blob: 84b0debb61fc089ef95594f3dc4a9a60e3daf66e [file] [log] [blame]
//===-- GRConstants.cpp - Simple, Path-Sens. Constant Prop. ------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Constant Propagation via Graph Reachability
//
// This files defines a simple analysis that performs path-sensitive
// constant propagation within a function. An example use of this analysis
// is to perform simple checks for NULL dereferences.
//
//===----------------------------------------------------------------------===//
#include "RValues.h"
#include "ValueState.h"
#include "clang/Analysis/PathSensitive/GREngine.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ASTContext.h"
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/Basic/Diagnostic.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Streams.h"
#include <functional>
#ifndef NDEBUG
#include "llvm/Support/GraphWriter.h"
#include <sstream>
#endif
using namespace clang;
using llvm::dyn_cast;
using llvm::cast;
using llvm::APSInt;
//===----------------------------------------------------------------------===//
// The Checker.
//
// FIXME: This checker logic should be eventually broken into two components.
// The first is the "meta"-level checking logic; the code that
// does the Stmt visitation, fetching values from the map, etc.
// The second part does the actual state manipulation. This way we
// get more of a separate of concerns of these two pieces, with the
// latter potentially being refactored back into the main checking
// logic.
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN GRConstants {
public:
typedef ValueStateManager::StateTy StateTy;
typedef GRStmtNodeBuilder<GRConstants> StmtNodeBuilder;
typedef GRBranchNodeBuilder<GRConstants> BranchNodeBuilder;
typedef ExplodedGraph<GRConstants> GraphTy;
typedef GraphTy::NodeTy NodeTy;
class NodeSet {
typedef llvm::SmallVector<NodeTy*,3> ImplTy;
ImplTy Impl;
public:
NodeSet() {}
NodeSet(NodeTy* N) { assert (N && !N->isSink()); Impl.push_back(N); }
void Add(NodeTy* N) { if (N && !N->isSink()) Impl.push_back(N); }
typedef ImplTy::iterator iterator;
typedef ImplTy::const_iterator const_iterator;
unsigned size() const { return Impl.size(); }
bool empty() const { return Impl.empty(); }
iterator begin() { return Impl.begin(); }
iterator end() { return Impl.end(); }
const_iterator begin() const { return Impl.begin(); }
const_iterator end() const { return Impl.end(); }
};
protected:
/// G - the simulation graph.
GraphTy& G;
/// Liveness - live-variables information the ValueDecl* and block-level
/// Expr* in the CFG. Used to prune out dead state.
LiveVariables Liveness;
/// Builder - The current GRStmtNodeBuilder which is used when building the nodes
/// for a given statement.
StmtNodeBuilder* Builder;
/// StateMgr - Object that manages the data for all created states.
ValueStateManager StateMgr;
/// ValueMgr - Object that manages the data for all created RValues.
ValueManager& ValMgr;
/// SymMgr - Object that manages the symbol information.
SymbolManager& SymMgr;
/// StmtEntryNode - The immediate predecessor node.
NodeTy* StmtEntryNode;
/// CurrentStmt - The current block-level statement.
Stmt* CurrentStmt;
/// UninitBranches - Nodes in the ExplodedGraph that result from
/// taking a branch based on an uninitialized value.
typedef llvm::SmallPtrSet<NodeTy*,5> UninitBranchesTy;
UninitBranchesTy UninitBranches;
/// ImplicitNullDeref - Nodes in the ExplodedGraph that result from
/// taking a dereference on a symbolic pointer that may be NULL.
typedef llvm::SmallPtrSet<NodeTy*,5> NullDerefTy;
NullDerefTy ImplicitNullDeref;
NullDerefTy ExplicitNullDeref;
bool StateCleaned;
public:
GRConstants(GraphTy& g) : G(g), Liveness(G.getCFG(), G.getFunctionDecl()),
Builder(NULL),
StateMgr(G.getContext(), G.getAllocator()),
ValMgr(StateMgr.getValueManager()),
SymMgr(StateMgr.getSymbolManager()),
StmtEntryNode(NULL), CurrentStmt(NULL) {
// Compute liveness information.
Liveness.runOnCFG(G.getCFG());
Liveness.runOnAllBlocks(G.getCFG(), NULL, true);
}
/// getContext - Return the ASTContext associated with this analysis.
ASTContext& getContext() const { return G.getContext(); }
/// getCFG - Returns the CFG associated with this analysis.
CFG& getCFG() { return G.getCFG(); }
/// getInitialState - Return the initial state used for the root vertex
/// in the ExplodedGraph.
StateTy getInitialState() {
StateTy St = StateMgr.getInitialState();
// Iterate the parameters.
FunctionDecl& F = G.getFunctionDecl();
for (FunctionDecl::param_iterator I=F.param_begin(), E=F.param_end();
I!=E; ++I)
St = SetValue(St, lval::DeclVal(*I), RValue::GetSymbolValue(SymMgr, *I));
return St;
}
bool isUninitControlFlow(const NodeTy* N) const {
return N->isSink() && UninitBranches.count(const_cast<NodeTy*>(N)) != 0;
}
bool isImplicitNullDeref(const NodeTy* N) const {
return N->isSink() && ImplicitNullDeref.count(const_cast<NodeTy*>(N)) != 0;
}
bool isExplicitNullDeref(const NodeTy* N) const {
return N->isSink() && ExplicitNullDeref.count(const_cast<NodeTy*>(N)) != 0;
}
typedef NullDerefTy::iterator null_iterator;
null_iterator null_begin() { return ExplicitNullDeref.begin(); }
null_iterator null_end() { return ExplicitNullDeref.end(); }
/// ProcessStmt - Called by GREngine. Used to generate new successor
/// nodes by processing the 'effects' of a block-level statement.
void ProcessStmt(Stmt* S, StmtNodeBuilder& builder);
/// ProcessBranch - Called by GREngine. Used to generate successor
/// nodes by processing the 'effects' of a branch condition.
void ProcessBranch(Expr* Condition, Stmt* Term, BranchNodeBuilder& builder);
/// RemoveDeadBindings - Return a new state that is the same as 'M' except
/// that all subexpression mappings are removed and that any
/// block-level expressions that are not live at 'S' also have their
/// mappings removed.
StateTy RemoveDeadBindings(Stmt* S, StateTy M);
StateTy SetValue(StateTy St, Stmt* S, const RValue& V);
StateTy SetValue(StateTy St, const Stmt* S, const RValue& V) {
return SetValue(St, const_cast<Stmt*>(S), V);
}
/// SetValue - This version of SetValue is used to batch process a set
/// of different possible RValues and return a set of different states.
const StateTy::BufferTy& SetValue(StateTy St, Stmt* S,
const RValue::BufferTy& V,
StateTy::BufferTy& RetBuf);
StateTy SetValue(StateTy St, const LValue& LV, const RValue& V);
inline RValue GetValue(const StateTy& St, Stmt* S) {
return StateMgr.GetValue(St, S);
}
inline RValue GetValue(const StateTy& St, Stmt* S, bool& hasVal) {
return StateMgr.GetValue(St, S, &hasVal);
}
inline RValue GetValue(const StateTy& St, const Stmt* S) {
return GetValue(St, const_cast<Stmt*>(S));
}
inline RValue GetValue(const StateTy& St, const LValue& LV,
QualType* T = NULL) {
return StateMgr.GetValue(St, LV, T);
}
inline LValue GetLValue(const StateTy& St, Stmt* S) {
return StateMgr.GetLValue(St, S);
}
inline NonLValue GetRValueConstant(uint64_t X, Expr* E) {
return NonLValue::GetValue(ValMgr, X, E->getType(), E->getLocStart());
}
/// Assume - Create new state by assuming that a given expression
/// is true or false.
inline StateTy Assume(StateTy St, RValue Cond, bool Assumption,
bool& isFeasible) {
if (isa<LValue>(Cond))
return Assume(St, cast<LValue>(Cond), Assumption, isFeasible);
else
return Assume(St, cast<NonLValue>(Cond), Assumption, isFeasible);
}
StateTy Assume(StateTy St, LValue Cond, bool Assumption, bool& isFeasible);
StateTy Assume(StateTy St, NonLValue Cond, bool Assumption, bool& isFeasible);
StateTy AssumeSymNE(StateTy St, SymbolID sym, const llvm::APSInt& V,
bool& isFeasible);
StateTy AssumeSymEQ(StateTy St, SymbolID sym, const llvm::APSInt& V,
bool& isFeasible);
StateTy AssumeSymInt(StateTy St, bool Assumption, const SymIntConstraint& C,
bool& isFeasible);
NodeTy* Nodify(NodeSet& Dst, Stmt* S, NodeTy* Pred, StateTy St,
bool AlwaysMakeNode = false);
/// Nodify - This version of Nodify is used to batch process a set of states.
/// The states are not guaranteed to be unique.
void Nodify(NodeSet& Dst, Stmt* S, NodeTy* Pred, const StateTy::BufferTy& SB);
/// Visit - Transfer function logic for all statements. Dispatches to
/// other functions that handle specific kinds of statements.
void Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst);
/// VisitCast - Transfer function logic for all casts (implicit and explicit).
void VisitCast(Expr* CastE, Expr* E, NodeTy* Pred, NodeSet& Dst);
/// VisitUnaryOperator - Transfer function logic for unary operators.
void VisitUnaryOperator(UnaryOperator* B, NodeTy* Pred, NodeSet& Dst);
/// VisitBinaryOperator - Transfer function logic for binary operators.
void VisitBinaryOperator(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst);
void VisitAssignmentLHS(Expr* E, NodeTy* Pred, NodeSet& Dst);
/// VisitDeclRefExpr - Transfer function logic for DeclRefExprs.
void VisitDeclRefExpr(DeclRefExpr* DR, NodeTy* Pred, NodeSet& Dst);
/// VisitDeclStmt - Transfer function logic for DeclStmts.
void VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst);
/// VisitGuardedExpr - Transfer function logic for ?, __builtin_choose
void VisitGuardedExpr(Stmt* S, Stmt* LHS, Stmt* RHS,
NodeTy* Pred, NodeSet& Dst);
/// VisitLogicalExpr - Transfer function logic for '&&', '||'
void VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst);
};
} // end anonymous namespace
GRConstants::StateTy
GRConstants::SetValue(StateTy St, Stmt* S, const RValue& V) {
if (!StateCleaned) {
St = RemoveDeadBindings(CurrentStmt, St);
StateCleaned = true;
}
bool isBlkExpr = false;
if (S == CurrentStmt) {
isBlkExpr = getCFG().isBlkExpr(S);
if (!isBlkExpr)
return St;
}
return StateMgr.SetValue(St, S, isBlkExpr, V);
}
const GRConstants::StateTy::BufferTy&
GRConstants::SetValue(StateTy St, Stmt* S, const RValue::BufferTy& RB,
StateTy::BufferTy& RetBuf) {
assert (RetBuf.empty());
for (RValue::BufferTy::const_iterator I=RB.begin(), E=RB.end(); I!=E; ++I)
RetBuf.push_back(SetValue(St, S, *I));
return RetBuf;
}
GRConstants::StateTy
GRConstants::SetValue(StateTy St, const LValue& LV, const RValue& V) {
if (!LV.isValid())
return St;
if (!StateCleaned) {
St = RemoveDeadBindings(CurrentStmt, St);
StateCleaned = true;
}
return StateMgr.SetValue(St, LV, V);
}
void GRConstants::ProcessBranch(Expr* Condition, Stmt* Term,
BranchNodeBuilder& builder) {
StateTy PrevState = builder.getState();
// Remove old bindings for subexpressions.
for (StateTy::vb_iterator I=PrevState.begin(), E=PrevState.end(); I!=E; ++I)
if (I.getKey().isSubExpr())
PrevState = StateMgr.Remove(PrevState, I.getKey());
// Remove terminator-specific bindings.
switch (Term->getStmtClass()) {
default: break;
case Stmt::BinaryOperatorClass: { // '&&', '||'
BinaryOperator* B = cast<BinaryOperator>(Term);
// FIXME: Liveness analysis should probably remove these automatically.
// Verify later when we converge to an 'optimization' stage.
PrevState = StateMgr.Remove(PrevState, B->getRHS());
break;
}
case Stmt::ConditionalOperatorClass: { // '?' operator
ConditionalOperator* C = cast<ConditionalOperator>(Term);
// FIXME: Liveness analysis should probably remove these automatically.
// Verify later when we converge to an 'optimization' stage.
if (Expr* L = C->getLHS()) PrevState = StateMgr.Remove(PrevState, L);
PrevState = StateMgr.Remove(PrevState, C->getRHS());
break;
}
case Stmt::ChooseExprClass: { // __builtin_choose_expr
ChooseExpr* C = cast<ChooseExpr>(Term);
// FIXME: Liveness analysis should probably remove these automatically.
// Verify later when we converge to an 'optimization' stage.
PrevState = StateMgr.Remove(PrevState, C->getRHS());
PrevState = StateMgr.Remove(PrevState, C->getRHS());
break;
}
}
RValue V = GetValue(PrevState, Condition);
switch (V.getBaseKind()) {
default:
break;
case RValue::InvalidKind:
builder.generateNode(PrevState, true);
builder.generateNode(PrevState, false);
return;
case RValue::UninitializedKind: {
NodeTy* N = builder.generateNode(PrevState, true);
if (N) {
N->markAsSink();
UninitBranches.insert(N);
}
builder.markInfeasible(false);
return;
}
}
// Process the true branch.
bool isFeasible = true;
StateTy St = Assume(PrevState, V, true, isFeasible);
if (isFeasible)
builder.generateNode(St, true);
else {
builder.markInfeasible(true);
isFeasible = true;
}
// Process the false branch.
St = Assume(PrevState, V, false, isFeasible);
if (isFeasible)
builder.generateNode(St, false);
else
builder.markInfeasible(false);
}
void GRConstants::VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred,
NodeSet& Dst) {
bool hasR2;
StateTy PrevState = Pred->getState();
RValue R1 = GetValue(PrevState, B->getLHS());
RValue R2 = GetValue(PrevState, B->getRHS(), hasR2);
if (isa<InvalidValue>(R1) &&
(isa<InvalidValue>(R2) ||
isa<UninitializedValue>(R2))) {
Nodify(Dst, B, Pred, SetValue(PrevState, B, R2));
return;
}
else if (isa<UninitializedValue>(R1)) {
Nodify(Dst, B, Pred, SetValue(PrevState, B, R1));
return;
}
// R1 is an expression that can evaluate to either 'true' or 'false'.
if (B->getOpcode() == BinaryOperator::LAnd) {
// hasR2 == 'false' means that LHS evaluated to 'false' and that
// we short-circuited, leading to a value of '0' for the '&&' expression.
if (hasR2 == false) {
Nodify(Dst, B, Pred, SetValue(PrevState, B, GetRValueConstant(0U, B)));
return;
}
}
else {
assert (B->getOpcode() == BinaryOperator::LOr);
// hasR2 == 'false' means that the LHS evaluate to 'true' and that
// we short-circuited, leading to a value of '1' for the '||' expression.
if (hasR2 == false) {
Nodify(Dst, B, Pred, SetValue(PrevState, B, GetRValueConstant(1U, B)));
return;
}
}
// If we reach here we did not short-circuit. Assume R2 == true and
// R2 == false.
bool isFeasible;
StateTy St = Assume(PrevState, R2, true, isFeasible);
if (isFeasible)
Nodify(Dst, B, Pred, SetValue(PrevState, B, GetRValueConstant(1U, B)));
St = Assume(PrevState, R2, false, isFeasible);
if (isFeasible)
Nodify(Dst, B, Pred, SetValue(PrevState, B, GetRValueConstant(0U, B)));
}
void GRConstants::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) {
Builder = &builder;
StmtEntryNode = builder.getLastNode();
CurrentStmt = S;
NodeSet Dst;
StateCleaned = false;
Visit(S, StmtEntryNode, Dst);
// If no nodes were generated, generate a new node that has all the
// dead mappings removed.
if (Dst.size() == 1 && *Dst.begin() == StmtEntryNode) {
StateTy St = RemoveDeadBindings(S, StmtEntryNode->getState());
builder.generateNode(S, St, StmtEntryNode);
}
CurrentStmt = NULL;
StmtEntryNode = NULL;
Builder = NULL;
}
GRConstants::StateTy GRConstants::RemoveDeadBindings(Stmt* Loc, StateTy M) {
// This code essentially performs a "mark-and-sweep" of the VariableBindings.
// The roots are any Block-level exprs and Decls that our liveness algorithm
// tells us are live. We then see what Decls they may reference, and keep
// those around. This code more than likely can be made faster, and the
// frequency of which this method is called should be experimented with
// for optimum performance.
llvm::SmallVector<ValueDecl*, 10> WList;
for (StateTy::vb_iterator I = M.begin(), E = M.end();
I!=E && !I.getKey().isSymbol(); ++I) {
// Remove old bindings for subexpressions.
if (I.getKey().isSubExpr()) {
M = StateMgr.Remove(M, I.getKey());
continue;
}
if (I.getKey().isBlkExpr()) {
if (Liveness.isLive(Loc, cast<Stmt>(I.getKey()))) {
if (isa<lval::DeclVal>(I.getData())) {
lval::DeclVal LV = cast<lval::DeclVal>(I.getData());
WList.push_back(LV.getDecl());
}
}
else
M = StateMgr.Remove(M, I.getKey());
continue;
}
assert (I.getKey().isDecl());
if (VarDecl* V = dyn_cast<VarDecl>(cast<ValueDecl>(I.getKey())))
if (Liveness.isLive(Loc, V))
WList.push_back(V);
}
llvm::SmallPtrSet<ValueDecl*, 10> Marked;
while (!WList.empty()) {
ValueDecl* V = WList.back();
WList.pop_back();
if (Marked.count(V))
continue;
Marked.insert(V);
if (V->getType()->isPointerType()) {
const LValue& LV = cast<LValue>(GetValue(M, lval::DeclVal(V)));
if (!isa<lval::DeclVal>(LV))
continue;
const lval::DeclVal& LVD = cast<lval::DeclVal>(LV);
WList.push_back(LVD.getDecl());
}
}
for (StateTy::vb_iterator I = M.begin(), E = M.end(); I!=E ; ++I)
if (I.getKey().isDecl())
if (VarDecl* V = dyn_cast<VarDecl>(cast<ValueDecl>(I.getKey())))
if (!Marked.count(V))
M = StateMgr.Remove(M, V);
return M;
}
GRConstants::NodeTy*
GRConstants::Nodify(NodeSet& Dst, Stmt* S, NodeTy* Pred, StateTy St,
bool AlwaysMakeNode) {
// If the state hasn't changed, don't generate a new node.
if (!AlwaysMakeNode && St == Pred->getState())
return NULL;
NodeTy* N = Builder->generateNode(S, St, Pred);
Dst.Add(N);
return N;
}
void GRConstants::Nodify(NodeSet& Dst, Stmt* S, NodeTy* Pred,
const StateTy::BufferTy& SB) {
for (StateTy::BufferTy::const_iterator I=SB.begin(), E=SB.end(); I!=E; ++I)
Nodify(Dst, S, Pred, *I);
}
void GRConstants::VisitDeclRefExpr(DeclRefExpr* D, NodeTy* Pred, NodeSet& Dst) {
if (D != CurrentStmt) {
Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
return;
}
// If we are here, we are loading the value of the decl and binding
// it to the block-level expression.
StateTy St = Pred->getState();
Nodify(Dst, D, Pred,
SetValue(St, D, GetValue(St, lval::DeclVal(D->getDecl()))));
}
void GRConstants::VisitCast(Expr* CastE, Expr* E, NodeTy* Pred, NodeSet& Dst) {
QualType T = CastE->getType();
// Check for redundant casts.
if (E->getType() == T) {
Dst.Add(Pred);
return;
}
NodeSet S1;
Visit(E, Pred, S1);
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N = *I1;
StateTy St = N->getState();
const RValue& V = GetValue(St, E);
Nodify(Dst, CastE, N, SetValue(St, CastE, V.EvalCast(ValMgr, CastE)));
}
}
void GRConstants::VisitDeclStmt(DeclStmt* DS, GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
StateTy St = Pred->getState();
for (const ScopedDecl* D = DS->getDecl(); D; D = D->getNextDeclarator())
if (const VarDecl* VD = dyn_cast<VarDecl>(D)) {
const Expr* E = VD->getInit();
St = SetValue(St, lval::DeclVal(VD),
E ? GetValue(St, E) : UninitializedValue());
}
Nodify(Dst, DS, Pred, St);
if (Dst.empty())
Dst.Add(Pred);
}
void GRConstants::VisitGuardedExpr(Stmt* S, Stmt* LHS, Stmt* RHS,
NodeTy* Pred, NodeSet& Dst) {
StateTy St = Pred->getState();
RValue R = GetValue(St, LHS);
if (isa<InvalidValue>(R)) R = GetValue(St, RHS);
Nodify(Dst, S, Pred, SetValue(St, S, R));
}
void GRConstants::VisitUnaryOperator(UnaryOperator* U,
GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
NodeSet S1;
UnaryOperator::Opcode Op = U->getOpcode();
// FIXME: This is a hack so that for '*' and '&' we don't recurse
// on visiting the subexpression if it is a DeclRefExpr. We should
// probably just handle AddrOf and Deref in their own methods to make
// this cleaner.
if ((Op == UnaryOperator::Deref || Op == UnaryOperator::AddrOf) &&
isa<DeclRefExpr>(U->getSubExpr()))
S1.Add(Pred);
else
Visit(U->getSubExpr(), Pred, S1);
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N1 = *I1;
StateTy St = N1->getState();
switch (U->getOpcode()) {
case UnaryOperator::PostInc: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
NonLValue Result = R1.EvalBinaryOp(ValMgr, BinaryOperator::Add,
GetRValueConstant(1U, U));
Nodify(Dst, U, N1, SetValue(SetValue(St, U, R1), L1, Result));
break;
}
case UnaryOperator::PostDec: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
NonLValue Result = R1.EvalBinaryOp(ValMgr, BinaryOperator::Sub,
GetRValueConstant(1U, U));
Nodify(Dst, U, N1, SetValue(SetValue(St, U, R1), L1, Result));
break;
}
case UnaryOperator::PreInc: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
NonLValue Result = R1.EvalBinaryOp(ValMgr, BinaryOperator::Add,
GetRValueConstant(1U, U));
Nodify(Dst, U, N1, SetValue(SetValue(St, U, Result), L1, Result));
break;
}
case UnaryOperator::PreDec: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
NonLValue Result = R1.EvalBinaryOp(ValMgr, BinaryOperator::Sub,
GetRValueConstant(1U, U));
Nodify(Dst, U, N1, SetValue(SetValue(St, U, Result), L1, Result));
break;
}
case UnaryOperator::Minus: {
const NonLValue& R1 = cast<NonLValue>(GetValue(St, U->getSubExpr()));
Nodify(Dst, U, N1, SetValue(St, U, R1.EvalMinus(ValMgr, U)));
break;
}
case UnaryOperator::Not: {
const NonLValue& R1 = cast<NonLValue>(GetValue(St, U->getSubExpr()));
Nodify(Dst, U, N1, SetValue(St, U, R1.EvalComplement(ValMgr)));
break;
}
case UnaryOperator::LNot: {
// C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
//
// Note: technically we do "E == 0", but this is the same in the
// transfer functions as "0 == E".
RValue V1 = GetValue(St, U->getSubExpr());
if (isa<LValue>(V1)) {
const LValue& L1 = cast<LValue>(V1);
lval::ConcreteInt V2(ValMgr.getZeroWithPtrWidth());
Nodify(Dst, U, N1,
SetValue(St, U, L1.EvalBinaryOp(ValMgr, BinaryOperator::EQ,
V2)));
}
else {
const NonLValue& R1 = cast<NonLValue>(V1);
nonlval::ConcreteInt V2(ValMgr.getZeroWithPtrWidth());
Nodify(Dst, U, N1,
SetValue(St, U, R1.EvalBinaryOp(ValMgr, BinaryOperator::EQ,
V2)));
}
break;
}
case UnaryOperator::AddrOf: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
Nodify(Dst, U, N1, SetValue(St, U, L1));
break;
}
case UnaryOperator::Deref: {
// FIXME: Stop when dereferencing an uninitialized value.
// FIXME: Bifurcate when dereferencing a symbolic with no constraints?
const RValue& V = GetValue(St, U->getSubExpr());
const LValue& L1 = cast<LValue>(V);
// After a dereference, one of two possible situations arise:
// (1) A crash, because the pointer was NULL.
// (2) The pointer is not NULL, and the dereference works.
//
// We add these assumptions.
bool isFeasibleNotNull;
// "Assume" that the pointer is Not-NULL.
StateTy StNotNull = Assume(St, L1, true, isFeasibleNotNull);
if (isFeasibleNotNull) {
QualType T = U->getType();
Nodify(Dst, U, N1, SetValue(StNotNull, U,
GetValue(StNotNull, L1, &T)));
}
bool isFeasibleNull;
// "Assume" that the pointer is NULL.
StateTy StNull = Assume(St, L1, false, isFeasibleNull);
if (isFeasibleNull) {
NodeTy* NullNode = Nodify(Dst, U, N1, StNull, true);
if (NullNode) {
NullNode->markAsSink();
if (isFeasibleNotNull)
ImplicitNullDeref.insert(NullNode);
else
ExplicitNullDeref.insert(NullNode);
}
}
break;
}
default: ;
assert (false && "Not implemented.");
}
}
}
void GRConstants::VisitAssignmentLHS(Expr* E, GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
if (isa<DeclRefExpr>(E)) {
Dst.Add(Pred);
return;
}
if (UnaryOperator* U = dyn_cast<UnaryOperator>(E)) {
if (U->getOpcode() == UnaryOperator::Deref) {
Visit(U->getSubExpr(), Pred, Dst);
return;
}
}
Visit(E, Pred, Dst);
}
void GRConstants::VisitBinaryOperator(BinaryOperator* B,
GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
NodeSet S1;
if (B->isAssignmentOp())
VisitAssignmentLHS(B->getLHS(), Pred, S1);
else
Visit(B->getLHS(), Pred, S1);
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N1 = *I1;
// When getting the value for the LHS, check if we are in an assignment.
// In such cases, we want to (initially) treat the LHS as an LValue,
// so we use GetLValue instead of GetValue so that DeclRefExpr's are
// evaluated to LValueDecl's instead of to an NonLValue.
const RValue& V1 =
B->isAssignmentOp() ? GetLValue(N1->getState(), B->getLHS())
: GetValue(N1->getState(), B->getLHS());
NodeSet S2;
Visit(B->getRHS(), N1, S2);
for (NodeSet::iterator I2=S2.begin(), E2=S2.end(); I2 != E2; ++I2) {
NodeTy* N2 = *I2;
StateTy St = N2->getState();
const RValue& V2 = GetValue(St, B->getRHS());
BinaryOperator::Opcode Op = B->getOpcode();
if (Op <= BinaryOperator::Or) {
if (isa<InvalidValue>(V1) || isa<UninitializedValue>(V1)) {
Nodify(Dst, B, N2, SetValue(St, B, V1));
continue;
}
if (isa<LValue>(V1)) {
// FIXME: Add support for RHS being a non-lvalue.
const LValue& L1 = cast<LValue>(V1);
const LValue& L2 = cast<LValue>(V2);
Nodify(Dst, B, N2, SetValue(St, B, L1.EvalBinaryOp(ValMgr, Op, L2)));
}
else {
const NonLValue& R1 = cast<NonLValue>(V1);
const NonLValue& R2 = cast<NonLValue>(V2);
Nodify(Dst, B, N2, SetValue(St, B, R1.EvalBinaryOp(ValMgr, Op, R2)));
}
continue;
}
switch (Op) {
case BinaryOperator::Assign: {
const LValue& L1 = cast<LValue>(V1);
Nodify(Dst, B, N2, SetValue(SetValue(St, B, V2), L1, V2));
break;
}
default: { // Compound assignment operators.
assert (B->isCompoundAssignmentOp());
const LValue& L1 = cast<LValue>(V1);
RValue Result = cast<NonLValue>(InvalidValue());
Op = (BinaryOperator::Opcode)
(((unsigned) Op) - ((unsigned) BinaryOperator::MulAssign));
if (isa<LValue>(V2)) {
// FIXME: Add support for Non-LValues on RHS.
const LValue& L2 = cast<LValue>(V2);
Result = L1.EvalBinaryOp(ValMgr, Op, L2);
}
else {
const NonLValue& R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
const NonLValue& R2 = cast<NonLValue>(V2);
Result = R1.EvalBinaryOp(ValMgr, Op, R2);
}
Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
break;
}
}
}
}
}
void GRConstants::Visit(Stmt* S, GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
// FIXME: add metadata to the CFG so that we can disable
// this check when we KNOW that there is no block-level subexpression.
// The motivation is that this check requires a hashtable lookup.
if (S != CurrentStmt && getCFG().isBlkExpr(S)) {
Dst.Add(Pred);
return;
}
switch (S->getStmtClass()) {
case Stmt::BinaryOperatorClass:
if (cast<BinaryOperator>(S)->isLogicalOp()) {
VisitLogicalExpr(cast<BinaryOperator>(S), Pred, Dst);
break;
}
// Fall-through.
case Stmt::CompoundAssignOperatorClass:
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
break;
case Stmt::UnaryOperatorClass:
VisitUnaryOperator(cast<UnaryOperator>(S), Pred, Dst);
break;
case Stmt::ParenExprClass:
Visit(cast<ParenExpr>(S)->getSubExpr(), Pred, Dst);
break;
case Stmt::DeclRefExprClass:
VisitDeclRefExpr(cast<DeclRefExpr>(S), Pred, Dst);
break;
case Stmt::ImplicitCastExprClass: {
ImplicitCastExpr* C = cast<ImplicitCastExpr>(S);
VisitCast(C, C->getSubExpr(), Pred, Dst);
break;
}
case Stmt::CastExprClass: {
CastExpr* C = cast<CastExpr>(S);
VisitCast(C, C->getSubExpr(), Pred, Dst);
break;
}
case Stmt::ConditionalOperatorClass: { // '?' operator
ConditionalOperator* C = cast<ConditionalOperator>(S);
VisitGuardedExpr(S, C->getLHS(), C->getRHS(), Pred, Dst);
break;
}
case Stmt::ChooseExprClass: { // __builtin_choose_expr
ChooseExpr* C = cast<ChooseExpr>(S);
VisitGuardedExpr(S, C->getLHS(), C->getRHS(), Pred, Dst);
break;
}
case Stmt::ReturnStmtClass:
if (Expr* R = cast<ReturnStmt>(S)->getRetValue())
Visit(R, Pred, Dst);
else
Dst.Add(Pred);
break;
case Stmt::DeclStmtClass:
VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
break;
default:
Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
break;
}
}
//===----------------------------------------------------------------------===//
// "Assume" logic.
//===----------------------------------------------------------------------===//
GRConstants::StateTy GRConstants::Assume(StateTy St, LValue Cond,
bool Assumption,
bool& isFeasible) {
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this LValue.");
return St;
case lval::SymbolValKind:
if (Assumption)
return AssumeSymNE(St, cast<lval::SymbolVal>(Cond).getSymbol(),
ValMgr.getZeroWithPtrWidth(), isFeasible);
else
return AssumeSymEQ(St, cast<lval::SymbolVal>(Cond).getSymbol(),
ValMgr.getZeroWithPtrWidth(), isFeasible);
case lval::DeclValKind:
isFeasible = Assumption;
return St;
case lval::ConcreteIntKind: {
bool b = cast<lval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
}
}
GRConstants::StateTy GRConstants::Assume(StateTy St, NonLValue Cond,
bool Assumption,
bool& isFeasible) {
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this NonLValue.");
return St;
case nonlval::SymbolValKind: {
lval::SymbolVal& SV = cast<lval::SymbolVal>(Cond);
SymbolID sym = SV.getSymbol();
if (Assumption)
return AssumeSymNE(St, sym, ValMgr.getValue(0, SymMgr.getType(sym)),
isFeasible);
else
return AssumeSymEQ(St, sym, ValMgr.getValue(0, SymMgr.getType(sym)),
isFeasible);
}
case nonlval::SymIntConstraintValKind:
return
AssumeSymInt(St, Assumption,
cast<nonlval::SymIntConstraintVal>(Cond).getConstraint(),
isFeasible);
case nonlval::ConcreteIntKind: {
bool b = cast<nonlval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
}
}
GRConstants::StateTy
GRConstants::AssumeSymNE(StateTy St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = St.getSymVal(sym)) {
isFeasible = *X != V;
return St;
}
// Second, determine if sym != V.
if (St.isNotEqual(sym, V)) {
isFeasible = true;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is != V.
// Make that assumption.
isFeasible = true;
return StateMgr.AddNE(St, sym, V);
}
GRConstants::StateTy
GRConstants::AssumeSymEQ(StateTy St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = St.getSymVal(sym)) {
isFeasible = *X == V;
return St;
}
// Second, determine if sym != V.
if (St.isNotEqual(sym, V)) {
isFeasible = false;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is == V.
// Make that assumption.
isFeasible = true;
return StateMgr.AddEQ(St, sym, V);
}
GRConstants::StateTy
GRConstants::AssumeSymInt(StateTy St, bool Assumption,
const SymIntConstraint& C, bool& isFeasible) {
switch (C.getOpcode()) {
default:
// No logic yet for other operators.
return St;
case BinaryOperator::EQ:
if (Assumption)
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::NE:
if (Assumption)
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
}
}
//===----------------------------------------------------------------------===//
// Driver.
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
static GRConstants* GraphPrintCheckerState;
namespace llvm {
template<>
struct VISIBILITY_HIDDEN DOTGraphTraits<GRConstants::NodeTy*> :
public DefaultDOTGraphTraits {
static void PrintKindLabel(std::ostream& Out, VarBindKey::Kind kind) {
switch (kind) {
case VarBindKey::IsSubExpr: Out << "Sub-Expressions:\\l"; break;
case VarBindKey::IsDecl: Out << "Variables:\\l"; break;
case VarBindKey::IsBlkExpr: Out << "Block-level Expressions:\\l"; break;
default: assert (false && "Unknown VarBindKey type.");
}
}
static void PrintKind(std::ostream& Out, GRConstants::StateTy M,
VarBindKey::Kind kind, bool isFirstGroup = false) {
bool isFirst = true;
for (GRConstants::StateTy::vb_iterator I=M.begin(), E=M.end();I!=E;++I) {
if (I.getKey().getKind() != kind)
continue;
if (isFirst) {
if (!isFirstGroup) Out << "\\l\\l";
PrintKindLabel(Out, kind);
isFirst = false;
}
else
Out << "\\l";
Out << ' ';
if (ValueDecl* V = dyn_cast<ValueDecl>(I.getKey()))
Out << V->getName();
else {
Stmt* E = cast<Stmt>(I.getKey());
Out << " (" << (void*) E << ") ";
E->printPretty(Out);
}
Out << " : ";
I.getData().print(Out);
}
}
static void PrintEQ(std::ostream& Out, GRConstants::StateTy St) {
ValueState::ConstantEqTy CE = St.getImpl()->ConstantEq;
if (CE.isEmpty())
return;
Out << "\\l\\|'==' constraints:";
for (ValueState::ConstantEqTy::iterator I=CE.begin(), E=CE.end(); I!=E;++I)
Out << "\\l $" << I.getKey() << " : " << I.getData()->toString();
}
static void PrintNE(std::ostream& Out, GRConstants::StateTy St) {
ValueState::ConstantNotEqTy NE = St.getImpl()->ConstantNotEq;
if (NE.isEmpty())
return;
Out << "\\l\\|'!=' constraints:";
for (ValueState::ConstantNotEqTy::iterator I=NE.begin(), EI=NE.end();
I != EI; ++I){
Out << "\\l $" << I.getKey() << " : ";
bool isFirst = true;
ValueState::IntSetTy::iterator J=I.getData().begin(),
EJ=I.getData().end();
for ( ; J != EJ; ++J) {
if (isFirst) isFirst = false;
else Out << ", ";
Out << (*J)->toString();
}
}
}
static std::string getNodeLabel(const GRConstants::NodeTy* N, void*) {
std::ostringstream Out;
// Program Location.
ProgramPoint Loc = N->getLocation();
switch (Loc.getKind()) {
case ProgramPoint::BlockEntranceKind:
Out << "Block Entrance: B"
<< cast<BlockEntrance>(Loc).getBlock()->getBlockID();
break;
case ProgramPoint::BlockExitKind:
assert (false);
break;
case ProgramPoint::PostStmtKind: {
const PostStmt& L = cast<PostStmt>(Loc);
Out << L.getStmt()->getStmtClassName() << ':'
<< (void*) L.getStmt() << ' ';
L.getStmt()->printPretty(Out);
if (GraphPrintCheckerState->isImplicitNullDeref(N)) {
Out << "\\|Implicit-Null Dereference.\\l";
}
else if (GraphPrintCheckerState->isExplicitNullDeref(N)) {
Out << "\\|Explicit-Null Dereference.\\l";
}
break;
}
default: {
const BlockEdge& E = cast<BlockEdge>(Loc);
Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
<< E.getDst()->getBlockID() << ')';
if (Stmt* T = E.getSrc()->getTerminator()) {
Out << "\\|Terminator: ";
E.getSrc()->printTerminator(Out);
if (isa<SwitchStmt>(T)) {
// FIXME
}
else {
Out << "\\lCondition: ";
if (*E.getSrc()->succ_begin() == E.getDst())
Out << "true";
else
Out << "false";
}
Out << "\\l";
}
if (GraphPrintCheckerState->isUninitControlFlow(N)) {
Out << "\\|Control-flow based on\\lUninitialized value.\\l";
}
}
}
Out << "\\|StateID: " << (void*) N->getState().getImpl() << "\\|";
PrintKind(Out, N->getState(), VarBindKey::IsDecl, true);
PrintKind(Out, N->getState(), VarBindKey::IsBlkExpr);
PrintKind(Out, N->getState(), VarBindKey::IsSubExpr);
PrintEQ(Out, N->getState());
PrintNE(Out, N->getState());
Out << "\\l";
return Out.str();
}
};
} // end llvm namespace
#endif
namespace clang {
void RunGRConstants(CFG& cfg, FunctionDecl& FD, ASTContext& Ctx,
Diagnostic& Diag) {
GREngine<GRConstants> Engine(cfg, FD, Ctx);
Engine.ExecuteWorkList();
// Look for explicit-Null dereferences and warn about them.
GRConstants* CheckerState = &Engine.getCheckerState();
for (GRConstants::null_iterator I=CheckerState->null_begin(),
E=CheckerState->null_end(); I!=E; ++I) {
const PostStmt& L = cast<PostStmt>((*I)->getLocation());
Expr* E = cast<Expr>(L.getStmt());
Diag.Report(FullSourceLoc(E->getExprLoc(), Ctx.getSourceManager()),
diag::chkr_null_deref_after_check);
}
#ifndef NDEBUG
GraphPrintCheckerState = CheckerState;
llvm::ViewGraph(*Engine.getGraph().roots_begin(),"GRConstants");
GraphPrintCheckerState = NULL;
#endif
}
} // end clang namespace