| //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the ASTContext interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Bitcode/Serialize.h" |
| #include "llvm/Bitcode/Deserialize.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| using namespace clang; |
| |
| enum FloatingRank { |
| FloatRank, DoubleRank, LongDoubleRank |
| }; |
| |
| ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM, |
| TargetInfo &t, |
| IdentifierTable &idents, SelectorTable &sels, |
| bool FreeMem, unsigned size_reserve) : |
| GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0), |
| ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts), |
| FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels) { |
| if (size_reserve > 0) Types.reserve(size_reserve); |
| InitBuiltinTypes(); |
| BuiltinInfo.InitializeBuiltins(idents, Target, LangOpts.NoBuiltin); |
| TUDecl = TranslationUnitDecl::Create(*this); |
| } |
| |
| ASTContext::~ASTContext() { |
| // Deallocate all the types. |
| while (!Types.empty()) { |
| Types.back()->Destroy(*this); |
| Types.pop_back(); |
| } |
| |
| { |
| llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator |
| I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); |
| while (I != E) { |
| ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second); |
| delete R; |
| } |
| } |
| |
| { |
| llvm::DenseMap<const ObjCInterfaceDecl*, const ASTRecordLayout*>::iterator |
| I = ASTObjCInterfaces.begin(), E = ASTObjCInterfaces.end(); |
| while (I != E) { |
| ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second); |
| delete R; |
| } |
| } |
| |
| { |
| llvm::DenseMap<const ObjCInterfaceDecl*, RecordDecl*>::iterator |
| I = ASTRecordForInterface.begin(), E = ASTRecordForInterface.end(); |
| while (I != E) { |
| RecordDecl *R = (I++)->second; |
| R->Destroy(*this); |
| } |
| } |
| |
| // Destroy nested-name-specifiers. |
| for (llvm::FoldingSet<NestedNameSpecifier>::iterator |
| NNS = NestedNameSpecifiers.begin(), |
| NNSEnd = NestedNameSpecifiers.end(); |
| NNS != NNSEnd; |
| /* Increment in loop */) |
| (*NNS++).Destroy(*this); |
| |
| if (GlobalNestedNameSpecifier) |
| GlobalNestedNameSpecifier->Destroy(*this); |
| |
| TUDecl->Destroy(*this); |
| } |
| |
| void ASTContext::PrintStats() const { |
| fprintf(stderr, "*** AST Context Stats:\n"); |
| fprintf(stderr, " %d types total.\n", (int)Types.size()); |
| unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0; |
| unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0; |
| unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0; |
| unsigned NumLValueReference = 0, NumRValueReference = 0, NumMemberPointer = 0; |
| |
| unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0; |
| unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0; |
| unsigned NumObjCQualifiedIds = 0; |
| unsigned NumTypeOfTypes = 0, NumTypeOfExprTypes = 0; |
| |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) { |
| Type *T = Types[i]; |
| if (isa<BuiltinType>(T)) |
| ++NumBuiltin; |
| else if (isa<PointerType>(T)) |
| ++NumPointer; |
| else if (isa<BlockPointerType>(T)) |
| ++NumBlockPointer; |
| else if (isa<LValueReferenceType>(T)) |
| ++NumLValueReference; |
| else if (isa<RValueReferenceType>(T)) |
| ++NumRValueReference; |
| else if (isa<MemberPointerType>(T)) |
| ++NumMemberPointer; |
| else if (isa<ComplexType>(T)) |
| ++NumComplex; |
| else if (isa<ArrayType>(T)) |
| ++NumArray; |
| else if (isa<VectorType>(T)) |
| ++NumVector; |
| else if (isa<FunctionNoProtoType>(T)) |
| ++NumFunctionNP; |
| else if (isa<FunctionProtoType>(T)) |
| ++NumFunctionP; |
| else if (isa<TypedefType>(T)) |
| ++NumTypeName; |
| else if (TagType *TT = dyn_cast<TagType>(T)) { |
| ++NumTagged; |
| switch (TT->getDecl()->getTagKind()) { |
| default: assert(0 && "Unknown tagged type!"); |
| case TagDecl::TK_struct: ++NumTagStruct; break; |
| case TagDecl::TK_union: ++NumTagUnion; break; |
| case TagDecl::TK_class: ++NumTagClass; break; |
| case TagDecl::TK_enum: ++NumTagEnum; break; |
| } |
| } else if (isa<ObjCInterfaceType>(T)) |
| ++NumObjCInterfaces; |
| else if (isa<ObjCQualifiedInterfaceType>(T)) |
| ++NumObjCQualifiedInterfaces; |
| else if (isa<ObjCQualifiedIdType>(T)) |
| ++NumObjCQualifiedIds; |
| else if (isa<TypeOfType>(T)) |
| ++NumTypeOfTypes; |
| else if (isa<TypeOfExprType>(T)) |
| ++NumTypeOfExprTypes; |
| else { |
| QualType(T, 0).dump(); |
| assert(0 && "Unknown type!"); |
| } |
| } |
| |
| fprintf(stderr, " %d builtin types\n", NumBuiltin); |
| fprintf(stderr, " %d pointer types\n", NumPointer); |
| fprintf(stderr, " %d block pointer types\n", NumBlockPointer); |
| fprintf(stderr, " %d lvalue reference types\n", NumLValueReference); |
| fprintf(stderr, " %d rvalue reference types\n", NumRValueReference); |
| fprintf(stderr, " %d member pointer types\n", NumMemberPointer); |
| fprintf(stderr, " %d complex types\n", NumComplex); |
| fprintf(stderr, " %d array types\n", NumArray); |
| fprintf(stderr, " %d vector types\n", NumVector); |
| fprintf(stderr, " %d function types with proto\n", NumFunctionP); |
| fprintf(stderr, " %d function types with no proto\n", NumFunctionNP); |
| fprintf(stderr, " %d typename (typedef) types\n", NumTypeName); |
| fprintf(stderr, " %d tagged types\n", NumTagged); |
| fprintf(stderr, " %d struct types\n", NumTagStruct); |
| fprintf(stderr, " %d union types\n", NumTagUnion); |
| fprintf(stderr, " %d class types\n", NumTagClass); |
| fprintf(stderr, " %d enum types\n", NumTagEnum); |
| fprintf(stderr, " %d interface types\n", NumObjCInterfaces); |
| fprintf(stderr, " %d protocol qualified interface types\n", |
| NumObjCQualifiedInterfaces); |
| fprintf(stderr, " %d protocol qualified id types\n", |
| NumObjCQualifiedIds); |
| fprintf(stderr, " %d typeof types\n", NumTypeOfTypes); |
| fprintf(stderr, " %d typeof exprs\n", NumTypeOfExprTypes); |
| |
| fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+ |
| NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+ |
| NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+ |
| NumLValueReference*sizeof(LValueReferenceType)+ |
| NumRValueReference*sizeof(RValueReferenceType)+ |
| NumMemberPointer*sizeof(MemberPointerType)+ |
| NumFunctionP*sizeof(FunctionProtoType)+ |
| NumFunctionNP*sizeof(FunctionNoProtoType)+ |
| NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+ |
| NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprTypes*sizeof(TypeOfExprType))); |
| } |
| |
| |
| void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) { |
| Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr()); |
| } |
| |
| void ASTContext::InitBuiltinTypes() { |
| assert(VoidTy.isNull() && "Context reinitialized?"); |
| |
| // C99 6.2.5p19. |
| InitBuiltinType(VoidTy, BuiltinType::Void); |
| |
| // C99 6.2.5p2. |
| InitBuiltinType(BoolTy, BuiltinType::Bool); |
| // C99 6.2.5p3. |
| if (Target.isCharSigned()) |
| InitBuiltinType(CharTy, BuiltinType::Char_S); |
| else |
| InitBuiltinType(CharTy, BuiltinType::Char_U); |
| // C99 6.2.5p4. |
| InitBuiltinType(SignedCharTy, BuiltinType::SChar); |
| InitBuiltinType(ShortTy, BuiltinType::Short); |
| InitBuiltinType(IntTy, BuiltinType::Int); |
| InitBuiltinType(LongTy, BuiltinType::Long); |
| InitBuiltinType(LongLongTy, BuiltinType::LongLong); |
| |
| // C99 6.2.5p6. |
| InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); |
| InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); |
| InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); |
| InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); |
| InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); |
| |
| // C99 6.2.5p10. |
| InitBuiltinType(FloatTy, BuiltinType::Float); |
| InitBuiltinType(DoubleTy, BuiltinType::Double); |
| InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); |
| |
| if (LangOpts.CPlusPlus) // C++ 3.9.1p5 |
| InitBuiltinType(WCharTy, BuiltinType::WChar); |
| else // C99 |
| WCharTy = getFromTargetType(Target.getWCharType()); |
| |
| // Placeholder type for functions. |
| InitBuiltinType(OverloadTy, BuiltinType::Overload); |
| |
| // Placeholder type for type-dependent expressions whose type is |
| // completely unknown. No code should ever check a type against |
| // DependentTy and users should never see it; however, it is here to |
| // help diagnose failures to properly check for type-dependent |
| // expressions. |
| InitBuiltinType(DependentTy, BuiltinType::Dependent); |
| |
| // C99 6.2.5p11. |
| FloatComplexTy = getComplexType(FloatTy); |
| DoubleComplexTy = getComplexType(DoubleTy); |
| LongDoubleComplexTy = getComplexType(LongDoubleTy); |
| |
| BuiltinVaListType = QualType(); |
| ObjCIdType = QualType(); |
| IdStructType = 0; |
| ObjCClassType = QualType(); |
| ClassStructType = 0; |
| |
| ObjCConstantStringType = QualType(); |
| |
| // void * type |
| VoidPtrTy = getPointerType(VoidTy); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Sizing and Analysis |
| //===----------------------------------------------------------------------===// |
| |
| /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified |
| /// scalar floating point type. |
| const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { |
| const BuiltinType *BT = T->getAsBuiltinType(); |
| assert(BT && "Not a floating point type!"); |
| switch (BT->getKind()) { |
| default: assert(0 && "Not a floating point type!"); |
| case BuiltinType::Float: return Target.getFloatFormat(); |
| case BuiltinType::Double: return Target.getDoubleFormat(); |
| case BuiltinType::LongDouble: return Target.getLongDoubleFormat(); |
| } |
| } |
| |
| /// getDeclAlign - Return a conservative estimate of the alignment of the |
| /// specified decl. Note that bitfields do not have a valid alignment, so |
| /// this method will assert on them. |
| unsigned ASTContext::getDeclAlignInBytes(const Decl *D) { |
| unsigned Align = Target.getCharWidth(); |
| |
| if (const AlignedAttr* AA = D->getAttr<AlignedAttr>()) |
| Align = std::max(Align, AA->getAlignment()); |
| |
| if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) { |
| QualType T = VD->getType(); |
| // Incomplete or function types default to 1. |
| if (!T->isIncompleteType() && !T->isFunctionType()) { |
| while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T)) |
| T = cast<ArrayType>(T)->getElementType(); |
| |
| Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); |
| } |
| } |
| |
| return Align / Target.getCharWidth(); |
| } |
| |
| /// getTypeSize - Return the size of the specified type, in bits. This method |
| /// does not work on incomplete types. |
| std::pair<uint64_t, unsigned> |
| ASTContext::getTypeInfo(const Type *T) { |
| T = getCanonicalType(T); |
| uint64_t Width=0; |
| unsigned Align=8; |
| switch (T->getTypeClass()) { |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #include "clang/AST/TypeNodes.def" |
| assert(false && "Should not see non-canonical or dependent types"); |
| break; |
| |
| case Type::FunctionNoProto: |
| case Type::FunctionProto: |
| case Type::IncompleteArray: |
| assert(0 && "Incomplete types have no size!"); |
| case Type::VariableArray: |
| assert(0 && "VLAs not implemented yet!"); |
| case Type::ConstantArray: { |
| const ConstantArrayType *CAT = cast<ConstantArrayType>(T); |
| |
| std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType()); |
| Width = EltInfo.first*CAT->getSize().getZExtValue(); |
| Align = EltInfo.second; |
| break; |
| } |
| case Type::ExtVector: |
| case Type::Vector: { |
| std::pair<uint64_t, unsigned> EltInfo = |
| getTypeInfo(cast<VectorType>(T)->getElementType()); |
| Width = EltInfo.first*cast<VectorType>(T)->getNumElements(); |
| Align = Width; |
| // If the alignment is not a power of 2, round up to the next power of 2. |
| // This happens for non-power-of-2 length vectors. |
| // FIXME: this should probably be a target property. |
| Align = 1 << llvm::Log2_32_Ceil(Align); |
| break; |
| } |
| |
| case Type::Builtin: |
| switch (cast<BuiltinType>(T)->getKind()) { |
| default: assert(0 && "Unknown builtin type!"); |
| case BuiltinType::Void: |
| assert(0 && "Incomplete types have no size!"); |
| case BuiltinType::Bool: |
| Width = Target.getBoolWidth(); |
| Align = Target.getBoolAlign(); |
| break; |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::UChar: |
| case BuiltinType::SChar: |
| Width = Target.getCharWidth(); |
| Align = Target.getCharAlign(); |
| break; |
| case BuiltinType::WChar: |
| Width = Target.getWCharWidth(); |
| Align = Target.getWCharAlign(); |
| break; |
| case BuiltinType::UShort: |
| case BuiltinType::Short: |
| Width = Target.getShortWidth(); |
| Align = Target.getShortAlign(); |
| break; |
| case BuiltinType::UInt: |
| case BuiltinType::Int: |
| Width = Target.getIntWidth(); |
| Align = Target.getIntAlign(); |
| break; |
| case BuiltinType::ULong: |
| case BuiltinType::Long: |
| Width = Target.getLongWidth(); |
| Align = Target.getLongAlign(); |
| break; |
| case BuiltinType::ULongLong: |
| case BuiltinType::LongLong: |
| Width = Target.getLongLongWidth(); |
| Align = Target.getLongLongAlign(); |
| break; |
| case BuiltinType::Float: |
| Width = Target.getFloatWidth(); |
| Align = Target.getFloatAlign(); |
| break; |
| case BuiltinType::Double: |
| Width = Target.getDoubleWidth(); |
| Align = Target.getDoubleAlign(); |
| break; |
| case BuiltinType::LongDouble: |
| Width = Target.getLongDoubleWidth(); |
| Align = Target.getLongDoubleAlign(); |
| break; |
| } |
| break; |
| case Type::FixedWidthInt: |
| // FIXME: This isn't precisely correct; the width/alignment should depend |
| // on the available types for the target |
| Width = cast<FixedWidthIntType>(T)->getWidth(); |
| Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8); |
| Align = Width; |
| break; |
| case Type::ExtQual: |
| // FIXME: Pointers into different addr spaces could have different sizes and |
| // alignment requirements: getPointerInfo should take an AddrSpace. |
| return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0)); |
| case Type::ObjCQualifiedId: |
| case Type::ObjCQualifiedClass: |
| case Type::ObjCQualifiedInterface: |
| Width = Target.getPointerWidth(0); |
| Align = Target.getPointerAlign(0); |
| break; |
| case Type::BlockPointer: { |
| unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace(); |
| Width = Target.getPointerWidth(AS); |
| Align = Target.getPointerAlign(AS); |
| break; |
| } |
| case Type::Pointer: { |
| unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace(); |
| Width = Target.getPointerWidth(AS); |
| Align = Target.getPointerAlign(AS); |
| break; |
| } |
| case Type::LValueReference: |
| case Type::RValueReference: |
| // "When applied to a reference or a reference type, the result is the size |
| // of the referenced type." C++98 5.3.3p2: expr.sizeof. |
| // FIXME: This is wrong for struct layout: a reference in a struct has |
| // pointer size. |
| return getTypeInfo(cast<ReferenceType>(T)->getPointeeType()); |
| case Type::MemberPointer: { |
| // FIXME: This is not only platform- but also ABI-dependent. We follow |
| // the GCC ABI, where pointers to data are one pointer large, pointers to |
| // functions two pointers. But if we want to support ABI compatibility with |
| // other compilers too, we need to delegate this completely to TargetInfo |
| // or some ABI abstraction layer. |
| QualType Pointee = cast<MemberPointerType>(T)->getPointeeType(); |
| unsigned AS = Pointee.getAddressSpace(); |
| Width = Target.getPointerWidth(AS); |
| if (Pointee->isFunctionType()) |
| Width *= 2; |
| Align = Target.getPointerAlign(AS); |
| // GCC aligns at single pointer width. |
| } |
| case Type::Complex: { |
| // Complex types have the same alignment as their elements, but twice the |
| // size. |
| std::pair<uint64_t, unsigned> EltInfo = |
| getTypeInfo(cast<ComplexType>(T)->getElementType()); |
| Width = EltInfo.first*2; |
| Align = EltInfo.second; |
| break; |
| } |
| case Type::ObjCInterface: { |
| const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T); |
| const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); |
| Width = Layout.getSize(); |
| Align = Layout.getAlignment(); |
| break; |
| } |
| case Type::Record: |
| case Type::Enum: { |
| const TagType *TT = cast<TagType>(T); |
| |
| if (TT->getDecl()->isInvalidDecl()) { |
| Width = 1; |
| Align = 1; |
| break; |
| } |
| |
| if (const EnumType *ET = dyn_cast<EnumType>(TT)) |
| return getTypeInfo(ET->getDecl()->getIntegerType()); |
| |
| const RecordType *RT = cast<RecordType>(TT); |
| const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl()); |
| Width = Layout.getSize(); |
| Align = Layout.getAlignment(); |
| break; |
| } |
| |
| case Type::TemplateSpecialization: |
| assert(false && "Dependent types have no size"); |
| break; |
| } |
| |
| assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2"); |
| return std::make_pair(Width, Align); |
| } |
| |
| /// getPreferredTypeAlign - Return the "preferred" alignment of the specified |
| /// type for the current target in bits. This can be different than the ABI |
| /// alignment in cases where it is beneficial for performance to overalign |
| /// a data type. |
| unsigned ASTContext::getPreferredTypeAlign(const Type *T) { |
| unsigned ABIAlign = getTypeAlign(T); |
| |
| // Doubles should be naturally aligned if possible. |
| if (T->isSpecificBuiltinType(BuiltinType::Double)) |
| return std::max(ABIAlign, 64U); |
| |
| return ABIAlign; |
| } |
| |
| |
| /// LayoutField - Field layout. |
| void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo, |
| bool IsUnion, unsigned StructPacking, |
| ASTContext &Context) { |
| unsigned FieldPacking = StructPacking; |
| uint64_t FieldOffset = IsUnion ? 0 : Size; |
| uint64_t FieldSize; |
| unsigned FieldAlign; |
| |
| // FIXME: Should this override struct packing? Probably we want to |
| // take the minimum? |
| if (const PackedAttr *PA = FD->getAttr<PackedAttr>()) |
| FieldPacking = PA->getAlignment(); |
| |
| if (const Expr *BitWidthExpr = FD->getBitWidth()) { |
| // TODO: Need to check this algorithm on other targets! |
| // (tested on Linux-X86) |
| FieldSize = |
| BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue(); |
| |
| std::pair<uint64_t, unsigned> FieldInfo = |
| Context.getTypeInfo(FD->getType()); |
| uint64_t TypeSize = FieldInfo.first; |
| |
| // Determine the alignment of this bitfield. The packing |
| // attributes define a maximum and the alignment attribute defines |
| // a minimum. |
| // FIXME: What is the right behavior when the specified alignment |
| // is smaller than the specified packing? |
| FieldAlign = FieldInfo.second; |
| if (FieldPacking) |
| FieldAlign = std::min(FieldAlign, FieldPacking); |
| if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>()) |
| FieldAlign = std::max(FieldAlign, AA->getAlignment()); |
| |
| // Check if we need to add padding to give the field the correct |
| // alignment. |
| if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize) |
| FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1); |
| |
| // Padding members don't affect overall alignment |
| if (!FD->getIdentifier()) |
| FieldAlign = 1; |
| } else { |
| if (FD->getType()->isIncompleteArrayType()) { |
| // This is a flexible array member; we can't directly |
| // query getTypeInfo about these, so we figure it out here. |
| // Flexible array members don't have any size, but they |
| // have to be aligned appropriately for their element type. |
| FieldSize = 0; |
| const ArrayType* ATy = Context.getAsArrayType(FD->getType()); |
| FieldAlign = Context.getTypeAlign(ATy->getElementType()); |
| } else { |
| std::pair<uint64_t, unsigned> FieldInfo = |
| Context.getTypeInfo(FD->getType()); |
| FieldSize = FieldInfo.first; |
| FieldAlign = FieldInfo.second; |
| } |
| |
| // Determine the alignment of this bitfield. The packing |
| // attributes define a maximum and the alignment attribute defines |
| // a minimum. Additionally, the packing alignment must be at least |
| // a byte for non-bitfields. |
| // |
| // FIXME: What is the right behavior when the specified alignment |
| // is smaller than the specified packing? |
| if (FieldPacking) |
| FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking)); |
| if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>()) |
| FieldAlign = std::max(FieldAlign, AA->getAlignment()); |
| |
| // Round up the current record size to the field's alignment boundary. |
| FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1); |
| } |
| |
| // Place this field at the current location. |
| FieldOffsets[FieldNo] = FieldOffset; |
| |
| // Reserve space for this field. |
| if (IsUnion) { |
| Size = std::max(Size, FieldSize); |
| } else { |
| Size = FieldOffset + FieldSize; |
| } |
| |
| // Remember max struct/class alignment. |
| Alignment = std::max(Alignment, FieldAlign); |
| } |
| |
| void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI, |
| llvm::SmallVectorImpl<FieldDecl*> &Fields) const { |
| const ObjCInterfaceDecl *SuperClass = OI->getSuperClass(); |
| if (SuperClass) |
| CollectObjCIvars(SuperClass, Fields); |
| for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(), |
| E = OI->ivar_end(); I != E; ++I) { |
| ObjCIvarDecl *IVDecl = *I; |
| if (!IVDecl->isInvalidDecl()) |
| Fields.push_back(cast<FieldDecl>(IVDecl)); |
| } |
| // look into properties. |
| for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(), |
| E = OI->prop_end(); I != E; ++I) { |
| if (ObjCIvarDecl *IV = (*I)->getPropertyIvarDecl()) |
| Fields.push_back(cast<FieldDecl>(IV)); |
| } |
| } |
| |
| /// addRecordToClass - produces record info. for the class for its |
| /// ivars and all those inherited. |
| /// |
| const RecordDecl *ASTContext::addRecordToClass(const ObjCInterfaceDecl *D) { |
| RecordDecl *&RD = ASTRecordForInterface[D]; |
| if (RD) { |
| // If we have a record decl already and it is either a definition or if 'D' |
| // is still a forward declaration, return it. |
| if (RD->isDefinition() || D->isForwardDecl()) |
| return RD; |
| } |
| |
| // If D is a forward declaration, then just make a forward struct decl. |
| if (D->isForwardDecl()) |
| return RD = RecordDecl::Create(*this, TagDecl::TK_struct, 0, |
| D->getLocation(), |
| D->getIdentifier()); |
| |
| llvm::SmallVector<FieldDecl*, 32> RecFields; |
| CollectObjCIvars(D, RecFields); |
| |
| if (RD == 0) |
| RD = RecordDecl::Create(*this, TagDecl::TK_struct, 0, D->getLocation(), |
| D->getIdentifier()); |
| /// FIXME! Can do collection of ivars and adding to the record while |
| /// doing it. |
| for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { |
| RD->addDecl(FieldDecl::Create(*this, RD, |
| RecFields[i]->getLocation(), |
| RecFields[i]->getIdentifier(), |
| RecFields[i]->getType(), |
| RecFields[i]->getBitWidth(), false)); |
| } |
| |
| RD->completeDefinition(*this); |
| return RD; |
| } |
| |
| /// setFieldDecl - maps a field for the given Ivar reference node. |
| // |
| void ASTContext::setFieldDecl(const ObjCInterfaceDecl *OI, |
| const ObjCIvarDecl *Ivar, |
| const ObjCIvarRefExpr *MRef) { |
| ASTFieldForIvarRef[MRef] = OI->lookupFieldDeclForIvar(*this, Ivar); |
| } |
| |
| /// getASTObjcInterfaceLayout - Get or compute information about the layout of |
| /// the specified Objective C, which indicates its size and ivar |
| /// position information. |
| const ASTRecordLayout & |
| ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) { |
| // Look up this layout, if already laid out, return what we have. |
| const ASTRecordLayout *&Entry = ASTObjCInterfaces[D]; |
| if (Entry) return *Entry; |
| |
| // Allocate and assign into ASTRecordLayouts here. The "Entry" reference can |
| // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into. |
| ASTRecordLayout *NewEntry = NULL; |
| unsigned FieldCount = D->ivar_size(); |
| if (ObjCInterfaceDecl *SD = D->getSuperClass()) { |
| FieldCount++; |
| const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD); |
| unsigned Alignment = SL.getAlignment(); |
| uint64_t Size = SL.getSize(); |
| NewEntry = new ASTRecordLayout(Size, Alignment); |
| NewEntry->InitializeLayout(FieldCount); |
| // Super class is at the beginning of the layout. |
| NewEntry->SetFieldOffset(0, 0); |
| } else { |
| NewEntry = new ASTRecordLayout(); |
| NewEntry->InitializeLayout(FieldCount); |
| } |
| Entry = NewEntry; |
| |
| unsigned StructPacking = 0; |
| if (const PackedAttr *PA = D->getAttr<PackedAttr>()) |
| StructPacking = PA->getAlignment(); |
| |
| if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) |
| NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), |
| AA->getAlignment())); |
| |
| // Layout each ivar sequentially. |
| unsigned i = 0; |
| for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(), |
| IVE = D->ivar_end(); IVI != IVE; ++IVI) { |
| const ObjCIvarDecl* Ivar = (*IVI); |
| NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this); |
| } |
| // Also synthesized ivars |
| for (ObjCInterfaceDecl::prop_iterator I = D->prop_begin(), |
| E = D->prop_end(); I != E; ++I) { |
| if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl()) |
| NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this); |
| } |
| |
| // Finally, round the size of the total struct up to the alignment of the |
| // struct itself. |
| NewEntry->FinalizeLayout(); |
| return *NewEntry; |
| } |
| |
| /// getASTRecordLayout - Get or compute information about the layout of the |
| /// specified record (struct/union/class), which indicates its size and field |
| /// position information. |
| const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) { |
| D = D->getDefinition(*this); |
| assert(D && "Cannot get layout of forward declarations!"); |
| |
| // Look up this layout, if already laid out, return what we have. |
| const ASTRecordLayout *&Entry = ASTRecordLayouts[D]; |
| if (Entry) return *Entry; |
| |
| // Allocate and assign into ASTRecordLayouts here. The "Entry" reference can |
| // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into. |
| ASTRecordLayout *NewEntry = new ASTRecordLayout(); |
| Entry = NewEntry; |
| |
| // FIXME: Avoid linear walk through the fields, if possible. |
| NewEntry->InitializeLayout(std::distance(D->field_begin(), D->field_end())); |
| bool IsUnion = D->isUnion(); |
| |
| unsigned StructPacking = 0; |
| if (const PackedAttr *PA = D->getAttr<PackedAttr>()) |
| StructPacking = PA->getAlignment(); |
| |
| if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) |
| NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), |
| AA->getAlignment())); |
| |
| // Layout each field, for now, just sequentially, respecting alignment. In |
| // the future, this will need to be tweakable by targets. |
| unsigned FieldIdx = 0; |
| for (RecordDecl::field_iterator Field = D->field_begin(), |
| FieldEnd = D->field_end(); |
| Field != FieldEnd; (void)++Field, ++FieldIdx) |
| NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this); |
| |
| // Finally, round the size of the total struct up to the alignment of the |
| // struct itself. |
| NewEntry->FinalizeLayout(); |
| return *NewEntry; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type creation/memoization methods |
| //===----------------------------------------------------------------------===// |
| |
| QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) { |
| QualType CanT = getCanonicalType(T); |
| if (CanT.getAddressSpace() == AddressSpace) |
| return T; |
| |
| // If we are composing extended qualifiers together, merge together into one |
| // ExtQualType node. |
| unsigned CVRQuals = T.getCVRQualifiers(); |
| QualType::GCAttrTypes GCAttr = QualType::GCNone; |
| Type *TypeNode = T.getTypePtr(); |
| |
| if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) { |
| // If this type already has an address space specified, it cannot get |
| // another one. |
| assert(EQT->getAddressSpace() == 0 && |
| "Type cannot be in multiple addr spaces!"); |
| GCAttr = EQT->getObjCGCAttr(); |
| TypeNode = EQT->getBaseType(); |
| } |
| |
| // Check if we've already instantiated this type. |
| llvm::FoldingSetNodeID ID; |
| ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr); |
| void *InsertPos = 0; |
| if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(EXTQy, CVRQuals); |
| |
| // If the base type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!TypeNode->isCanonical()) { |
| Canonical = getAddrSpaceQualType(CanT, AddressSpace); |
| |
| // Update InsertPos, the previous call could have invalidated it. |
| ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; |
| } |
| ExtQualType *New = |
| new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr); |
| ExtQualTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, CVRQuals); |
| } |
| |
| QualType ASTContext::getObjCGCQualType(QualType T, |
| QualType::GCAttrTypes GCAttr) { |
| QualType CanT = getCanonicalType(T); |
| if (CanT.getObjCGCAttr() == GCAttr) |
| return T; |
| |
| // If we are composing extended qualifiers together, merge together into one |
| // ExtQualType node. |
| unsigned CVRQuals = T.getCVRQualifiers(); |
| Type *TypeNode = T.getTypePtr(); |
| unsigned AddressSpace = 0; |
| |
| if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) { |
| // If this type already has an address space specified, it cannot get |
| // another one. |
| assert(EQT->getObjCGCAttr() == QualType::GCNone && |
| "Type cannot be in multiple addr spaces!"); |
| AddressSpace = EQT->getAddressSpace(); |
| TypeNode = EQT->getBaseType(); |
| } |
| |
| // Check if we've already instantiated an gc qual'd type of this type. |
| llvm::FoldingSetNodeID ID; |
| ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr); |
| void *InsertPos = 0; |
| if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(EXTQy, CVRQuals); |
| |
| // If the base type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| // FIXME: Isn't this also not canonical if the base type is a array |
| // or pointer type? I can't find any documentation for objc_gc, though... |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getObjCGCQualType(CanT, GCAttr); |
| |
| // Update InsertPos, the previous call could have invalidated it. |
| ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; |
| } |
| ExtQualType *New = |
| new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr); |
| ExtQualTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, CVRQuals); |
| } |
| |
| /// getComplexType - Return the uniqued reference to the type for a complex |
| /// number with the specified element type. |
| QualType ASTContext::getComplexType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ComplexType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(CT, 0); |
| |
| // If the pointee type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getComplexType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; |
| } |
| ComplexType *New = new (*this,8) ComplexType(T, Canonical); |
| Types.push_back(New); |
| ComplexTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) { |
| llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ? |
| SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes; |
| FixedWidthIntType *&Entry = Map[Width]; |
| if (!Entry) |
| Entry = new FixedWidthIntType(Width, Signed); |
| return QualType(Entry, 0); |
| } |
| |
| /// getPointerType - Return the uniqued reference to the type for a pointer to |
| /// the specified type. |
| QualType ASTContext::getPointerType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| PointerType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(PT, 0); |
| |
| // If the pointee type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getPointerType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; |
| } |
| PointerType *New = new (*this,8) PointerType(T, Canonical); |
| Types.push_back(New); |
| PointerTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getBlockPointerType - Return the uniqued reference to the type for |
| /// a pointer to the specified block. |
| QualType ASTContext::getBlockPointerType(QualType T) { |
| assert(T->isFunctionType() && "block of function types only"); |
| // Unique pointers, to guarantee there is only one block of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| BlockPointerType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (BlockPointerType *PT = |
| BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(PT, 0); |
| |
| // If the block pointee type isn't canonical, this won't be a canonical |
| // type either so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getBlockPointerType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| BlockPointerType *NewIP = |
| BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; |
| } |
| BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical); |
| Types.push_back(New); |
| BlockPointerTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getLValueReferenceType - Return the uniqued reference to the type for an |
| /// lvalue reference to the specified type. |
| QualType ASTContext::getLValueReferenceType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ReferenceType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (LValueReferenceType *RT = |
| LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(RT, 0); |
| |
| // If the referencee type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getLValueReferenceType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| LValueReferenceType *NewIP = |
| LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; |
| } |
| |
| LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical); |
| Types.push_back(New); |
| LValueReferenceTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getRValueReferenceType - Return the uniqued reference to the type for an |
| /// rvalue reference to the specified type. |
| QualType ASTContext::getRValueReferenceType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ReferenceType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (RValueReferenceType *RT = |
| RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(RT, 0); |
| |
| // If the referencee type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getRValueReferenceType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| RValueReferenceType *NewIP = |
| RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; |
| } |
| |
| RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical); |
| Types.push_back(New); |
| RValueReferenceTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getMemberPointerType - Return the uniqued reference to the type for a |
| /// member pointer to the specified type, in the specified class. |
| QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) |
| { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| MemberPointerType::Profile(ID, T, Cls); |
| |
| void *InsertPos = 0; |
| if (MemberPointerType *PT = |
| MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(PT, 0); |
| |
| // If the pointee or class type isn't canonical, this won't be a canonical |
| // type either, so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls)); |
| |
| // Get the new insert position for the node we care about. |
| MemberPointerType *NewIP = |
| MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; |
| } |
| MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical); |
| Types.push_back(New); |
| MemberPointerTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getConstantArrayType - Return the unique reference to the type for an |
| /// array of the specified element type. |
| QualType ASTContext::getConstantArrayType(QualType EltTy, |
| const llvm::APInt &ArySize, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned EltTypeQuals) { |
| llvm::FoldingSetNodeID ID; |
| ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals); |
| |
| void *InsertPos = 0; |
| if (ConstantArrayType *ATP = |
| ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(ATP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!EltTy->isCanonical()) { |
| Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize, |
| ASM, EltTypeQuals); |
| // Get the new insert position for the node we care about. |
| ConstantArrayType *NewIP = |
| ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; |
| } |
| |
| ConstantArrayType *New = |
| new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals); |
| ConstantArrayTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getVariableArrayType - Returns a non-unique reference to the type for a |
| /// variable array of the specified element type. |
| QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned EltTypeQuals) { |
| // Since we don't unique expressions, it isn't possible to unique VLA's |
| // that have an expression provided for their size. |
| |
| VariableArrayType *New = |
| new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals); |
| |
| VariableArrayTypes.push_back(New); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getDependentSizedArrayType - Returns a non-unique reference to |
| /// the type for a dependently-sized array of the specified element |
| /// type. FIXME: We will need these to be uniqued, or at least |
| /// comparable, at some point. |
| QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned EltTypeQuals) { |
| assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) && |
| "Size must be type- or value-dependent!"); |
| |
| // Since we don't unique expressions, it isn't possible to unique |
| // dependently-sized array types. |
| |
| DependentSizedArrayType *New = |
| new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts, |
| ASM, EltTypeQuals); |
| |
| DependentSizedArrayTypes.push_back(New); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| QualType ASTContext::getIncompleteArrayType(QualType EltTy, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned EltTypeQuals) { |
| llvm::FoldingSetNodeID ID; |
| IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals); |
| |
| void *InsertPos = 0; |
| if (IncompleteArrayType *ATP = |
| IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(ATP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| |
| if (!EltTy->isCanonical()) { |
| Canonical = getIncompleteArrayType(getCanonicalType(EltTy), |
| ASM, EltTypeQuals); |
| |
| // Get the new insert position for the node we care about. |
| IncompleteArrayType *NewIP = |
| IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; |
| } |
| |
| IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical, |
| ASM, EltTypeQuals); |
| |
| IncompleteArrayTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getVectorType - Return the unique reference to a vector type of |
| /// the specified element type and size. VectorType must be a built-in type. |
| QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) { |
| BuiltinType *baseType; |
| |
| baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr()); |
| assert(baseType != 0 && "getVectorType(): Expecting a built-in type"); |
| |
| // Check if we've already instantiated a vector of this type. |
| llvm::FoldingSetNodeID ID; |
| VectorType::Profile(ID, vecType, NumElts, Type::Vector); |
| void *InsertPos = 0; |
| if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(VTP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!vecType->isCanonical()) { |
| Canonical = getVectorType(getCanonicalType(vecType), NumElts); |
| |
| // Get the new insert position for the node we care about. |
| VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; |
| } |
| VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical); |
| VectorTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getExtVectorType - Return the unique reference to an extended vector type of |
| /// the specified element type and size. VectorType must be a built-in type. |
| QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) { |
| BuiltinType *baseType; |
| |
| baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr()); |
| assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type"); |
| |
| // Check if we've already instantiated a vector of this type. |
| llvm::FoldingSetNodeID ID; |
| VectorType::Profile(ID, vecType, NumElts, Type::ExtVector); |
| void *InsertPos = 0; |
| if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(VTP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!vecType->isCanonical()) { |
| Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); |
| |
| // Get the new insert position for the node we care about. |
| VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; |
| } |
| ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical); |
| VectorTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. |
| /// |
| QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) { |
| // Unique functions, to guarantee there is only one function of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| FunctionNoProtoType::Profile(ID, ResultTy); |
| |
| void *InsertPos = 0; |
| if (FunctionNoProtoType *FT = |
| FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(FT, 0); |
| |
| QualType Canonical; |
| if (!ResultTy->isCanonical()) { |
| Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy)); |
| |
| // Get the new insert position for the node we care about. |
| FunctionNoProtoType *NewIP = |
| FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; |
| } |
| |
| FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical); |
| Types.push_back(New); |
| FunctionNoProtoTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getFunctionType - Return a normal function type with a typed argument |
| /// list. isVariadic indicates whether the argument list includes '...'. |
| QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray, |
| unsigned NumArgs, bool isVariadic, |
| unsigned TypeQuals) { |
| // Unique functions, to guarantee there is only one function of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic, |
| TypeQuals); |
| |
| void *InsertPos = 0; |
| if (FunctionProtoType *FTP = |
| FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(FTP, 0); |
| |
| // Determine whether the type being created is already canonical or not. |
| bool isCanonical = ResultTy->isCanonical(); |
| for (unsigned i = 0; i != NumArgs && isCanonical; ++i) |
| if (!ArgArray[i]->isCanonical()) |
| isCanonical = false; |
| |
| // If this type isn't canonical, get the canonical version of it. |
| QualType Canonical; |
| if (!isCanonical) { |
| llvm::SmallVector<QualType, 16> CanonicalArgs; |
| CanonicalArgs.reserve(NumArgs); |
| for (unsigned i = 0; i != NumArgs; ++i) |
| CanonicalArgs.push_back(getCanonicalType(ArgArray[i])); |
| |
| Canonical = getFunctionType(getCanonicalType(ResultTy), |
| &CanonicalArgs[0], NumArgs, |
| isVariadic, TypeQuals); |
| |
| // Get the new insert position for the node we care about. |
| FunctionProtoType *NewIP = |
| FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; |
| } |
| |
| // FunctionProtoType objects are allocated with extra bytes after them |
| // for a variable size array (for parameter types) at the end of them. |
| FunctionProtoType *FTP = |
| (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) + |
| NumArgs*sizeof(QualType), 8); |
| new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic, |
| TypeQuals, Canonical); |
| Types.push_back(FTP); |
| FunctionProtoTypes.InsertNode(FTP, InsertPos); |
| return QualType(FTP, 0); |
| } |
| |
| /// getTypeDeclType - Return the unique reference to the type for the |
| /// specified type declaration. |
| QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) { |
| assert(Decl && "Passed null for Decl param"); |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl)) |
| return getTypedefType(Typedef); |
| else if (isa<TemplateTypeParmDecl>(Decl)) { |
| assert(false && "Template type parameter types are always available."); |
| } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl)) |
| return getObjCInterfaceType(ObjCInterface); |
| |
| if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) { |
| if (PrevDecl) |
| Decl->TypeForDecl = PrevDecl->TypeForDecl; |
| else |
| Decl->TypeForDecl = new (*this,8) RecordType(Record); |
| } |
| else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) { |
| if (PrevDecl) |
| Decl->TypeForDecl = PrevDecl->TypeForDecl; |
| else |
| Decl->TypeForDecl = new (*this,8) EnumType(Enum); |
| } |
| else |
| assert(false && "TypeDecl without a type?"); |
| |
| if (!PrevDecl) Types.push_back(Decl->TypeForDecl); |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// getTypedefType - Return the unique reference to the type for the |
| /// specified typename decl. |
| QualType ASTContext::getTypedefType(TypedefDecl *Decl) { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| QualType Canonical = getCanonicalType(Decl->getUnderlyingType()); |
| Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical); |
| Types.push_back(Decl->TypeForDecl); |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// getObjCInterfaceType - Return the unique reference to the type for the |
| /// specified ObjC interface decl. |
| QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl); |
| Types.push_back(Decl->TypeForDecl); |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// buildObjCInterfaceType - Returns a new type for the interface |
| /// declaration, regardless. It also removes any previously built |
| /// record declaration so caller can rebuild it. |
| QualType ASTContext::buildObjCInterfaceType(ObjCInterfaceDecl *Decl) { |
| RecordDecl *&RD = ASTRecordForInterface[Decl]; |
| if (RD) |
| RD = 0; |
| Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl); |
| Types.push_back(Decl->TypeForDecl); |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// \brief Retrieve the template type parameter type for a template |
| /// parameter with the given depth, index, and (optionally) name. |
| QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, |
| IdentifierInfo *Name) { |
| llvm::FoldingSetNodeID ID; |
| TemplateTypeParmType::Profile(ID, Depth, Index, Name); |
| void *InsertPos = 0; |
| TemplateTypeParmType *TypeParm |
| = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (TypeParm) |
| return QualType(TypeParm, 0); |
| |
| if (Name) |
| TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name, |
| getTemplateTypeParmType(Depth, Index)); |
| else |
| TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index); |
| |
| Types.push_back(TypeParm); |
| TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); |
| |
| return QualType(TypeParm, 0); |
| } |
| |
| QualType |
| ASTContext::getTemplateSpecializationType(TemplateName Template, |
| const TemplateArgument *Args, |
| unsigned NumArgs, |
| QualType Canon) { |
| if (!Canon.isNull()) |
| Canon = getCanonicalType(Canon); |
| |
| llvm::FoldingSetNodeID ID; |
| TemplateSpecializationType::Profile(ID, Template, Args, NumArgs); |
| |
| void *InsertPos = 0; |
| TemplateSpecializationType *Spec |
| = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (Spec) |
| return QualType(Spec, 0); |
| |
| void *Mem = Allocate((sizeof(TemplateSpecializationType) + |
| sizeof(TemplateArgument) * NumArgs), |
| 8); |
| Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon); |
| Types.push_back(Spec); |
| TemplateSpecializationTypes.InsertNode(Spec, InsertPos); |
| |
| return QualType(Spec, 0); |
| } |
| |
| QualType |
| ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS, |
| QualType NamedType) { |
| llvm::FoldingSetNodeID ID; |
| QualifiedNameType::Profile(ID, NNS, NamedType); |
| |
| void *InsertPos = 0; |
| QualifiedNameType *T |
| = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (T) |
| return QualType(T, 0); |
| |
| T = new (*this) QualifiedNameType(NNS, NamedType, |
| getCanonicalType(NamedType)); |
| Types.push_back(T); |
| QualifiedNameTypes.InsertNode(T, InsertPos); |
| return QualType(T, 0); |
| } |
| |
| QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS, |
| const IdentifierInfo *Name, |
| QualType Canon) { |
| assert(NNS->isDependent() && "nested-name-specifier must be dependent"); |
| |
| if (Canon.isNull()) { |
| NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| if (CanonNNS != NNS) |
| Canon = getTypenameType(CanonNNS, Name); |
| } |
| |
| llvm::FoldingSetNodeID ID; |
| TypenameType::Profile(ID, NNS, Name); |
| |
| void *InsertPos = 0; |
| TypenameType *T |
| = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (T) |
| return QualType(T, 0); |
| |
| T = new (*this) TypenameType(NNS, Name, Canon); |
| Types.push_back(T); |
| TypenameTypes.InsertNode(T, InsertPos); |
| return QualType(T, 0); |
| } |
| |
| /// CmpProtocolNames - Comparison predicate for sorting protocols |
| /// alphabetically. |
| static bool CmpProtocolNames(const ObjCProtocolDecl *LHS, |
| const ObjCProtocolDecl *RHS) { |
| return LHS->getDeclName() < RHS->getDeclName(); |
| } |
| |
| static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols, |
| unsigned &NumProtocols) { |
| ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols; |
| |
| // Sort protocols, keyed by name. |
| std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames); |
| |
| // Remove duplicates. |
| ProtocolsEnd = std::unique(Protocols, ProtocolsEnd); |
| NumProtocols = ProtocolsEnd-Protocols; |
| } |
| |
| |
| /// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for |
| /// the given interface decl and the conforming protocol list. |
| QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl, |
| ObjCProtocolDecl **Protocols, unsigned NumProtocols) { |
| // Sort the protocol list alphabetically to canonicalize it. |
| SortAndUniqueProtocols(Protocols, NumProtocols); |
| |
| llvm::FoldingSetNodeID ID; |
| ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols); |
| |
| void *InsertPos = 0; |
| if (ObjCQualifiedInterfaceType *QT = |
| ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(QT, 0); |
| |
| // No Match; |
| ObjCQualifiedInterfaceType *QType = |
| new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols); |
| |
| Types.push_back(QType); |
| ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos); |
| return QualType(QType, 0); |
| } |
| |
| /// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl |
| /// and the conforming protocol list. |
| QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols, |
| unsigned NumProtocols) { |
| // Sort the protocol list alphabetically to canonicalize it. |
| SortAndUniqueProtocols(Protocols, NumProtocols); |
| |
| llvm::FoldingSetNodeID ID; |
| ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols); |
| |
| void *InsertPos = 0; |
| if (ObjCQualifiedIdType *QT = |
| ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(QT, 0); |
| |
| // No Match; |
| ObjCQualifiedIdType *QType = |
| new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols); |
| Types.push_back(QType); |
| ObjCQualifiedIdTypes.InsertNode(QType, InsertPos); |
| return QualType(QType, 0); |
| } |
| |
| /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique |
| /// TypeOfExprType AST's (since expression's are never shared). For example, |
| /// multiple declarations that refer to "typeof(x)" all contain different |
| /// DeclRefExpr's. This doesn't effect the type checker, since it operates |
| /// on canonical type's (which are always unique). |
| QualType ASTContext::getTypeOfExprType(Expr *tofExpr) { |
| QualType Canonical = getCanonicalType(tofExpr->getType()); |
| TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical); |
| Types.push_back(toe); |
| return QualType(toe, 0); |
| } |
| |
| /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique |
| /// TypeOfType AST's. The only motivation to unique these nodes would be |
| /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be |
| /// an issue. This doesn't effect the type checker, since it operates |
| /// on canonical type's (which are always unique). |
| QualType ASTContext::getTypeOfType(QualType tofType) { |
| QualType Canonical = getCanonicalType(tofType); |
| TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical); |
| Types.push_back(tot); |
| return QualType(tot, 0); |
| } |
| |
| /// getTagDeclType - Return the unique reference to the type for the |
| /// specified TagDecl (struct/union/class/enum) decl. |
| QualType ASTContext::getTagDeclType(TagDecl *Decl) { |
| assert (Decl); |
| return getTypeDeclType(Decl); |
| } |
| |
| /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result |
| /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and |
| /// needs to agree with the definition in <stddef.h>. |
| QualType ASTContext::getSizeType() const { |
| return getFromTargetType(Target.getSizeType()); |
| } |
| |
| /// getSignedWCharType - Return the type of "signed wchar_t". |
| /// Used when in C++, as a GCC extension. |
| QualType ASTContext::getSignedWCharType() const { |
| // FIXME: derive from "Target" ? |
| return WCharTy; |
| } |
| |
| /// getUnsignedWCharType - Return the type of "unsigned wchar_t". |
| /// Used when in C++, as a GCC extension. |
| QualType ASTContext::getUnsignedWCharType() const { |
| // FIXME: derive from "Target" ? |
| return UnsignedIntTy; |
| } |
| |
| /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?) |
| /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). |
| QualType ASTContext::getPointerDiffType() const { |
| return getFromTargetType(Target.getPtrDiffType(0)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Operators |
| //===----------------------------------------------------------------------===// |
| |
| /// getCanonicalType - Return the canonical (structural) type corresponding to |
| /// the specified potentially non-canonical type. The non-canonical version |
| /// of a type may have many "decorated" versions of types. Decorators can |
| /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed |
| /// to be free of any of these, allowing two canonical types to be compared |
| /// for exact equality with a simple pointer comparison. |
| QualType ASTContext::getCanonicalType(QualType T) { |
| QualType CanType = T.getTypePtr()->getCanonicalTypeInternal(); |
| |
| // If the result has type qualifiers, make sure to canonicalize them as well. |
| unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers(); |
| if (TypeQuals == 0) return CanType; |
| |
| // If the type qualifiers are on an array type, get the canonical type of the |
| // array with the qualifiers applied to the element type. |
| ArrayType *AT = dyn_cast<ArrayType>(CanType); |
| if (!AT) |
| return CanType.getQualifiedType(TypeQuals); |
| |
| // Get the canonical version of the element with the extra qualifiers on it. |
| // This can recursively sink qualifiers through multiple levels of arrays. |
| QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals); |
| NewEltTy = getCanonicalType(NewEltTy); |
| |
| if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) |
| return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(), |
| CAT->getIndexTypeQualifier()); |
| if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) |
| return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(), |
| IAT->getIndexTypeQualifier()); |
| |
| if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT)) |
| return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(), |
| DSAT->getSizeModifier(), |
| DSAT->getIndexTypeQualifier()); |
| |
| VariableArrayType *VAT = cast<VariableArrayType>(AT); |
| return getVariableArrayType(NewEltTy, VAT->getSizeExpr(), |
| VAT->getSizeModifier(), |
| VAT->getIndexTypeQualifier()); |
| } |
| |
| NestedNameSpecifier * |
| ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) { |
| if (!NNS) |
| return 0; |
| |
| switch (NNS->getKind()) { |
| case NestedNameSpecifier::Identifier: |
| // Canonicalize the prefix but keep the identifier the same. |
| return NestedNameSpecifier::Create(*this, |
| getCanonicalNestedNameSpecifier(NNS->getPrefix()), |
| NNS->getAsIdentifier()); |
| |
| case NestedNameSpecifier::Namespace: |
| // A namespace is canonical; build a nested-name-specifier with |
| // this namespace and no prefix. |
| return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace()); |
| |
| case NestedNameSpecifier::TypeSpec: |
| case NestedNameSpecifier::TypeSpecWithTemplate: { |
| QualType T = getCanonicalType(QualType(NNS->getAsType(), 0)); |
| NestedNameSpecifier *Prefix = 0; |
| |
| // FIXME: This isn't the right check! |
| if (T->isDependentType()) |
| Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix()); |
| |
| return NestedNameSpecifier::Create(*this, Prefix, |
| NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate, |
| T.getTypePtr()); |
| } |
| |
| case NestedNameSpecifier::Global: |
| // The global specifier is canonical and unique. |
| return NNS; |
| } |
| |
| // Required to silence a GCC warning |
| return 0; |
| } |
| |
| |
| const ArrayType *ASTContext::getAsArrayType(QualType T) { |
| // Handle the non-qualified case efficiently. |
| if (T.getCVRQualifiers() == 0) { |
| // Handle the common positive case fast. |
| if (const ArrayType *AT = dyn_cast<ArrayType>(T)) |
| return AT; |
| } |
| |
| // Handle the common negative case fast, ignoring CVR qualifiers. |
| QualType CType = T->getCanonicalTypeInternal(); |
| |
| // Make sure to look through type qualifiers (like ExtQuals) for the negative |
| // test. |
| if (!isa<ArrayType>(CType) && |
| !isa<ArrayType>(CType.getUnqualifiedType())) |
| return 0; |
| |
| // Apply any CVR qualifiers from the array type to the element type. This |
| // implements C99 6.7.3p8: "If the specification of an array type includes |
| // any type qualifiers, the element type is so qualified, not the array type." |
| |
| // If we get here, we either have type qualifiers on the type, or we have |
| // sugar such as a typedef in the way. If we have type qualifiers on the type |
| // we must propagate them down into the elemeng type. |
| unsigned CVRQuals = T.getCVRQualifiers(); |
| unsigned AddrSpace = 0; |
| Type *Ty = T.getTypePtr(); |
| |
| // Rip through ExtQualType's and typedefs to get to a concrete type. |
| while (1) { |
| if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) { |
| AddrSpace = EXTQT->getAddressSpace(); |
| Ty = EXTQT->getBaseType(); |
| } else { |
| T = Ty->getDesugaredType(); |
| if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0) |
| break; |
| CVRQuals |= T.getCVRQualifiers(); |
| Ty = T.getTypePtr(); |
| } |
| } |
| |
| // If we have a simple case, just return now. |
| const ArrayType *ATy = dyn_cast<ArrayType>(Ty); |
| if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0)) |
| return ATy; |
| |
| // Otherwise, we have an array and we have qualifiers on it. Push the |
| // qualifiers into the array element type and return a new array type. |
| // Get the canonical version of the element with the extra qualifiers on it. |
| // This can recursively sink qualifiers through multiple levels of arrays. |
| QualType NewEltTy = ATy->getElementType(); |
| if (AddrSpace) |
| NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace); |
| NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals); |
| |
| if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy)) |
| return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), |
| CAT->getSizeModifier(), |
| CAT->getIndexTypeQualifier())); |
| if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy)) |
| return cast<ArrayType>(getIncompleteArrayType(NewEltTy, |
| IAT->getSizeModifier(), |
| IAT->getIndexTypeQualifier())); |
| |
| if (const DependentSizedArrayType *DSAT |
| = dyn_cast<DependentSizedArrayType>(ATy)) |
| return cast<ArrayType>( |
| getDependentSizedArrayType(NewEltTy, |
| DSAT->getSizeExpr(), |
| DSAT->getSizeModifier(), |
| DSAT->getIndexTypeQualifier())); |
| |
| const VariableArrayType *VAT = cast<VariableArrayType>(ATy); |
| return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(), |
| VAT->getSizeModifier(), |
| VAT->getIndexTypeQualifier())); |
| } |
| |
| |
| /// getArrayDecayedType - Return the properly qualified result of decaying the |
| /// specified array type to a pointer. This operation is non-trivial when |
| /// handling typedefs etc. The canonical type of "T" must be an array type, |
| /// this returns a pointer to a properly qualified element of the array. |
| /// |
| /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. |
| QualType ASTContext::getArrayDecayedType(QualType Ty) { |
| // Get the element type with 'getAsArrayType' so that we don't lose any |
| // typedefs in the element type of the array. This also handles propagation |
| // of type qualifiers from the array type into the element type if present |
| // (C99 6.7.3p8). |
| const ArrayType *PrettyArrayType = getAsArrayType(Ty); |
| assert(PrettyArrayType && "Not an array type!"); |
| |
| QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); |
| |
| // int x[restrict 4] -> int *restrict |
| return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier()); |
| } |
| |
| QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) { |
| QualType ElemTy = VAT->getElementType(); |
| |
| if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy)) |
| return getBaseElementType(VAT); |
| |
| return ElemTy; |
| } |
| |
| /// getFloatingRank - Return a relative rank for floating point types. |
| /// This routine will assert if passed a built-in type that isn't a float. |
| static FloatingRank getFloatingRank(QualType T) { |
| if (const ComplexType *CT = T->getAsComplexType()) |
| return getFloatingRank(CT->getElementType()); |
| |
| assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type"); |
| switch (T->getAsBuiltinType()->getKind()) { |
| default: assert(0 && "getFloatingRank(): not a floating type"); |
| case BuiltinType::Float: return FloatRank; |
| case BuiltinType::Double: return DoubleRank; |
| case BuiltinType::LongDouble: return LongDoubleRank; |
| } |
| } |
| |
| /// getFloatingTypeOfSizeWithinDomain - Returns a real floating |
| /// point or a complex type (based on typeDomain/typeSize). |
| /// 'typeDomain' is a real floating point or complex type. |
| /// 'typeSize' is a real floating point or complex type. |
| QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, |
| QualType Domain) const { |
| FloatingRank EltRank = getFloatingRank(Size); |
| if (Domain->isComplexType()) { |
| switch (EltRank) { |
| default: assert(0 && "getFloatingRank(): illegal value for rank"); |
| case FloatRank: return FloatComplexTy; |
| case DoubleRank: return DoubleComplexTy; |
| case LongDoubleRank: return LongDoubleComplexTy; |
| } |
| } |
| |
| assert(Domain->isRealFloatingType() && "Unknown domain!"); |
| switch (EltRank) { |
| default: assert(0 && "getFloatingRank(): illegal value for rank"); |
| case FloatRank: return FloatTy; |
| case DoubleRank: return DoubleTy; |
| case LongDoubleRank: return LongDoubleTy; |
| } |
| } |
| |
| /// getFloatingTypeOrder - Compare the rank of the two specified floating |
| /// point types, ignoring the domain of the type (i.e. 'double' == |
| /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If |
| /// LHS < RHS, return -1. |
| int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) { |
| FloatingRank LHSR = getFloatingRank(LHS); |
| FloatingRank RHSR = getFloatingRank(RHS); |
| |
| if (LHSR == RHSR) |
| return 0; |
| if (LHSR > RHSR) |
| return 1; |
| return -1; |
| } |
| |
| /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This |
| /// routine will assert if passed a built-in type that isn't an integer or enum, |
| /// or if it is not canonicalized. |
| unsigned ASTContext::getIntegerRank(Type *T) { |
| assert(T->isCanonical() && "T should be canonicalized"); |
| if (EnumType* ET = dyn_cast<EnumType>(T)) |
| T = ET->getDecl()->getIntegerType().getTypePtr(); |
| |
| // There are two things which impact the integer rank: the width, and |
| // the ordering of builtins. The builtin ordering is encoded in the |
| // bottom three bits; the width is encoded in the bits above that. |
| if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) { |
| return FWIT->getWidth() << 3; |
| } |
| |
| switch (cast<BuiltinType>(T)->getKind()) { |
| default: assert(0 && "getIntegerRank(): not a built-in integer"); |
| case BuiltinType::Bool: |
| return 1 + (getIntWidth(BoolTy) << 3); |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::SChar: |
| case BuiltinType::UChar: |
| return 2 + (getIntWidth(CharTy) << 3); |
| case BuiltinType::Short: |
| case BuiltinType::UShort: |
| return 3 + (getIntWidth(ShortTy) << 3); |
| case BuiltinType::Int: |
| case BuiltinType::UInt: |
| return 4 + (getIntWidth(IntTy) << 3); |
| case BuiltinType::Long: |
| case BuiltinType::ULong: |
| return 5 + (getIntWidth(LongTy) << 3); |
| case BuiltinType::LongLong: |
| case BuiltinType::ULongLong: |
| return 6 + (getIntWidth(LongLongTy) << 3); |
| } |
| } |
| |
| /// getIntegerTypeOrder - Returns the highest ranked integer type: |
| /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If |
| /// LHS < RHS, return -1. |
| int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) { |
| Type *LHSC = getCanonicalType(LHS).getTypePtr(); |
| Type *RHSC = getCanonicalType(RHS).getTypePtr(); |
| if (LHSC == RHSC) return 0; |
| |
| bool LHSUnsigned = LHSC->isUnsignedIntegerType(); |
| bool RHSUnsigned = RHSC->isUnsignedIntegerType(); |
| |
| unsigned LHSRank = getIntegerRank(LHSC); |
| unsigned RHSRank = getIntegerRank(RHSC); |
| |
| if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. |
| if (LHSRank == RHSRank) return 0; |
| return LHSRank > RHSRank ? 1 : -1; |
| } |
| |
| // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. |
| if (LHSUnsigned) { |
| // If the unsigned [LHS] type is larger, return it. |
| if (LHSRank >= RHSRank) |
| return 1; |
| |
| // If the signed type can represent all values of the unsigned type, it |
| // wins. Because we are dealing with 2's complement and types that are |
| // powers of two larger than each other, this is always safe. |
| return -1; |
| } |
| |
| // If the unsigned [RHS] type is larger, return it. |
| if (RHSRank >= LHSRank) |
| return -1; |
| |
| // If the signed type can represent all values of the unsigned type, it |
| // wins. Because we are dealing with 2's complement and types that are |
| // powers of two larger than each other, this is always safe. |
| return 1; |
| } |
| |
| // getCFConstantStringType - Return the type used for constant CFStrings. |
| QualType ASTContext::getCFConstantStringType() { |
| if (!CFConstantStringTypeDecl) { |
| CFConstantStringTypeDecl = |
| RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(), |
| &Idents.get("NSConstantString")); |
| QualType FieldTypes[4]; |
| |
| // const int *isa; |
| FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const)); |
| // int flags; |
| FieldTypes[1] = IntTy; |
| // const char *str; |
| FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const)); |
| // long length; |
| FieldTypes[3] = LongTy; |
| |
| // Create fields |
| for (unsigned i = 0; i < 4; ++i) { |
| FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl, |
| SourceLocation(), 0, |
| FieldTypes[i], /*BitWidth=*/0, |
| /*Mutable=*/false); |
| CFConstantStringTypeDecl->addDecl(Field); |
| } |
| |
| CFConstantStringTypeDecl->completeDefinition(*this); |
| } |
| |
| return getTagDeclType(CFConstantStringTypeDecl); |
| } |
| |
| QualType ASTContext::getObjCFastEnumerationStateType() |
| { |
| if (!ObjCFastEnumerationStateTypeDecl) { |
| ObjCFastEnumerationStateTypeDecl = |
| RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(), |
| &Idents.get("__objcFastEnumerationState")); |
| |
| QualType FieldTypes[] = { |
| UnsignedLongTy, |
| getPointerType(ObjCIdType), |
| getPointerType(UnsignedLongTy), |
| getConstantArrayType(UnsignedLongTy, |
| llvm::APInt(32, 5), ArrayType::Normal, 0) |
| }; |
| |
| for (size_t i = 0; i < 4; ++i) { |
| FieldDecl *Field = FieldDecl::Create(*this, |
| ObjCFastEnumerationStateTypeDecl, |
| SourceLocation(), 0, |
| FieldTypes[i], /*BitWidth=*/0, |
| /*Mutable=*/false); |
| ObjCFastEnumerationStateTypeDecl->addDecl(Field); |
| } |
| |
| ObjCFastEnumerationStateTypeDecl->completeDefinition(*this); |
| } |
| |
| return getTagDeclType(ObjCFastEnumerationStateTypeDecl); |
| } |
| |
| // This returns true if a type has been typedefed to BOOL: |
| // typedef <type> BOOL; |
| static bool isTypeTypedefedAsBOOL(QualType T) { |
| if (const TypedefType *TT = dyn_cast<TypedefType>(T)) |
| if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) |
| return II->isStr("BOOL"); |
| |
| return false; |
| } |
| |
| /// getObjCEncodingTypeSize returns size of type for objective-c encoding |
| /// purpose. |
| int ASTContext::getObjCEncodingTypeSize(QualType type) { |
| uint64_t sz = getTypeSize(type); |
| |
| // Make all integer and enum types at least as large as an int |
| if (sz > 0 && type->isIntegralType()) |
| sz = std::max(sz, getTypeSize(IntTy)); |
| // Treat arrays as pointers, since that's how they're passed in. |
| else if (type->isArrayType()) |
| sz = getTypeSize(VoidPtrTy); |
| return sz / getTypeSize(CharTy); |
| } |
| |
| /// getObjCEncodingForMethodDecl - Return the encoded type for this method |
| /// declaration. |
| void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, |
| std::string& S) { |
| // FIXME: This is not very efficient. |
| // Encode type qualifer, 'in', 'inout', etc. for the return type. |
| getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S); |
| // Encode result type. |
| getObjCEncodingForType(Decl->getResultType(), S); |
| // Compute size of all parameters. |
| // Start with computing size of a pointer in number of bytes. |
| // FIXME: There might(should) be a better way of doing this computation! |
| SourceLocation Loc; |
| int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy); |
| // The first two arguments (self and _cmd) are pointers; account for |
| // their size. |
| int ParmOffset = 2 * PtrSize; |
| for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(), |
| E = Decl->param_end(); PI != E; ++PI) { |
| QualType PType = (*PI)->getType(); |
| int sz = getObjCEncodingTypeSize(PType); |
| assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type"); |
| ParmOffset += sz; |
| } |
| S += llvm::utostr(ParmOffset); |
| S += "@0:"; |
| S += llvm::utostr(PtrSize); |
| |
| // Argument types. |
| ParmOffset = 2 * PtrSize; |
| for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(), |
| E = Decl->param_end(); PI != E; ++PI) { |
| ParmVarDecl *PVDecl = *PI; |
| QualType PType = PVDecl->getOriginalType(); |
| if (const ArrayType *AT = |
| dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) |
| // Use array's original type only if it has known number of |
| // elements. |
| if (!dyn_cast<ConstantArrayType>(AT)) |
| PType = PVDecl->getType(); |
| // Process argument qualifiers for user supplied arguments; such as, |
| // 'in', 'inout', etc. |
| getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S); |
| getObjCEncodingForType(PType, S); |
| S += llvm::utostr(ParmOffset); |
| ParmOffset += getObjCEncodingTypeSize(PType); |
| } |
| } |
| |
| /// getObjCEncodingForPropertyDecl - Return the encoded type for this |
| /// property declaration. If non-NULL, Container must be either an |
| /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be |
| /// NULL when getting encodings for protocol properties. |
| /// Property attributes are stored as a comma-delimited C string. The simple |
| /// attributes readonly and bycopy are encoded as single characters. The |
| /// parametrized attributes, getter=name, setter=name, and ivar=name, are |
| /// encoded as single characters, followed by an identifier. Property types |
| /// are also encoded as a parametrized attribute. The characters used to encode |
| /// these attributes are defined by the following enumeration: |
| /// @code |
| /// enum PropertyAttributes { |
| /// kPropertyReadOnly = 'R', // property is read-only. |
| /// kPropertyBycopy = 'C', // property is a copy of the value last assigned |
| /// kPropertyByref = '&', // property is a reference to the value last assigned |
| /// kPropertyDynamic = 'D', // property is dynamic |
| /// kPropertyGetter = 'G', // followed by getter selector name |
| /// kPropertySetter = 'S', // followed by setter selector name |
| /// kPropertyInstanceVariable = 'V' // followed by instance variable name |
| /// kPropertyType = 't' // followed by old-style type encoding. |
| /// kPropertyWeak = 'W' // 'weak' property |
| /// kPropertyStrong = 'P' // property GC'able |
| /// kPropertyNonAtomic = 'N' // property non-atomic |
| /// }; |
| /// @endcode |
| void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, |
| const Decl *Container, |
| std::string& S) { |
| // Collect information from the property implementation decl(s). |
| bool Dynamic = false; |
| ObjCPropertyImplDecl *SynthesizePID = 0; |
| |
| // FIXME: Duplicated code due to poor abstraction. |
| if (Container) { |
| if (const ObjCCategoryImplDecl *CID = |
| dyn_cast<ObjCCategoryImplDecl>(Container)) { |
| for (ObjCCategoryImplDecl::propimpl_iterator |
| i = CID->propimpl_begin(), e = CID->propimpl_end(); i != e; ++i) { |
| ObjCPropertyImplDecl *PID = *i; |
| if (PID->getPropertyDecl() == PD) { |
| if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) { |
| Dynamic = true; |
| } else { |
| SynthesizePID = PID; |
| } |
| } |
| } |
| } else { |
| const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container); |
| for (ObjCCategoryImplDecl::propimpl_iterator |
| i = OID->propimpl_begin(), e = OID->propimpl_end(); i != e; ++i) { |
| ObjCPropertyImplDecl *PID = *i; |
| if (PID->getPropertyDecl() == PD) { |
| if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) { |
| Dynamic = true; |
| } else { |
| SynthesizePID = PID; |
| } |
| } |
| } |
| } |
| } |
| |
| // FIXME: This is not very efficient. |
| S = "T"; |
| |
| // Encode result type. |
| // GCC has some special rules regarding encoding of properties which |
| // closely resembles encoding of ivars. |
| getObjCEncodingForTypeImpl(PD->getType(), S, true, true, NULL, |
| true /* outermost type */, |
| true /* encoding for property */); |
| |
| if (PD->isReadOnly()) { |
| S += ",R"; |
| } else { |
| switch (PD->getSetterKind()) { |
| case ObjCPropertyDecl::Assign: break; |
| case ObjCPropertyDecl::Copy: S += ",C"; break; |
| case ObjCPropertyDecl::Retain: S += ",&"; break; |
| } |
| } |
| |
| // It really isn't clear at all what this means, since properties |
| // are "dynamic by default". |
| if (Dynamic) |
| S += ",D"; |
| |
| if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic) |
| S += ",N"; |
| |
| if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) { |
| S += ",G"; |
| S += PD->getGetterName().getAsString(); |
| } |
| |
| if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) { |
| S += ",S"; |
| S += PD->getSetterName().getAsString(); |
| } |
| |
| if (SynthesizePID) { |
| const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); |
| S += ",V"; |
| S += OID->getNameAsString(); |
| } |
| |
| // FIXME: OBJCGC: weak & strong |
| } |
| |
| /// getLegacyIntegralTypeEncoding - |
| /// Another legacy compatibility encoding: 32-bit longs are encoded as |
| /// 'l' or 'L' , but not always. For typedefs, we need to use |
| /// 'i' or 'I' instead if encoding a struct field, or a pointer! |
| /// |
| void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { |
| if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) { |
| if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) { |
| if (BT->getKind() == BuiltinType::ULong && |
| ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32)) |
| PointeeTy = UnsignedIntTy; |
| else |
| if (BT->getKind() == BuiltinType::Long && |
| ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32)) |
| PointeeTy = IntTy; |
| } |
| } |
| } |
| |
| void ASTContext::getObjCEncodingForType(QualType T, std::string& S, |
| FieldDecl *Field) const { |
| // We follow the behavior of gcc, expanding structures which are |
| // directly pointed to, and expanding embedded structures. Note that |
| // these rules are sufficient to prevent recursive encoding of the |
| // same type. |
| getObjCEncodingForTypeImpl(T, S, true, true, Field, |
| true /* outermost type */); |
| } |
| |
| static void EncodeBitField(const ASTContext *Context, std::string& S, |
| FieldDecl *FD) { |
| const Expr *E = FD->getBitWidth(); |
| assert(E && "bitfield width not there - getObjCEncodingForTypeImpl"); |
| ASTContext *Ctx = const_cast<ASTContext*>(Context); |
| unsigned N = E->getIntegerConstantExprValue(*Ctx).getZExtValue(); |
| S += 'b'; |
| S += llvm::utostr(N); |
| } |
| |
| void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S, |
| bool ExpandPointedToStructures, |
| bool ExpandStructures, |
| FieldDecl *FD, |
| bool OutermostType, |
| bool EncodingProperty) const { |
| if (const BuiltinType *BT = T->getAsBuiltinType()) { |
| if (FD && FD->isBitField()) { |
| EncodeBitField(this, S, FD); |
| } |
| else { |
| char encoding; |
| switch (BT->getKind()) { |
| default: assert(0 && "Unhandled builtin type kind"); |
| case BuiltinType::Void: encoding = 'v'; break; |
| case BuiltinType::Bool: encoding = 'B'; break; |
| case BuiltinType::Char_U: |
| case BuiltinType::UChar: encoding = 'C'; break; |
| case BuiltinType::UShort: encoding = 'S'; break; |
| case BuiltinType::UInt: encoding = 'I'; break; |
| case BuiltinType::ULong: |
| encoding = |
| (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q'; |
| break; |
| case BuiltinType::ULongLong: encoding = 'Q'; break; |
| case BuiltinType::Char_S: |
| case BuiltinType::SChar: encoding = 'c'; break; |
| case BuiltinType::Short: encoding = 's'; break; |
| case BuiltinType::Int: encoding = 'i'; break; |
| case BuiltinType::Long: |
| encoding = |
| (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q'; |
| break; |
| case BuiltinType::LongLong: encoding = 'q'; break; |
| case BuiltinType::Float: encoding = 'f'; break; |
| case BuiltinType::Double: encoding = 'd'; break; |
| case BuiltinType::LongDouble: encoding = 'd'; break; |
| } |
| |
| S += encoding; |
| } |
| } |
| else if (T->isObjCQualifiedIdType()) { |
| getObjCEncodingForTypeImpl(getObjCIdType(), S, |
| ExpandPointedToStructures, |
| ExpandStructures, FD); |
| if (FD || EncodingProperty) { |
| // Note that we do extended encoding of protocol qualifer list |
| // Only when doing ivar or property encoding. |
| const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType(); |
| S += '"'; |
| for (unsigned i =0; i < QIDT->getNumProtocols(); i++) { |
| ObjCProtocolDecl *Proto = QIDT->getProtocols(i); |
| S += '<'; |
| S += Proto->getNameAsString(); |
| S += '>'; |
| } |
| S += '"'; |
| } |
| return; |
| } |
| else if (const PointerType *PT = T->getAsPointerType()) { |
| QualType PointeeTy = PT->getPointeeType(); |
| bool isReadOnly = false; |
| // For historical/compatibility reasons, the read-only qualifier of the |
| // pointee gets emitted _before_ the '^'. The read-only qualifier of |
| // the pointer itself gets ignored, _unless_ we are looking at a typedef! |
| // Also, do not emit the 'r' for anything but the outermost type! |
| if (dyn_cast<TypedefType>(T.getTypePtr())) { |
| if (OutermostType && T.isConstQualified()) { |
| isReadOnly = true; |
| S += 'r'; |
| } |
| } |
| else if (OutermostType) { |
| QualType P = PointeeTy; |
| while (P->getAsPointerType()) |
| P = P->getAsPointerType()->getPointeeType(); |
| if (P.isConstQualified()) { |
| isReadOnly = true; |
| S += 'r'; |
| } |
| } |
| if (isReadOnly) { |
| // Another legacy compatibility encoding. Some ObjC qualifier and type |
| // combinations need to be rearranged. |
| // Rewrite "in const" from "nr" to "rn" |
| const char * s = S.c_str(); |
| int len = S.length(); |
| if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') { |
| std::string replace = "rn"; |
| S.replace(S.end()-2, S.end(), replace); |
| } |
| } |
| if (isObjCIdStructType(PointeeTy)) { |
| S += '@'; |
| return; |
| } |
| else if (PointeeTy->isObjCInterfaceType()) { |
| if (!EncodingProperty && |
| isa<TypedefType>(PointeeTy.getTypePtr())) { |
| // Another historical/compatibility reason. |
| // We encode the underlying type which comes out as |
| // {...}; |
| S += '^'; |
| getObjCEncodingForTypeImpl(PointeeTy, S, |
| false, ExpandPointedToStructures, |
| NULL); |
| return; |
| } |
| S += '@'; |
| if (FD || EncodingProperty) { |
| const ObjCInterfaceType *OIT = |
| PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType(); |
| ObjCInterfaceDecl *OI = OIT->getDecl(); |
| S += '"'; |
| S += OI->getNameAsCString(); |
| for (unsigned i =0; i < OIT->getNumProtocols(); i++) { |
| ObjCProtocolDecl *Proto = OIT->getProtocol(i); |
| S += '<'; |
| S += Proto->getNameAsString(); |
| S += '>'; |
| } |
| S += '"'; |
| } |
| return; |
| } else if (isObjCClassStructType(PointeeTy)) { |
| S += '#'; |
| return; |
| } else if (isObjCSelType(PointeeTy)) { |
| S += ':'; |
| return; |
| } |
| |
| if (PointeeTy->isCharType()) { |
| // char pointer types should be encoded as '*' unless it is a |
| // type that has been typedef'd to 'BOOL'. |
| if (!isTypeTypedefedAsBOOL(PointeeTy)) { |
| S += '*'; |
| return; |
| } |
| } |
| |
| S += '^'; |
| getLegacyIntegralTypeEncoding(PointeeTy); |
| |
| getObjCEncodingForTypeImpl(PointeeTy, S, |
| false, ExpandPointedToStructures, |
| NULL); |
| } else if (const ArrayType *AT = |
| // Ignore type qualifiers etc. |
| dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) { |
| if (isa<IncompleteArrayType>(AT)) { |
| // Incomplete arrays are encoded as a pointer to the array element. |
| S += '^'; |
| |
| getObjCEncodingForTypeImpl(AT->getElementType(), S, |
| false, ExpandStructures, FD); |
| } else { |
| S += '['; |
| |
| if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) |
| S += llvm::utostr(CAT->getSize().getZExtValue()); |
| else { |
| //Variable length arrays are encoded as a regular array with 0 elements. |
| assert(isa<VariableArrayType>(AT) && "Unknown array type!"); |
| S += '0'; |
| } |
| |
| getObjCEncodingForTypeImpl(AT->getElementType(), S, |
| false, ExpandStructures, FD); |
| S += ']'; |
| } |
| } else if (T->getAsFunctionType()) { |
| S += '?'; |
| } else if (const RecordType *RTy = T->getAsRecordType()) { |
| RecordDecl *RDecl = RTy->getDecl(); |
| S += RDecl->isUnion() ? '(' : '{'; |
| // Anonymous structures print as '?' |
| if (const IdentifierInfo *II = RDecl->getIdentifier()) { |
| S += II->getName(); |
| } else { |
| S += '?'; |
| } |
| if (ExpandStructures) { |
| S += '='; |
| for (RecordDecl::field_iterator Field = RDecl->field_begin(), |
| FieldEnd = RDecl->field_end(); |
| Field != FieldEnd; ++Field) { |
| if (FD) { |
| S += '"'; |
| S += Field->getNameAsString(); |
| S += '"'; |
| } |
| |
| // Special case bit-fields. |
| if (Field->isBitField()) { |
| getObjCEncodingForTypeImpl(Field->getType(), S, false, true, |
| (*Field)); |
| } else { |
| QualType qt = Field->getType(); |
| getLegacyIntegralTypeEncoding(qt); |
| getObjCEncodingForTypeImpl(qt, S, false, true, |
| FD); |
| } |
| } |
| } |
| S += RDecl->isUnion() ? ')' : '}'; |
| } else if (T->isEnumeralType()) { |
| if (FD && FD->isBitField()) |
| EncodeBitField(this, S, FD); |
| else |
| S += 'i'; |
| } else if (T->isBlockPointerType()) { |
| S += "@?"; // Unlike a pointer-to-function, which is "^?". |
| } else if (T->isObjCInterfaceType()) { |
| // @encode(class_name) |
| ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl(); |
| S += '{'; |
| const IdentifierInfo *II = OI->getIdentifier(); |
| S += II->getName(); |
| S += '='; |
| llvm::SmallVector<FieldDecl*, 32> RecFields; |
| CollectObjCIvars(OI, RecFields); |
| for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { |
| if (RecFields[i]->isBitField()) |
| getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true, |
| RecFields[i]); |
| else |
| getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true, |
| FD); |
| } |
| S += '}'; |
| } |
| else |
| assert(0 && "@encode for type not implemented!"); |
| } |
| |
| void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, |
| std::string& S) const { |
| if (QT & Decl::OBJC_TQ_In) |
| S += 'n'; |
| if (QT & Decl::OBJC_TQ_Inout) |
| S += 'N'; |
| if (QT & Decl::OBJC_TQ_Out) |
| S += 'o'; |
| if (QT & Decl::OBJC_TQ_Bycopy) |
| S += 'O'; |
| if (QT & Decl::OBJC_TQ_Byref) |
| S += 'R'; |
| if (QT & Decl::OBJC_TQ_Oneway) |
| S += 'V'; |
| } |
| |
| void ASTContext::setBuiltinVaListType(QualType T) |
| { |
| assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!"); |
| |
| BuiltinVaListType = T; |
| } |
| |
| void ASTContext::setObjCIdType(TypedefDecl *TD) |
| { |
| ObjCIdType = getTypedefType(TD); |
| |
| // typedef struct objc_object *id; |
| const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); |
| // User error - caller will issue diagnostics. |
| if (!ptr) |
| return; |
| const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); |
| // User error - caller will issue diagnostics. |
| if (!rec) |
| return; |
| IdStructType = rec; |
| } |
| |
| void ASTContext::setObjCSelType(TypedefDecl *TD) |
| { |
| ObjCSelType = getTypedefType(TD); |
| |
| // typedef struct objc_selector *SEL; |
| const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); |
| if (!ptr) |
| return; |
| const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); |
| if (!rec) |
| return; |
| SelStructType = rec; |
| } |
| |
| void ASTContext::setObjCProtoType(QualType QT) |
| { |
| ObjCProtoType = QT; |
| } |
| |
| void ASTContext::setObjCClassType(TypedefDecl *TD) |
| { |
| ObjCClassType = getTypedefType(TD); |
| |
| // typedef struct objc_class *Class; |
| const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); |
| assert(ptr && "'Class' incorrectly typed"); |
| const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); |
| assert(rec && "'Class' incorrectly typed"); |
| ClassStructType = rec; |
| } |
| |
| void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { |
| assert(ObjCConstantStringType.isNull() && |
| "'NSConstantString' type already set!"); |
| |
| ObjCConstantStringType = getObjCInterfaceType(Decl); |
| } |
| |
| /// \brief Retrieve the template name that represents a qualified |
| /// template name such as \c std::vector. |
| TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, |
| bool TemplateKeyword, |
| TemplateDecl *Template) { |
| llvm::FoldingSetNodeID ID; |
| QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template); |
| |
| void *InsertPos = 0; |
| QualifiedTemplateName *QTN = |
| QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| if (!QTN) { |
| QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template); |
| QualifiedTemplateNames.InsertNode(QTN, InsertPos); |
| } |
| |
| return TemplateName(QTN); |
| } |
| |
| /// \brief Retrieve the template name that represents a dependent |
| /// template name such as \c MetaFun::template apply. |
| TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, |
| const IdentifierInfo *Name) { |
| assert(NNS->isDependent() && "Nested name specifier must be dependent"); |
| |
| llvm::FoldingSetNodeID ID; |
| DependentTemplateName::Profile(ID, NNS, Name); |
| |
| void *InsertPos = 0; |
| DependentTemplateName *QTN = |
| DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (QTN) |
| return TemplateName(QTN); |
| |
| NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| if (CanonNNS == NNS) { |
| QTN = new (*this,4) DependentTemplateName(NNS, Name); |
| } else { |
| TemplateName Canon = getDependentTemplateName(CanonNNS, Name); |
| QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon); |
| } |
| |
| DependentTemplateNames.InsertNode(QTN, InsertPos); |
| return TemplateName(QTN); |
| } |
| |
| /// getFromTargetType - Given one of the integer types provided by |
| /// TargetInfo, produce the corresponding type. The unsigned @p Type |
| /// is actually a value of type @c TargetInfo::IntType. |
| QualType ASTContext::getFromTargetType(unsigned Type) const { |
| switch (Type) { |
| case TargetInfo::NoInt: return QualType(); |
| case TargetInfo::SignedShort: return ShortTy; |
| case TargetInfo::UnsignedShort: return UnsignedShortTy; |
| case TargetInfo::SignedInt: return IntTy; |
| case TargetInfo::UnsignedInt: return UnsignedIntTy; |
| case TargetInfo::SignedLong: return LongTy; |
| case TargetInfo::UnsignedLong: return UnsignedLongTy; |
| case TargetInfo::SignedLongLong: return LongLongTy; |
| case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; |
| } |
| |
| assert(false && "Unhandled TargetInfo::IntType value"); |
| return QualType(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Predicates. |
| //===----------------------------------------------------------------------===// |
| |
| /// isObjCNSObjectType - Return true if this is an NSObject object using |
| /// NSObject attribute on a c-style pointer type. |
| /// FIXME - Make it work directly on types. |
| /// |
| bool ASTContext::isObjCNSObjectType(QualType Ty) const { |
| if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) { |
| if (TypedefDecl *TD = TDT->getDecl()) |
| if (TD->getAttr<ObjCNSObjectAttr>()) |
| return true; |
| } |
| return false; |
| } |
| |
| /// isObjCObjectPointerType - Returns true if type is an Objective-C pointer |
| /// to an object type. This includes "id" and "Class" (two 'special' pointers |
| /// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified |
| /// ID type). |
| bool ASTContext::isObjCObjectPointerType(QualType Ty) const { |
| if (Ty->isObjCQualifiedIdType()) |
| return true; |
| |
| // Blocks are objects. |
| if (Ty->isBlockPointerType()) |
| return true; |
| |
| // All other object types are pointers. |
| if (!Ty->isPointerType()) |
| return false; |
| |
| // Check to see if this is 'id' or 'Class', both of which are typedefs for |
| // pointer types. This looks for the typedef specifically, not for the |
| // underlying type. |
| if (Ty.getUnqualifiedType() == getObjCIdType() || |
| Ty.getUnqualifiedType() == getObjCClassType()) |
| return true; |
| |
| // If this a pointer to an interface (e.g. NSString*), it is ok. |
| if (Ty->getAsPointerType()->getPointeeType()->isObjCInterfaceType()) |
| return true; |
| |
| // If is has NSObject attribute, OK as well. |
| return isObjCNSObjectType(Ty); |
| } |
| |
| /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's |
| /// garbage collection attribute. |
| /// |
| QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const { |
| QualType::GCAttrTypes GCAttrs = QualType::GCNone; |
| if (getLangOptions().ObjC1 && |
| getLangOptions().getGCMode() != LangOptions::NonGC) { |
| GCAttrs = Ty.getObjCGCAttr(); |
| // Default behavious under objective-c's gc is for objective-c pointers |
| // (or pointers to them) be treated as though they were declared |
| // as __strong. |
| if (GCAttrs == QualType::GCNone) { |
| if (isObjCObjectPointerType(Ty)) |
| GCAttrs = QualType::Strong; |
| else if (Ty->isPointerType()) |
| return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType()); |
| } |
| } |
| return GCAttrs; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Compatibility Testing |
| //===----------------------------------------------------------------------===// |
| |
| /// typesAreBlockCompatible - This routine is called when comparing two |
| /// block types. Types must be strictly compatible here. For example, |
| /// C unfortunately doesn't produce an error for the following: |
| /// |
| /// int (*emptyArgFunc)(); |
| /// int (*intArgList)(int) = emptyArgFunc; |
| /// |
| /// For blocks, we will produce an error for the following (similar to C++): |
| /// |
| /// int (^emptyArgBlock)(); |
| /// int (^intArgBlock)(int) = emptyArgBlock; |
| /// |
| /// FIXME: When the dust settles on this integration, fold this into mergeTypes. |
| /// |
| bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) { |
| const FunctionType *lbase = lhs->getAsFunctionType(); |
| const FunctionType *rbase = rhs->getAsFunctionType(); |
| const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase); |
| const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase); |
| if (lproto && rproto) |
| return !mergeTypes(lhs, rhs).isNull(); |
| return false; |
| } |
| |
| /// areCompatVectorTypes - Return true if the two specified vector types are |
| /// compatible. |
| static bool areCompatVectorTypes(const VectorType *LHS, |
| const VectorType *RHS) { |
| assert(LHS->isCanonical() && RHS->isCanonical()); |
| return LHS->getElementType() == RHS->getElementType() && |
| LHS->getNumElements() == RHS->getNumElements(); |
| } |
| |
| /// canAssignObjCInterfaces - Return true if the two interface types are |
| /// compatible for assignment from RHS to LHS. This handles validation of any |
| /// protocol qualifiers on the LHS or RHS. |
| /// |
| bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS, |
| const ObjCInterfaceType *RHS) { |
| // Verify that the base decls are compatible: the RHS must be a subclass of |
| // the LHS. |
| if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl())) |
| return false; |
| |
| // RHS must have a superset of the protocols in the LHS. If the LHS is not |
| // protocol qualified at all, then we are good. |
| if (!isa<ObjCQualifiedInterfaceType>(LHS)) |
| return true; |
| |
| // Okay, we know the LHS has protocol qualifiers. If the RHS doesn't, then it |
| // isn't a superset. |
| if (!isa<ObjCQualifiedInterfaceType>(RHS)) |
| return true; // FIXME: should return false! |
| |
| // Finally, we must have two protocol-qualified interfaces. |
| const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS); |
| const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS); |
| |
| // All LHS protocols must have a presence on the RHS. |
| assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?"); |
| |
| for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(), |
| LHSPE = LHSP->qual_end(); |
| LHSPI != LHSPE; LHSPI++) { |
| bool RHSImplementsProtocol = false; |
| |
| // If the RHS doesn't implement the protocol on the left, the types |
| // are incompatible. |
| for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(), |
| RHSPE = RHSP->qual_end(); |
| !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) { |
| if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) |
| RHSImplementsProtocol = true; |
| } |
| // FIXME: For better diagnostics, consider passing back the protocol name. |
| if (!RHSImplementsProtocol) |
| return false; |
| } |
| // The RHS implements all protocols listed on the LHS. |
| return true; |
| } |
| |
| bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { |
| // get the "pointed to" types |
| const PointerType *LHSPT = LHS->getAsPointerType(); |
| const PointerType *RHSPT = RHS->getAsPointerType(); |
| |
| if (!LHSPT || !RHSPT) |
| return false; |
| |
| QualType lhptee = LHSPT->getPointeeType(); |
| QualType rhptee = RHSPT->getPointeeType(); |
| const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType(); |
| const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType(); |
| // ID acts sort of like void* for ObjC interfaces |
| if (LHSIface && isObjCIdStructType(rhptee)) |
| return true; |
| if (RHSIface && isObjCIdStructType(lhptee)) |
| return true; |
| if (!LHSIface || !RHSIface) |
| return false; |
| return canAssignObjCInterfaces(LHSIface, RHSIface) || |
| canAssignObjCInterfaces(RHSIface, LHSIface); |
| } |
| |
| /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, |
| /// both shall have the identically qualified version of a compatible type. |
| /// C99 6.2.7p1: Two types have compatible types if their types are the |
| /// same. See 6.7.[2,3,5] for additional rules. |
| bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) { |
| return !mergeTypes(LHS, RHS).isNull(); |
| } |
| |
| QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) { |
| const FunctionType *lbase = lhs->getAsFunctionType(); |
| const FunctionType *rbase = rhs->getAsFunctionType(); |
| const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase); |
| const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase); |
| bool allLTypes = true; |
| bool allRTypes = true; |
| |
| // Check return type |
| QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType()); |
| if (retType.isNull()) return QualType(); |
| if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType())) |
| allLTypes = false; |
| if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType())) |
| allRTypes = false; |
| |
| if (lproto && rproto) { // two C99 style function prototypes |
| unsigned lproto_nargs = lproto->getNumArgs(); |
| unsigned rproto_nargs = rproto->getNumArgs(); |
| |
| // Compatible functions must have the same number of arguments |
| if (lproto_nargs != rproto_nargs) |
| return QualType(); |
| |
| // Variadic and non-variadic functions aren't compatible |
| if (lproto->isVariadic() != rproto->isVariadic()) |
| return QualType(); |
| |
| if (lproto->getTypeQuals() != rproto->getTypeQuals()) |
| return QualType(); |
| |
| // Check argument compatibility |
| llvm::SmallVector<QualType, 10> types; |
| for (unsigned i = 0; i < lproto_nargs; i++) { |
| QualType largtype = lproto->getArgType(i).getUnqualifiedType(); |
| QualType rargtype = rproto->getArgType(i).getUnqualifiedType(); |
| QualType argtype = mergeTypes(largtype, rargtype); |
| if (argtype.isNull()) return QualType(); |
| types.push_back(argtype); |
| if (getCanonicalType(argtype) != getCanonicalType(largtype)) |
| allLTypes = false; |
| if (getCanonicalType(argtype) != getCanonicalType(rargtype)) |
| allRTypes = false; |
| } |
| if (allLTypes) return lhs; |
| if (allRTypes) return rhs; |
| return getFunctionType(retType, types.begin(), types.size(), |
| lproto->isVariadic(), lproto->getTypeQuals()); |
| } |
| |
| if (lproto) allRTypes = false; |
| if (rproto) allLTypes = false; |
| |
| const FunctionProtoType *proto = lproto ? lproto : rproto; |
| if (proto) { |
| if (proto->isVariadic()) return QualType(); |
| // Check that the types are compatible with the types that |
| // would result from default argument promotions (C99 6.7.5.3p15). |
| // The only types actually affected are promotable integer |
| // types and floats, which would be passed as a different |
| // type depending on whether the prototype is visible. |
| unsigned proto_nargs = proto->getNumArgs(); |
| for (unsigned i = 0; i < proto_nargs; ++i) { |
| QualType argTy = proto->getArgType(i); |
| if (argTy->isPromotableIntegerType() || |
| getCanonicalType(argTy).getUnqualifiedType() == FloatTy) |
| return QualType(); |
| } |
| |
| if (allLTypes) return lhs; |
| if (allRTypes) return rhs; |
| return getFunctionType(retType, proto->arg_type_begin(), |
| proto->getNumArgs(), lproto->isVariadic(), |
| lproto->getTypeQuals()); |
| } |
| |
| if (allLTypes) return lhs; |
| if (allRTypes) return rhs; |
| return getFunctionNoProtoType(retType); |
| } |
| |
| QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) { |
| // C++ [expr]: If an expression initially has the type "reference to T", the |
| // type is adjusted to "T" prior to any further analysis, the expression |
| // designates the object or function denoted by the reference, and the |
| // expression is an lvalue unless the reference is an rvalue reference and |
| // the expression is a function call (possibly inside parentheses). |
| // FIXME: C++ shouldn't be going through here! The rules are different |
| // enough that they should be handled separately. |
| // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really* |
| // shouldn't be going through here! |
| if (const ReferenceType *RT = LHS->getAsReferenceType()) |
| LHS = RT->getPointeeType(); |
| if (const ReferenceType *RT = RHS->getAsReferenceType()) |
| RHS = RT->getPointeeType(); |
| |
| QualType LHSCan = getCanonicalType(LHS), |
| RHSCan = getCanonicalType(RHS); |
| |
| // If two types are identical, they are compatible. |
| if (LHSCan == RHSCan) |
| return LHS; |
| |
| // If the qualifiers are different, the types aren't compatible |
| // Note that we handle extended qualifiers later, in the |
| // case for ExtQualType. |
| if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers()) |
| return QualType(); |
| |
| Type::TypeClass LHSClass = LHSCan->getTypeClass(); |
| Type::TypeClass RHSClass = RHSCan->getTypeClass(); |
| |
| // We want to consider the two function types to be the same for these |
| // comparisons, just force one to the other. |
| if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; |
| if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; |
| |
| // Same as above for arrays |
| if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) |
| LHSClass = Type::ConstantArray; |
| if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) |
| RHSClass = Type::ConstantArray; |
| |
| // Canonicalize ExtVector -> Vector. |
| if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; |
| if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; |
| |
| // Consider qualified interfaces and interfaces the same. |
| if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface; |
| if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface; |
| |
| // If the canonical type classes don't match. |
| if (LHSClass != RHSClass) { |
| const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType(); |
| const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType(); |
| |
| // ID acts sort of like void* for ObjC interfaces |
| if (LHSIface && isObjCIdStructType(RHS)) |
| return LHS; |
| if (RHSIface && isObjCIdStructType(LHS)) |
| return RHS; |
| |
| // ID is compatible with all qualified id types. |
| if (LHS->isObjCQualifiedIdType()) { |
| if (const PointerType *PT = RHS->getAsPointerType()) { |
| QualType pType = PT->getPointeeType(); |
| if (isObjCIdStructType(pType)) |
| return LHS; |
| // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true). |
| // Unfortunately, this API is part of Sema (which we don't have access |
| // to. Need to refactor. The following check is insufficient, since we |
| // need to make sure the class implements the protocol. |
| if (pType->isObjCInterfaceType()) |
| return LHS; |
| } |
| } |
| if (RHS->isObjCQualifiedIdType()) { |
| if (const PointerType *PT = LHS->getAsPointerType()) { |
| QualType pType = PT->getPointeeType(); |
| if (isObjCIdStructType(pType)) |
| return RHS; |
| // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true). |
| // Unfortunately, this API is part of Sema (which we don't have access |
| // to. Need to refactor. The following check is insufficient, since we |
| // need to make sure the class implements the protocol. |
| if (pType->isObjCInterfaceType()) |
| return RHS; |
| } |
| } |
| // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, |
| // a signed integer type, or an unsigned integer type. |
| if (const EnumType* ETy = LHS->getAsEnumType()) { |
| if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType()) |
| return RHS; |
| } |
| if (const EnumType* ETy = RHS->getAsEnumType()) { |
| if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType()) |
| return LHS; |
| } |
| |
| return QualType(); |
| } |
| |
| // The canonical type classes match. |
| switch (LHSClass) { |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #include "clang/AST/TypeNodes.def" |
| assert(false && "Non-canonical and dependent types shouldn't get here"); |
| return QualType(); |
| |
| case Type::LValueReference: |
| case Type::RValueReference: |
| case Type::MemberPointer: |
| assert(false && "C++ should never be in mergeTypes"); |
| return QualType(); |
| |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| case Type::FunctionProto: |
| case Type::ExtVector: |
| case Type::ObjCQualifiedInterface: |
| assert(false && "Types are eliminated above"); |
| return QualType(); |
| |
| case Type::Pointer: |
| { |
| // Merge two pointer types, while trying to preserve typedef info |
| QualType LHSPointee = LHS->getAsPointerType()->getPointeeType(); |
| QualType RHSPointee = RHS->getAsPointerType()->getPointeeType(); |
| QualType ResultType = mergeTypes(LHSPointee, RHSPointee); |
| if (ResultType.isNull()) return QualType(); |
| if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) |
| return LHS; |
| if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) |
| return RHS; |
| return getPointerType(ResultType); |
| } |
| case Type::BlockPointer: |
| { |
| // Merge two block pointer types, while trying to preserve typedef info |
| QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType(); |
| QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType(); |
| QualType ResultType = mergeTypes(LHSPointee, RHSPointee); |
| if (ResultType.isNull()) return QualType(); |
| if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) |
| return LHS; |
| if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) |
| return RHS; |
| return getBlockPointerType(ResultType); |
| } |
| case Type::ConstantArray: |
| { |
| const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); |
| const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); |
| if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) |
| return QualType(); |
| |
| QualType LHSElem = getAsArrayType(LHS)->getElementType(); |
| QualType RHSElem = getAsArrayType(RHS)->getElementType(); |
| QualType ResultType = mergeTypes(LHSElem, RHSElem); |
| if (ResultType.isNull()) return QualType(); |
| if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) |
| return LHS; |
| if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) |
| return RHS; |
| if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(), |
| ArrayType::ArraySizeModifier(), 0); |
| if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(), |
| ArrayType::ArraySizeModifier(), 0); |
| const VariableArrayType* LVAT = getAsVariableArrayType(LHS); |
| const VariableArrayType* RVAT = getAsVariableArrayType(RHS); |
| if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) |
| return LHS; |
| if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) |
| return RHS; |
| if (LVAT) { |
| // FIXME: This isn't correct! But tricky to implement because |
| // the array's size has to be the size of LHS, but the type |
| // has to be different. |
| return LHS; |
| } |
| if (RVAT) { |
| // FIXME: This isn't correct! But tricky to implement because |
| // the array's size has to be the size of RHS, but the type |
| // has to be different. |
| return RHS; |
| } |
| if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; |
| if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; |
| return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0); |
| } |
| case Type::FunctionNoProto: |
| return mergeFunctionTypes(LHS, RHS); |
| case Type::Record: |
| case Type::Enum: |
| // FIXME: Why are these compatible? |
| if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS; |
| if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS; |
| return QualType(); |
| case Type::Builtin: |
| // Only exactly equal builtin types are compatible, which is tested above. |
| return QualType(); |
| case Type::Complex: |
| // Distinct complex types are incompatible. |
| return QualType(); |
| case Type::Vector: |
| // FIXME: The merged type should be an ExtVector! |
| if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType())) |
| return LHS; |
| return QualType(); |
| case Type::ObjCInterface: { |
| // Check if the interfaces are assignment compatible. |
| // FIXME: This should be type compatibility, e.g. whether |
| // "LHS x; RHS x;" at global scope is legal. |
| const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType(); |
| const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType(); |
| if (LHSIface && RHSIface && |
| canAssignObjCInterfaces(LHSIface, RHSIface)) |
| return LHS; |
| |
| return QualType(); |
| } |
| case Type::ObjCQualifiedId: |
| // Distinct qualified id's are not compatible. |
| return QualType(); |
| case Type::FixedWidthInt: |
| // Distinct fixed-width integers are not compatible. |
| return QualType(); |
| case Type::ObjCQualifiedClass: |
| // Distinct qualified classes are not compatible. |
| return QualType(); |
| case Type::ExtQual: |
| // FIXME: ExtQual types can be compatible even if they're not |
| // identical! |
| return QualType(); |
| // First attempt at an implementation, but I'm not really sure it's |
| // right... |
| #if 0 |
| ExtQualType* LQual = cast<ExtQualType>(LHSCan); |
| ExtQualType* RQual = cast<ExtQualType>(RHSCan); |
| if (LQual->getAddressSpace() != RQual->getAddressSpace() || |
| LQual->getObjCGCAttr() != RQual->getObjCGCAttr()) |
| return QualType(); |
| QualType LHSBase, RHSBase, ResultType, ResCanUnqual; |
| LHSBase = QualType(LQual->getBaseType(), 0); |
| RHSBase = QualType(RQual->getBaseType(), 0); |
| ResultType = mergeTypes(LHSBase, RHSBase); |
| if (ResultType.isNull()) return QualType(); |
| ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType(); |
| if (LHSCan.getUnqualifiedType() == ResCanUnqual) |
| return LHS; |
| if (RHSCan.getUnqualifiedType() == ResCanUnqual) |
| return RHS; |
| ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace()); |
| ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr()); |
| ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers()); |
| return ResultType; |
| #endif |
| |
| case Type::TemplateSpecialization: |
| assert(false && "Dependent types have no size"); |
| break; |
| } |
| |
| return QualType(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Integer Predicates |
| //===----------------------------------------------------------------------===// |
| |
| unsigned ASTContext::getIntWidth(QualType T) { |
| if (T == BoolTy) |
| return 1; |
| if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) { |
| return FWIT->getWidth(); |
| } |
| // For builtin types, just use the standard type sizing method |
| return (unsigned)getTypeSize(T); |
| } |
| |
| QualType ASTContext::getCorrespondingUnsignedType(QualType T) { |
| assert(T->isSignedIntegerType() && "Unexpected type"); |
| if (const EnumType* ETy = T->getAsEnumType()) |
| T = ETy->getDecl()->getIntegerType(); |
| const BuiltinType* BTy = T->getAsBuiltinType(); |
| assert (BTy && "Unexpected signed integer type"); |
| switch (BTy->getKind()) { |
| case BuiltinType::Char_S: |
| case BuiltinType::SChar: |
| return UnsignedCharTy; |
| case BuiltinType::Short: |
| return UnsignedShortTy; |
| case BuiltinType::Int: |
| return UnsignedIntTy; |
| case BuiltinType::Long: |
| return UnsignedLongTy; |
| case BuiltinType::LongLong: |
| return UnsignedLongLongTy; |
| default: |
| assert(0 && "Unexpected signed integer type"); |
| return QualType(); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Serialization Support |
| //===----------------------------------------------------------------------===// |
| |
| enum { |
| BasicMetadataBlock = 1, |
| ASTContextBlock = 2, |
| DeclsBlock = 3 |
| }; |
| |
| void ASTContext::EmitASTBitcodeBuffer(std::vector<unsigned char> &Buffer) const{ |
| // Create bitstream. |
| llvm::BitstreamWriter Stream(Buffer); |
| |
| // Emit the preamble. |
| Stream.Emit((unsigned)'B', 8); |
| Stream.Emit((unsigned)'C', 8); |
| Stream.Emit(0xC, 4); |
| Stream.Emit(0xF, 4); |
| Stream.Emit(0xE, 4); |
| Stream.Emit(0x0, 4); |
| |
| // Create serializer. |
| llvm::Serializer S(Stream); |
| |
| // ===---------------------------------------------------===/ |
| // Serialize the "Translation Unit" metadata. |
| // ===---------------------------------------------------===/ |
| |
| // Emit ASTContext. |
| S.EnterBlock(ASTContextBlock); |
| S.EmitOwnedPtr(this); |
| S.ExitBlock(); // exit "ASTContextBlock" |
| |
| S.EnterBlock(BasicMetadataBlock); |
| |
| // Block for SourceManager and Target. Allows easy skipping |
| // around to the block for the Selectors during deserialization. |
| S.EnterBlock(); |
| |
| // Emit the SourceManager. |
| S.Emit(getSourceManager()); |
| |
| // Emit the Target. |
| S.EmitPtr(&Target); |
| S.EmitCStr(Target.getTargetTriple()); |
| |
| S.ExitBlock(); // exit "SourceManager and Target Block" |
| |
| // Emit the Selectors. |
| S.Emit(Selectors); |
| |
| // Emit the Identifier Table. |
| S.Emit(Idents); |
| |
| S.ExitBlock(); // exit "BasicMetadataBlock" |
| } |
| |
| |
| /// Emit - Serialize an ASTContext object to Bitcode. |
| void ASTContext::Emit(llvm::Serializer& S) const { |
| S.Emit(LangOpts); |
| S.EmitRef(SourceMgr); |
| S.EmitRef(Target); |
| S.EmitRef(Idents); |
| S.EmitRef(Selectors); |
| |
| // Emit the size of the type vector so that we can reserve that size |
| // when we reconstitute the ASTContext object. |
| S.EmitInt(Types.size()); |
| |
| for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end(); |
| I!=E;++I) |
| (*I)->Emit(S); |
| |
| S.EmitOwnedPtr(TUDecl); |
| |
| // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl); |
| } |
| |
| |
| ASTContext *ASTContext::ReadASTBitcodeBuffer(llvm::MemoryBuffer &Buffer, |
| FileManager &FMgr) { |
| // Check if the file is of the proper length. |
| if (Buffer.getBufferSize() & 0x3) { |
| // FIXME: Provide diagnostic: "Length should be a multiple of 4 bytes." |
| return 0; |
| } |
| |
| // Create the bitstream reader. |
| unsigned char *BufPtr = (unsigned char *)Buffer.getBufferStart(); |
| llvm::BitstreamReader Stream(BufPtr, BufPtr+Buffer.getBufferSize()); |
| |
| if (Stream.Read(8) != 'B' || |
| Stream.Read(8) != 'C' || |
| Stream.Read(4) != 0xC || |
| Stream.Read(4) != 0xF || |
| Stream.Read(4) != 0xE || |
| Stream.Read(4) != 0x0) { |
| // FIXME: Provide diagnostic. |
| return NULL; |
| } |
| |
| // Create the deserializer. |
| llvm::Deserializer Dezr(Stream); |
| |
| // ===---------------------------------------------------===/ |
| // Deserialize the "Translation Unit" metadata. |
| // ===---------------------------------------------------===/ |
| |
| // Skip to the BasicMetaDataBlock. First jump to ASTContextBlock |
| // (which will appear earlier) and record its location. |
| |
| bool FoundBlock = Dezr.SkipToBlock(ASTContextBlock); |
| assert (FoundBlock); |
| |
| llvm::Deserializer::Location ASTContextBlockLoc = |
| Dezr.getCurrentBlockLocation(); |
| |
| FoundBlock = Dezr.SkipToBlock(BasicMetadataBlock); |
| assert (FoundBlock); |
| |
| // Read the SourceManager. |
| SourceManager::CreateAndRegister(Dezr, FMgr); |
| |
| { // Read the TargetInfo. |
| llvm::SerializedPtrID PtrID = Dezr.ReadPtrID(); |
| char* triple = Dezr.ReadCStr(NULL,0,true); |
| Dezr.RegisterPtr(PtrID, TargetInfo::CreateTargetInfo(std::string(triple))); |
| delete [] triple; |
| } |
| |
| // For Selectors, we must read the identifier table first because the |
| // SelectorTable depends on the identifiers being already deserialized. |
| llvm::Deserializer::Location SelectorBlkLoc = Dezr.getCurrentBlockLocation(); |
| Dezr.SkipBlock(); |
| |
| // Read the identifier table. |
| IdentifierTable::CreateAndRegister(Dezr); |
| |
| // Now jump back and read the selectors. |
| Dezr.JumpTo(SelectorBlkLoc); |
| SelectorTable::CreateAndRegister(Dezr); |
| |
| // Now jump back to ASTContextBlock and read the ASTContext. |
| Dezr.JumpTo(ASTContextBlockLoc); |
| return Dezr.ReadOwnedPtr<ASTContext>(); |
| } |
| |
| ASTContext* ASTContext::Create(llvm::Deserializer& D) { |
| |
| // Read the language options. |
| LangOptions LOpts; |
| LOpts.Read(D); |
| |
| SourceManager &SM = D.ReadRef<SourceManager>(); |
| TargetInfo &t = D.ReadRef<TargetInfo>(); |
| IdentifierTable &idents = D.ReadRef<IdentifierTable>(); |
| SelectorTable &sels = D.ReadRef<SelectorTable>(); |
| |
| unsigned size_reserve = D.ReadInt(); |
| |
| ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels, |
| size_reserve); |
| |
| for (unsigned i = 0; i < size_reserve; ++i) |
| Type::Create(*A,i,D); |
| |
| A->TUDecl = cast<TranslationUnitDecl>(D.ReadOwnedPtr<Decl>(*A)); |
| |
| // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>(); |
| |
| return A; |
| } |