |
| if (CETy->isRealFloatingType()) { |
| ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, |
| LHS.first, RHS.first, "cmp.r"); |
| ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, |
| LHS.second, RHS.second, "cmp.i"); |
| } else { |
| // Complex comparisons can only be equality comparisons. As such, signed |
| // and unsigned opcodes are the same. |
| ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, |
| LHS.first, RHS.first, "cmp.r"); |
| ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, |
| LHS.second, RHS.second, "cmp.i"); |
| } |
| |
| if (E->getOpcode() == BinaryOperator::EQ) { |
| Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); |
| } else { |
| assert(E->getOpcode() == BinaryOperator::NE && |
| "Complex comparison other than == or != ?"); |
| Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); |
| } |
| } |
| |
| // ZExt result to int. |
| return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext"); |
| } |
| |
| Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { |
| LValue LHS = EmitLValue(E->getLHS()); |
| Value *RHS = Visit(E->getRHS()); |
| |
| // Store the value into the LHS. |
| // FIXME: Volatility! |
| CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType()); |
| |
| // Return the RHS. |
| return RHS; |
| } |
| |
| Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { |
| Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS()); |
| |
| llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont"); |
| llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs"); |
| |
| llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock(); |
| Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock); |
| |
| CGF.EmitBlock(RHSBlock); |
| Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
| |
| // Reaquire the RHS block, as there may be subblocks inserted. |
| RHSBlock = Builder.GetInsertBlock(); |
| CGF.EmitBlock(ContBlock); |
| |
| // Create a PHI node. If we just evaluted the LHS condition, the result is |
| // false. If we evaluated both, the result is the RHS condition. |
| llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land"); |
| PN->reserveOperandSpace(2); |
| PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock); |
| PN->addIncoming(RHSCond, RHSBlock); |
| |
| // ZExt result to int. |
| return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext"); |
| } |
| |
| Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { |
| Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS()); |
| |
| llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont"); |
| llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs"); |
| |
| llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock(); |
| Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock); |
| |
| CGF.EmitBlock(RHSBlock); |
| Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
| |
| // Reaquire the RHS block, as there may be subblocks inserted. |
| RHSBlock = Builder.GetInsertBlock(); |
| CGF.EmitBlock(ContBlock); |
| |
| // Create a PHI node. If we just evaluted the LHS condition, the result is |
| // true. If we evaluated both, the result is the RHS condition. |
| llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor"); |
| PN->reserveOperandSpace(2); |
| PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock); |
| PN->addIncoming(RHSCond, RHSBlock); |
| |
| // ZExt result to int. |
| return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext"); |
| } |
| |
| Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { |
| CGF.EmitStmt(E->getLHS()); |
| return Visit(E->getRHS()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Other Operators |
| //===----------------------------------------------------------------------===// |
| |
| Value *ScalarExprEmitter:: |
| VisitConditionalOperator(const ConditionalOperator *E) { |
| llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?"); |
| llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:"); |
| llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont"); |
| |
| Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); |
| Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); |
| |
| CGF.EmitBlock(LHSBlock); |
| |
| // Handle the GNU extension for missing LHS. |
| Value *LHS = E->getLHS() ? Visit(E->getLHS()) : Cond; |
| Builder.CreateBr(ContBlock); |
| LHSBlock = Builder.GetInsertBlock(); |
| |
| CGF.EmitBlock(RHSBlock); |
| |
| Value *RHS = Visit(E->getRHS()); |
| Builder.CreateBr(ContBlock); |
| RHSBlock = Builder.GetInsertBlock(); |
| |
| CGF.EmitBlock(ContBlock); |
| |
| // Create a PHI node for the real part. |
| llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond"); |
| PN->reserveOperandSpace(2); |
| PN->addIncoming(LHS, LHSBlock); |
| PN->addIncoming(RHS, RHSBlock); |
| return PN; |
| } |
| |
| Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { |
| llvm::APSInt CondVal(32); |
| bool IsConst = E->getCond()->isIntegerConstantExpr(CondVal, CGF.getContext()); |
| assert(IsConst && "Condition of choose expr must be i-c-e"); IsConst=IsConst; |
| |
| // Emit the LHS or RHS as appropriate. |
| return Visit(CondVal != 0 ? E->getLHS() : E->getRHS()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Entry Point into this File |
| //===----------------------------------------------------------------------===// |
| |
| /// EmitComplexExpr - Emit the computation of the specified expression of |
| /// complex type, ignoring the result. |
| Value *CodeGenFunction::EmitScalarExpr(const Expr *E) { |
| assert(E && !hasAggregateLLVMType(E->getType()) && |
| "Invalid scalar expression to emit"); |
| |
| return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E)); |
| } |
| |
| /// EmitScalarConversion - Emit a conversion from the specified type to the |
| /// specified destination type, both of which are LLVM scalar types. |
| Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, |
| QualType DstTy) { |
| assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) && |
| "Invalid scalar expression to emit"); |
| return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); |
| } |
| |
| /// EmitComplexToScalarConversion - Emit a conversion from the specified |
| /// complex type to the specified destination type, where the destination |
| /// type is an LLVM scalar type. |
| Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, |
| QualType SrcTy, |
| QualType DstTy) { |
| assert(SrcTy->isComplexType() && !hasAggregateLLVMType(DstTy) && |
| "Invalid complex -> scalar conversion"); |
| return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, |
| DstTy); |
| } |