blob: 7353bc37e4b5be8cc01ee2610c8088924605ef87 [file] [log] [blame]
//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements name lookup for C, C++, Objective-C, and
// Objective-C++.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "SemaInherit.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Basic/LangOptions.h"
#include "llvm/ADT/STLExtras.h"
#include <set>
using namespace clang;
/// MaybeConstructOverloadSet - Name lookup has determined that the
/// elements in [I, IEnd) have the name that we are looking for, and
/// *I is a match for the namespace. This routine returns an
/// appropriate Decl for name lookup, which may either be *I or an
/// OverloadeFunctionDecl that represents the overloaded functions in
/// [I, IEnd).
///
/// The existance of this routine is temporary; LookupDecl should
/// probably be able to return multiple results, to deal with cases of
/// ambiguity and overloaded functions without needing to create a
/// Decl node.
template<typename DeclIterator>
static Decl *
MaybeConstructOverloadSet(ASTContext &Context,
DeclIterator I, DeclIterator IEnd) {
assert(I != IEnd && "Iterator range cannot be empty");
assert(!isa<OverloadedFunctionDecl>(*I) &&
"Cannot have an overloaded function");
if (isa<FunctionDecl>(*I)) {
// If we found a function, there might be more functions. If
// so, collect them into an overload set.
DeclIterator Last = I;
OverloadedFunctionDecl *Ovl = 0;
for (++Last; Last != IEnd && isa<FunctionDecl>(*Last); ++Last) {
if (!Ovl) {
// FIXME: We leak this overload set. Eventually, we want to
// stop building the declarations for these overload sets, so
// there will be nothing to leak.
Ovl = OverloadedFunctionDecl::Create(Context, (*I)->getDeclContext(),
(*I)->getDeclName());
Ovl->addOverload(cast<FunctionDecl>(*I));
}
Ovl->addOverload(cast<FunctionDecl>(*Last));
}
// If we had more than one function, we built an overload
// set. Return it.
if (Ovl)
return Ovl;
}
return *I;
}
/// @brief Constructs name lookup criteria.
///
/// @param K The kind of name that we're searching for.
///
/// @param RedeclarationOnly If true, then name lookup will only look
/// into the current scope for names, not in parent scopes. This
/// option should be set when we're looking to introduce a new
/// declaration into scope.
///
/// @param CPlusPlus Whether we are performing C++ name lookup or not.
Sema::LookupCriteria::LookupCriteria(NameKind K, bool RedeclarationOnly,
bool CPlusPlus)
: Kind(K), AllowLazyBuiltinCreation(K == Ordinary),
RedeclarationOnly(RedeclarationOnly) {
switch (Kind) {
case Ordinary:
IDNS = Decl::IDNS_Ordinary;
if (CPlusPlus)
IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
break;
case Tag:
IDNS = Decl::IDNS_Tag;
break;
case Member:
IDNS = Decl::IDNS_Member;
if (CPlusPlus)
IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
break;
case NestedNameSpecifier:
case Namespace:
IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
break;
}
}
/// isLookupResult - Determines whether D is a suitable lookup result
/// according to the lookup criteria.
bool Sema::LookupCriteria::isLookupResult(Decl *D) const {
switch (Kind) {
case Ordinary:
case Tag:
case Member:
return D->isInIdentifierNamespace(IDNS);
case NestedNameSpecifier:
return isa<TypedefDecl>(D) || D->isInIdentifierNamespace(Decl::IDNS_Tag);
case Namespace:
return isa<NamespaceDecl>(D);
}
assert(false && "isLookupResult always returns before this point");
return false;
}
/// @brief Moves the name-lookup results from Other to this LookupResult.
Sema::LookupResult
Sema::LookupResult::CreateLookupResult(ASTContext &Context,
IdentifierResolver::iterator F,
IdentifierResolver::iterator L) {
LookupResult Result;
Result.Context = &Context;
if (F != L && isa<FunctionDecl>(*F)) {
IdentifierResolver::iterator Next = F;
++Next;
if (Next != L && isa<FunctionDecl>(*Next)) {
Result.StoredKind = OverloadedDeclFromIdResolver;
Result.First = F.getAsOpaqueValue();
Result.Last = L.getAsOpaqueValue();
return Result;
}
}
Result.StoredKind = SingleDecl;
Result.First = reinterpret_cast<uintptr_t>(*F);
Result.Last = 0;
return Result;
}
Sema::LookupResult
Sema::LookupResult::CreateLookupResult(ASTContext &Context,
DeclContext::lookup_iterator F,
DeclContext::lookup_iterator L) {
LookupResult Result;
Result.Context = &Context;
if (F != L && isa<FunctionDecl>(*F)) {
DeclContext::lookup_iterator Next = F;
++Next;
if (Next != L && isa<FunctionDecl>(*Next)) {
Result.StoredKind = OverloadedDeclFromDeclContext;
Result.First = reinterpret_cast<uintptr_t>(F);
Result.Last = reinterpret_cast<uintptr_t>(L);
return Result;
}
}
Result.StoredKind = SingleDecl;
Result.First = reinterpret_cast<uintptr_t>(*F);
Result.Last = 0;
return Result;
}
/// @brief Determine the result of name lookup.
Sema::LookupResult::LookupKind Sema::LookupResult::getKind() const {
switch (StoredKind) {
case SingleDecl:
return (reinterpret_cast<Decl *>(First) != 0)? Found : NotFound;
case OverloadedDeclFromIdResolver:
case OverloadedDeclFromDeclContext:
return FoundOverloaded;
case AmbiguousLookup:
return Last? AmbiguousBaseSubobjectTypes : AmbiguousBaseSubobjects;
}
// We can't ever get here.
return NotFound;
}
/// @brief Converts the result of name lookup into a single (possible
/// NULL) pointer to a declaration.
///
/// The resulting declaration will either be the declaration we found
/// (if only a single declaration was found), an
/// OverloadedFunctionDecl (if an overloaded function was found), or
/// NULL (if no declaration was found). This conversion must not be
/// used anywhere where name lookup could result in an ambiguity.
///
/// The OverloadedFunctionDecl conversion is meant as a stop-gap
/// solution, since it causes the OverloadedFunctionDecl to be
/// leaked. FIXME: Eventually, there will be a better way to iterate
/// over the set of overloaded functions returned by name lookup.
Decl *Sema::LookupResult::getAsDecl() const {
switch (StoredKind) {
case SingleDecl:
return reinterpret_cast<Decl *>(First);
case OverloadedDeclFromIdResolver:
return MaybeConstructOverloadSet(*Context,
IdentifierResolver::iterator::getFromOpaqueValue(First),
IdentifierResolver::iterator::getFromOpaqueValue(Last));
case OverloadedDeclFromDeclContext:
return MaybeConstructOverloadSet(*Context,
reinterpret_cast<DeclContext::lookup_iterator>(First),
reinterpret_cast<DeclContext::lookup_iterator>(Last));
case AmbiguousLookup:
assert(false &&
"Name lookup returned an ambiguity that could not be handled");
break;
}
return 0;
}
/// @brief Retrieves the BasePaths structure describing an ambiguous
/// name lookup.
BasePaths *Sema::LookupResult::getBasePaths() const {
assert((StoredKind == AmbiguousLookup) &&
"getBasePaths can only be used on an ambiguous lookup");
return reinterpret_cast<BasePaths *>(First);
}
/// @brief Perform unqualified name lookup starting from a given
/// scope.
///
/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
/// used to find names within the current scope. For example, 'x' in
/// @code
/// int x;
/// int f() {
/// return x; // unqualified name look finds 'x' in the global scope
/// }
/// @endcode
///
/// Different lookup criteria can find different names. For example, a
/// particular scope can have both a struct and a function of the same
/// name, and each can be found by certain lookup criteria. For more
/// information about lookup criteria, see the documentation for the
/// class LookupCriteria.
///
/// @param S The scope from which unqualified name lookup will
/// begin. If the lookup criteria permits, name lookup may also search
/// in the parent scopes.
///
/// @param Name The name of the entity that we are searching for.
///
/// @param Criteria The criteria that this routine will use to
/// determine which names are visible and which names will be
/// found. Note that name lookup will find a name that is visible by
/// the given criteria, but the entity itself may not be semantically
/// correct or even the kind of entity expected based on the
/// lookup. For example, searching for a nested-name-specifier name
/// might result in an EnumDecl, which is visible but is not permitted
/// as a nested-name-specifier in C++03.
///
/// @returns The result of name lookup, which includes zero or more
/// declarations and possibly additional information used to diagnose
/// ambiguities.
Sema::LookupResult
Sema::LookupName(Scope *S, DeclarationName Name, LookupCriteria Criteria) {
if (!Name) return LookupResult::CreateLookupResult(Context, 0);
if (!getLangOptions().CPlusPlus) {
// Unqualified name lookup in C/Objective-C is purely lexical, so
// search in the declarations attached to the name.
// For the purposes of unqualified name lookup, structs and unions
// don't have scopes at all. For example:
//
// struct X {
// struct T { int i; } x;
// };
//
// void f() {
// struct T t; // okay: T is defined lexically within X, but
// // semantically at global scope
// };
//
// FIXME: Is there a better way to deal with this?
DeclContext *SearchCtx = CurContext;
while (isa<RecordDecl>(SearchCtx) || isa<EnumDecl>(SearchCtx))
SearchCtx = SearchCtx->getParent();
IdentifierResolver::iterator I
= IdResolver.begin(Name, SearchCtx, !Criteria.RedeclarationOnly);
// Scan up the scope chain looking for a decl that matches this
// identifier that is in the appropriate namespace. This search
// should not take long, as shadowing of names is uncommon, and
// deep shadowing is extremely uncommon.
for (; I != IdResolver.end(); ++I)
if (Criteria.isLookupResult(*I))
return LookupResult::CreateLookupResult(Context, *I);
} else {
// Unqualified name lookup in C++ requires looking into scopes
// that aren't strictly lexical, and therefore we walk through the
// context as well as walking through the scopes.
// FIXME: does "true" for LookInParentCtx actually make sense?
IdentifierResolver::iterator
I = IdResolver.begin(Name, CurContext, true/*LookInParentCtx*/),
IEnd = IdResolver.end();
for (; S; S = S->getParent()) {
// Check whether the IdResolver has anything in this scope.
for (; I != IEnd && S->isDeclScope(*I); ++I) {
if (Criteria.isLookupResult(*I)) {
// We found something. Look for anything else in our scope
// with this same name and in an acceptable identifier
// namespace, so that we can construct an overload set if we
// need to.
IdentifierResolver::iterator LastI = I;
for (++LastI; LastI != IEnd; ++LastI) {
if (!S->isDeclScope(*LastI))
break;
}
return LookupResult::CreateLookupResult(Context, I, LastI);
}
}
// If there is an entity associated with this scope, it's a
// DeclContext. We might need to perform qualified lookup into
// it.
// FIXME: We're performing redundant lookups here, where the
// scope stack mirrors the semantic nested of classes and
// namespaces. We can save some work by checking the lexical
// scope against the semantic scope and avoiding any lookups
// when they are the same.
// FIXME: In some cases, we know that every name that could be
// found by this qualified name lookup will also be on the
// identifier chain. For example, inside a class without any
// base classes, we never need to perform qualified lookup
// because all of the members are on top of the identifier
// chain. However, we cannot perform this optimization when the
// lexical and semantic scopes don't line up, e.g., in an
// out-of-line member definition.
DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
while (Ctx && Ctx->isFunctionOrMethod())
Ctx = Ctx->getParent();
while (Ctx && (Ctx->isNamespace() || Ctx->isRecord())) {
// Look for declarations of this name in this scope.
if (LookupResult Result = LookupQualifiedName(Ctx, Name, Criteria))
return Result;
if (Criteria.RedeclarationOnly && !Ctx->isTransparentContext())
return LookupResult::CreateLookupResult(Context, 0);
Ctx = Ctx->getParent();
}
}
}
// If we didn't find a use of this identifier, and if the identifier
// corresponds to a compiler builtin, create the decl object for the builtin
// now, injecting it into translation unit scope, and return it.
if (Criteria.Kind == LookupCriteria::Ordinary) {
IdentifierInfo *II = Name.getAsIdentifierInfo();
if (Criteria.AllowLazyBuiltinCreation && II) {
// If this is a builtin on this (or all) targets, create the decl.
if (unsigned BuiltinID = II->getBuiltinID())
return LookupResult::CreateLookupResult(Context,
LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
S));
}
if (getLangOptions().ObjC1 && II) {
// @interface and @compatibility_alias introduce typedef-like names.
// Unlike typedef's, they can only be introduced at file-scope (and are
// therefore not scoped decls). They can, however, be shadowed by
// other names in IDNS_Ordinary.
ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
if (IDI != ObjCInterfaceDecls.end())
return LookupResult::CreateLookupResult(Context, IDI->second);
ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
if (I != ObjCAliasDecls.end())
return LookupResult::CreateLookupResult(Context,
I->second->getClassInterface());
}
}
return LookupResult::CreateLookupResult(Context, 0);
}
/// @brief Perform qualified name lookup into a given context.
///
/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
/// names when the context of those names is explicit specified, e.g.,
/// "std::vector" or "x->member".
///
/// Different lookup criteria can find different names. For example, a
/// particular scope can have both a struct and a function of the same
/// name, and each can be found by certain lookup criteria. For more
/// information about lookup criteria, see the documentation for the
/// class LookupCriteria.
///
/// @param LookupCtx The context in which qualified name lookup will
/// search. If the lookup criteria permits, name lookup may also search
/// in the parent contexts or (for C++ classes) base classes.
///
/// @param Name The name of the entity that we are searching for.
///
/// @param Criteria The criteria that this routine will use to
/// determine which names are visible and which names will be
/// found. Note that name lookup will find a name that is visible by
/// the given criteria, but the entity itself may not be semantically
/// correct or even the kind of entity expected based on the
/// lookup. For example, searching for a nested-name-specifier name
/// might result in an EnumDecl, which is visible but is not permitted
/// as a nested-name-specifier in C++03.
///
/// @returns The result of name lookup, which includes zero or more
/// declarations and possibly additional information used to diagnose
/// ambiguities.
Sema::LookupResult
Sema::LookupQualifiedName(DeclContext *LookupCtx, DeclarationName Name,
LookupCriteria Criteria) {
assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
if (!Name) return LookupResult::CreateLookupResult(Context, 0);
// If we're performing qualified name lookup (e.g., lookup into a
// struct), find fields as part of ordinary name lookup.
if (Criteria.Kind == LookupCriteria::Ordinary)
Criteria.IDNS |= Decl::IDNS_Member;
// Perform qualified name lookup into the LookupCtx.
DeclContext::lookup_iterator I, E;
for (llvm::tie(I, E) = LookupCtx->lookup(Name); I != E; ++I)
if (Criteria.isLookupResult(*I))
return LookupResult::CreateLookupResult(Context, I, E);
// If this isn't a C++ class or we aren't allowed to look into base
// classes, we're done.
if (Criteria.RedeclarationOnly || !isa<CXXRecordDecl>(LookupCtx))
return LookupResult::CreateLookupResult(Context, 0);
// Perform lookup into our base classes.
BasePaths Paths;
Paths.setOrigin(Context.getTypeDeclType(cast<RecordDecl>(LookupCtx)));
// Look for this member in our base classes
if (!LookupInBases(cast<CXXRecordDecl>(LookupCtx),
MemberLookupCriteria(Name, Criteria), Paths))
return LookupResult::CreateLookupResult(Context, 0);
// C++ [class.member.lookup]p2:
// [...] If the resulting set of declarations are not all from
// sub-objects of the same type, or the set has a nonstatic member
// and includes members from distinct sub-objects, there is an
// ambiguity and the program is ill-formed. Otherwise that set is
// the result of the lookup.
// FIXME: support using declarations!
QualType SubobjectType;
int SubobjectNumber = 0;
for (BasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
Path != PathEnd; ++Path) {
const BasePathElement &PathElement = Path->back();
// Determine whether we're looking at a distinct sub-object or not.
if (SubobjectType.isNull()) {
// This is the first subobject we've looked at. Record it's type.
SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
SubobjectNumber = PathElement.SubobjectNumber;
} else if (SubobjectType
!= Context.getCanonicalType(PathElement.Base->getType())) {
// We found members of the given name in two subobjects of
// different types. This lookup is ambiguous.
BasePaths *PathsOnHeap = new BasePaths;
PathsOnHeap->swap(Paths);
return LookupResult::CreateLookupResult(Context, PathsOnHeap, true);
} else if (SubobjectNumber != PathElement.SubobjectNumber) {
// We have a different subobject of the same type.
// C++ [class.member.lookup]p5:
// A static member, a nested type or an enumerator defined in
// a base class T can unambiguously be found even if an object
// has more than one base class subobject of type T.
Decl *FirstDecl = *Path->Decls.first;
if (isa<VarDecl>(FirstDecl) ||
isa<TypeDecl>(FirstDecl) ||
isa<EnumConstantDecl>(FirstDecl))
continue;
if (isa<CXXMethodDecl>(FirstDecl)) {
// Determine whether all of the methods are static.
bool AllMethodsAreStatic = true;
for (DeclContext::lookup_iterator Func = Path->Decls.first;
Func != Path->Decls.second; ++Func) {
if (!isa<CXXMethodDecl>(*Func)) {
assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
break;
}
if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
AllMethodsAreStatic = false;
break;
}
}
if (AllMethodsAreStatic)
continue;
}
// We have found a nonstatic member name in multiple, distinct
// subobjects. Name lookup is ambiguous.
BasePaths *PathsOnHeap = new BasePaths;
PathsOnHeap->swap(Paths);
return LookupResult::CreateLookupResult(Context, PathsOnHeap, false);
}
}
// Lookup in a base class succeeded; return these results.
// If we found a function declaration, return an overload set.
if (isa<FunctionDecl>(*Paths.front().Decls.first))
return LookupResult::CreateLookupResult(Context,
Paths.front().Decls.first, Paths.front().Decls.second);
// We found a non-function declaration; return a single declaration.
return LookupResult::CreateLookupResult(Context, *Paths.front().Decls.first);
}
/// @brief Performs name lookup for a name that was parsed in the
/// source code, and may contain a C++ scope specifier.
///
/// This routine is a convenience routine meant to be called from
/// contexts that receive a name and an optional C++ scope specifier
/// (e.g., "N::M::x"). It will then perform either qualified or
/// unqualified name lookup (with LookupQualifiedName or LookupName,
/// respectively) on the given name and return those results.
///
/// @param S The scope from which unqualified name lookup will
/// begin.
///
/// @param SS An optional C++ scope-specified, e.g., "::N::M".
///
/// @param Name The name of the entity that name lookup will
/// search for.
///
/// @param Criteria The criteria that will determine which entities
/// are visible to name lookup.
///
/// @returns The result of qualified or unqualified name lookup.
Sema::LookupResult
Sema::LookupParsedName(Scope *S, const CXXScopeSpec &SS,
DeclarationName Name, LookupCriteria Criteria) {
if (SS.isSet())
return LookupQualifiedName(static_cast<DeclContext *>(SS.getScopeRep()),
Name, Criteria);
return LookupName(S, Name, Criteria);
}
/// @brief Produce a diagnostic describing the ambiguity that resulted
/// from name lookup.
///
/// @param Result The ambiguous name lookup result.
///
/// @param Name The name of the entity that name lookup was
/// searching for.
///
/// @param NameLoc The location of the name within the source code.
///
/// @param LookupRange A source range that provides more
/// source-location information concerning the lookup itself. For
/// example, this range might highlight a nested-name-specifier that
/// precedes the name.
///
/// @returns true
bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result, DeclarationName Name,
SourceLocation NameLoc,
SourceRange LookupRange) {
assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
BasePaths *Paths = Result.getBasePaths();
if (Result.getKind() == LookupResult::AmbiguousBaseSubobjects) {
QualType SubobjectType = Paths->front().back().Base->getType();
Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
<< Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
<< LookupRange;
DeclContext::lookup_iterator Found = Paths->front().Decls.first;
while (isa<CXXMethodDecl>(*Found) && cast<CXXMethodDecl>(*Found)->isStatic())
++Found;
Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
return true;
}
assert(Result.getKind() == LookupResult::AmbiguousBaseSubobjectTypes &&
"Unhandled form of name lookup ambiguity");
Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
<< Name << LookupRange;
std::set<Decl *> DeclsPrinted;
for (BasePaths::paths_iterator Path = Paths->begin(), PathEnd = Paths->end();
Path != PathEnd; ++Path) {
Decl *D = *Path->Decls.first;
if (DeclsPrinted.insert(D).second)
Diag(D->getLocation(), diag::note_ambiguous_member_found);
}
delete Paths;
return true;
}