| //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This contains code to emit Stmt nodes as LLVM code. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CGDebugInfo.h" | 
 | #include "CodeGenModule.h" | 
 | #include "CodeGenFunction.h" | 
 | #include "clang/AST/StmtVisitor.h" | 
 | #include "clang/Basic/PrettyStackTrace.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/InlineAsm.h" | 
 | #include "llvm/Intrinsics.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | using namespace clang; | 
 | using namespace CodeGen; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                              Statement Emission | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void CodeGenFunction::EmitStopPoint(const Stmt *S) { | 
 |   if (CGDebugInfo *DI = getDebugInfo()) { | 
 |     DI->setLocation(S->getLocStart()); | 
 |     DI->EmitStopPoint(CurFn, Builder); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitStmt(const Stmt *S) { | 
 |   assert(S && "Null statement?"); | 
 |  | 
 |   // Check if we can handle this without bothering to generate an | 
 |   // insert point or debug info. | 
 |   if (EmitSimpleStmt(S)) | 
 |     return; | 
 |  | 
 |   // Check if we are generating unreachable code. | 
 |   if (!HaveInsertPoint()) { | 
 |     // If so, and the statement doesn't contain a label, then we do not need to | 
 |     // generate actual code. This is safe because (1) the current point is | 
 |     // unreachable, so we don't need to execute the code, and (2) we've already | 
 |     // handled the statements which update internal data structures (like the | 
 |     // local variable map) which could be used by subsequent statements. | 
 |     if (!ContainsLabel(S)) { | 
 |       // Verify that any decl statements were handled as simple, they may be in | 
 |       // scope of subsequent reachable statements. | 
 |       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); | 
 |       return; | 
 |     } | 
 |  | 
 |     // Otherwise, make a new block to hold the code. | 
 |     EnsureInsertPoint(); | 
 |   } | 
 |  | 
 |   // Generate a stoppoint if we are emitting debug info. | 
 |   EmitStopPoint(S); | 
 |  | 
 |   switch (S->getStmtClass()) { | 
 |   default: | 
 |     // Must be an expression in a stmt context.  Emit the value (to get | 
 |     // side-effects) and ignore the result. | 
 |     if (!isa<Expr>(S)) | 
 |       ErrorUnsupported(S, "statement"); | 
 |  | 
 |     EmitAnyExpr(cast<Expr>(S), 0, false, true); | 
 |  | 
 |     // Expression emitters don't handle unreachable blocks yet, so look for one | 
 |     // explicitly here. This handles the common case of a call to a noreturn | 
 |     // function. | 
 |     if (llvm::BasicBlock *CurBB = Builder.GetInsertBlock()) { | 
 |       if (CurBB->empty() && CurBB->use_empty()) { | 
 |         CurBB->eraseFromParent(); | 
 |         Builder.ClearInsertionPoint(); | 
 |       } | 
 |     } | 
 |     break; | 
 |   case Stmt::IndirectGotoStmtClass: | 
 |     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; | 
 |  | 
 |   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break; | 
 |   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break; | 
 |   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break; | 
 |   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break; | 
 |  | 
 |   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break; | 
 |  | 
 |   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break; | 
 |   case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break; | 
 |  | 
 |   case Stmt::ObjCAtTryStmtClass: | 
 |     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); | 
 |     break; | 
 |   case Stmt::ObjCAtCatchStmtClass: | 
 |     assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt"); | 
 |     break; | 
 |   case Stmt::ObjCAtFinallyStmtClass: | 
 |     assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt"); | 
 |     break; | 
 |   case Stmt::ObjCAtThrowStmtClass: | 
 |     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); | 
 |     break; | 
 |   case Stmt::ObjCAtSynchronizedStmtClass: | 
 |     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); | 
 |     break; | 
 |   case Stmt::ObjCForCollectionStmtClass: | 
 |     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); | 
 |     break; | 
 |        | 
 |   case Stmt::CXXTryStmtClass: | 
 |     EmitCXXTryStmt(cast<CXXTryStmt>(*S)); | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { | 
 |   switch (S->getStmtClass()) { | 
 |   default: return false; | 
 |   case Stmt::NullStmtClass: break; | 
 |   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; | 
 |   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break; | 
 |   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break; | 
 |   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break; | 
 |   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break; | 
 |   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; | 
 |   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break; | 
 |   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true, | 
 | /// this captures the expression result of the last sub-statement and returns it | 
 | /// (for use by the statement expression extension). | 
 | RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, | 
 |                                          llvm::Value *AggLoc, bool isAggVol) { | 
 |   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), | 
 |                              "LLVM IR generation of compound statement ('{}')"); | 
 |  | 
 |   CGDebugInfo *DI = getDebugInfo(); | 
 |   if (DI) { | 
 |     DI->setLocation(S.getLBracLoc()); | 
 |     DI->EmitRegionStart(CurFn, Builder); | 
 |   } | 
 |  | 
 |   // Keep track of the current cleanup stack depth. | 
 |   CleanupScope Scope(*this); | 
 |  | 
 |   for (CompoundStmt::const_body_iterator I = S.body_begin(), | 
 |        E = S.body_end()-GetLast; I != E; ++I) | 
 |     EmitStmt(*I); | 
 |  | 
 |   if (DI) { | 
 |     DI->setLocation(S.getLBracLoc()); | 
 |     DI->EmitRegionEnd(CurFn, Builder); | 
 |   } | 
 |  | 
 |   RValue RV; | 
 |   if (!GetLast) | 
 |     RV = RValue::get(0); | 
 |   else { | 
 |     // We have to special case labels here.  They are statements, but when put | 
 |     // at the end of a statement expression, they yield the value of their | 
 |     // subexpression.  Handle this by walking through all labels we encounter, | 
 |     // emitting them before we evaluate the subexpr. | 
 |     const Stmt *LastStmt = S.body_back(); | 
 |     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { | 
 |       EmitLabel(*LS); | 
 |       LastStmt = LS->getSubStmt(); | 
 |     } | 
 |  | 
 |     EnsureInsertPoint(); | 
 |  | 
 |     RV = EmitAnyExpr(cast<Expr>(LastStmt), AggLoc); | 
 |   } | 
 |  | 
 |   return RV; | 
 | } | 
 |  | 
 | void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { | 
 |   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); | 
 |  | 
 |   // If there is a cleanup stack, then we it isn't worth trying to | 
 |   // simplify this block (we would need to remove it from the scope map | 
 |   // and cleanup entry). | 
 |   if (!CleanupEntries.empty()) | 
 |     return; | 
 |  | 
 |   // Can only simplify direct branches. | 
 |   if (!BI || !BI->isUnconditional()) | 
 |     return; | 
 |  | 
 |   BB->replaceAllUsesWith(BI->getSuccessor(0)); | 
 |   BI->eraseFromParent(); | 
 |   BB->eraseFromParent(); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { | 
 |   // Fall out of the current block (if necessary). | 
 |   EmitBranch(BB); | 
 |  | 
 |   if (IsFinished && BB->use_empty()) { | 
 |     delete BB; | 
 |     return; | 
 |   } | 
 |  | 
 |   // If necessary, associate the block with the cleanup stack size. | 
 |   if (!CleanupEntries.empty()) { | 
 |     // Check if the basic block has already been inserted. | 
 |     BlockScopeMap::iterator I = BlockScopes.find(BB); | 
 |     if (I != BlockScopes.end()) { | 
 |       assert(I->second == CleanupEntries.size() - 1); | 
 |     } else { | 
 |       BlockScopes[BB] = CleanupEntries.size() - 1; | 
 |       CleanupEntries.back().Blocks.push_back(BB); | 
 |     } | 
 |   } | 
 |  | 
 |   CurFn->getBasicBlockList().push_back(BB); | 
 |   Builder.SetInsertPoint(BB); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { | 
 |   // Emit a branch from the current block to the target one if this | 
 |   // was a real block.  If this was just a fall-through block after a | 
 |   // terminator, don't emit it. | 
 |   llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); | 
 |  | 
 |   if (!CurBB || CurBB->getTerminator()) { | 
 |     // If there is no insert point or the previous block is already | 
 |     // terminated, don't touch it. | 
 |   } else { | 
 |     // Otherwise, create a fall-through branch. | 
 |     Builder.CreateBr(Target); | 
 |   } | 
 |  | 
 |   Builder.ClearInsertionPoint(); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitLabel(const LabelStmt &S) { | 
 |   EmitBlock(getBasicBlockForLabel(&S)); | 
 | } | 
 |  | 
 |  | 
 | void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { | 
 |   EmitLabel(S); | 
 |   EmitStmt(S.getSubStmt()); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { | 
 |   // If this code is reachable then emit a stop point (if generating | 
 |   // debug info). We have to do this ourselves because we are on the | 
 |   // "simple" statement path. | 
 |   if (HaveInsertPoint()) | 
 |     EmitStopPoint(&S); | 
 |  | 
 |   EmitBranchThroughCleanup(getBasicBlockForLabel(S.getLabel())); | 
 | } | 
 |  | 
 |  | 
 | void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { | 
 |   // Ensure that we have an i8* for our PHI node. | 
 |   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), | 
 |                                          llvm::Type::getInt8PtrTy(VMContext), | 
 |                                           "addr"); | 
 |   llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); | 
 |    | 
 |  | 
 |   // Get the basic block for the indirect goto. | 
 |   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); | 
 |    | 
 |   // The first instruction in the block has to be the PHI for the switch dest, | 
 |   // add an entry for this branch. | 
 |   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); | 
 |    | 
 |   EmitBranch(IndGotoBB); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitIfStmt(const IfStmt &S) { | 
 |   // C99 6.8.4.1: The first substatement is executed if the expression compares | 
 |   // unequal to 0.  The condition must be a scalar type. | 
 |   CleanupScope ConditionScope(*this); | 
 |  | 
 |   if (S.getConditionVariable()) | 
 |     EmitLocalBlockVarDecl(*S.getConditionVariable()); | 
 |  | 
 |   // If the condition constant folds and can be elided, try to avoid emitting | 
 |   // the condition and the dead arm of the if/else. | 
 |   if (int Cond = ConstantFoldsToSimpleInteger(S.getCond())) { | 
 |     // Figure out which block (then or else) is executed. | 
 |     const Stmt *Executed = S.getThen(), *Skipped  = S.getElse(); | 
 |     if (Cond == -1)  // Condition false? | 
 |       std::swap(Executed, Skipped); | 
 |  | 
 |     // If the skipped block has no labels in it, just emit the executed block. | 
 |     // This avoids emitting dead code and simplifies the CFG substantially. | 
 |     if (!ContainsLabel(Skipped)) { | 
 |       if (Executed) { | 
 |         CleanupScope ExecutedScope(*this); | 
 |         EmitStmt(Executed); | 
 |       } | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit | 
 |   // the conditional branch. | 
 |   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); | 
 |   llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); | 
 |   llvm::BasicBlock *ElseBlock = ContBlock; | 
 |   if (S.getElse()) | 
 |     ElseBlock = createBasicBlock("if.else"); | 
 |   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock); | 
 |  | 
 |   // Emit the 'then' code. | 
 |   EmitBlock(ThenBlock);  | 
 |   { | 
 |     CleanupScope ThenScope(*this); | 
 |     EmitStmt(S.getThen()); | 
 |   } | 
 |   EmitBranch(ContBlock); | 
 |  | 
 |   // Emit the 'else' code if present. | 
 |   if (const Stmt *Else = S.getElse()) { | 
 |     EmitBlock(ElseBlock); | 
 |     { | 
 |       CleanupScope ElseScope(*this); | 
 |       EmitStmt(Else); | 
 |     } | 
 |     EmitBranch(ContBlock); | 
 |   } | 
 |  | 
 |   // Emit the continuation block for code after the if. | 
 |   EmitBlock(ContBlock, true); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) { | 
 |   // Emit the header for the loop, insert it, which will create an uncond br to | 
 |   // it. | 
 |   llvm::BasicBlock *LoopHeader = createBasicBlock("while.cond"); | 
 |   EmitBlock(LoopHeader); | 
 |  | 
 |   // Create an exit block for when the condition fails, create a block for the | 
 |   // body of the loop. | 
 |   llvm::BasicBlock *ExitBlock = createBasicBlock("while.end"); | 
 |   llvm::BasicBlock *LoopBody  = createBasicBlock("while.body"); | 
 |   llvm::BasicBlock *CleanupBlock = 0; | 
 |   llvm::BasicBlock *EffectiveExitBlock = ExitBlock; | 
 |  | 
 |   // Store the blocks to use for break and continue. | 
 |   BreakContinueStack.push_back(BreakContinue(ExitBlock, LoopHeader)); | 
 |  | 
 |   // C++ [stmt.while]p2: | 
 |   //   When the condition of a while statement is a declaration, the | 
 |   //   scope of the variable that is declared extends from its point | 
 |   //   of declaration (3.3.2) to the end of the while statement. | 
 |   //   [...] | 
 |   //   The object created in a condition is destroyed and created | 
 |   //   with each iteration of the loop. | 
 |   CleanupScope ConditionScope(*this); | 
 |  | 
 |   if (S.getConditionVariable()) { | 
 |     EmitLocalBlockVarDecl(*S.getConditionVariable()); | 
 |  | 
 |     // If this condition variable requires cleanups, create a basic | 
 |     // block to handle those cleanups. | 
 |     if (ConditionScope.requiresCleanups()) { | 
 |       CleanupBlock = createBasicBlock("while.cleanup"); | 
 |       EffectiveExitBlock = CleanupBlock; | 
 |     } | 
 |   } | 
 |    | 
 |   // Evaluate the conditional in the while header.  C99 6.8.5.1: The | 
 |   // evaluation of the controlling expression takes place before each | 
 |   // execution of the loop body. | 
 |   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); | 
 |     | 
 |   // while(1) is common, avoid extra exit blocks.  Be sure | 
 |   // to correctly handle break/continue though. | 
 |   bool EmitBoolCondBranch = true; | 
 |   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) | 
 |     if (C->isOne()) | 
 |       EmitBoolCondBranch = false; | 
 |  | 
 |   // As long as the condition is true, go to the loop body. | 
 |   if (EmitBoolCondBranch) | 
 |     Builder.CreateCondBr(BoolCondVal, LoopBody, EffectiveExitBlock); | 
 |   | 
 |   // Emit the loop body. | 
 |   { | 
 |     CleanupScope BodyScope(*this); | 
 |     EmitBlock(LoopBody); | 
 |     EmitStmt(S.getBody()); | 
 |   } | 
 |  | 
 |   BreakContinueStack.pop_back(); | 
 |  | 
 |   if (CleanupBlock) { | 
 |     // If we have a cleanup block, jump there to perform cleanups | 
 |     // before looping. | 
 |     EmitBranch(CleanupBlock); | 
 |  | 
 |     // Emit the cleanup block, performing cleanups for the condition | 
 |     // and then jumping to either the loop header or the exit block. | 
 |     EmitBlock(CleanupBlock); | 
 |     ConditionScope.ForceCleanup(); | 
 |     Builder.CreateCondBr(BoolCondVal, LoopHeader, ExitBlock); | 
 |   } else { | 
 |     // Cycle to the condition. | 
 |     EmitBranch(LoopHeader); | 
 |   } | 
 |  | 
 |   // Emit the exit block. | 
 |   EmitBlock(ExitBlock, true); | 
 |  | 
 |  | 
 |   // The LoopHeader typically is just a branch if we skipped emitting | 
 |   // a branch, try to erase it. | 
 |   if (!EmitBoolCondBranch && !CleanupBlock) | 
 |     SimplifyForwardingBlocks(LoopHeader); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitDoStmt(const DoStmt &S) { | 
 |   // Emit the body for the loop, insert it, which will create an uncond br to | 
 |   // it. | 
 |   llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); | 
 |   llvm::BasicBlock *AfterDo = createBasicBlock("do.end"); | 
 |   EmitBlock(LoopBody); | 
 |  | 
 |   llvm::BasicBlock *DoCond = createBasicBlock("do.cond"); | 
 |  | 
 |   // Store the blocks to use for break and continue. | 
 |   BreakContinueStack.push_back(BreakContinue(AfterDo, DoCond)); | 
 |  | 
 |   // Emit the body of the loop into the block. | 
 |   EmitStmt(S.getBody()); | 
 |  | 
 |   BreakContinueStack.pop_back(); | 
 |  | 
 |   EmitBlock(DoCond); | 
 |  | 
 |   // C99 6.8.5.2: "The evaluation of the controlling expression takes place | 
 |   // after each execution of the loop body." | 
 |  | 
 |   // Evaluate the conditional in the while header. | 
 |   // C99 6.8.5p2/p4: The first substatement is executed if the expression | 
 |   // compares unequal to 0.  The condition must be a scalar type. | 
 |   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); | 
 |  | 
 |   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure | 
 |   // to correctly handle break/continue though. | 
 |   bool EmitBoolCondBranch = true; | 
 |   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) | 
 |     if (C->isZero()) | 
 |       EmitBoolCondBranch = false; | 
 |  | 
 |   // As long as the condition is true, iterate the loop. | 
 |   if (EmitBoolCondBranch) | 
 |     Builder.CreateCondBr(BoolCondVal, LoopBody, AfterDo); | 
 |  | 
 |   // Emit the exit block. | 
 |   EmitBlock(AfterDo); | 
 |  | 
 |   // The DoCond block typically is just a branch if we skipped | 
 |   // emitting a branch, try to erase it. | 
 |   if (!EmitBoolCondBranch) | 
 |     SimplifyForwardingBlocks(DoCond); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitForStmt(const ForStmt &S) { | 
 |   // FIXME: What do we do if the increment (f.e.) contains a stmt expression, | 
 |   // which contains a continue/break? | 
 |   CleanupScope ForScope(*this); | 
 |  | 
 |   // Evaluate the first part before the loop. | 
 |   if (S.getInit()) | 
 |     EmitStmt(S.getInit()); | 
 |  | 
 |   // Start the loop with a block that tests the condition. | 
 |   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); | 
 |   llvm::BasicBlock *AfterFor = createBasicBlock("for.end"); | 
 |   llvm::BasicBlock *IncBlock = 0; | 
 |   llvm::BasicBlock *CondCleanup = 0; | 
 |   llvm::BasicBlock *EffectiveExitBlock = AfterFor; | 
 |   EmitBlock(CondBlock); | 
 |  | 
 |   // Create a cleanup scope for the condition variable cleanups. | 
 |   CleanupScope ConditionScope(*this); | 
 |    | 
 |   llvm::Value *BoolCondVal = 0; | 
 |   if (S.getCond()) { | 
 |     // If the for statement has a condition scope, emit the local variable | 
 |     // declaration. | 
 |     if (S.getConditionVariable()) { | 
 |       EmitLocalBlockVarDecl(*S.getConditionVariable()); | 
 |        | 
 |       if (ConditionScope.requiresCleanups()) { | 
 |         CondCleanup = createBasicBlock("for.cond.cleanup"); | 
 |         EffectiveExitBlock = CondCleanup; | 
 |       } | 
 |     } | 
 |      | 
 |     // As long as the condition is true, iterate the loop. | 
 |     llvm::BasicBlock *ForBody = createBasicBlock("for.body"); | 
 |  | 
 |     // C99 6.8.5p2/p4: The first substatement is executed if the expression | 
 |     // compares unequal to 0.  The condition must be a scalar type. | 
 |     BoolCondVal = EvaluateExprAsBool(S.getCond()); | 
 |     Builder.CreateCondBr(BoolCondVal, ForBody, EffectiveExitBlock); | 
 |  | 
 |     EmitBlock(ForBody); | 
 |   } else { | 
 |     // Treat it as a non-zero constant.  Don't even create a new block for the | 
 |     // body, just fall into it. | 
 |   } | 
 |  | 
 |   // If the for loop doesn't have an increment we can just use the | 
 |   // condition as the continue block. | 
 |   llvm::BasicBlock *ContinueBlock; | 
 |   if (S.getInc()) | 
 |     ContinueBlock = IncBlock = createBasicBlock("for.inc"); | 
 |   else | 
 |     ContinueBlock = CondBlock; | 
 |  | 
 |   // Store the blocks to use for break and continue. | 
 |   BreakContinueStack.push_back(BreakContinue(AfterFor, ContinueBlock)); | 
 |  | 
 |   // If the condition is true, execute the body of the for stmt. | 
 |   CGDebugInfo *DI = getDebugInfo(); | 
 |   if (DI) { | 
 |     DI->setLocation(S.getSourceRange().getBegin()); | 
 |     DI->EmitRegionStart(CurFn, Builder); | 
 |   } | 
 |  | 
 |   { | 
 |     // Create a separate cleanup scope for the body, in case it is not | 
 |     // a compound statement. | 
 |     CleanupScope BodyScope(*this); | 
 |     EmitStmt(S.getBody()); | 
 |   } | 
 |  | 
 |   BreakContinueStack.pop_back(); | 
 |  | 
 |   // If there is an increment, emit it next. | 
 |   if (S.getInc()) { | 
 |     EmitBlock(IncBlock); | 
 |     EmitStmt(S.getInc()); | 
 |   } | 
 |  | 
 |   // Finally, branch back up to the condition for the next iteration. | 
 |   if (CondCleanup) { | 
 |     // Branch to the cleanup block. | 
 |     EmitBranch(CondCleanup); | 
 |  | 
 |     // Emit the cleanup block, which branches back to the loop body or | 
 |     // outside of the for statement once it is done. | 
 |     EmitBlock(CondCleanup); | 
 |     ConditionScope.ForceCleanup(); | 
 |     Builder.CreateCondBr(BoolCondVal, CondBlock, AfterFor); | 
 |   } else | 
 |     EmitBranch(CondBlock); | 
 |   if (DI) { | 
 |     DI->setLocation(S.getSourceRange().getEnd()); | 
 |     DI->EmitRegionEnd(CurFn, Builder); | 
 |   } | 
 |  | 
 |   // Emit the fall-through block. | 
 |   EmitBlock(AfterFor, true); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { | 
 |   if (RV.isScalar()) { | 
 |     Builder.CreateStore(RV.getScalarVal(), ReturnValue); | 
 |   } else if (RV.isAggregate()) { | 
 |     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); | 
 |   } else { | 
 |     StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false); | 
 |   } | 
 |   EmitBranchThroughCleanup(ReturnBlock); | 
 | } | 
 |  | 
 | /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand | 
 | /// if the function returns void, or may be missing one if the function returns | 
 | /// non-void.  Fun stuff :). | 
 | void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { | 
 |   // Emit the result value, even if unused, to evalute the side effects. | 
 |   const Expr *RV = S.getRetValue(); | 
 |  | 
 |   // FIXME: Clean this up by using an LValue for ReturnTemp, | 
 |   // EmitStoreThroughLValue, and EmitAnyExpr. | 
 |   if (!ReturnValue) { | 
 |     // Make sure not to return anything, but evaluate the expression | 
 |     // for side effects. | 
 |     if (RV) | 
 |       EmitAnyExpr(RV); | 
 |   } else if (RV == 0) { | 
 |     // Do nothing (return value is left uninitialized) | 
 |   } else if (FnRetTy->isReferenceType()) { | 
 |     // If this function returns a reference, take the address of the expression | 
 |     // rather than the value. | 
 |     Builder.CreateStore(EmitLValue(RV).getAddress(), ReturnValue); | 
 |   } else if (!hasAggregateLLVMType(RV->getType())) { | 
 |     Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); | 
 |   } else if (RV->getType()->isAnyComplexType()) { | 
 |     EmitComplexExprIntoAddr(RV, ReturnValue, false); | 
 |   } else { | 
 |     EmitAggExpr(RV, ReturnValue, false); | 
 |   } | 
 |  | 
 |   EmitBranchThroughCleanup(ReturnBlock); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { | 
 |   // As long as debug info is modeled with instructions, we have to ensure we | 
 |   // have a place to insert here and write the stop point here. | 
 |   if (getDebugInfo()) { | 
 |     EnsureInsertPoint(); | 
 |     EmitStopPoint(&S); | 
 |   } | 
 |  | 
 |   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end(); | 
 |        I != E; ++I) | 
 |     EmitDecl(**I); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { | 
 |   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); | 
 |  | 
 |   // If this code is reachable then emit a stop point (if generating | 
 |   // debug info). We have to do this ourselves because we are on the | 
 |   // "simple" statement path. | 
 |   if (HaveInsertPoint()) | 
 |     EmitStopPoint(&S); | 
 |  | 
 |   llvm::BasicBlock *Block = BreakContinueStack.back().BreakBlock; | 
 |   EmitBranchThroughCleanup(Block); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { | 
 |   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); | 
 |  | 
 |   // If this code is reachable then emit a stop point (if generating | 
 |   // debug info). We have to do this ourselves because we are on the | 
 |   // "simple" statement path. | 
 |   if (HaveInsertPoint()) | 
 |     EmitStopPoint(&S); | 
 |  | 
 |   llvm::BasicBlock *Block = BreakContinueStack.back().ContinueBlock; | 
 |   EmitBranchThroughCleanup(Block); | 
 | } | 
 |  | 
 | /// EmitCaseStmtRange - If case statement range is not too big then | 
 | /// add multiple cases to switch instruction, one for each value within | 
 | /// the range. If range is too big then emit "if" condition check. | 
 | void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { | 
 |   assert(S.getRHS() && "Expected RHS value in CaseStmt"); | 
 |  | 
 |   llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext()); | 
 |   llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext()); | 
 |  | 
 |   // Emit the code for this case. We do this first to make sure it is | 
 |   // properly chained from our predecessor before generating the | 
 |   // switch machinery to enter this block. | 
 |   EmitBlock(createBasicBlock("sw.bb")); | 
 |   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); | 
 |   EmitStmt(S.getSubStmt()); | 
 |  | 
 |   // If range is empty, do nothing. | 
 |   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) | 
 |     return; | 
 |  | 
 |   llvm::APInt Range = RHS - LHS; | 
 |   // FIXME: parameters such as this should not be hardcoded. | 
 |   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { | 
 |     // Range is small enough to add multiple switch instruction cases. | 
 |     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) { | 
 |       SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, LHS), CaseDest); | 
 |       LHS++; | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // The range is too big. Emit "if" condition into a new block, | 
 |   // making sure to save and restore the current insertion point. | 
 |   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); | 
 |  | 
 |   // Push this test onto the chain of range checks (which terminates | 
 |   // in the default basic block). The switch's default will be changed | 
 |   // to the top of this chain after switch emission is complete. | 
 |   llvm::BasicBlock *FalseDest = CaseRangeBlock; | 
 |   CaseRangeBlock = createBasicBlock("sw.caserange"); | 
 |  | 
 |   CurFn->getBasicBlockList().push_back(CaseRangeBlock); | 
 |   Builder.SetInsertPoint(CaseRangeBlock); | 
 |  | 
 |   // Emit range check. | 
 |   llvm::Value *Diff = | 
 |     Builder.CreateSub(SwitchInsn->getCondition(), | 
 |                       llvm::ConstantInt::get(VMContext, LHS),  "tmp"); | 
 |   llvm::Value *Cond = | 
 |     Builder.CreateICmpULE(Diff, | 
 |                           llvm::ConstantInt::get(VMContext, Range), "tmp"); | 
 |   Builder.CreateCondBr(Cond, CaseDest, FalseDest); | 
 |  | 
 |   // Restore the appropriate insertion point. | 
 |   if (RestoreBB) | 
 |     Builder.SetInsertPoint(RestoreBB); | 
 |   else | 
 |     Builder.ClearInsertionPoint(); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { | 
 |   if (S.getRHS()) { | 
 |     EmitCaseStmtRange(S); | 
 |     return; | 
 |   } | 
 |  | 
 |   EmitBlock(createBasicBlock("sw.bb")); | 
 |   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); | 
 |   llvm::APSInt CaseVal = S.getLHS()->EvaluateAsInt(getContext()); | 
 |   SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest); | 
 |  | 
 |   // Recursively emitting the statement is acceptable, but is not wonderful for | 
 |   // code where we have many case statements nested together, i.e.: | 
 |   //  case 1: | 
 |   //    case 2: | 
 |   //      case 3: etc. | 
 |   // Handling this recursively will create a new block for each case statement | 
 |   // that falls through to the next case which is IR intensive.  It also causes | 
 |   // deep recursion which can run into stack depth limitations.  Handle | 
 |   // sequential non-range case statements specially. | 
 |   const CaseStmt *CurCase = &S; | 
 |   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); | 
 |  | 
 |   // Otherwise, iteratively add consequtive cases to this switch stmt. | 
 |   while (NextCase && NextCase->getRHS() == 0) { | 
 |     CurCase = NextCase; | 
 |     CaseVal = CurCase->getLHS()->EvaluateAsInt(getContext()); | 
 |     SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest); | 
 |  | 
 |     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); | 
 |   } | 
 |  | 
 |   // Normal default recursion for non-cases. | 
 |   EmitStmt(CurCase->getSubStmt()); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { | 
 |   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); | 
 |   assert(DefaultBlock->empty() && | 
 |          "EmitDefaultStmt: Default block already defined?"); | 
 |   EmitBlock(DefaultBlock); | 
 |   EmitStmt(S.getSubStmt()); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { | 
 |   CleanupScope ConditionScope(*this); | 
 |  | 
 |   if (S.getConditionVariable()) | 
 |     EmitLocalBlockVarDecl(*S.getConditionVariable()); | 
 |  | 
 |   llvm::Value *CondV = EmitScalarExpr(S.getCond()); | 
 |  | 
 |   // Handle nested switch statements. | 
 |   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; | 
 |   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; | 
 |  | 
 |   // Create basic block to hold stuff that comes after switch | 
 |   // statement. We also need to create a default block now so that | 
 |   // explicit case ranges tests can have a place to jump to on | 
 |   // failure. | 
 |   llvm::BasicBlock *NextBlock = createBasicBlock("sw.epilog"); | 
 |   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); | 
 |   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); | 
 |   CaseRangeBlock = DefaultBlock; | 
 |  | 
 |   // Clear the insertion point to indicate we are in unreachable code. | 
 |   Builder.ClearInsertionPoint(); | 
 |  | 
 |   // All break statements jump to NextBlock. If BreakContinueStack is non empty | 
 |   // then reuse last ContinueBlock. | 
 |   llvm::BasicBlock *ContinueBlock = 0; | 
 |   if (!BreakContinueStack.empty()) | 
 |     ContinueBlock = BreakContinueStack.back().ContinueBlock; | 
 |  | 
 |   // Ensure any vlas created between there and here, are undone | 
 |   BreakContinueStack.push_back(BreakContinue(NextBlock, ContinueBlock)); | 
 |  | 
 |   // Emit switch body. | 
 |   EmitStmt(S.getBody()); | 
 |  | 
 |   BreakContinueStack.pop_back(); | 
 |  | 
 |   // Update the default block in case explicit case range tests have | 
 |   // been chained on top. | 
 |   SwitchInsn->setSuccessor(0, CaseRangeBlock); | 
 |  | 
 |   // If a default was never emitted then reroute any jumps to it and | 
 |   // discard. | 
 |   if (!DefaultBlock->getParent()) { | 
 |     DefaultBlock->replaceAllUsesWith(NextBlock); | 
 |     delete DefaultBlock; | 
 |   } | 
 |  | 
 |   // Emit continuation. | 
 |   EmitBlock(NextBlock, true); | 
 |  | 
 |   SwitchInsn = SavedSwitchInsn; | 
 |   CaseRangeBlock = SavedCRBlock; | 
 | } | 
 |  | 
 | static std::string | 
 | SimplifyConstraint(const char *Constraint, const TargetInfo &Target, | 
 |                  llvm::SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) { | 
 |   std::string Result; | 
 |  | 
 |   while (*Constraint) { | 
 |     switch (*Constraint) { | 
 |     default: | 
 |       Result += Target.convertConstraint(*Constraint); | 
 |       break; | 
 |     // Ignore these | 
 |     case '*': | 
 |     case '?': | 
 |     case '!': | 
 |       break; | 
 |     case 'g': | 
 |       Result += "imr"; | 
 |       break; | 
 |     case '[': { | 
 |       assert(OutCons && | 
 |              "Must pass output names to constraints with a symbolic name"); | 
 |       unsigned Index; | 
 |       bool result = Target.resolveSymbolicName(Constraint, | 
 |                                                &(*OutCons)[0], | 
 |                                                OutCons->size(), Index); | 
 |       assert(result && "Could not resolve symbolic name"); result=result; | 
 |       Result += llvm::utostr(Index); | 
 |       break; | 
 |     } | 
 |     } | 
 |  | 
 |     Constraint++; | 
 |   } | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S, | 
 |                                          const TargetInfo::ConstraintInfo &Info, | 
 |                                            const Expr *InputExpr, | 
 |                                            std::string &ConstraintStr) { | 
 |   llvm::Value *Arg; | 
 |   if (Info.allowsRegister() || !Info.allowsMemory()) { | 
 |     const llvm::Type *Ty = ConvertType(InputExpr->getType()); | 
 |  | 
 |     if (Ty->isSingleValueType()) { | 
 |       Arg = EmitScalarExpr(InputExpr); | 
 |     } else { | 
 |       InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); | 
 |       LValue Dest = EmitLValue(InputExpr); | 
 |  | 
 |       uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty); | 
 |       if (Size <= 64 && llvm::isPowerOf2_64(Size)) { | 
 |         Ty = llvm::IntegerType::get(VMContext, Size); | 
 |         Ty = llvm::PointerType::getUnqual(Ty); | 
 |  | 
 |         Arg = Builder.CreateLoad(Builder.CreateBitCast(Dest.getAddress(), Ty)); | 
 |       } else { | 
 |         Arg = Dest.getAddress(); | 
 |         ConstraintStr += '*'; | 
 |       } | 
 |     } | 
 |   } else { | 
 |     InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); | 
 |     LValue Dest = EmitLValue(InputExpr); | 
 |     Arg = Dest.getAddress(); | 
 |     ConstraintStr += '*'; | 
 |   } | 
 |  | 
 |   return Arg; | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { | 
 |   // Analyze the asm string to decompose it into its pieces.  We know that Sema | 
 |   // has already done this, so it is guaranteed to be successful. | 
 |   llvm::SmallVector<AsmStmt::AsmStringPiece, 4> Pieces; | 
 |   unsigned DiagOffs; | 
 |   S.AnalyzeAsmString(Pieces, getContext(), DiagOffs); | 
 |  | 
 |   // Assemble the pieces into the final asm string. | 
 |   std::string AsmString; | 
 |   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { | 
 |     if (Pieces[i].isString()) | 
 |       AsmString += Pieces[i].getString(); | 
 |     else if (Pieces[i].getModifier() == '\0') | 
 |       AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo()); | 
 |     else | 
 |       AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' + | 
 |                    Pieces[i].getModifier() + '}'; | 
 |   } | 
 |  | 
 |   // Get all the output and input constraints together. | 
 |   llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; | 
 |   llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; | 
 |  | 
 |   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { | 
 |     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), | 
 |                                     S.getOutputName(i)); | 
 |     bool result = Target.validateOutputConstraint(Info); | 
 |     assert(result && "Failed to parse output constraint"); result=result; | 
 |     OutputConstraintInfos.push_back(Info); | 
 |   } | 
 |  | 
 |   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { | 
 |     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), | 
 |                                     S.getInputName(i)); | 
 |     bool result = Target.validateInputConstraint(OutputConstraintInfos.data(), | 
 |                                                  S.getNumOutputs(), | 
 |                                                  Info); result=result; | 
 |     assert(result && "Failed to parse input constraint"); | 
 |     InputConstraintInfos.push_back(Info); | 
 |   } | 
 |  | 
 |   std::string Constraints; | 
 |  | 
 |   std::vector<LValue> ResultRegDests; | 
 |   std::vector<QualType> ResultRegQualTys; | 
 |   std::vector<const llvm::Type *> ResultRegTypes; | 
 |   std::vector<const llvm::Type *> ResultTruncRegTypes; | 
 |   std::vector<const llvm::Type*> ArgTypes; | 
 |   std::vector<llvm::Value*> Args; | 
 |  | 
 |   // Keep track of inout constraints. | 
 |   std::string InOutConstraints; | 
 |   std::vector<llvm::Value*> InOutArgs; | 
 |   std::vector<const llvm::Type*> InOutArgTypes; | 
 |  | 
 |   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { | 
 |     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; | 
 |  | 
 |     // Simplify the output constraint. | 
 |     std::string OutputConstraint(S.getOutputConstraint(i)); | 
 |     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target); | 
 |  | 
 |     const Expr *OutExpr = S.getOutputExpr(i); | 
 |     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); | 
 |  | 
 |     LValue Dest = EmitLValue(OutExpr); | 
 |     if (!Constraints.empty()) | 
 |       Constraints += ','; | 
 |  | 
 |     // If this is a register output, then make the inline asm return it | 
 |     // by-value.  If this is a memory result, return the value by-reference. | 
 |     if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) { | 
 |       Constraints += "=" + OutputConstraint; | 
 |       ResultRegQualTys.push_back(OutExpr->getType()); | 
 |       ResultRegDests.push_back(Dest); | 
 |       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); | 
 |       ResultTruncRegTypes.push_back(ResultRegTypes.back()); | 
 |  | 
 |       // If this output is tied to an input, and if the input is larger, then | 
 |       // we need to set the actual result type of the inline asm node to be the | 
 |       // same as the input type. | 
 |       if (Info.hasMatchingInput()) { | 
 |         unsigned InputNo; | 
 |         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { | 
 |           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; | 
 |           if (Input.hasTiedOperand() && | 
 |               Input.getTiedOperand() == i) | 
 |             break; | 
 |         } | 
 |         assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); | 
 |  | 
 |         QualType InputTy = S.getInputExpr(InputNo)->getType(); | 
 |         QualType OutputTy = OutExpr->getType(); | 
 |  | 
 |         uint64_t InputSize = getContext().getTypeSize(InputTy); | 
 |         if (getContext().getTypeSize(OutputTy) < InputSize) { | 
 |           // Form the asm to return the value as a larger integer type. | 
 |           ResultRegTypes.back() = llvm::IntegerType::get(VMContext, (unsigned)InputSize); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       ArgTypes.push_back(Dest.getAddress()->getType()); | 
 |       Args.push_back(Dest.getAddress()); | 
 |       Constraints += "=*"; | 
 |       Constraints += OutputConstraint; | 
 |     } | 
 |  | 
 |     if (Info.isReadWrite()) { | 
 |       InOutConstraints += ','; | 
 |  | 
 |       const Expr *InputExpr = S.getOutputExpr(i); | 
 |       llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, InOutConstraints); | 
 |  | 
 |       if (Info.allowsRegister()) | 
 |         InOutConstraints += llvm::utostr(i); | 
 |       else | 
 |         InOutConstraints += OutputConstraint; | 
 |  | 
 |       InOutArgTypes.push_back(Arg->getType()); | 
 |       InOutArgs.push_back(Arg); | 
 |     } | 
 |   } | 
 |  | 
 |   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); | 
 |  | 
 |   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { | 
 |     const Expr *InputExpr = S.getInputExpr(i); | 
 |  | 
 |     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; | 
 |  | 
 |     if (!Constraints.empty()) | 
 |       Constraints += ','; | 
 |  | 
 |     // Simplify the input constraint. | 
 |     std::string InputConstraint(S.getInputConstraint(i)); | 
 |     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target, | 
 |                                          &OutputConstraintInfos); | 
 |  | 
 |     llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints); | 
 |  | 
 |     // If this input argument is tied to a larger output result, extend the | 
 |     // input to be the same size as the output.  The LLVM backend wants to see | 
 |     // the input and output of a matching constraint be the same size.  Note | 
 |     // that GCC does not define what the top bits are here.  We use zext because | 
 |     // that is usually cheaper, but LLVM IR should really get an anyext someday. | 
 |     if (Info.hasTiedOperand()) { | 
 |       unsigned Output = Info.getTiedOperand(); | 
 |       QualType OutputTy = S.getOutputExpr(Output)->getType(); | 
 |       QualType InputTy = InputExpr->getType(); | 
 |  | 
 |       if (getContext().getTypeSize(OutputTy) > | 
 |           getContext().getTypeSize(InputTy)) { | 
 |         // Use ptrtoint as appropriate so that we can do our extension. | 
 |         if (isa<llvm::PointerType>(Arg->getType())) | 
 |           Arg = Builder.CreatePtrToInt(Arg, | 
 |                                       llvm::IntegerType::get(VMContext, LLVMPointerWidth)); | 
 |         unsigned OutputSize = (unsigned)getContext().getTypeSize(OutputTy); | 
 |         Arg = Builder.CreateZExt(Arg, llvm::IntegerType::get(VMContext, OutputSize)); | 
 |       } | 
 |     } | 
 |  | 
 |  | 
 |     ArgTypes.push_back(Arg->getType()); | 
 |     Args.push_back(Arg); | 
 |     Constraints += InputConstraint; | 
 |   } | 
 |  | 
 |   // Append the "input" part of inout constraints last. | 
 |   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { | 
 |     ArgTypes.push_back(InOutArgTypes[i]); | 
 |     Args.push_back(InOutArgs[i]); | 
 |   } | 
 |   Constraints += InOutConstraints; | 
 |  | 
 |   // Clobbers | 
 |   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { | 
 |     std::string Clobber(S.getClobber(i)->getStrData(), | 
 |                         S.getClobber(i)->getByteLength()); | 
 |  | 
 |     Clobber = Target.getNormalizedGCCRegisterName(Clobber.c_str()); | 
 |  | 
 |     if (i != 0 || NumConstraints != 0) | 
 |       Constraints += ','; | 
 |  | 
 |     Constraints += "~{"; | 
 |     Constraints += Clobber; | 
 |     Constraints += '}'; | 
 |   } | 
 |  | 
 |   // Add machine specific clobbers | 
 |   std::string MachineClobbers = Target.getClobbers(); | 
 |   if (!MachineClobbers.empty()) { | 
 |     if (!Constraints.empty()) | 
 |       Constraints += ','; | 
 |     Constraints += MachineClobbers; | 
 |   } | 
 |  | 
 |   const llvm::Type *ResultType; | 
 |   if (ResultRegTypes.empty()) | 
 |     ResultType = llvm::Type::getVoidTy(VMContext); | 
 |   else if (ResultRegTypes.size() == 1) | 
 |     ResultType = ResultRegTypes[0]; | 
 |   else | 
 |     ResultType = llvm::StructType::get(VMContext, ResultRegTypes); | 
 |  | 
 |   const llvm::FunctionType *FTy = | 
 |     llvm::FunctionType::get(ResultType, ArgTypes, false); | 
 |  | 
 |   llvm::InlineAsm *IA = | 
 |     llvm::InlineAsm::get(FTy, AsmString, Constraints, | 
 |                          S.isVolatile() || S.getNumOutputs() == 0); | 
 |   llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end()); | 
 |   Result->addAttribute(~0, llvm::Attribute::NoUnwind); | 
 |  | 
 |  | 
 |   // Extract all of the register value results from the asm. | 
 |   std::vector<llvm::Value*> RegResults; | 
 |   if (ResultRegTypes.size() == 1) { | 
 |     RegResults.push_back(Result); | 
 |   } else { | 
 |     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { | 
 |       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); | 
 |       RegResults.push_back(Tmp); | 
 |     } | 
 |   } | 
 |  | 
 |   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { | 
 |     llvm::Value *Tmp = RegResults[i]; | 
 |  | 
 |     // If the result type of the LLVM IR asm doesn't match the result type of | 
 |     // the expression, do the conversion. | 
 |     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { | 
 |       const llvm::Type *TruncTy = ResultTruncRegTypes[i]; | 
 |       // Truncate the integer result to the right size, note that | 
 |       // ResultTruncRegTypes can be a pointer. | 
 |       uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy); | 
 |       Tmp = Builder.CreateTrunc(Tmp, llvm::IntegerType::get(VMContext, (unsigned)ResSize)); | 
 |  | 
 |       if (Tmp->getType() != TruncTy) { | 
 |         assert(isa<llvm::PointerType>(TruncTy)); | 
 |         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); | 
 |       } | 
 |     } | 
 |  | 
 |     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i], | 
 |                            ResultRegQualTys[i]); | 
 |   } | 
 | } |