blob: cc30af0aba4bd55d69b4f071be8f7b340fb64049 [file] [log] [blame]
// RUN: %clang_cc1 %s -O1 -triple=x86_64-apple-darwin10 -emit-llvm -o - | FileCheck %s
// CHECK: @_ZN7PR100011xE = global
// CHECK-NOT: @_ZN7PR100014kBarE = external global i32
//
// CHECK-NOT: @_ZTVN5test118stdio_sync_filebufIwEE = constant
// CHECK-NOT: _ZTVN5test315basic_fstreamXXIcEE
// CHECK: @_ZTVN5test018stdio_sync_filebufIwEE = unnamed_addr constant
// CHECK: @_ZN7PR100011SIiE3arrE = weak_odr global [3 x i32]
// CHECK-NOT: @_ZN7PR100011SIiE3arr2E = weak_odr global [3 x i32]A
// CHECK-NOT: _ZTVN5test31SIiEE
// CHECK-NOT: _ZTSN5test31SIiEE
// CHECK: define linkonce_odr void @_ZN5test21CIiEC1Ev(%"class.test2::C"* nocapture %this) unnamed_addr
// CHECK: define linkonce_odr void @_ZN5test21CIiE6foobarIdEEvT_(
// CHECK: define available_externally void @_ZN5test21CIiE6zedbarEd(
namespace test0 {
struct basic_streambuf {
virtual ~basic_streambuf();
};
template<typename _CharT >
struct stdio_sync_filebuf : public basic_streambuf {
virtual void xsgetn();
};
// This specialization should cause the vtable to be emitted, even with
// the following extern template declaration.
template<> void stdio_sync_filebuf<wchar_t>::xsgetn() {
}
extern template class stdio_sync_filebuf<wchar_t>;
}
namespace test1 {
struct basic_streambuf {
virtual ~basic_streambuf();
};
template<typename _CharT >
struct stdio_sync_filebuf : public basic_streambuf {
virtual void xsgetn();
};
// Just a declaration should not force the vtable to be emitted.
template<> void stdio_sync_filebuf<wchar_t>::xsgetn();
}
namespace test2 {
template<typename T1>
class C {
public:
virtual ~C();
void zedbar(double) {
}
template<typename T2>
void foobar(T2 foo) {
}
};
extern template class C<int>;
void g() {
// The extern template declaration should not prevent us from producing
// the implicit constructor (test at the top).
C<int> a;
// or foobar(test at the top).
a.foobar(0.0);
// But it should prevent zebbar
// (test at the top).
a.zedbar(0.0);
}
}
namespace test3 {
template<typename T>
class basic_fstreamXX {
virtual void foo(){}
virtual void is_open() const { }
};
extern template class basic_fstreamXX<char>;
// This template instantiation should not cause us to produce a vtable.
// (test at the top).
template void basic_fstreamXX<char>::is_open() const;
}
namespace test3 {
template <typename T>
struct S {
virtual void m();
};
template<typename T>
void S<T>::m() { }
// Should not cause us to produce vtable because template instantiations
// don't have key functions.
template void S<int>::m();
}
namespace test4 {
template <class T> struct A { static void foo(); };
class B {
template <class T> friend void A<T>::foo();
B();
};
template <class T> void A<T>::foo() {
B b;
}
unsigned test() {
A<int>::foo();
}
}
namespace PR8505 {
// Hits an assertion due to bogus instantiation of class B.
template <int i> class A {
class B* g;
};
class B {
void f () {}
};
// Should not instantiate class B since it is introduced in namespace scope.
// CHECK-NOT: _ZN6PR85051AILi0EE1B1fEv
template class A<0>;
}
// Ensure that when instantiating initializers for static data members to
// complete their type in an unevaluated context, we *do* emit initializers with
// side-effects, but *don't* emit initializers and variables which are otherwise
// unused in the program.
namespace PR10001 {
template <typename T> struct S {
static const int arr[];
static const int arr2[];
static const int x, y;
static int f();
};
extern int foo();
extern int kBar;
template <typename T> const int S<T>::arr[] = { 1, 2, foo() }; // possible side effects
template <typename T> const int S<T>::arr2[] = { 1, 2, kBar }; // no side effects
template <typename T> const int S<T>::x = sizeof(arr) / sizeof(arr[0]);
template <typename T> const int S<T>::y = sizeof(arr2) / sizeof(arr2[0]);
template <typename T> int S<T>::f() { return x + y; }
int x = S<int>::f();
}