| //===--- Expr.cpp - Expression AST Node Implementation --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Expr class and subclasses. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // Primary Expressions. |
| //===----------------------------------------------------------------------===// |
| |
| void ExplicitTemplateArgumentList::initializeFrom( |
| const TemplateArgumentListInfo &Info) { |
| LAngleLoc = Info.getLAngleLoc(); |
| RAngleLoc = Info.getRAngleLoc(); |
| NumTemplateArgs = Info.size(); |
| |
| TemplateArgumentLoc *ArgBuffer = getTemplateArgs(); |
| for (unsigned i = 0; i != NumTemplateArgs; ++i) |
| new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]); |
| } |
| |
| void ExplicitTemplateArgumentList::copyInto( |
| TemplateArgumentListInfo &Info) const { |
| Info.setLAngleLoc(LAngleLoc); |
| Info.setRAngleLoc(RAngleLoc); |
| for (unsigned I = 0; I != NumTemplateArgs; ++I) |
| Info.addArgument(getTemplateArgs()[I]); |
| } |
| |
| std::size_t ExplicitTemplateArgumentList::sizeFor( |
| const TemplateArgumentListInfo &Info) { |
| return sizeof(ExplicitTemplateArgumentList) + |
| sizeof(TemplateArgumentLoc) * Info.size(); |
| } |
| |
| void DeclRefExpr::computeDependence() { |
| TypeDependent = false; |
| ValueDependent = false; |
| |
| NamedDecl *D = getDecl(); |
| |
| // (TD) C++ [temp.dep.expr]p3: |
| // An id-expression is type-dependent if it contains: |
| // |
| // and |
| // |
| // (VD) C++ [temp.dep.constexpr]p2: |
| // An identifier is value-dependent if it is: |
| |
| // (TD) - an identifier that was declared with dependent type |
| // (VD) - a name declared with a dependent type, |
| if (getType()->isDependentType()) { |
| TypeDependent = true; |
| ValueDependent = true; |
| } |
| // (TD) - a conversion-function-id that specifies a dependent type |
| else if (D->getDeclName().getNameKind() |
| == DeclarationName::CXXConversionFunctionName && |
| D->getDeclName().getCXXNameType()->isDependentType()) { |
| TypeDependent = true; |
| ValueDependent = true; |
| } |
| // (TD) - a template-id that is dependent, |
| else if (hasExplicitTemplateArgumentList() && |
| TemplateSpecializationType::anyDependentTemplateArguments( |
| getTemplateArgs(), |
| getNumTemplateArgs())) { |
| TypeDependent = true; |
| ValueDependent = true; |
| } |
| // (VD) - the name of a non-type template parameter, |
| else if (isa<NonTypeTemplateParmDecl>(D)) |
| ValueDependent = true; |
| // (VD) - a constant with integral or enumeration type and is |
| // initialized with an expression that is value-dependent. |
| else if (VarDecl *Var = dyn_cast<VarDecl>(D)) { |
| if (Var->getType()->isIntegralType() && |
| Var->getType().getCVRQualifiers() == Qualifiers::Const && |
| Var->getInit() && |
| Var->getInit()->isValueDependent()) |
| ValueDependent = true; |
| } |
| // (TD) - a nested-name-specifier or a qualified-id that names a |
| // member of an unknown specialization. |
| // (handled by DependentScopeDeclRefExpr) |
| } |
| |
| DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier, |
| SourceRange QualifierRange, |
| ValueDecl *D, SourceLocation NameLoc, |
| const TemplateArgumentListInfo *TemplateArgs, |
| QualType T) |
| : Expr(DeclRefExprClass, T, false, false), |
| DecoratedD(D, |
| (Qualifier? HasQualifierFlag : 0) | |
| (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)), |
| Loc(NameLoc) { |
| if (Qualifier) { |
| NameQualifier *NQ = getNameQualifier(); |
| NQ->NNS = Qualifier; |
| NQ->Range = QualifierRange; |
| } |
| |
| if (TemplateArgs) |
| getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs); |
| |
| computeDependence(); |
| } |
| |
| DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, |
| NestedNameSpecifier *Qualifier, |
| SourceRange QualifierRange, |
| ValueDecl *D, |
| SourceLocation NameLoc, |
| QualType T, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| std::size_t Size = sizeof(DeclRefExpr); |
| if (Qualifier != 0) |
| Size += sizeof(NameQualifier); |
| |
| if (TemplateArgs) |
| Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs); |
| |
| void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>()); |
| return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc, |
| TemplateArgs, T); |
| } |
| |
| SourceRange DeclRefExpr::getSourceRange() const { |
| // FIXME: Does not handle multi-token names well, e.g., operator[]. |
| SourceRange R(Loc); |
| |
| if (hasQualifier()) |
| R.setBegin(getQualifierRange().getBegin()); |
| if (hasExplicitTemplateArgumentList()) |
| R.setEnd(getRAngleLoc()); |
| return R; |
| } |
| |
| // FIXME: Maybe this should use DeclPrinter with a special "print predefined |
| // expr" policy instead. |
| std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT, |
| const Decl *CurrentDecl) { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { |
| if (IT != PrettyFunction) |
| return FD->getNameAsString(); |
| |
| llvm::SmallString<256> Name; |
| llvm::raw_svector_ostream Out(Name); |
| |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| if (MD->isVirtual()) |
| Out << "virtual "; |
| if (MD->isStatic()) |
| Out << "static "; |
| } |
| |
| PrintingPolicy Policy(Context.getLangOptions()); |
| Policy.SuppressTagKind = true; |
| |
| std::string Proto = FD->getQualifiedNameAsString(Policy); |
| |
| const FunctionType *AFT = FD->getType()->getAs<FunctionType>(); |
| const FunctionProtoType *FT = 0; |
| if (FD->hasWrittenPrototype()) |
| FT = dyn_cast<FunctionProtoType>(AFT); |
| |
| Proto += "("; |
| if (FT) { |
| llvm::raw_string_ostream POut(Proto); |
| for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { |
| if (i) POut << ", "; |
| std::string Param; |
| FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy); |
| POut << Param; |
| } |
| |
| if (FT->isVariadic()) { |
| if (FD->getNumParams()) POut << ", "; |
| POut << "..."; |
| } |
| } |
| Proto += ")"; |
| |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers()); |
| if (ThisQuals.hasConst()) |
| Proto += " const"; |
| if (ThisQuals.hasVolatile()) |
| Proto += " volatile"; |
| } |
| |
| if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) |
| AFT->getResultType().getAsStringInternal(Proto, Policy); |
| |
| Out << Proto; |
| |
| Out.flush(); |
| return Name.str().str(); |
| } |
| if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { |
| llvm::SmallString<256> Name; |
| llvm::raw_svector_ostream Out(Name); |
| Out << (MD->isInstanceMethod() ? '-' : '+'); |
| Out << '['; |
| Out << MD->getClassInterface()->getNameAsString(); |
| if (const ObjCCategoryImplDecl *CID = |
| dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) { |
| Out << '('; |
| Out << CID->getNameAsString(); |
| Out << ')'; |
| } |
| Out << ' '; |
| Out << MD->getSelector().getAsString(); |
| Out << ']'; |
| |
| Out.flush(); |
| return Name.str().str(); |
| } |
| if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { |
| // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. |
| return "top level"; |
| } |
| return ""; |
| } |
| |
| /// getValueAsApproximateDouble - This returns the value as an inaccurate |
| /// double. Note that this may cause loss of precision, but is useful for |
| /// debugging dumps, etc. |
| double FloatingLiteral::getValueAsApproximateDouble() const { |
| llvm::APFloat V = getValue(); |
| bool ignored; |
| V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, |
| &ignored); |
| return V.convertToDouble(); |
| } |
| |
| StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData, |
| unsigned ByteLength, bool Wide, |
| QualType Ty, |
| const SourceLocation *Loc, |
| unsigned NumStrs) { |
| // Allocate enough space for the StringLiteral plus an array of locations for |
| // any concatenated string tokens. |
| void *Mem = C.Allocate(sizeof(StringLiteral)+ |
| sizeof(SourceLocation)*(NumStrs-1), |
| llvm::alignof<StringLiteral>()); |
| StringLiteral *SL = new (Mem) StringLiteral(Ty); |
| |
| // OPTIMIZE: could allocate this appended to the StringLiteral. |
| char *AStrData = new (C, 1) char[ByteLength]; |
| memcpy(AStrData, StrData, ByteLength); |
| SL->StrData = AStrData; |
| SL->ByteLength = ByteLength; |
| SL->IsWide = Wide; |
| SL->TokLocs[0] = Loc[0]; |
| SL->NumConcatenated = NumStrs; |
| |
| if (NumStrs != 1) |
| memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); |
| return SL; |
| } |
| |
| StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) { |
| void *Mem = C.Allocate(sizeof(StringLiteral)+ |
| sizeof(SourceLocation)*(NumStrs-1), |
| llvm::alignof<StringLiteral>()); |
| StringLiteral *SL = new (Mem) StringLiteral(QualType()); |
| SL->StrData = 0; |
| SL->ByteLength = 0; |
| SL->NumConcatenated = NumStrs; |
| return SL; |
| } |
| |
| void StringLiteral::DoDestroy(ASTContext &C) { |
| C.Deallocate(const_cast<char*>(StrData)); |
| Expr::DoDestroy(C); |
| } |
| |
| void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) { |
| if (StrData) |
| C.Deallocate(const_cast<char*>(StrData)); |
| |
| char *AStrData = new (C, 1) char[Str.size()]; |
| memcpy(AStrData, Str.data(), Str.size()); |
| StrData = AStrData; |
| ByteLength = Str.size(); |
| } |
| |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
| /// corresponds to, e.g. "sizeof" or "[pre]++". |
| const char *UnaryOperator::getOpcodeStr(Opcode Op) { |
| switch (Op) { |
| default: assert(0 && "Unknown unary operator"); |
| case PostInc: return "++"; |
| case PostDec: return "--"; |
| case PreInc: return "++"; |
| case PreDec: return "--"; |
| case AddrOf: return "&"; |
| case Deref: return "*"; |
| case Plus: return "+"; |
| case Minus: return "-"; |
| case Not: return "~"; |
| case LNot: return "!"; |
| case Real: return "__real"; |
| case Imag: return "__imag"; |
| case Extension: return "__extension__"; |
| case OffsetOf: return "__builtin_offsetof"; |
| } |
| } |
| |
| UnaryOperator::Opcode |
| UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { |
| switch (OO) { |
| default: assert(false && "No unary operator for overloaded function"); |
| case OO_PlusPlus: return Postfix ? PostInc : PreInc; |
| case OO_MinusMinus: return Postfix ? PostDec : PreDec; |
| case OO_Amp: return AddrOf; |
| case OO_Star: return Deref; |
| case OO_Plus: return Plus; |
| case OO_Minus: return Minus; |
| case OO_Tilde: return Not; |
| case OO_Exclaim: return LNot; |
| } |
| } |
| |
| OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { |
| switch (Opc) { |
| case PostInc: case PreInc: return OO_PlusPlus; |
| case PostDec: case PreDec: return OO_MinusMinus; |
| case AddrOf: return OO_Amp; |
| case Deref: return OO_Star; |
| case Plus: return OO_Plus; |
| case Minus: return OO_Minus; |
| case Not: return OO_Tilde; |
| case LNot: return OO_Exclaim; |
| default: return OO_None; |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Postfix Operators. |
| //===----------------------------------------------------------------------===// |
| |
| CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, |
| unsigned numargs, QualType t, SourceLocation rparenloc) |
| : Expr(SC, t, |
| fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs), |
| fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)), |
| NumArgs(numargs) { |
| |
| SubExprs = new (C) Stmt*[numargs+1]; |
| SubExprs[FN] = fn; |
| for (unsigned i = 0; i != numargs; ++i) |
| SubExprs[i+ARGS_START] = args[i]; |
| |
| RParenLoc = rparenloc; |
| } |
| |
| CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, |
| QualType t, SourceLocation rparenloc) |
| : Expr(CallExprClass, t, |
| fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs), |
| fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)), |
| NumArgs(numargs) { |
| |
| SubExprs = new (C) Stmt*[numargs+1]; |
| SubExprs[FN] = fn; |
| for (unsigned i = 0; i != numargs; ++i) |
| SubExprs[i+ARGS_START] = args[i]; |
| |
| RParenLoc = rparenloc; |
| } |
| |
| CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty) |
| : Expr(SC, Empty), SubExprs(0), NumArgs(0) { |
| SubExprs = new (C) Stmt*[1]; |
| } |
| |
| void CallExpr::DoDestroy(ASTContext& C) { |
| DestroyChildren(C); |
| if (SubExprs) C.Deallocate(SubExprs); |
| this->~CallExpr(); |
| C.Deallocate(this); |
| } |
| |
| Decl *CallExpr::getCalleeDecl() { |
| Expr *CEE = getCallee()->IgnoreParenCasts(); |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) |
| return DRE->getDecl(); |
| if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) |
| return ME->getMemberDecl(); |
| |
| return 0; |
| } |
| |
| FunctionDecl *CallExpr::getDirectCallee() { |
| return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); |
| } |
| |
| /// setNumArgs - This changes the number of arguments present in this call. |
| /// Any orphaned expressions are deleted by this, and any new operands are set |
| /// to null. |
| void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) { |
| // No change, just return. |
| if (NumArgs == getNumArgs()) return; |
| |
| // If shrinking # arguments, just delete the extras and forgot them. |
| if (NumArgs < getNumArgs()) { |
| for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i) |
| getArg(i)->Destroy(C); |
| this->NumArgs = NumArgs; |
| return; |
| } |
| |
| // Otherwise, we are growing the # arguments. New an bigger argument array. |
| Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1]; |
| // Copy over args. |
| for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i) |
| NewSubExprs[i] = SubExprs[i]; |
| // Null out new args. |
| for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i) |
| NewSubExprs[i] = 0; |
| |
| if (SubExprs) C.Deallocate(SubExprs); |
| SubExprs = NewSubExprs; |
| this->NumArgs = NumArgs; |
| } |
| |
| /// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If |
| /// not, return 0. |
| unsigned CallExpr::isBuiltinCall(ASTContext &Context) const { |
| // All simple function calls (e.g. func()) are implicitly cast to pointer to |
| // function. As a result, we try and obtain the DeclRefExpr from the |
| // ImplicitCastExpr. |
| const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); |
| if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). |
| return 0; |
| |
| const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); |
| if (!DRE) |
| return 0; |
| |
| const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); |
| if (!FDecl) |
| return 0; |
| |
| if (!FDecl->getIdentifier()) |
| return 0; |
| |
| return FDecl->getBuiltinID(); |
| } |
| |
| QualType CallExpr::getCallReturnType() const { |
| QualType CalleeType = getCallee()->getType(); |
| if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>()) |
| CalleeType = FnTypePtr->getPointeeType(); |
| else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>()) |
| CalleeType = BPT->getPointeeType(); |
| |
| const FunctionType *FnType = CalleeType->getAs<FunctionType>(); |
| return FnType->getResultType(); |
| } |
| |
| MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual, |
| SourceRange qualrange, ValueDecl *memberdecl, |
| SourceLocation l, const TemplateArgumentListInfo *targs, |
| QualType ty) |
| : Expr(MemberExprClass, ty, |
| base->isTypeDependent() || (qual && qual->isDependent()), |
| base->isValueDependent() || (qual && qual->isDependent())), |
| Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow), |
| HasQualifier(qual != 0), HasExplicitTemplateArgumentList(targs) { |
| // Initialize the qualifier, if any. |
| if (HasQualifier) { |
| NameQualifier *NQ = getMemberQualifier(); |
| NQ->NNS = qual; |
| NQ->Range = qualrange; |
| } |
| |
| // Initialize the explicit template argument list, if any. |
| if (targs) |
| getExplicitTemplateArgumentList()->initializeFrom(*targs); |
| } |
| |
| MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow, |
| NestedNameSpecifier *qual, |
| SourceRange qualrange, |
| ValueDecl *memberdecl, |
| SourceLocation l, |
| const TemplateArgumentListInfo *targs, |
| QualType ty) { |
| std::size_t Size = sizeof(MemberExpr); |
| if (qual != 0) |
| Size += sizeof(NameQualifier); |
| |
| if (targs) |
| Size += ExplicitTemplateArgumentList::sizeFor(*targs); |
| |
| void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>()); |
| return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l, |
| targs, ty); |
| } |
| |
| const char *CastExpr::getCastKindName() const { |
| switch (getCastKind()) { |
| case CastExpr::CK_Unknown: |
| return "Unknown"; |
| case CastExpr::CK_BitCast: |
| return "BitCast"; |
| case CastExpr::CK_NoOp: |
| return "NoOp"; |
| case CastExpr::CK_BaseToDerived: |
| return "BaseToDerived"; |
| case CastExpr::CK_DerivedToBase: |
| return "DerivedToBase"; |
| case CastExpr::CK_Dynamic: |
| return "Dynamic"; |
| case CastExpr::CK_ToUnion: |
| return "ToUnion"; |
| case CastExpr::CK_ArrayToPointerDecay: |
| return "ArrayToPointerDecay"; |
| case CastExpr::CK_FunctionToPointerDecay: |
| return "FunctionToPointerDecay"; |
| case CastExpr::CK_NullToMemberPointer: |
| return "NullToMemberPointer"; |
| case CastExpr::CK_BaseToDerivedMemberPointer: |
| return "BaseToDerivedMemberPointer"; |
| case CastExpr::CK_DerivedToBaseMemberPointer: |
| return "DerivedToBaseMemberPointer"; |
| case CastExpr::CK_UserDefinedConversion: |
| return "UserDefinedConversion"; |
| case CastExpr::CK_ConstructorConversion: |
| return "ConstructorConversion"; |
| case CastExpr::CK_IntegralToPointer: |
| return "IntegralToPointer"; |
| case CastExpr::CK_PointerToIntegral: |
| return "PointerToIntegral"; |
| case CastExpr::CK_ToVoid: |
| return "ToVoid"; |
| case CastExpr::CK_VectorSplat: |
| return "VectorSplat"; |
| case CastExpr::CK_IntegralCast: |
| return "IntegralCast"; |
| case CastExpr::CK_IntegralToFloating: |
| return "IntegralToFloating"; |
| case CastExpr::CK_FloatingToIntegral: |
| return "FloatingToIntegral"; |
| case CastExpr::CK_FloatingCast: |
| return "FloatingCast"; |
| case CastExpr::CK_MemberPointerToBoolean: |
| return "MemberPointerToBoolean"; |
| case CastExpr::CK_AnyPointerToObjCPointerCast: |
| return "AnyPointerToObjCPointerCast"; |
| case CastExpr::CK_AnyPointerToBlockPointerCast: |
| return "AnyPointerToBlockPointerCast"; |
| } |
| |
| assert(0 && "Unhandled cast kind!"); |
| return 0; |
| } |
| |
| Expr *CastExpr::getSubExprAsWritten() { |
| Expr *SubExpr = 0; |
| CastExpr *E = this; |
| do { |
| SubExpr = E->getSubExpr(); |
| |
| // Skip any temporary bindings; they're implicit. |
| if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) |
| SubExpr = Binder->getSubExpr(); |
| |
| // Conversions by constructor and conversion functions have a |
| // subexpression describing the call; strip it off. |
| if (E->getCastKind() == CastExpr::CK_ConstructorConversion) |
| SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); |
| else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion) |
| SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); |
| |
| // If the subexpression we're left with is an implicit cast, look |
| // through that, too. |
| } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); |
| |
| return SubExpr; |
| } |
| |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
| /// corresponds to, e.g. "<<=". |
| const char *BinaryOperator::getOpcodeStr(Opcode Op) { |
| switch (Op) { |
| case PtrMemD: return ".*"; |
| case PtrMemI: return "->*"; |
| case Mul: return "*"; |
| case Div: return "/"; |
| case Rem: return "%"; |
| case Add: return "+"; |
| case Sub: return "-"; |
| case Shl: return "<<"; |
| case Shr: return ">>"; |
| case LT: return "<"; |
| case GT: return ">"; |
| case LE: return "<="; |
| case GE: return ">="; |
| case EQ: return "=="; |
| case NE: return "!="; |
| case And: return "&"; |
| case Xor: return "^"; |
| case Or: return "|"; |
| case LAnd: return "&&"; |
| case LOr: return "||"; |
| case Assign: return "="; |
| case MulAssign: return "*="; |
| case DivAssign: return "/="; |
| case RemAssign: return "%="; |
| case AddAssign: return "+="; |
| case SubAssign: return "-="; |
| case ShlAssign: return "<<="; |
| case ShrAssign: return ">>="; |
| case AndAssign: return "&="; |
| case XorAssign: return "^="; |
| case OrAssign: return "|="; |
| case Comma: return ","; |
| } |
| |
| return ""; |
| } |
| |
| BinaryOperator::Opcode |
| BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { |
| switch (OO) { |
| default: assert(false && "Not an overloadable binary operator"); |
| case OO_Plus: return Add; |
| case OO_Minus: return Sub; |
| case OO_Star: return Mul; |
| case OO_Slash: return Div; |
| case OO_Percent: return Rem; |
| case OO_Caret: return Xor; |
| case OO_Amp: return And; |
| case OO_Pipe: return Or; |
| case OO_Equal: return Assign; |
| case OO_Less: return LT; |
| case OO_Greater: return GT; |
| case OO_PlusEqual: return AddAssign; |
| case OO_MinusEqual: return SubAssign; |
| case OO_StarEqual: return MulAssign; |
| case OO_SlashEqual: return DivAssign; |
| case OO_PercentEqual: return RemAssign; |
| case OO_CaretEqual: return XorAssign; |
| case OO_AmpEqual: return AndAssign; |
| case OO_PipeEqual: return OrAssign; |
| case OO_LessLess: return Shl; |
| case OO_GreaterGreater: return Shr; |
| case OO_LessLessEqual: return ShlAssign; |
| case OO_GreaterGreaterEqual: return ShrAssign; |
| case OO_EqualEqual: return EQ; |
| case OO_ExclaimEqual: return NE; |
| case OO_LessEqual: return LE; |
| case OO_GreaterEqual: return GE; |
| case OO_AmpAmp: return LAnd; |
| case OO_PipePipe: return LOr; |
| case OO_Comma: return Comma; |
| case OO_ArrowStar: return PtrMemI; |
| } |
| } |
| |
| OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { |
| static const OverloadedOperatorKind OverOps[] = { |
| /* .* Cannot be overloaded */OO_None, OO_ArrowStar, |
| OO_Star, OO_Slash, OO_Percent, |
| OO_Plus, OO_Minus, |
| OO_LessLess, OO_GreaterGreater, |
| OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, |
| OO_EqualEqual, OO_ExclaimEqual, |
| OO_Amp, |
| OO_Caret, |
| OO_Pipe, |
| OO_AmpAmp, |
| OO_PipePipe, |
| OO_Equal, OO_StarEqual, |
| OO_SlashEqual, OO_PercentEqual, |
| OO_PlusEqual, OO_MinusEqual, |
| OO_LessLessEqual, OO_GreaterGreaterEqual, |
| OO_AmpEqual, OO_CaretEqual, |
| OO_PipeEqual, |
| OO_Comma |
| }; |
| return OverOps[Opc]; |
| } |
| |
| InitListExpr::InitListExpr(SourceLocation lbraceloc, |
| Expr **initExprs, unsigned numInits, |
| SourceLocation rbraceloc) |
| : Expr(InitListExprClass, QualType(), false, false), |
| LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0), |
| UnionFieldInit(0), HadArrayRangeDesignator(false) |
| { |
| for (unsigned I = 0; I != numInits; ++I) { |
| if (initExprs[I]->isTypeDependent()) |
| TypeDependent = true; |
| if (initExprs[I]->isValueDependent()) |
| ValueDependent = true; |
| } |
| |
| InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits); |
| } |
| |
| void InitListExpr::reserveInits(unsigned NumInits) { |
| if (NumInits > InitExprs.size()) |
| InitExprs.reserve(NumInits); |
| } |
| |
| void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) { |
| for (unsigned Idx = NumInits, LastIdx = InitExprs.size(); |
| Idx < LastIdx; ++Idx) |
| InitExprs[Idx]->Destroy(Context); |
| InitExprs.resize(NumInits, 0); |
| } |
| |
| Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) { |
| if (Init >= InitExprs.size()) { |
| InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0); |
| InitExprs.back() = expr; |
| return 0; |
| } |
| |
| Expr *Result = cast_or_null<Expr>(InitExprs[Init]); |
| InitExprs[Init] = expr; |
| return Result; |
| } |
| |
| /// getFunctionType - Return the underlying function type for this block. |
| /// |
| const FunctionType *BlockExpr::getFunctionType() const { |
| return getType()->getAs<BlockPointerType>()-> |
| getPointeeType()->getAs<FunctionType>(); |
| } |
| |
| SourceLocation BlockExpr::getCaretLocation() const { |
| return TheBlock->getCaretLocation(); |
| } |
| const Stmt *BlockExpr::getBody() const { |
| return TheBlock->getBody(); |
| } |
| Stmt *BlockExpr::getBody() { |
| return TheBlock->getBody(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Generic Expression Routines |
| //===----------------------------------------------------------------------===// |
| |
| /// isUnusedResultAWarning - Return true if this immediate expression should |
| /// be warned about if the result is unused. If so, fill in Loc and Ranges |
| /// with location to warn on and the source range[s] to report with the |
| /// warning. |
| bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1, |
| SourceRange &R2, ASTContext &Ctx) const { |
| // Don't warn if the expr is type dependent. The type could end up |
| // instantiating to void. |
| if (isTypeDependent()) |
| return false; |
| |
| switch (getStmtClass()) { |
| default: |
| Loc = getExprLoc(); |
| R1 = getSourceRange(); |
| return true; |
| case ParenExprClass: |
| return cast<ParenExpr>(this)->getSubExpr()-> |
| isUnusedResultAWarning(Loc, R1, R2, Ctx); |
| case UnaryOperatorClass: { |
| const UnaryOperator *UO = cast<UnaryOperator>(this); |
| |
| switch (UO->getOpcode()) { |
| default: break; |
| case UnaryOperator::PostInc: |
| case UnaryOperator::PostDec: |
| case UnaryOperator::PreInc: |
| case UnaryOperator::PreDec: // ++/-- |
| return false; // Not a warning. |
| case UnaryOperator::Deref: |
| // Dereferencing a volatile pointer is a side-effect. |
| if (Ctx.getCanonicalType(getType()).isVolatileQualified()) |
| return false; |
| break; |
| case UnaryOperator::Real: |
| case UnaryOperator::Imag: |
| // accessing a piece of a volatile complex is a side-effect. |
| if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) |
| .isVolatileQualified()) |
| return false; |
| break; |
| case UnaryOperator::Extension: |
| return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx); |
| } |
| Loc = UO->getOperatorLoc(); |
| R1 = UO->getSubExpr()->getSourceRange(); |
| return true; |
| } |
| case BinaryOperatorClass: { |
| const BinaryOperator *BO = cast<BinaryOperator>(this); |
| // Consider comma to have side effects if the LHS or RHS does. |
| if (BO->getOpcode() == BinaryOperator::Comma) |
| return (BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) || |
| BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| |
| if (BO->isAssignmentOp()) |
| return false; |
| Loc = BO->getOperatorLoc(); |
| R1 = BO->getLHS()->getSourceRange(); |
| R2 = BO->getRHS()->getSourceRange(); |
| return true; |
| } |
| case CompoundAssignOperatorClass: |
| return false; |
| |
| case ConditionalOperatorClass: { |
| // The condition must be evaluated, but if either the LHS or RHS is a |
| // warning, warn about them. |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(this); |
| if (Exp->getLHS() && |
| Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) |
| return true; |
| return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); |
| } |
| |
| case MemberExprClass: |
| // If the base pointer or element is to a volatile pointer/field, accessing |
| // it is a side effect. |
| if (Ctx.getCanonicalType(getType()).isVolatileQualified()) |
| return false; |
| Loc = cast<MemberExpr>(this)->getMemberLoc(); |
| R1 = SourceRange(Loc, Loc); |
| R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); |
| return true; |
| |
| case ArraySubscriptExprClass: |
| // If the base pointer or element is to a volatile pointer/field, accessing |
| // it is a side effect. |
| if (Ctx.getCanonicalType(getType()).isVolatileQualified()) |
| return false; |
| Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); |
| R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); |
| R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); |
| return true; |
| |
| case CallExprClass: |
| case CXXOperatorCallExprClass: |
| case CXXMemberCallExprClass: { |
| // If this is a direct call, get the callee. |
| const CallExpr *CE = cast<CallExpr>(this); |
| if (const Decl *FD = CE->getCalleeDecl()) { |
| // If the callee has attribute pure, const, or warn_unused_result, warn |
| // about it. void foo() { strlen("bar"); } should warn. |
| // |
| // Note: If new cases are added here, DiagnoseUnusedExprResult should be |
| // updated to match for QoI. |
| if (FD->getAttr<WarnUnusedResultAttr>() || |
| FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) { |
| Loc = CE->getCallee()->getLocStart(); |
| R1 = CE->getCallee()->getSourceRange(); |
| |
| if (unsigned NumArgs = CE->getNumArgs()) |
| R2 = SourceRange(CE->getArg(0)->getLocStart(), |
| CE->getArg(NumArgs-1)->getLocEnd()); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| case CXXTemporaryObjectExprClass: |
| case CXXConstructExprClass: |
| return false; |
| |
| case ObjCMessageExprClass: |
| return false; |
| |
| case ObjCImplicitSetterGetterRefExprClass: { // Dot syntax for message send. |
| #if 0 |
| const ObjCImplicitSetterGetterRefExpr *Ref = |
| cast<ObjCImplicitSetterGetterRefExpr>(this); |
| // FIXME: We really want the location of the '.' here. |
| Loc = Ref->getLocation(); |
| R1 = SourceRange(Ref->getLocation(), Ref->getLocation()); |
| if (Ref->getBase()) |
| R2 = Ref->getBase()->getSourceRange(); |
| #else |
| Loc = getExprLoc(); |
| R1 = getSourceRange(); |
| #endif |
| return true; |
| } |
| case StmtExprClass: { |
| // Statement exprs don't logically have side effects themselves, but are |
| // sometimes used in macros in ways that give them a type that is unused. |
| // For example ({ blah; foo(); }) will end up with a type if foo has a type. |
| // however, if the result of the stmt expr is dead, we don't want to emit a |
| // warning. |
| const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); |
| if (!CS->body_empty()) |
| if (const Expr *E = dyn_cast<Expr>(CS->body_back())) |
| return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); |
| |
| Loc = cast<StmtExpr>(this)->getLParenLoc(); |
| R1 = getSourceRange(); |
| return true; |
| } |
| case CStyleCastExprClass: |
| // If this is an explicit cast to void, allow it. People do this when they |
| // think they know what they're doing :). |
| if (getType()->isVoidType()) |
| return false; |
| Loc = cast<CStyleCastExpr>(this)->getLParenLoc(); |
| R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange(); |
| return true; |
| case CXXFunctionalCastExprClass: { |
| const CastExpr *CE = cast<CastExpr>(this); |
| |
| // If this is a cast to void or a constructor conversion, check the operand. |
| // Otherwise, the result of the cast is unused. |
| if (CE->getCastKind() == CastExpr::CK_ToVoid || |
| CE->getCastKind() == CastExpr::CK_ConstructorConversion) |
| return (cast<CastExpr>(this)->getSubExpr() |
| ->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc(); |
| R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange(); |
| return true; |
| } |
| |
| case ImplicitCastExprClass: |
| // Check the operand, since implicit casts are inserted by Sema |
| return (cast<ImplicitCastExpr>(this) |
| ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| |
| case CXXDefaultArgExprClass: |
| return (cast<CXXDefaultArgExpr>(this) |
| ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| |
| case CXXNewExprClass: |
| // FIXME: In theory, there might be new expressions that don't have side |
| // effects (e.g. a placement new with an uninitialized POD). |
| case CXXDeleteExprClass: |
| return false; |
| case CXXBindTemporaryExprClass: |
| return (cast<CXXBindTemporaryExpr>(this) |
| ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| case CXXExprWithTemporariesClass: |
| return (cast<CXXExprWithTemporaries>(this) |
| ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| } |
| } |
| |
| /// DeclCanBeLvalue - Determine whether the given declaration can be |
| /// an lvalue. This is a helper routine for isLvalue. |
| static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) { |
| // C++ [temp.param]p6: |
| // A non-type non-reference template-parameter is not an lvalue. |
| if (const NonTypeTemplateParmDecl *NTTParm |
| = dyn_cast<NonTypeTemplateParmDecl>(Decl)) |
| return NTTParm->getType()->isReferenceType(); |
| |
| return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) || |
| // C++ 3.10p2: An lvalue refers to an object or function. |
| (Ctx.getLangOptions().CPlusPlus && |
| (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl))); |
| } |
| |
| /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an |
| /// incomplete type other than void. Nonarray expressions that can be lvalues: |
| /// - name, where name must be a variable |
| /// - e[i] |
| /// - (e), where e must be an lvalue |
| /// - e.name, where e must be an lvalue |
| /// - e->name |
| /// - *e, the type of e cannot be a function type |
| /// - string-constant |
| /// - (__real__ e) and (__imag__ e) where e is an lvalue [GNU extension] |
| /// - reference type [C++ [expr]] |
| /// |
| Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const { |
| assert(!TR->isReferenceType() && "Expressions can't have reference type."); |
| |
| isLvalueResult Res = isLvalueInternal(Ctx); |
| if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus) |
| return Res; |
| |
| // first, check the type (C99 6.3.2.1). Expressions with function |
| // type in C are not lvalues, but they can be lvalues in C++. |
| if (TR->isFunctionType() || TR == Ctx.OverloadTy) |
| return LV_NotObjectType; |
| |
| // Allow qualified void which is an incomplete type other than void (yuck). |
| if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers()) |
| return LV_IncompleteVoidType; |
| |
| return LV_Valid; |
| } |
| |
| // Check whether the expression can be sanely treated like an l-value |
| Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const { |
| switch (getStmtClass()) { |
| case ObjCIsaExprClass: |
| case StringLiteralClass: // C99 6.5.1p4 |
| case ObjCEncodeExprClass: // @encode behaves like its string in every way. |
| return LV_Valid; |
| case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2)))) |
| // For vectors, make sure base is an lvalue (i.e. not a function call). |
| if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType()) |
| return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx); |
| return LV_Valid; |
| case DeclRefExprClass: { // C99 6.5.1p2 |
| const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl(); |
| if (DeclCanBeLvalue(RefdDecl, Ctx)) |
| return LV_Valid; |
| break; |
| } |
| case BlockDeclRefExprClass: { |
| const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this); |
| if (isa<VarDecl>(BDR->getDecl())) |
| return LV_Valid; |
| break; |
| } |
| case MemberExprClass: { |
| const MemberExpr *m = cast<MemberExpr>(this); |
| if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4: |
| NamedDecl *Member = m->getMemberDecl(); |
| // C++ [expr.ref]p4: |
| // If E2 is declared to have type "reference to T", then E1.E2 |
| // is an lvalue. |
| if (ValueDecl *Value = dyn_cast<ValueDecl>(Member)) |
| if (Value->getType()->isReferenceType()) |
| return LV_Valid; |
| |
| // -- If E2 is a static data member [...] then E1.E2 is an lvalue. |
| if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord()) |
| return LV_Valid; |
| |
| // -- If E2 is a non-static data member [...]. If E1 is an |
| // lvalue, then E1.E2 is an lvalue. |
| if (isa<FieldDecl>(Member)) { |
| if (m->isArrow()) |
| return LV_Valid; |
| Expr *BaseExp = m->getBase(); |
| return (BaseExp->getStmtClass() == ObjCPropertyRefExprClass) ? |
| LV_SubObjCPropertySetting : BaseExp->isLvalue(Ctx); |
| } |
| |
| // -- If it refers to a static member function [...], then |
| // E1.E2 is an lvalue. |
| // -- Otherwise, if E1.E2 refers to a non-static member |
| // function [...], then E1.E2 is not an lvalue. |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) |
| return Method->isStatic()? LV_Valid : LV_MemberFunction; |
| |
| // -- If E2 is a member enumerator [...], the expression E1.E2 |
| // is not an lvalue. |
| if (isa<EnumConstantDecl>(Member)) |
| return LV_InvalidExpression; |
| |
| // Not an lvalue. |
| return LV_InvalidExpression; |
| } |
| |
| // C99 6.5.2.3p4 |
| if (m->isArrow()) |
| return LV_Valid; |
| Expr *BaseExp = m->getBase(); |
| return (BaseExp->getStmtClass() == ObjCPropertyRefExprClass) ? |
| LV_SubObjCPropertySetting : BaseExp->isLvalue(Ctx); |
| } |
| case UnaryOperatorClass: |
| if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref) |
| return LV_Valid; // C99 6.5.3p4 |
| |
| if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real || |
| cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag || |
| cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension) |
| return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx); // GNU. |
| |
| if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1 |
| (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc || |
| cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec)) |
| return LV_Valid; |
| break; |
| case ImplicitCastExprClass: |
| return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid |
| : LV_InvalidExpression; |
| case ParenExprClass: // C99 6.5.1p5 |
| return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx); |
| case BinaryOperatorClass: |
| case CompoundAssignOperatorClass: { |
| const BinaryOperator *BinOp = cast<BinaryOperator>(this); |
| |
| if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1 |
| BinOp->getOpcode() == BinaryOperator::Comma) |
| return BinOp->getRHS()->isLvalue(Ctx); |
| |
| // C++ [expr.mptr.oper]p6 |
| // The result of a .* expression is an lvalue only if its first operand is |
| // an lvalue and its second operand is a pointer to data member. |
| if (BinOp->getOpcode() == BinaryOperator::PtrMemD && |
| !BinOp->getType()->isFunctionType()) |
| return BinOp->getLHS()->isLvalue(Ctx); |
| |
| // The result of an ->* expression is an lvalue only if its second operand |
| // is a pointer to data member. |
| if (BinOp->getOpcode() == BinaryOperator::PtrMemI && |
| !BinOp->getType()->isFunctionType()) { |
| QualType Ty = BinOp->getRHS()->getType(); |
| if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType()) |
| return LV_Valid; |
| } |
| |
| if (!BinOp->isAssignmentOp()) |
| return LV_InvalidExpression; |
| |
| if (Ctx.getLangOptions().CPlusPlus) |
| // C++ [expr.ass]p1: |
| // The result of an assignment operation [...] is an lvalue. |
| return LV_Valid; |
| |
| |
| // C99 6.5.16: |
| // An assignment expression [...] is not an lvalue. |
| return LV_InvalidExpression; |
| } |
| case CallExprClass: |
| case CXXOperatorCallExprClass: |
| case CXXMemberCallExprClass: { |
| // C++0x [expr.call]p10 |
| // A function call is an lvalue if and only if the result type |
| // is an lvalue reference. |
| QualType ReturnType = cast<CallExpr>(this)->getCallReturnType(); |
| if (ReturnType->isLValueReferenceType()) |
| return LV_Valid; |
| |
| break; |
| } |
| case CompoundLiteralExprClass: // C99 6.5.2.5p5 |
| return LV_Valid; |
| case ChooseExprClass: |
| // __builtin_choose_expr is an lvalue if the selected operand is. |
| return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx); |
| case ExtVectorElementExprClass: |
| if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements()) |
| return LV_DuplicateVectorComponents; |
| return LV_Valid; |
| case ObjCIvarRefExprClass: // ObjC instance variables are lvalues. |
| return LV_Valid; |
| case ObjCPropertyRefExprClass: // FIXME: check if read-only property. |
| return LV_Valid; |
| case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property. |
| return LV_Valid; |
| case PredefinedExprClass: |
| return LV_Valid; |
| case UnresolvedLookupExprClass: |
| return LV_Valid; |
| case CXXDefaultArgExprClass: |
| return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx); |
| case CStyleCastExprClass: |
| case CXXFunctionalCastExprClass: |
| case CXXStaticCastExprClass: |
| case CXXDynamicCastExprClass: |
| case CXXReinterpretCastExprClass: |
| case CXXConstCastExprClass: |
| // The result of an explicit cast is an lvalue if the type we are |
| // casting to is an lvalue reference type. See C++ [expr.cast]p1, |
| // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2, |
| // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1. |
| if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()-> |
| isLValueReferenceType()) |
| return LV_Valid; |
| break; |
| case CXXTypeidExprClass: |
| // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ... |
| return LV_Valid; |
| case CXXBindTemporaryExprClass: |
| return cast<CXXBindTemporaryExpr>(this)->getSubExpr()-> |
| isLvalueInternal(Ctx); |
| case ConditionalOperatorClass: { |
| // Complicated handling is only for C++. |
| if (!Ctx.getLangOptions().CPlusPlus) |
| return LV_InvalidExpression; |
| |
| // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is |
| // everywhere there's an object converted to an rvalue. Also, any other |
| // casts should be wrapped by ImplicitCastExprs. There's just the special |
| // case involving throws to work out. |
| const ConditionalOperator *Cond = cast<ConditionalOperator>(this); |
| Expr *True = Cond->getTrueExpr(); |
| Expr *False = Cond->getFalseExpr(); |
| // C++0x 5.16p2 |
| // If either the second or the third operand has type (cv) void, [...] |
| // the result [...] is an rvalue. |
| if (True->getType()->isVoidType() || False->getType()->isVoidType()) |
| return LV_InvalidExpression; |
| |
| // Both sides must be lvalues for the result to be an lvalue. |
| if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid) |
| return LV_InvalidExpression; |
| |
| // That's it. |
| return LV_Valid; |
| } |
| |
| case Expr::CXXExprWithTemporariesClass: |
| return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx); |
| |
| case Expr::ObjCMessageExprClass: |
| if (const ObjCMethodDecl *Method |
| = cast<ObjCMessageExpr>(this)->getMethodDecl()) |
| if (Method->getResultType()->isLValueReferenceType()) |
| return LV_Valid; |
| break; |
| |
| default: |
| break; |
| } |
| return LV_InvalidExpression; |
| } |
| |
| /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type, |
| /// does not have an incomplete type, does not have a const-qualified type, and |
| /// if it is a structure or union, does not have any member (including, |
| /// recursively, any member or element of all contained aggregates or unions) |
| /// with a const-qualified type. |
| Expr::isModifiableLvalueResult |
| Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const { |
| isLvalueResult lvalResult = isLvalue(Ctx); |
| |
| switch (lvalResult) { |
| case LV_Valid: |
| // C++ 3.10p11: Functions cannot be modified, but pointers to |
| // functions can be modifiable. |
| if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType()) |
| return MLV_NotObjectType; |
| break; |
| |
| case LV_NotObjectType: return MLV_NotObjectType; |
| case LV_IncompleteVoidType: return MLV_IncompleteVoidType; |
| case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents; |
| case LV_InvalidExpression: |
| // If the top level is a C-style cast, and the subexpression is a valid |
| // lvalue, then this is probably a use of the old-school "cast as lvalue" |
| // GCC extension. We don't support it, but we want to produce good |
| // diagnostics when it happens so that the user knows why. |
| if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) { |
| if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) { |
| if (Loc) |
| *Loc = CE->getLParenLoc(); |
| return MLV_LValueCast; |
| } |
| } |
| return MLV_InvalidExpression; |
| case LV_MemberFunction: return MLV_MemberFunction; |
| case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting; |
| } |
| |
| // The following is illegal: |
| // void takeclosure(void (^C)(void)); |
| // void func() { int x = 1; takeclosure(^{ x = 7; }); } |
| // |
| if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) { |
| if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl())) |
| return MLV_NotBlockQualified; |
| } |
| |
| // Assigning to an 'implicit' property? |
| if (const ObjCImplicitSetterGetterRefExpr* Expr = |
| dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) { |
| if (Expr->getSetterMethod() == 0) |
| return MLV_NoSetterProperty; |
| } |
| |
| QualType CT = Ctx.getCanonicalType(getType()); |
| |
| if (CT.isConstQualified()) |
| return MLV_ConstQualified; |
| if (CT->isArrayType()) |
| return MLV_ArrayType; |
| if (CT->isIncompleteType()) |
| return MLV_IncompleteType; |
| |
| if (const RecordType *r = CT->getAs<RecordType>()) { |
| if (r->hasConstFields()) |
| return MLV_ConstQualified; |
| } |
| |
| return MLV_Valid; |
| } |
| |
| /// isOBJCGCCandidate - Check if an expression is objc gc'able. |
| /// returns true, if it is; false otherwise. |
| bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { |
| switch (getStmtClass()) { |
| default: |
| return false; |
| case ObjCIvarRefExprClass: |
| return true; |
| case Expr::UnaryOperatorClass: |
| return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| case ParenExprClass: |
| return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| case ImplicitCastExprClass: |
| return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| case CStyleCastExprClass: |
| return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| case DeclRefExprClass: { |
| const Decl *D = cast<DeclRefExpr>(this)->getDecl(); |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| if (VD->hasGlobalStorage()) |
| return true; |
| QualType T = VD->getType(); |
| // dereferencing to a pointer is always a gc'able candidate, |
| // unless it is __weak. |
| return T->isPointerType() && |
| (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); |
| } |
| return false; |
| } |
| case MemberExprClass: { |
| const MemberExpr *M = cast<MemberExpr>(this); |
| return M->getBase()->isOBJCGCCandidate(Ctx); |
| } |
| case ArraySubscriptExprClass: |
| return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx); |
| } |
| } |
| Expr* Expr::IgnoreParens() { |
| Expr* E = this; |
| while (ParenExpr* P = dyn_cast<ParenExpr>(E)) |
| E = P->getSubExpr(); |
| |
| return E; |
| } |
| |
| /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr |
| /// or CastExprs or ImplicitCastExprs, returning their operand. |
| Expr *Expr::IgnoreParenCasts() { |
| Expr *E = this; |
| while (true) { |
| if (ParenExpr *P = dyn_cast<ParenExpr>(E)) |
| E = P->getSubExpr(); |
| else if (CastExpr *P = dyn_cast<CastExpr>(E)) |
| E = P->getSubExpr(); |
| else |
| return E; |
| } |
| } |
| |
| /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the |
| /// value (including ptr->int casts of the same size). Strip off any |
| /// ParenExpr or CastExprs, returning their operand. |
| Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { |
| Expr *E = this; |
| while (true) { |
| if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| |
| if (CastExpr *P = dyn_cast<CastExpr>(E)) { |
| // We ignore integer <-> casts that are of the same width, ptr<->ptr and |
| // ptr<->int casts of the same width. We also ignore all identify casts. |
| Expr *SE = P->getSubExpr(); |
| |
| if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { |
| E = SE; |
| continue; |
| } |
| |
| if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) && |
| (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) && |
| Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { |
| E = SE; |
| continue; |
| } |
| } |
| |
| return E; |
| } |
| } |
| |
| bool Expr::isDefaultArgument() const { |
| const Expr *E = this; |
| while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) |
| E = ICE->getSubExprAsWritten(); |
| |
| return isa<CXXDefaultArgExpr>(E); |
| } |
| |
| /// hasAnyTypeDependentArguments - Determines if any of the expressions |
| /// in Exprs is type-dependent. |
| bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) { |
| for (unsigned I = 0; I < NumExprs; ++I) |
| if (Exprs[I]->isTypeDependent()) |
| return true; |
| |
| return false; |
| } |
| |
| /// hasAnyValueDependentArguments - Determines if any of the expressions |
| /// in Exprs is value-dependent. |
| bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) { |
| for (unsigned I = 0; I < NumExprs; ++I) |
| if (Exprs[I]->isValueDependent()) |
| return true; |
| |
| return false; |
| } |
| |
| bool Expr::isConstantInitializer(ASTContext &Ctx) const { |
| // This function is attempting whether an expression is an initializer |
| // which can be evaluated at compile-time. isEvaluatable handles most |
| // of the cases, but it can't deal with some initializer-specific |
| // expressions, and it can't deal with aggregates; we deal with those here, |
| // and fall back to isEvaluatable for the other cases. |
| |
| // FIXME: This function assumes the variable being assigned to |
| // isn't a reference type! |
| |
| switch (getStmtClass()) { |
| default: break; |
| case StringLiteralClass: |
| case ObjCStringLiteralClass: |
| case ObjCEncodeExprClass: |
| return true; |
| case CompoundLiteralExprClass: { |
| // This handles gcc's extension that allows global initializers like |
| // "struct x {int x;} x = (struct x) {};". |
| // FIXME: This accepts other cases it shouldn't! |
| const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); |
| return Exp->isConstantInitializer(Ctx); |
| } |
| case InitListExprClass: { |
| // FIXME: This doesn't deal with fields with reference types correctly. |
| // FIXME: This incorrectly allows pointers cast to integers to be assigned |
| // to bitfields. |
| const InitListExpr *Exp = cast<InitListExpr>(this); |
| unsigned numInits = Exp->getNumInits(); |
| for (unsigned i = 0; i < numInits; i++) { |
| if (!Exp->getInit(i)->isConstantInitializer(Ctx)) |
| return false; |
| } |
| return true; |
| } |
| case ImplicitValueInitExprClass: |
| return true; |
| case ParenExprClass: |
| return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); |
| case UnaryOperatorClass: { |
| const UnaryOperator* Exp = cast<UnaryOperator>(this); |
| if (Exp->getOpcode() == UnaryOperator::Extension) |
| return Exp->getSubExpr()->isConstantInitializer(Ctx); |
| break; |
| } |
| case BinaryOperatorClass: { |
| // Special case &&foo - &&bar. It would be nice to generalize this somehow |
| // but this handles the common case. |
| const BinaryOperator *Exp = cast<BinaryOperator>(this); |
| if (Exp->getOpcode() == BinaryOperator::Sub && |
| isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) && |
| isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx))) |
| return true; |
| break; |
| } |
| case ImplicitCastExprClass: |
| case CStyleCastExprClass: |
| // Handle casts with a destination that's a struct or union; this |
| // deals with both the gcc no-op struct cast extension and the |
| // cast-to-union extension. |
| if (getType()->isRecordType()) |
| return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); |
| |
| // Integer->integer casts can be handled here, which is important for |
| // things like (int)(&&x-&&y). Scary but true. |
| if (getType()->isIntegerType() && |
| cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType()) |
| return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); |
| |
| break; |
| } |
| return isEvaluatable(Ctx); |
| } |
| |
| /// isIntegerConstantExpr - this recursive routine will test if an expression is |
| /// an integer constant expression. |
| |
| /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, |
| /// comma, etc |
| /// |
| /// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof |
| /// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer |
| /// cast+dereference. |
| |
| // CheckICE - This function does the fundamental ICE checking: the returned |
| // ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation. |
| // Note that to reduce code duplication, this helper does no evaluation |
| // itself; the caller checks whether the expression is evaluatable, and |
| // in the rare cases where CheckICE actually cares about the evaluated |
| // value, it calls into Evalute. |
| // |
| // Meanings of Val: |
| // 0: This expression is an ICE if it can be evaluated by Evaluate. |
| // 1: This expression is not an ICE, but if it isn't evaluated, it's |
| // a legal subexpression for an ICE. This return value is used to handle |
| // the comma operator in C99 mode. |
| // 2: This expression is not an ICE, and is not a legal subexpression for one. |
| |
| struct ICEDiag { |
| unsigned Val; |
| SourceLocation Loc; |
| |
| public: |
| ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {} |
| ICEDiag() : Val(0) {} |
| }; |
| |
| ICEDiag NoDiag() { return ICEDiag(); } |
| |
| static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) { |
| Expr::EvalResult EVResult; |
| if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects || |
| !EVResult.Val.isInt()) { |
| return ICEDiag(2, E->getLocStart()); |
| } |
| return NoDiag(); |
| } |
| |
| static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) { |
| assert(!E->isValueDependent() && "Should not see value dependent exprs!"); |
| if (!E->getType()->isIntegralType()) { |
| return ICEDiag(2, E->getLocStart()); |
| } |
| |
| switch (E->getStmtClass()) { |
| #define STMT(Node, Base) case Expr::Node##Class: |
| #define EXPR(Node, Base) |
| #include "clang/AST/StmtNodes.def" |
| case Expr::PredefinedExprClass: |
| case Expr::FloatingLiteralClass: |
| case Expr::ImaginaryLiteralClass: |
| case Expr::StringLiteralClass: |
| case Expr::ArraySubscriptExprClass: |
| case Expr::MemberExprClass: |
| case Expr::CompoundAssignOperatorClass: |
| case Expr::CompoundLiteralExprClass: |
| case Expr::ExtVectorElementExprClass: |
| case Expr::InitListExprClass: |
| case Expr::DesignatedInitExprClass: |
| case Expr::ImplicitValueInitExprClass: |
| case Expr::ParenListExprClass: |
| case Expr::VAArgExprClass: |
| case Expr::AddrLabelExprClass: |
| case Expr::StmtExprClass: |
| case Expr::CXXMemberCallExprClass: |
| case Expr::CXXDynamicCastExprClass: |
| case Expr::CXXTypeidExprClass: |
| case Expr::CXXNullPtrLiteralExprClass: |
| case Expr::CXXThisExprClass: |
| case Expr::CXXThrowExprClass: |
| case Expr::CXXNewExprClass: |
| case Expr::CXXDeleteExprClass: |
| case Expr::CXXPseudoDestructorExprClass: |
| case Expr::UnresolvedLookupExprClass: |
| case Expr::DependentScopeDeclRefExprClass: |
| case Expr::CXXConstructExprClass: |
| case Expr::CXXBindTemporaryExprClass: |
| case Expr::CXXExprWithTemporariesClass: |
| case Expr::CXXTemporaryObjectExprClass: |
| case Expr::CXXUnresolvedConstructExprClass: |
| case Expr::CXXDependentScopeMemberExprClass: |
| case Expr::UnresolvedMemberExprClass: |
| case Expr::ObjCStringLiteralClass: |
| case Expr::ObjCEncodeExprClass: |
| case Expr::ObjCMessageExprClass: |
| case Expr::ObjCSelectorExprClass: |
| case Expr::ObjCProtocolExprClass: |
| case Expr::ObjCIvarRefExprClass: |
| case Expr::ObjCPropertyRefExprClass: |
| case Expr::ObjCImplicitSetterGetterRefExprClass: |
| case Expr::ObjCSuperExprClass: |
| case Expr::ObjCIsaExprClass: |
| case Expr::ShuffleVectorExprClass: |
| case Expr::BlockExprClass: |
| case Expr::BlockDeclRefExprClass: |
| case Expr::NoStmtClass: |
| case Expr::ExprClass: |
| return ICEDiag(2, E->getLocStart()); |
| |
| case Expr::GNUNullExprClass: |
| // GCC considers the GNU __null value to be an integral constant expression. |
| return NoDiag(); |
| |
| case Expr::ParenExprClass: |
| return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); |
| case Expr::IntegerLiteralClass: |
| case Expr::CharacterLiteralClass: |
| case Expr::CXXBoolLiteralExprClass: |
| case Expr::CXXZeroInitValueExprClass: |
| case Expr::TypesCompatibleExprClass: |
| case Expr::UnaryTypeTraitExprClass: |
| return NoDiag(); |
| case Expr::CallExprClass: |
| case Expr::CXXOperatorCallExprClass: { |
| const CallExpr *CE = cast<CallExpr>(E); |
| if (CE->isBuiltinCall(Ctx)) |
| return CheckEvalInICE(E, Ctx); |
| return ICEDiag(2, E->getLocStart()); |
| } |
| case Expr::DeclRefExprClass: |
| if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl())) |
| return NoDiag(); |
| if (Ctx.getLangOptions().CPlusPlus && |
| E->getType().getCVRQualifiers() == Qualifiers::Const) { |
| // C++ 7.1.5.1p2 |
| // A variable of non-volatile const-qualified integral or enumeration |
| // type initialized by an ICE can be used in ICEs. |
| if (const VarDecl *Dcl = |
| dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) { |
| Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers(); |
| if (Quals.hasVolatile() || !Quals.hasConst()) |
| return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); |
| |
| // Look for the definition of this variable, which will actually have |
| // an initializer. |
| const VarDecl *Def = 0; |
| const Expr *Init = Dcl->getDefinition(Def); |
| if (Init) { |
| if (Def->isInitKnownICE()) { |
| // We have already checked whether this subexpression is an |
| // integral constant expression. |
| if (Def->isInitICE()) |
| return NoDiag(); |
| else |
| return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); |
| } |
| |
| // C++ [class.static.data]p4: |
| // If a static data member is of const integral or const |
| // enumeration type, its declaration in the class definition can |
| // specify a constant-initializer which shall be an integral |
| // constant expression (5.19). In that case, the member can appear |
| // in integral constant expressions. |
| if (Def->isOutOfLine()) { |
| Dcl->setInitKnownICE(false); |
| return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); |
| } |
| |
| if (Dcl->isCheckingICE()) { |
| return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); |
| } |
| |
| Dcl->setCheckingICE(); |
| ICEDiag Result = CheckICE(Init, Ctx); |
| // Cache the result of the ICE test. |
| Dcl->setInitKnownICE(Result.Val == 0); |
| return Result; |
| } |
| } |
| } |
| return ICEDiag(2, E->getLocStart()); |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(E); |
| switch (Exp->getOpcode()) { |
| case UnaryOperator::PostInc: |
| case UnaryOperator::PostDec: |
| case UnaryOperator::PreInc: |
| case UnaryOperator::PreDec: |
| case UnaryOperator::AddrOf: |
| case UnaryOperator::Deref: |
| return ICEDiag(2, E->getLocStart()); |
| |
| case UnaryOperator::Extension: |
| case UnaryOperator::LNot: |
| case UnaryOperator::Plus: |
| case UnaryOperator::Minus: |
| case UnaryOperator::Not: |
| case UnaryOperator::Real: |
| case UnaryOperator::Imag: |
| return CheckICE(Exp->getSubExpr(), Ctx); |
| case UnaryOperator::OffsetOf: |
| // Note that per C99, offsetof must be an ICE. And AFAIK, using |
| // Evaluate matches the proposed gcc behavior for cases like |
| // "offsetof(struct s{int x[4];}, x[!.0])". This doesn't affect |
| // compliance: we should warn earlier for offsetof expressions with |
| // array subscripts that aren't ICEs, and if the array subscripts |
| // are ICEs, the value of the offsetof must be an integer constant. |
| return CheckEvalInICE(E, Ctx); |
| } |
| } |
| case Expr::SizeOfAlignOfExprClass: { |
| const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E); |
| if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType()) |
| return ICEDiag(2, E->getLocStart()); |
| return NoDiag(); |
| } |
| case Expr::BinaryOperatorClass: { |
| const BinaryOperator *Exp = cast<BinaryOperator>(E); |
| switch (Exp->getOpcode()) { |
| case BinaryOperator::PtrMemD: |
| case BinaryOperator::PtrMemI: |
| case BinaryOperator::Assign: |
| case BinaryOperator::MulAssign: |
| case BinaryOperator::DivAssign: |
| case BinaryOperator::RemAssign: |
| case BinaryOperator::AddAssign: |
| case BinaryOperator::SubAssign: |
| case BinaryOperator::ShlAssign: |
| case BinaryOperator::ShrAssign: |
| case BinaryOperator::AndAssign: |
| case BinaryOperator::XorAssign: |
| case BinaryOperator::OrAssign: |
| return ICEDiag(2, E->getLocStart()); |
| |
| case BinaryOperator::Mul: |
| case BinaryOperator::Div: |
| case BinaryOperator::Rem: |
| case BinaryOperator::Add: |
| case BinaryOperator::Sub: |
| case BinaryOperator::Shl: |
| case BinaryOperator::Shr: |
| case BinaryOperator::LT: |
| case BinaryOperator::GT: |
| case BinaryOperator::LE: |
| case BinaryOperator::GE: |
| case BinaryOperator::EQ: |
| case BinaryOperator::NE: |
| case BinaryOperator::And: |
| case BinaryOperator::Xor: |
| case BinaryOperator::Or: |
| case BinaryOperator::Comma: { |
| ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); |
| ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); |
| if (Exp->getOpcode() == BinaryOperator::Div || |
| Exp->getOpcode() == BinaryOperator::Rem) { |
| // Evaluate gives an error for undefined Div/Rem, so make sure |
| // we don't evaluate one. |
| if (LHSResult.Val != 2 && RHSResult.Val != 2) { |
| llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx); |
| if (REval == 0) |
| return ICEDiag(1, E->getLocStart()); |
| if (REval.isSigned() && REval.isAllOnesValue()) { |
| llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx); |
| if (LEval.isMinSignedValue()) |
| return ICEDiag(1, E->getLocStart()); |
| } |
| } |
| } |
| if (Exp->getOpcode() == BinaryOperator::Comma) { |
| if (Ctx.getLangOptions().C99) { |
| // C99 6.6p3 introduces a strange edge case: comma can be in an ICE |
| // if it isn't evaluated. |
| if (LHSResult.Val == 0 && RHSResult.Val == 0) |
| return ICEDiag(1, E->getLocStart()); |
| } else { |
| // In both C89 and C++, commas in ICEs are illegal. |
| return ICEDiag(2, E->getLocStart()); |
| } |
| } |
| if (LHSResult.Val >= RHSResult.Val) |
| return LHSResult; |
| return RHSResult; |
| } |
| case BinaryOperator::LAnd: |
| case BinaryOperator::LOr: { |
| ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); |
| ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); |
| if (LHSResult.Val == 0 && RHSResult.Val == 1) { |
| // Rare case where the RHS has a comma "side-effect"; we need |
| // to actually check the condition to see whether the side |
| // with the comma is evaluated. |
| if ((Exp->getOpcode() == BinaryOperator::LAnd) != |
| (Exp->getLHS()->EvaluateAsInt(Ctx) == 0)) |
| return RHSResult; |
| return NoDiag(); |
| } |
| |
| if (LHSResult.Val >= RHSResult.Val) |
| return LHSResult; |
| return RHSResult; |
| } |
| } |
| } |
| case Expr::CastExprClass: |
| case Expr::ImplicitCastExprClass: |
| case Expr::ExplicitCastExprClass: |
| case Expr::CStyleCastExprClass: |
| case Expr::CXXFunctionalCastExprClass: |
| case Expr::CXXNamedCastExprClass: |
| case Expr::CXXStaticCastExprClass: |
| case Expr::CXXReinterpretCastExprClass: |
| case Expr::CXXConstCastExprClass: { |
| const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); |
| if (SubExpr->getType()->isIntegralType()) |
| return CheckICE(SubExpr, Ctx); |
| if (isa<FloatingLiteral>(SubExpr->IgnoreParens())) |
| return NoDiag(); |
| return ICEDiag(2, E->getLocStart()); |
| } |
| case Expr::ConditionalOperatorClass: { |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(E); |
| // If the condition (ignoring parens) is a __builtin_constant_p call, |
| // then only the true side is actually considered in an integer constant |
| // expression, and it is fully evaluated. This is an important GNU |
| // extension. See GCC PR38377 for discussion. |
| if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) |
| if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) { |
| Expr::EvalResult EVResult; |
| if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects || |
| !EVResult.Val.isInt()) { |
| return ICEDiag(2, E->getLocStart()); |
| } |
| return NoDiag(); |
| } |
| ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); |
| ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); |
| ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); |
| if (CondResult.Val == 2) |
| return CondResult; |
| if (TrueResult.Val == 2) |
| return TrueResult; |
| if (FalseResult.Val == 2) |
| return FalseResult; |
| if (CondResult.Val == 1) |
| return CondResult; |
| if (TrueResult.Val == 0 && FalseResult.Val == 0) |
| return NoDiag(); |
| // Rare case where the diagnostics depend on which side is evaluated |
| // Note that if we get here, CondResult is 0, and at least one of |
| // TrueResult and FalseResult is non-zero. |
| if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) { |
| return FalseResult; |
| } |
| return TrueResult; |
| } |
| case Expr::CXXDefaultArgExprClass: |
| return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); |
| case Expr::ChooseExprClass: { |
| return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx); |
| } |
| } |
| |
| // Silence a GCC warning |
| return ICEDiag(2, E->getLocStart()); |
| } |
| |
| bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx, |
| SourceLocation *Loc, bool isEvaluated) const { |
| ICEDiag d = CheckICE(this, Ctx); |
| if (d.Val != 0) { |
| if (Loc) *Loc = d.Loc; |
| return false; |
| } |
| EvalResult EvalResult; |
| if (!Evaluate(EvalResult, Ctx)) |
| llvm_unreachable("ICE cannot be evaluated!"); |
| assert(!EvalResult.HasSideEffects && "ICE with side effects!"); |
| assert(EvalResult.Val.isInt() && "ICE that isn't integer!"); |
| Result = EvalResult.Val.getInt(); |
| return true; |
| } |
| |
| /// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an |
| /// integer constant expression with the value zero, or if this is one that is |
| /// cast to void*. |
| bool Expr::isNullPointerConstant(ASTContext &Ctx, |
| NullPointerConstantValueDependence NPC) const { |
| if (isValueDependent()) { |
| switch (NPC) { |
| case NPC_NeverValueDependent: |
| assert(false && "Unexpected value dependent expression!"); |
| // If the unthinkable happens, fall through to the safest alternative. |
| |
| case NPC_ValueDependentIsNull: |
| return isTypeDependent() || getType()->isIntegralType(); |
| |
| case NPC_ValueDependentIsNotNull: |
| return false; |
| } |
| } |
| |
| // Strip off a cast to void*, if it exists. Except in C++. |
| if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { |
| if (!Ctx.getLangOptions().CPlusPlus) { |
| // Check that it is a cast to void*. |
| if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { |
| QualType Pointee = PT->getPointeeType(); |
| if (!Pointee.hasQualifiers() && |
| Pointee->isVoidType() && // to void* |
| CE->getSubExpr()->getType()->isIntegerType()) // from int. |
| return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
| } |
| } |
| } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { |
| // Ignore the ImplicitCastExpr type entirely. |
| return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
| } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { |
| // Accept ((void*)0) as a null pointer constant, as many other |
| // implementations do. |
| return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
| } else if (const CXXDefaultArgExpr *DefaultArg |
| = dyn_cast<CXXDefaultArgExpr>(this)) { |
| // See through default argument expressions |
| return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); |
| } else if (isa<GNUNullExpr>(this)) { |
| // The GNU __null extension is always a null pointer constant. |
| return true; |
| } |
| |
| // C++0x nullptr_t is always a null pointer constant. |
| if (getType()->isNullPtrType()) |
| return true; |
| |
| // This expression must be an integer type. |
| if (!getType()->isIntegerType() || |
| (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType())) |
| return false; |
| |
| // If we have an integer constant expression, we need to *evaluate* it and |
| // test for the value 0. |
| llvm::APSInt Result; |
| return isIntegerConstantExpr(Result, Ctx) && Result == 0; |
| } |
| |
| FieldDecl *Expr::getBitField() { |
| Expr *E = this->IgnoreParens(); |
| |
| if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) |
| if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) |
| if (Field->isBitField()) |
| return Field; |
| |
| if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) |
| if (BinOp->isAssignmentOp() && BinOp->getLHS()) |
| return BinOp->getLHS()->getBitField(); |
| |
| return 0; |
| } |
| |
| /// isArrow - Return true if the base expression is a pointer to vector, |
| /// return false if the base expression is a vector. |
| bool ExtVectorElementExpr::isArrow() const { |
| return getBase()->getType()->isPointerType(); |
| } |
| |
| unsigned ExtVectorElementExpr::getNumElements() const { |
| if (const VectorType *VT = getType()->getAs<VectorType>()) |
| return VT->getNumElements(); |
| return 1; |
| } |
| |
| /// containsDuplicateElements - Return true if any element access is repeated. |
| bool ExtVectorElementExpr::containsDuplicateElements() const { |
| // FIXME: Refactor this code to an accessor on the AST node which returns the |
| // "type" of component access, and share with code below and in Sema. |
| llvm::StringRef Comp = Accessor->getName(); |
| |
| // Halving swizzles do not contain duplicate elements. |
| if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") |
| return false; |
| |
| // Advance past s-char prefix on hex swizzles. |
| if (Comp[0] == 's' || Comp[0] == 'S') |
| Comp = Comp.substr(1); |
| |
| for (unsigned i = 0, e = Comp.size(); i != e; ++i) |
| if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos) |
| return true; |
| |
| return false; |
| } |
| |
| /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. |
| void ExtVectorElementExpr::getEncodedElementAccess( |
| llvm::SmallVectorImpl<unsigned> &Elts) const { |
| llvm::StringRef Comp = Accessor->getName(); |
| if (Comp[0] == 's' || Comp[0] == 'S') |
| Comp = Comp.substr(1); |
| |
| bool isHi = Comp == "hi"; |
| bool isLo = Comp == "lo"; |
| bool isEven = Comp == "even"; |
| bool isOdd = Comp == "odd"; |
| |
| for (unsigned i = 0, e = getNumElements(); i != e; ++i) { |
| uint64_t Index; |
| |
| if (isHi) |
| Index = e + i; |
| else if (isLo) |
| Index = i; |
| else if (isEven) |
| Index = 2 * i; |
| else if (isOdd) |
| Index = 2 * i + 1; |
| else |
| Index = ExtVectorType::getAccessorIdx(Comp[i]); |
| |
| Elts.push_back(Index); |
| } |
| } |
| |
| // constructor for instance messages. |
| ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo, |
| QualType retType, ObjCMethodDecl *mproto, |
| SourceLocation LBrac, SourceLocation RBrac, |
| Expr **ArgExprs, unsigned nargs) |
| : Expr(ObjCMessageExprClass, retType), SelName(selInfo), |
| MethodProto(mproto) { |
| NumArgs = nargs; |
| SubExprs = new Stmt*[NumArgs+1]; |
| SubExprs[RECEIVER] = receiver; |
| if (NumArgs) { |
| for (unsigned i = 0; i != NumArgs; ++i) |
| SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); |
| } |
| LBracloc = LBrac; |
| RBracloc = RBrac; |
| } |
| |
| // constructor for class messages. |
| // FIXME: clsName should be typed to ObjCInterfaceType |
| ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo, |
| QualType retType, ObjCMethodDecl *mproto, |
| SourceLocation LBrac, SourceLocation RBrac, |
| Expr **ArgExprs, unsigned nargs) |
| : Expr(ObjCMessageExprClass, retType), SelName(selInfo), |
| MethodProto(mproto) { |
| NumArgs = nargs; |
| SubExprs = new Stmt*[NumArgs+1]; |
| SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown); |
| if (NumArgs) { |
| for (unsigned i = 0; i != NumArgs; ++i) |
| SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); |
| } |
| LBracloc = LBrac; |
| RBracloc = RBrac; |
| } |
| |
| // constructor for class messages. |
| ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo, |
| QualType retType, ObjCMethodDecl *mproto, |
| SourceLocation LBrac, SourceLocation RBrac, |
| Expr **ArgExprs, unsigned nargs) |
| : Expr(ObjCMessageExprClass, retType), SelName(selInfo), |
| MethodProto(mproto) { |
| NumArgs = nargs; |
| SubExprs = new Stmt*[NumArgs+1]; |
| SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown); |
| if (NumArgs) { |
| for (unsigned i = 0; i != NumArgs; ++i) |
| SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); |
| } |
| LBracloc = LBrac; |
| RBracloc = RBrac; |
| } |
| |
| ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const { |
| uintptr_t x = (uintptr_t) SubExprs[RECEIVER]; |
| switch (x & Flags) { |
| default: |
| assert(false && "Invalid ObjCMessageExpr."); |
| case IsInstMeth: |
| return ClassInfo(0, 0); |
| case IsClsMethDeclUnknown: |
| return ClassInfo(0, (IdentifierInfo*) (x & ~Flags)); |
| case IsClsMethDeclKnown: { |
| ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags); |
| return ClassInfo(D, D->getIdentifier()); |
| } |
| } |
| } |
| |
| void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) { |
| if (CI.first == 0 && CI.second == 0) |
| SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth); |
| else if (CI.first == 0) |
| SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown); |
| else |
| SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown); |
| } |
| |
| |
| bool ChooseExpr::isConditionTrue(ASTContext &C) const { |
| return getCond()->EvaluateAsInt(C) != 0; |
| } |
| |
| void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs, |
| unsigned NumExprs) { |
| if (SubExprs) C.Deallocate(SubExprs); |
| |
| SubExprs = new (C) Stmt* [NumExprs]; |
| this->NumExprs = NumExprs; |
| memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs); |
| } |
| |
| void ShuffleVectorExpr::DoDestroy(ASTContext& C) { |
| DestroyChildren(C); |
| if (SubExprs) C.Deallocate(SubExprs); |
| this->~ShuffleVectorExpr(); |
| C.Deallocate(this); |
| } |
| |
| void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) { |
| // Override default behavior of traversing children. If this has a type |
| // operand and the type is a variable-length array, the child iteration |
| // will iterate over the size expression. However, this expression belongs |
| // to the type, not to this, so we don't want to delete it. |
| // We still want to delete this expression. |
| if (isArgumentType()) { |
| this->~SizeOfAlignOfExpr(); |
| C.Deallocate(this); |
| } |
| else |
| Expr::DoDestroy(C); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DesignatedInitExpr |
| //===----------------------------------------------------------------------===// |
| |
| IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() { |
| assert(Kind == FieldDesignator && "Only valid on a field designator"); |
| if (Field.NameOrField & 0x01) |
| return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); |
| else |
| return getField()->getIdentifier(); |
| } |
| |
| DesignatedInitExpr::DesignatedInitExpr(QualType Ty, unsigned NumDesignators, |
| const Designator *Designators, |
| SourceLocation EqualOrColonLoc, |
| bool GNUSyntax, |
| Expr **IndexExprs, |
| unsigned NumIndexExprs, |
| Expr *Init) |
| : Expr(DesignatedInitExprClass, Ty, |
| Init->isTypeDependent(), Init->isValueDependent()), |
| EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), |
| NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) { |
| this->Designators = new Designator[NumDesignators]; |
| |
| // Record the initializer itself. |
| child_iterator Child = child_begin(); |
| *Child++ = Init; |
| |
| // Copy the designators and their subexpressions, computing |
| // value-dependence along the way. |
| unsigned IndexIdx = 0; |
| for (unsigned I = 0; I != NumDesignators; ++I) { |
| this->Designators[I] = Designators[I]; |
| |
| if (this->Designators[I].isArrayDesignator()) { |
| // Compute type- and value-dependence. |
| Expr *Index = IndexExprs[IndexIdx]; |
| ValueDependent = ValueDependent || |
| Index->isTypeDependent() || Index->isValueDependent(); |
| |
| // Copy the index expressions into permanent storage. |
| *Child++ = IndexExprs[IndexIdx++]; |
| } else if (this->Designators[I].isArrayRangeDesignator()) { |
| // Compute type- and value-dependence. |
| Expr *Start = IndexExprs[IndexIdx]; |
| Expr *End = IndexExprs[IndexIdx + 1]; |
| ValueDependent = ValueDependent || |
| Start->isTypeDependent() || Start->isValueDependent() || |
| End->isTypeDependent() || End->isValueDependent(); |
| |
| // Copy the start/end expressions into permanent storage. |
| *Child++ = IndexExprs[IndexIdx++]; |
| *Child++ = IndexExprs[IndexIdx++]; |
| } |
| } |
| |
| assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions"); |
| } |
| |
| DesignatedInitExpr * |
| DesignatedInitExpr::Create(ASTContext &C, Designator *Designators, |
| unsigned NumDesignators, |
| Expr **IndexExprs, unsigned NumIndexExprs, |
| SourceLocation ColonOrEqualLoc, |
| bool UsesColonSyntax, Expr *Init) { |
| void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + |
| sizeof(Stmt *) * (NumIndexExprs + 1), 8); |
| return new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, Designators, |
| ColonOrEqualLoc, UsesColonSyntax, |
| IndexExprs, NumIndexExprs, Init); |
| } |
| |
| DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C, |
| unsigned NumIndexExprs) { |
| void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + |
| sizeof(Stmt *) * (NumIndexExprs + 1), 8); |
| return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); |
| } |
| |
| void DesignatedInitExpr::setDesignators(const Designator *Desigs, |
| unsigned NumDesigs) { |
| if (Designators) |
| delete [] Designators; |
| |
| Designators = new Designator[NumDesigs]; |
| NumDesignators = NumDesigs; |
| for (unsigned I = 0; I != NumDesigs; ++I) |
| Designators[I] = Desigs[I]; |
| } |
| |
| SourceRange DesignatedInitExpr::getSourceRange() const { |
| SourceLocation StartLoc; |
| Designator &First = |
| *const_cast<DesignatedInitExpr*>(this)->designators_begin(); |
| if (First.isFieldDesignator()) { |
| if (GNUSyntax) |
| StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); |
| else |
| StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); |
| } else |
| StartLoc = |
| SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); |
| return SourceRange(StartLoc, getInit()->getSourceRange().getEnd()); |
| } |
| |
| Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) { |
| assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); |
| char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| Ptr += sizeof(DesignatedInitExpr); |
| Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); |
| return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); |
| } |
| |
| Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) { |
| assert(D.Kind == Designator::ArrayRangeDesignator && |
| "Requires array range designator"); |
| char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| Ptr += sizeof(DesignatedInitExpr); |
| Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); |
| return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); |
| } |
| |
| Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) { |
| assert(D.Kind == Designator::ArrayRangeDesignator && |
| "Requires array range designator"); |
| char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| Ptr += sizeof(DesignatedInitExpr); |
| Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); |
| return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); |
| } |
| |
| /// \brief Replaces the designator at index @p Idx with the series |
| /// of designators in [First, Last). |
| void DesignatedInitExpr::ExpandDesignator(unsigned Idx, |
| const Designator *First, |
| const Designator *Last) { |
| unsigned NumNewDesignators = Last - First; |
| if (NumNewDesignators == 0) { |
| std::copy_backward(Designators + Idx + 1, |
| Designators + NumDesignators, |
| Designators + Idx); |
| --NumNewDesignators; |
| return; |
| } else if (NumNewDesignators == 1) { |
| Designators[Idx] = *First; |
| return; |
| } |
| |
| Designator *NewDesignators |
| = new Designator[NumDesignators - 1 + NumNewDesignators]; |
| std::copy(Designators, Designators + Idx, NewDesignators); |
| std::copy(First, Last, NewDesignators + Idx); |
| std::copy(Designators + Idx + 1, Designators + NumDesignators, |
| NewDesignators + Idx + NumNewDesignators); |
| delete [] Designators; |
| Designators = NewDesignators; |
| NumDesignators = NumDesignators - 1 + NumNewDesignators; |
| } |
| |
| void DesignatedInitExpr::DoDestroy(ASTContext &C) { |
| delete [] Designators; |
| Expr::DoDestroy(C); |
| } |
| |
| ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc, |
| Expr **exprs, unsigned nexprs, |
| SourceLocation rparenloc) |
| : Expr(ParenListExprClass, QualType(), |
| hasAnyTypeDependentArguments(exprs, nexprs), |
| hasAnyValueDependentArguments(exprs, nexprs)), |
| NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) { |
| |
| Exprs = new (C) Stmt*[nexprs]; |
| for (unsigned i = 0; i != nexprs; ++i) |
| Exprs[i] = exprs[i]; |
| } |
| |
| void ParenListExpr::DoDestroy(ASTContext& C) { |
| DestroyChildren(C); |
| if (Exprs) C.Deallocate(Exprs); |
| this->~ParenListExpr(); |
| C.Deallocate(this); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ExprIterator. |
| //===----------------------------------------------------------------------===// |
| |
| Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); } |
| Expr* ExprIterator::operator*() const { return cast<Expr>(*I); } |
| Expr* ExprIterator::operator->() const { return cast<Expr>(*I); } |
| const Expr* ConstExprIterator::operator[](size_t idx) const { |
| return cast<Expr>(I[idx]); |
| } |
| const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); } |
| const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); } |
| |
| //===----------------------------------------------------------------------===// |
| // Child Iterators for iterating over subexpressions/substatements |
| //===----------------------------------------------------------------------===// |
| |
| // DeclRefExpr |
| Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); } |
| |
| // ObjCIvarRefExpr |
| Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; } |
| Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; } |
| |
| // ObjCPropertyRefExpr |
| Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; } |
| Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; } |
| |
| // ObjCImplicitSetterGetterRefExpr |
| Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() { |
| return &Base; |
| } |
| Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() { |
| return &Base+1; |
| } |
| |
| // ObjCSuperExpr |
| Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); } |
| |
| // ObjCIsaExpr |
| Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; } |
| Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; } |
| |
| // PredefinedExpr |
| Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); } |
| |
| // IntegerLiteral |
| Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); } |
| Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); } |
| |
| // CharacterLiteral |
| Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();} |
| Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); } |
| |
| // FloatingLiteral |
| Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); } |
| Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); } |
| |
| // ImaginaryLiteral |
| Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; } |
| Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; } |
| |
| // StringLiteral |
| Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); } |
| Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); } |
| |
| // ParenExpr |
| Stmt::child_iterator ParenExpr::child_begin() { return &Val; } |
| Stmt::child_iterator ParenExpr::child_end() { return &Val+1; } |
| |
| // UnaryOperator |
| Stmt::child_iterator UnaryOperator::child_begin() { return &Val; } |
| Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; } |
| |
| // SizeOfAlignOfExpr |
| Stmt::child_iterator SizeOfAlignOfExpr::child_begin() { |
| // If this is of a type and the type is a VLA type (and not a typedef), the |
| // size expression of the VLA needs to be treated as an executable expression. |
| // Why isn't this weirdness documented better in StmtIterator? |
| if (isArgumentType()) { |
| if (VariableArrayType* T = dyn_cast<VariableArrayType>( |
| getArgumentType().getTypePtr())) |
| return child_iterator(T); |
| return child_iterator(); |
| } |
| return child_iterator(&Argument.Ex); |
| } |
| Stmt::child_iterator SizeOfAlignOfExpr::child_end() { |
| if (isArgumentType()) |
| return child_iterator(); |
| return child_iterator(&Argument.Ex + 1); |
| } |
| |
| // ArraySubscriptExpr |
| Stmt::child_iterator ArraySubscriptExpr::child_begin() { |
| return &SubExprs[0]; |
| } |
| Stmt::child_iterator ArraySubscriptExpr::child_end() { |
| return &SubExprs[0]+END_EXPR; |
| } |
| |
| // CallExpr |
| Stmt::child_iterator CallExpr::child_begin() { |
| return &SubExprs[0]; |
| } |
| Stmt::child_iterator CallExpr::child_end() { |
| return &SubExprs[0]+NumArgs+ARGS_START; |
| } |
| |
| // MemberExpr |
| Stmt::child_iterator MemberExpr::child_begin() { return &Base; } |
| Stmt::child_iterator MemberExpr::child_end() { return &Base+1; } |
| |
| // ExtVectorElementExpr |
| Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; } |
| Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; } |
| |
| // CompoundLiteralExpr |
| Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; } |
| Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; } |
| |
| // CastExpr |
| Stmt::child_iterator CastExpr::child_begin() { return &Op; } |
| Stmt::child_iterator CastExpr::child_end() { return &Op+1; } |
| |
| // BinaryOperator |
| Stmt::child_iterator BinaryOperator::child_begin() { |
| return &SubExprs[0]; |
| } |
| Stmt::child_iterator BinaryOperator::child_end() { |
| return &SubExprs[0]+END_EXPR; |
| } |
| |
| // ConditionalOperator |
| Stmt::child_iterator ConditionalOperator::child_begin() { |
| return &SubExprs[0]; |
| } |
| Stmt::child_iterator ConditionalOperator::child_end() { |
| return &SubExprs[0]+END_EXPR; |
| } |
| |
| // AddrLabelExpr |
| Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); } |
| |
| // StmtExpr |
| Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; } |
| Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; } |
| |
| // TypesCompatibleExpr |
| Stmt::child_iterator TypesCompatibleExpr::child_begin() { |
| return child_iterator(); |
| } |
| |
| Stmt::child_iterator TypesCompatibleExpr::child_end() { |
| return child_iterator(); |
| } |
| |
| // ChooseExpr |
| Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; } |
| Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; } |
| |
| // GNUNullExpr |
| Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); } |
| |
| // ShuffleVectorExpr |
| Stmt::child_iterator ShuffleVectorExpr::child_begin() { |
| return &SubExprs[0]; |
| } |
| Stmt::child_iterator ShuffleVectorExpr::child_end() { |
| return &SubExprs[0]+NumExprs; |
| } |
| |
| // VAArgExpr |
| Stmt::child_iterator VAArgExpr::child_begin() { return &Val; } |
| Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; } |
| |
| // InitListExpr |
| Stmt::child_iterator InitListExpr::child_begin() { |
| return InitExprs.size() ? &InitExprs[0] : 0; |
| } |
| Stmt::child_iterator InitListExpr::child_end() { |
| return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0; |
| } |
| |
| // DesignatedInitExpr |
| Stmt::child_iterator DesignatedInitExpr::child_begin() { |
| char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| Ptr += sizeof(DesignatedInitExpr); |
| return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); |
| } |
| Stmt::child_iterator DesignatedInitExpr::child_end() { |
| return child_iterator(&*child_begin() + NumSubExprs); |
| } |
| |
| // ImplicitValueInitExpr |
| Stmt::child_iterator ImplicitValueInitExpr::child_begin() { |
| return child_iterator(); |
| } |
| |
| Stmt::child_iterator ImplicitValueInitExpr::child_end() { |
| return child_iterator(); |
| } |
| |
| // ParenListExpr |
| Stmt::child_iterator ParenListExpr::child_begin() { |
| return &Exprs[0]; |
| } |
| Stmt::child_iterator ParenListExpr::child_end() { |
| return &Exprs[0]+NumExprs; |
| } |
| |
| // ObjCStringLiteral |
| Stmt::child_iterator ObjCStringLiteral::child_begin() { |
| return &String; |
| } |
| Stmt::child_iterator ObjCStringLiteral::child_end() { |
| return &String+1; |
| } |
| |
| // ObjCEncodeExpr |
| Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); } |
| |
| // ObjCSelectorExpr |
| Stmt::child_iterator ObjCSelectorExpr::child_begin() { |
| return child_iterator(); |
| } |
| Stmt::child_iterator ObjCSelectorExpr::child_end() { |
| return child_iterator(); |
| } |
| |
| // ObjCProtocolExpr |
| Stmt::child_iterator ObjCProtocolExpr::child_begin() { |
| return child_iterator(); |
| } |
| Stmt::child_iterator ObjCProtocolExpr::child_end() { |
| return child_iterator(); |
| } |
| |
| // ObjCMessageExpr |
| Stmt::child_iterator ObjCMessageExpr::child_begin() { |
| return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START; |
| } |
| Stmt::child_iterator ObjCMessageExpr::child_end() { |
| return &SubExprs[0]+ARGS_START+getNumArgs(); |
| } |
| |
| // Blocks |
| Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); } |
| |
| Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();} |
| Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); } |