| //=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | //  This file defines a meta-engine for path-sensitive dataflow analysis that | 
 | //  is built on GREngine, but provides the boilerplate to execute transfer | 
 | //  functions and build the ExplodedGraph at the expression level. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/Analysis/PathSensitive/GRExprEngine.h" | 
 | #include "clang/Analysis/PathSensitive/GRExprEngineBuilders.h" | 
 |  | 
 | #include "clang/Analysis/PathSensitive/BugReporter.h" | 
 | #include "clang/Basic/SourceManager.h" | 
 | #include "llvm/Support/Streams.h" | 
 | #include "llvm/ADT/ImmutableList.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 |  | 
 | #ifndef NDEBUG | 
 | #include "llvm/Support/GraphWriter.h" | 
 | #include <sstream> | 
 | #endif | 
 |  | 
 | using namespace clang; | 
 | using llvm::dyn_cast; | 
 | using llvm::cast; | 
 | using llvm::APSInt; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Engine construction and deletion. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | namespace { | 
 |  | 
 | class VISIBILITY_HIDDEN MappedBatchAuditor : public GRSimpleAPICheck { | 
 |   typedef llvm::ImmutableList<GRSimpleAPICheck*> Checks; | 
 |   typedef llvm::DenseMap<void*,Checks> MapTy; | 
 |    | 
 |   MapTy M; | 
 |   Checks::Factory F; | 
 |  | 
 | public: | 
 |   MappedBatchAuditor(llvm::BumpPtrAllocator& Alloc) : F(Alloc) {} | 
 |    | 
 |   virtual ~MappedBatchAuditor() { | 
 |     llvm::DenseSet<GRSimpleAPICheck*> AlreadyVisited; | 
 |      | 
 |     for (MapTy::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI) | 
 |       for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E;++I){ | 
 |  | 
 |         GRSimpleAPICheck* check = *I; | 
 |          | 
 |         if (AlreadyVisited.count(check)) | 
 |           continue; | 
 |          | 
 |         AlreadyVisited.insert(check); | 
 |         delete check; | 
 |       } | 
 |   } | 
 |  | 
 |   void AddCheck(GRSimpleAPICheck* A, Stmt::StmtClass C) { | 
 |     assert (A && "Check cannot be null."); | 
 |     void* key = reinterpret_cast<void*>((uintptr_t) C); | 
 |     MapTy::iterator I = M.find(key); | 
 |     M[key] = F.Concat(A, I == M.end() ? F.GetEmptyList() : I->second); | 
 |   } | 
 |  | 
 |   virtual bool Audit(NodeTy* N, GRStateManager& VMgr) { | 
 |     Stmt* S = cast<PostStmt>(N->getLocation()).getStmt(); | 
 |     void* key = reinterpret_cast<void*>((uintptr_t) S->getStmtClass()); | 
 |     MapTy::iterator MI = M.find(key); | 
 |  | 
 |     if (MI == M.end()) | 
 |       return false; | 
 |      | 
 |     bool isSink = false; | 
 |      | 
 |     for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E; ++I) | 
 |       isSink |= (*I)->Audit(N, VMgr); | 
 |  | 
 |     return isSink;     | 
 |   } | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Engine construction and deletion. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) { | 
 |   IdentifierInfo* II = &Ctx.Idents.get(name); | 
 |   return Ctx.Selectors.getSelector(0, &II); | 
 | } | 
 |  | 
 |  | 
 | GRExprEngine::GRExprEngine(CFG& cfg, Decl& CD, ASTContext& Ctx, | 
 |                            LiveVariables& L, BugReporterData& BRD, | 
 |                            bool purgeDead, bool eagerlyAssume, | 
 |                            StoreManagerCreator SMC, | 
 |                            ConstraintManagerCreator CMC) | 
 |   : CoreEngine(cfg, CD, Ctx, *this),  | 
 |     G(CoreEngine.getGraph()), | 
 |     Liveness(L), | 
 |     Builder(NULL), | 
 |     StateMgr(G.getContext(), SMC, CMC, G.getAllocator(), cfg, CD, L), | 
 |     SymMgr(StateMgr.getSymbolManager()), | 
 |     CurrentStmt(NULL), | 
 |     NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL), | 
 |     RaiseSel(GetNullarySelector("raise", G.getContext())),  | 
 |     PurgeDead(purgeDead), | 
 |     BR(BRD, *this), | 
 |     EagerlyAssume(eagerlyAssume) {} | 
 |  | 
 | GRExprEngine::~GRExprEngine() {     | 
 |   BR.FlushReports(); | 
 |   delete [] NSExceptionInstanceRaiseSelectors; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Utility methods. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 |  | 
 | void GRExprEngine::setTransferFunctions(GRTransferFuncs* tf) { | 
 |   StateMgr.TF = tf; | 
 |   tf->RegisterChecks(getBugReporter()); | 
 |   tf->RegisterPrinters(getStateManager().Printers); | 
 | } | 
 |  | 
 | void GRExprEngine::AddCheck(GRSimpleAPICheck* A, Stmt::StmtClass C) { | 
 |   if (!BatchAuditor) | 
 |     BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator())); | 
 |    | 
 |   ((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A, C); | 
 | } | 
 |  | 
 | const GRState* GRExprEngine::getInitialState() { | 
 |   return StateMgr.getInitialState(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Top-level transfer function logic (Dispatcher). | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) { | 
 |    | 
 |   Builder = &builder; | 
 |   EntryNode = builder.getLastNode(); | 
 |    | 
 |   // FIXME: Consolidate. | 
 |   CurrentStmt = S; | 
 |   StateMgr.CurrentStmt = S; | 
 |    | 
 |   // Set up our simple checks. | 
 |   if (BatchAuditor) | 
 |     Builder->setAuditor(BatchAuditor.get()); | 
 |      | 
 |   // Create the cleaned state.   | 
 |   SymbolReaper SymReaper(Liveness, SymMgr);   | 
 |   CleanedState = PurgeDead ? StateMgr.RemoveDeadBindings(EntryNode->getState(),  | 
 |                                                          CurrentStmt, SymReaper) | 
 |                            : EntryNode->getState(); | 
 |  | 
 |   // Process any special transfer function for dead symbols. | 
 |   NodeSet Tmp; | 
 |    | 
 |   if (!SymReaper.hasDeadSymbols()) | 
 |     Tmp.Add(EntryNode); | 
 |   else { | 
 |     SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
 |     SaveOr OldHasGen(Builder->HasGeneratedNode); | 
 |  | 
 |     SaveAndRestore<bool> OldPurgeDeadSymbols(Builder->PurgingDeadSymbols); | 
 |     Builder->PurgingDeadSymbols = true; | 
 |      | 
 |     getTF().EvalDeadSymbols(Tmp, *this, *Builder, EntryNode, S,  | 
 |                             CleanedState, SymReaper); | 
 |  | 
 |     if (!Builder->BuildSinks && !Builder->HasGeneratedNode) | 
 |       Tmp.Add(EntryNode); | 
 |   } | 
 |    | 
 |   bool HasAutoGenerated = false; | 
 |  | 
 |   for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
 |  | 
 |     NodeSet Dst; | 
 |      | 
 |     // Set the cleaned state.   | 
 |     Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I)); | 
 |      | 
 |     // Visit the statement.   | 
 |     Visit(S, *I, Dst); | 
 |  | 
 |     // Do we need to auto-generate a node?  We only need to do this to generate | 
 |     // a node with a "cleaned" state; GRCoreEngine will actually handle | 
 |     // auto-transitions for other cases.     | 
 |     if (Dst.size() == 1 && *Dst.begin() == EntryNode | 
 |         && !Builder->HasGeneratedNode && !HasAutoGenerated) { | 
 |       HasAutoGenerated = true; | 
 |       builder.generateNode(S, GetState(EntryNode), *I); | 
 |     } | 
 |   } | 
 |    | 
 |   // NULL out these variables to cleanup. | 
 |   CleanedState = NULL; | 
 |   EntryNode = NULL; | 
 |  | 
 |   // FIXME: Consolidate. | 
 |   StateMgr.CurrentStmt = 0; | 
 |   CurrentStmt = 0; | 
 |    | 
 |   Builder = NULL; | 
 | } | 
 |  | 
 | void GRExprEngine::Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst) { | 
 |    | 
 |   // FIXME: add metadata to the CFG so that we can disable | 
 |   //  this check when we KNOW that there is no block-level subexpression. | 
 |   //  The motivation is that this check requires a hashtable lookup. | 
 |    | 
 |   if (S != CurrentStmt && getCFG().isBlkExpr(S)) { | 
 |     Dst.Add(Pred); | 
 |     return; | 
 |   } | 
 |    | 
 |   switch (S->getStmtClass()) { | 
 |        | 
 |     default: | 
 |       // Cases we intentionally have "default" handle: | 
 |       //   AddrLabelExpr, IntegerLiteral, CharacterLiteral | 
 |        | 
 |       Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. | 
 |       break; | 
 |      | 
 |     case Stmt::ArraySubscriptExprClass: | 
 |       VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst, false); | 
 |       break; | 
 |        | 
 |     case Stmt::AsmStmtClass: | 
 |       VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::BinaryOperatorClass: { | 
 |       BinaryOperator* B = cast<BinaryOperator>(S); | 
 |        | 
 |       if (B->isLogicalOp()) { | 
 |         VisitLogicalExpr(B, Pred, Dst); | 
 |         break; | 
 |       } | 
 |       else if (B->getOpcode() == BinaryOperator::Comma) { | 
 |         const GRState* state = GetState(Pred); | 
 |         MakeNode(Dst, B, Pred, BindExpr(state, B, GetSVal(state, B->getRHS()))); | 
 |         break; | 
 |       } | 
 |  | 
 |       if (EagerlyAssume && (B->isRelationalOp() || B->isEqualityOp())) { | 
 |         NodeSet Tmp; | 
 |         VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp); | 
 |         EvalEagerlyAssume(Dst, Tmp, cast<Expr>(S));         | 
 |       } | 
 |       else | 
 |         VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); | 
 |  | 
 |       break; | 
 |     } | 
 |  | 
 |     case Stmt::CallExprClass: | 
 |     case Stmt::CXXOperatorCallExprClass: { | 
 |       CallExpr* C = cast<CallExpr>(S); | 
 |       VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst); | 
 |       break; | 
 |     } | 
 |  | 
 |       // FIXME: ChooseExpr is really a constant.  We need to fix | 
 |       //        the CFG do not model them as explicit control-flow. | 
 |        | 
 |     case Stmt::ChooseExprClass: { // __builtin_choose_expr | 
 |       ChooseExpr* C = cast<ChooseExpr>(S); | 
 |       VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); | 
 |       break; | 
 |     } | 
 |        | 
 |     case Stmt::CompoundAssignOperatorClass: | 
 |       VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); | 
 |       break; | 
 |  | 
 |     case Stmt::CompoundLiteralExprClass: | 
 |       VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst, false); | 
 |       break; | 
 |        | 
 |     case Stmt::ConditionalOperatorClass: { // '?' operator | 
 |       ConditionalOperator* C = cast<ConditionalOperator>(S); | 
 |       VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); | 
 |       break; | 
 |     } | 
 |        | 
 |     case Stmt::DeclRefExprClass: | 
 |     case Stmt::QualifiedDeclRefExprClass: | 
 |       VisitDeclRefExpr(cast<DeclRefExpr>(S), Pred, Dst, false); | 
 |       break; | 
 |        | 
 |     case Stmt::DeclStmtClass: | 
 |       VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::ImplicitCastExprClass: | 
 |     case Stmt::CStyleCastExprClass: { | 
 |       CastExpr* C = cast<CastExpr>(S); | 
 |       VisitCast(C, C->getSubExpr(), Pred, Dst); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Stmt::InitListExprClass: | 
 |       VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::MemberExprClass: | 
 |       VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst, false); | 
 |       break; | 
 |        | 
 |     case Stmt::ObjCIvarRefExprClass: | 
 |       VisitObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst, false); | 
 |       break; | 
 |  | 
 |     case Stmt::ObjCForCollectionStmtClass: | 
 |       VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::ObjCMessageExprClass: { | 
 |       VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst); | 
 |       break; | 
 |     } | 
 |        | 
 |     case Stmt::ObjCAtThrowStmtClass: { | 
 |       // FIXME: This is not complete.  We basically treat @throw as | 
 |       // an abort. | 
 |       SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
 |       Builder->BuildSinks = true; | 
 |       MakeNode(Dst, S, Pred, GetState(Pred)); | 
 |       break; | 
 |     } | 
 |        | 
 |     case Stmt::ParenExprClass: | 
 |       Visit(cast<ParenExpr>(S)->getSubExpr()->IgnoreParens(), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::ReturnStmtClass: | 
 |       VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::SizeOfAlignOfExprClass: | 
 |       VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::StmtExprClass: { | 
 |       StmtExpr* SE = cast<StmtExpr>(S); | 
 |  | 
 |       if (SE->getSubStmt()->body_empty()) { | 
 |         // Empty statement expression. | 
 |         assert(SE->getType() == getContext().VoidTy | 
 |                && "Empty statement expression must have void type."); | 
 |         Dst.Add(Pred); | 
 |         break; | 
 |       } | 
 |                 | 
 |       if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) { | 
 |         const GRState* state = GetState(Pred); | 
 |         MakeNode(Dst, SE, Pred, BindExpr(state, SE, GetSVal(state, LastExpr))); | 
 |       } | 
 |       else | 
 |         Dst.Add(Pred); | 
 |        | 
 |       break; | 
 |     } | 
 |  | 
 |     case Stmt::StringLiteralClass: | 
 |       VisitLValue(cast<StringLiteral>(S), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::UnaryOperatorClass: | 
 |       VisitUnaryOperator(cast<UnaryOperator>(S), Pred, Dst, false); | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 | void GRExprEngine::VisitLValue(Expr* Ex, NodeTy* Pred, NodeSet& Dst) { | 
 |    | 
 |   Ex = Ex->IgnoreParens(); | 
 |    | 
 |   if (Ex != CurrentStmt && getCFG().isBlkExpr(Ex)) { | 
 |     Dst.Add(Pred); | 
 |     return; | 
 |   } | 
 |    | 
 |   switch (Ex->getStmtClass()) { | 
 |        | 
 |     case Stmt::ArraySubscriptExprClass: | 
 |       VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(Ex), Pred, Dst, true); | 
 |       return; | 
 |        | 
 |     case Stmt::DeclRefExprClass: | 
 |     case Stmt::QualifiedDeclRefExprClass: | 
 |       VisitDeclRefExpr(cast<DeclRefExpr>(Ex), Pred, Dst, true); | 
 |       return; | 
 |        | 
 |     case Stmt::ObjCIvarRefExprClass: | 
 |       VisitObjCIvarRefExpr(cast<ObjCIvarRefExpr>(Ex), Pred, Dst, true); | 
 |       return; | 
 |        | 
 |     case Stmt::UnaryOperatorClass: | 
 |       VisitUnaryOperator(cast<UnaryOperator>(Ex), Pred, Dst, true); | 
 |       return; | 
 |        | 
 |     case Stmt::MemberExprClass: | 
 |       VisitMemberExpr(cast<MemberExpr>(Ex), Pred, Dst, true); | 
 |       return; | 
 |        | 
 |     case Stmt::CompoundLiteralExprClass: | 
 |       VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(Ex), Pred, Dst, true); | 
 |       return; | 
 |        | 
 |     case Stmt::ObjCPropertyRefExprClass: | 
 |       // FIXME: Property assignments are lvalues, but not really "locations". | 
 |       //  e.g.:  self.x = something; | 
 |       //  Here the "self.x" really can translate to a method call (setter) when | 
 |       //  the assignment is made.  Moreover, the entire assignment expression | 
 |       //  evaluate to whatever "something" is, not calling the "getter" for | 
 |       //  the property (which would make sense since it can have side effects). | 
 |       //  We'll probably treat this as a location, but not one that we can | 
 |       //  take the address of.  Perhaps we need a new SVal class for cases | 
 |       //  like thsis? | 
 |       //  Note that we have a similar problem for bitfields, since they don't | 
 |       //  have "locations" in the sense that we can take their address. | 
 |       Dst.Add(Pred); | 
 |       return; | 
 |  | 
 |     case Stmt::StringLiteralClass: { | 
 |       const GRState* state = GetState(Pred); | 
 |       SVal V = StateMgr.GetLValue(state, cast<StringLiteral>(Ex)); | 
 |       MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V)); | 
 |       return; | 
 |     } | 
 |        | 
 |     default: | 
 |       // Arbitrary subexpressions can return aggregate temporaries that | 
 |       // can be used in a lvalue context.  We need to enhance our support | 
 |       // of such temporaries in both the environment and the store, so right | 
 |       // now we just do a regular visit. | 
 |       assert ((Ex->getType()->isAggregateType()) && | 
 |               "Other kinds of expressions with non-aggregate/union types do" | 
 |               " not have lvalues."); | 
 |        | 
 |       Visit(Ex, Pred, Dst); | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Block entrance.  (Update counters). | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | bool GRExprEngine::ProcessBlockEntrance(CFGBlock* B, const GRState*, | 
 |                                         GRBlockCounter BC) { | 
 |    | 
 |   return BC.getNumVisited(B->getBlockID()) < 3; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Branch processing. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | const GRState* GRExprEngine::MarkBranch(const GRState* state, | 
 |                                            Stmt* Terminator, | 
 |                                            bool branchTaken) { | 
 |    | 
 |   switch (Terminator->getStmtClass()) { | 
 |     default: | 
 |       return state; | 
 |        | 
 |     case Stmt::BinaryOperatorClass: { // '&&' and '||' | 
 |        | 
 |       BinaryOperator* B = cast<BinaryOperator>(Terminator); | 
 |       BinaryOperator::Opcode Op = B->getOpcode(); | 
 |        | 
 |       assert (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr); | 
 |        | 
 |       // For &&, if we take the true branch, then the value of the whole | 
 |       // expression is that of the RHS expression. | 
 |       // | 
 |       // For ||, if we take the false branch, then the value of the whole | 
 |       // expression is that of the RHS expression. | 
 |        | 
 |       Expr* Ex = (Op == BinaryOperator::LAnd && branchTaken) || | 
 |                  (Op == BinaryOperator::LOr && !branchTaken)   | 
 |                ? B->getRHS() : B->getLHS(); | 
 |          | 
 |       return BindBlkExpr(state, B, UndefinedVal(Ex)); | 
 |     } | 
 |        | 
 |     case Stmt::ConditionalOperatorClass: { // ?: | 
 |        | 
 |       ConditionalOperator* C = cast<ConditionalOperator>(Terminator); | 
 |        | 
 |       // For ?, if branchTaken == true then the value is either the LHS or | 
 |       // the condition itself. (GNU extension). | 
 |        | 
 |       Expr* Ex;       | 
 |        | 
 |       if (branchTaken) | 
 |         Ex = C->getLHS() ? C->getLHS() : C->getCond();         | 
 |       else | 
 |         Ex = C->getRHS(); | 
 |        | 
 |       return BindBlkExpr(state, C, UndefinedVal(Ex)); | 
 |     } | 
 |        | 
 |     case Stmt::ChooseExprClass: { // ?: | 
 |        | 
 |       ChooseExpr* C = cast<ChooseExpr>(Terminator); | 
 |        | 
 |       Expr* Ex = branchTaken ? C->getLHS() : C->getRHS();       | 
 |       return BindBlkExpr(state, C, UndefinedVal(Ex)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void GRExprEngine::ProcessBranch(Stmt* Condition, Stmt* Term, | 
 |                                  BranchNodeBuilder& builder) { | 
 |  | 
 |   // Remove old bindings for subexpressions. | 
 |   const GRState* PrevState = | 
 |     StateMgr.RemoveSubExprBindings(builder.getState()); | 
 |    | 
 |   // Check for NULL conditions; e.g. "for(;;)" | 
 |   if (!Condition) {  | 
 |     builder.markInfeasible(false); | 
 |     return; | 
 |   } | 
 |    | 
 |   SVal V = GetSVal(PrevState, Condition); | 
 |    | 
 |   switch (V.getBaseKind()) { | 
 |     default: | 
 |       break; | 
 |  | 
 |     case SVal::UnknownKind: | 
 |       builder.generateNode(MarkBranch(PrevState, Term, true), true); | 
 |       builder.generateNode(MarkBranch(PrevState, Term, false), false); | 
 |       return; | 
 |        | 
 |     case SVal::UndefinedKind: {       | 
 |       NodeTy* N = builder.generateNode(PrevState, true); | 
 |  | 
 |       if (N) { | 
 |         N->markAsSink(); | 
 |         UndefBranches.insert(N); | 
 |       } | 
 |        | 
 |       builder.markInfeasible(false); | 
 |       return; | 
 |     }       | 
 |   } | 
 |      | 
 |   // Process the true branch. | 
 |  | 
 |   bool isFeasible = false;   | 
 |   const GRState* state = Assume(PrevState, V, true, isFeasible); | 
 |  | 
 |   if (isFeasible) | 
 |     builder.generateNode(MarkBranch(state, Term, true), true); | 
 |   else | 
 |     builder.markInfeasible(true); | 
 |        | 
 |   // Process the false branch.   | 
 |    | 
 |   isFeasible = false; | 
 |   state = Assume(PrevState, V, false, isFeasible); | 
 |    | 
 |   if (isFeasible) | 
 |     builder.generateNode(MarkBranch(state, Term, false), false); | 
 |   else | 
 |     builder.markInfeasible(false); | 
 | } | 
 |  | 
 | /// ProcessIndirectGoto - Called by GRCoreEngine.  Used to generate successor | 
 | ///  nodes by processing the 'effects' of a computed goto jump. | 
 | void GRExprEngine::ProcessIndirectGoto(IndirectGotoNodeBuilder& builder) { | 
 |  | 
 |   const GRState* state = builder.getState();   | 
 |   SVal V = GetSVal(state, builder.getTarget()); | 
 |    | 
 |   // Three possibilities: | 
 |   // | 
 |   //   (1) We know the computed label. | 
 |   //   (2) The label is NULL (or some other constant), or Undefined. | 
 |   //   (3) We have no clue about the label.  Dispatch to all targets. | 
 |   // | 
 |    | 
 |   typedef IndirectGotoNodeBuilder::iterator iterator; | 
 |  | 
 |   if (isa<loc::GotoLabel>(V)) { | 
 |     LabelStmt* L = cast<loc::GotoLabel>(V).getLabel(); | 
 |      | 
 |     for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) { | 
 |       if (I.getLabel() == L) { | 
 |         builder.generateNode(I, state); | 
 |         return; | 
 |       } | 
 |     } | 
 |      | 
 |     assert (false && "No block with label."); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (isa<loc::ConcreteInt>(V) || isa<UndefinedVal>(V)) { | 
 |     // Dispatch to the first target and mark it as a sink. | 
 |     NodeTy* N = builder.generateNode(builder.begin(), state, true); | 
 |     UndefBranches.insert(N); | 
 |     return; | 
 |   } | 
 |    | 
 |   // This is really a catch-all.  We don't support symbolics yet. | 
 |    | 
 |   assert (V.isUnknown()); | 
 |    | 
 |   for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) | 
 |     builder.generateNode(I, state); | 
 | } | 
 |  | 
 |  | 
 | void GRExprEngine::VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R, | 
 |                                     NodeTy* Pred, NodeSet& Dst) { | 
 |    | 
 |   assert (Ex == CurrentStmt && getCFG().isBlkExpr(Ex)); | 
 |    | 
 |   const GRState* state = GetState(Pred); | 
 |   SVal X = GetBlkExprSVal(state, Ex); | 
 |    | 
 |   assert (X.isUndef()); | 
 |    | 
 |   Expr* SE = (Expr*) cast<UndefinedVal>(X).getData(); | 
 |    | 
 |   assert (SE); | 
 |    | 
 |   X = GetBlkExprSVal(state, SE); | 
 |    | 
 |   // Make sure that we invalidate the previous binding. | 
 |   MakeNode(Dst, Ex, Pred, StateMgr.BindExpr(state, Ex, X, true, true)); | 
 | } | 
 |  | 
 | /// ProcessSwitch - Called by GRCoreEngine.  Used to generate successor | 
 | ///  nodes by processing the 'effects' of a switch statement. | 
 | void GRExprEngine::ProcessSwitch(SwitchNodeBuilder& builder) {   | 
 |   typedef SwitchNodeBuilder::iterator iterator;   | 
 |   const GRState* state = builder.getState();   | 
 |   Expr* CondE = builder.getCondition(); | 
 |   SVal  CondV = GetSVal(state, CondE); | 
 |  | 
 |   if (CondV.isUndef()) { | 
 |     NodeTy* N = builder.generateDefaultCaseNode(state, true); | 
 |     UndefBranches.insert(N); | 
 |     return; | 
 |   } | 
 |  | 
 |   const GRState*  DefaultSt = state;   | 
 |   bool DefaultFeasible = false; | 
 |    | 
 |   for (iterator I = builder.begin(), EI = builder.end(); I != EI; ++I) { | 
 |     CaseStmt* Case = cast<CaseStmt>(I.getCase()); | 
 |  | 
 |     // Evaluate the LHS of the case value. | 
 |     Expr::EvalResult V1; | 
 |     bool b = Case->getLHS()->Evaluate(V1, getContext());     | 
 |      | 
 |     // Sanity checks.  These go away in Release builds. | 
 |     assert(b && V1.Val.isInt() && !V1.HasSideEffects  | 
 |              && "Case condition must evaluate to an integer constant."); | 
 |     b = b; // silence unused variable warning     | 
 |     assert(V1.Val.getInt().getBitWidth() ==  | 
 |            getContext().getTypeSize(CondE->getType())); | 
 |             | 
 |     // Get the RHS of the case, if it exists. | 
 |     Expr::EvalResult V2; | 
 |      | 
 |     if (Expr* E = Case->getRHS()) { | 
 |       b = E->Evaluate(V2, getContext()); | 
 |       assert(b && V2.Val.isInt() && !V2.HasSideEffects  | 
 |              && "Case condition must evaluate to an integer constant."); | 
 |       b = b; // silence unused variable warning | 
 |     } | 
 |     else | 
 |       V2 = V1; | 
 |      | 
 |     // FIXME: Eventually we should replace the logic below with a range | 
 |     //  comparison, rather than concretize the values within the range. | 
 |     //  This should be easy once we have "ranges" for NonLVals. | 
 |          | 
 |     do { | 
 |       nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt()));       | 
 |       SVal Res = EvalBinOp(BinaryOperator::EQ, CondV, CaseVal); | 
 |        | 
 |       // Now "assume" that the case matches.       | 
 |       bool isFeasible = false;       | 
 |       const GRState* StNew = Assume(state, Res, true, isFeasible); | 
 |        | 
 |       if (isFeasible) { | 
 |         builder.generateCaseStmtNode(I, StNew); | 
 |         | 
 |         // If CondV evaluates to a constant, then we know that this | 
 |         // is the *only* case that we can take, so stop evaluating the | 
 |         // others. | 
 |         if (isa<nonloc::ConcreteInt>(CondV)) | 
 |           return; | 
 |       } | 
 |        | 
 |       // Now "assume" that the case doesn't match.  Add this state | 
 |       // to the default state (if it is feasible). | 
 |        | 
 |       isFeasible = false; | 
 |       StNew = Assume(DefaultSt, Res, false, isFeasible); | 
 |        | 
 |       if (isFeasible) { | 
 |         DefaultFeasible = true; | 
 |         DefaultSt = StNew; | 
 |       } | 
 |  | 
 |       // Concretize the next value in the range. | 
 |       if (V1.Val.getInt() == V2.Val.getInt()) | 
 |         break; | 
 |        | 
 |       ++V1.Val.getInt(); | 
 |       assert (V1.Val.getInt() <= V2.Val.getInt()); | 
 |        | 
 |     } while (true); | 
 |   } | 
 |    | 
 |   // If we reach here, than we know that the default branch is | 
 |   // possible.   | 
 |   if (DefaultFeasible) builder.generateDefaultCaseNode(DefaultSt); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer functions: logical operations ('&&', '||'). | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred, | 
 |                                     NodeSet& Dst) { | 
 |    | 
 |   assert (B->getOpcode() == BinaryOperator::LAnd || | 
 |           B->getOpcode() == BinaryOperator::LOr); | 
 |    | 
 |   assert (B == CurrentStmt && getCFG().isBlkExpr(B)); | 
 |    | 
 |   const GRState* state = GetState(Pred); | 
 |   SVal X = GetBlkExprSVal(state, B); | 
 |    | 
 |   assert (X.isUndef()); | 
 |    | 
 |   Expr* Ex = (Expr*) cast<UndefinedVal>(X).getData(); | 
 |    | 
 |   assert (Ex); | 
 |    | 
 |   if (Ex == B->getRHS()) { | 
 |      | 
 |     X = GetBlkExprSVal(state, Ex); | 
 |      | 
 |     // Handle undefined values. | 
 |      | 
 |     if (X.isUndef()) { | 
 |       MakeNode(Dst, B, Pred, BindBlkExpr(state, B, X)); | 
 |       return; | 
 |     } | 
 |      | 
 |     // We took the RHS.  Because the value of the '&&' or '||' expression must | 
 |     // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0 | 
 |     // or 1.  Alternatively, we could take a lazy approach, and calculate this | 
 |     // value later when necessary.  We don't have the machinery in place for | 
 |     // this right now, and since most logical expressions are used for branches, | 
 |     // the payoff is not likely to be large.  Instead, we do eager evaluation. | 
 |          | 
 |     bool isFeasible = false; | 
 |     const GRState* NewState = Assume(state, X, true, isFeasible); | 
 |      | 
 |     if (isFeasible) | 
 |       MakeNode(Dst, B, Pred, | 
 |                BindBlkExpr(NewState, B, MakeConstantVal(1U, B))); | 
 |        | 
 |     isFeasible = false; | 
 |     NewState = Assume(state, X, false, isFeasible); | 
 |      | 
 |     if (isFeasible) | 
 |       MakeNode(Dst, B, Pred, | 
 |                BindBlkExpr(NewState, B, MakeConstantVal(0U, B))); | 
 |   } | 
 |   else { | 
 |     // We took the LHS expression.  Depending on whether we are '&&' or | 
 |     // '||' we know what the value of the expression is via properties of | 
 |     // the short-circuiting. | 
 |      | 
 |     X = MakeConstantVal( B->getOpcode() == BinaryOperator::LAnd ? 0U : 1U, B); | 
 |     MakeNode(Dst, B, Pred, BindBlkExpr(state, B, X)); | 
 |   } | 
 | } | 
 |   | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer functions: Loads and stores. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::VisitDeclRefExpr(DeclRefExpr* Ex, NodeTy* Pred, NodeSet& Dst, | 
 |                                     bool asLValue) { | 
 |    | 
 |   const GRState* state = GetState(Pred); | 
 |  | 
 |   const NamedDecl* D = Ex->getDecl(); | 
 |  | 
 |   if (const VarDecl* VD = dyn_cast<VarDecl>(D)) { | 
 |  | 
 |     SVal V = StateMgr.GetLValue(state, VD); | 
 |  | 
 |     if (asLValue) | 
 |       MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V)); | 
 |     else | 
 |       EvalLoad(Dst, Ex, Pred, state, V); | 
 |     return; | 
 |  | 
 |   } else if (const EnumConstantDecl* ED = dyn_cast<EnumConstantDecl>(D)) { | 
 |     assert(!asLValue && "EnumConstantDecl does not have lvalue."); | 
 |  | 
 |     BasicValueFactory& BasicVals = StateMgr.getBasicVals(); | 
 |     SVal V = nonloc::ConcreteInt(BasicVals.getValue(ED->getInitVal())); | 
 |     MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V)); | 
 |     return; | 
 |  | 
 |   } else if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) { | 
 |     assert(asLValue); | 
 |     SVal V = loc::FuncVal(FD); | 
 |     MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V)); | 
 |     return; | 
 |   } | 
 |    | 
 |   assert (false && | 
 |           "ValueDecl support for this ValueDecl not implemented."); | 
 | } | 
 |  | 
 | /// VisitArraySubscriptExpr - Transfer function for array accesses | 
 | void GRExprEngine::VisitArraySubscriptExpr(ArraySubscriptExpr* A, NodeTy* Pred, | 
 |                                            NodeSet& Dst, bool asLValue) { | 
 |    | 
 |   Expr* Base = A->getBase()->IgnoreParens(); | 
 |   Expr* Idx  = A->getIdx()->IgnoreParens(); | 
 |   NodeSet Tmp; | 
 |    | 
 |   if (Base->getType()->isVectorType()) { | 
 |     // For vector types get its lvalue. | 
 |     // FIXME: This may not be correct.  Is the rvalue of a vector its location? | 
 |     //  In fact, I think this is just a hack.  We need to get the right | 
 |     // semantics. | 
 |     VisitLValue(Base, Pred, Tmp); | 
 |   } | 
 |   else   | 
 |     Visit(Base, Pred, Tmp);   // Get Base's rvalue, which should be an LocVal. | 
 |    | 
 |   for (NodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) {     | 
 |     NodeSet Tmp2; | 
 |     Visit(Idx, *I1, Tmp2);     // Evaluate the index. | 
 |        | 
 |     for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2!=E2; ++I2) { | 
 |       const GRState* state = GetState(*I2); | 
 |       SVal V = StateMgr.GetLValue(state, GetSVal(state, Base), | 
 |                                   GetSVal(state, Idx)); | 
 |  | 
 |       if (asLValue) | 
 |         MakeNode(Dst, A, *I2, BindExpr(state, A, V)); | 
 |       else | 
 |         EvalLoad(Dst, A, *I2, state, V); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// VisitMemberExpr - Transfer function for member expressions. | 
 | void GRExprEngine::VisitMemberExpr(MemberExpr* M, NodeTy* Pred, | 
 |                                    NodeSet& Dst, bool asLValue) { | 
 |    | 
 |   Expr* Base = M->getBase()->IgnoreParens(); | 
 |   NodeSet Tmp; | 
 |    | 
 |   if (M->isArrow())  | 
 |     Visit(Base, Pred, Tmp);        // p->f = ...  or   ... = p->f | 
 |   else | 
 |     VisitLValue(Base, Pred, Tmp);  // x.f = ...   or   ... = x.f | 
 |      | 
 |   FieldDecl *Field = dyn_cast<FieldDecl>(M->getMemberDecl()); | 
 |   if (!Field) // FIXME: skipping member expressions for non-fields | 
 |     return; | 
 |  | 
 |   for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) { | 
 |     const GRState* state = GetState(*I); | 
 |     // FIXME: Should we insert some assumption logic in here to determine | 
 |     // if "Base" is a valid piece of memory?  Before we put this assumption | 
 |     // later when using FieldOffset lvals (which we no longer have). | 
 |     SVal L = StateMgr.GetLValue(state, GetSVal(state, Base), Field); | 
 |  | 
 |     if (asLValue) | 
 |       MakeNode(Dst, M, *I, BindExpr(state, M, L)); | 
 |     else | 
 |       EvalLoad(Dst, M, *I, state, L); | 
 |   } | 
 | } | 
 |  | 
 | /// EvalBind - Handle the semantics of binding a value to a specific location. | 
 | ///  This method is used by EvalStore and (soon) VisitDeclStmt, and others. | 
 | void GRExprEngine::EvalBind(NodeSet& Dst, Expr* Ex, NodeTy* Pred, | 
 |                              const GRState* state, SVal location, SVal Val) { | 
 |  | 
 |   const GRState* newState = 0; | 
 |    | 
 |   if (location.isUnknown()) { | 
 |     // We know that the new state will be the same as the old state since | 
 |     // the location of the binding is "unknown".  Consequently, there | 
 |     // is no reason to just create a new node. | 
 |     newState = state; | 
 |   } | 
 |   else { | 
 |     // We are binding to a value other than 'unknown'.  Perform the binding | 
 |     // using the StoreManager. | 
 |     newState = StateMgr.BindLoc(state, cast<Loc>(location), Val); | 
 |   } | 
 |  | 
 |   // The next thing to do is check if the GRTransferFuncs object wants to | 
 |   // update the state based on the new binding.  If the GRTransferFunc object | 
 |   // doesn't do anything, just auto-propagate the current state. | 
 |   GRStmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, Pred, newState, Ex, | 
 |                                   newState != state); | 
 |      | 
 |   getTF().EvalBind(BuilderRef, location, Val); | 
 | } | 
 |  | 
 | /// EvalStore - Handle the semantics of a store via an assignment. | 
 | ///  @param Dst The node set to store generated state nodes | 
 | ///  @param Ex The expression representing the location of the store | 
 | ///  @param state The current simulation state | 
 | ///  @param location The location to store the value | 
 | ///  @param Val The value to be stored | 
 | void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, NodeTy* Pred, | 
 |                              const GRState* state, SVal location, SVal Val) { | 
 |    | 
 |   assert (Builder && "GRStmtNodeBuilder must be defined."); | 
 |    | 
 |   // Evaluate the location (checks for bad dereferences). | 
 |   Pred = EvalLocation(Ex, Pred, state, location); | 
 |    | 
 |   if (!Pred) | 
 |     return; | 
 |  | 
 |   assert (!location.isUndef()); | 
 |   state = GetState(Pred); | 
 |  | 
 |   // Proceed with the store.   | 
 |   SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind); | 
 |   Builder->PointKind = ProgramPoint::PostStoreKind;   | 
 |   EvalBind(Dst, Ex, Pred, state, location, Val); | 
 | } | 
 |  | 
 | void GRExprEngine::EvalLoad(NodeSet& Dst, Expr* Ex, NodeTy* Pred, | 
 |                             const GRState* state, SVal location) { | 
 |  | 
 |   // Evaluate the location (checks for bad dereferences).   | 
 |   Pred = EvalLocation(Ex, Pred, state, location); | 
 |    | 
 |   if (!Pred) | 
 |     return; | 
 |    | 
 |   state = GetState(Pred); | 
 |    | 
 |   // Proceed with the load. | 
 |   ProgramPoint::Kind K = ProgramPoint::PostLoadKind; | 
 |  | 
 |   // FIXME: Currently symbolic analysis "generates" new symbols | 
 |   //  for the contents of values.  We need a better approach. | 
 |  | 
 |   if (location.isUnknown()) { | 
 |     // This is important.  We must nuke the old binding. | 
 |     MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, UnknownVal()), K); | 
 |   } | 
 |   else { | 
 |     SVal V = GetSVal(state, cast<Loc>(location), Ex->getType()); | 
 |     MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V), K);   | 
 |   } | 
 | } | 
 |  | 
 | void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, Expr* StoreE, NodeTy* Pred, | 
 |                              const GRState* state, SVal location, SVal Val) { | 
 |   | 
 |   NodeSet TmpDst; | 
 |   EvalStore(TmpDst, StoreE, Pred, state, location, Val); | 
 |  | 
 |   for (NodeSet::iterator I=TmpDst.begin(), E=TmpDst.end(); I!=E; ++I) | 
 |     MakeNode(Dst, Ex, *I, (*I)->getState()); | 
 | } | 
 |  | 
 | GRExprEngine::NodeTy* GRExprEngine::EvalLocation(Stmt* Ex, NodeTy* Pred, | 
 |                                                  const GRState* state, | 
 |                                                  SVal location) { | 
 |    | 
 |   // Check for loads/stores from/to undefined values.   | 
 |   if (location.isUndef()) { | 
 |     NodeTy* N = | 
 |       Builder->generateNode(Ex, state, Pred, | 
 |                             ProgramPoint::PostUndefLocationCheckFailedKind); | 
 |      | 
 |     if (N) { | 
 |       N->markAsSink(); | 
 |       UndefDeref.insert(N); | 
 |     } | 
 |      | 
 |     return 0; | 
 |   } | 
 |    | 
 |   // Check for loads/stores from/to unknown locations.  Treat as No-Ops. | 
 |   if (location.isUnknown()) | 
 |     return Pred; | 
 |    | 
 |   // During a load, one of two possible situations arise: | 
 |   //  (1) A crash, because the location (pointer) was NULL. | 
 |   //  (2) The location (pointer) is not NULL, and the dereference works. | 
 |   //  | 
 |   // We add these assumptions. | 
 |    | 
 |   Loc LV = cast<Loc>(location);     | 
 |    | 
 |   // "Assume" that the pointer is not NULL. | 
 |   bool isFeasibleNotNull = false; | 
 |   const GRState* StNotNull = Assume(state, LV, true, isFeasibleNotNull); | 
 |    | 
 |   // "Assume" that the pointer is NULL. | 
 |   bool isFeasibleNull = false; | 
 |   GRStateRef StNull = GRStateRef(Assume(state, LV, false, isFeasibleNull), | 
 |                                  getStateManager()); | 
 |    | 
 |   if (isFeasibleNull) { | 
 |      | 
 |     // Use the Generic Data Map to mark in the state what lval was null. | 
 |     const SVal* PersistentLV = getBasicVals().getPersistentSVal(LV); | 
 |     StNull = StNull.set<GRState::NullDerefTag>(PersistentLV); | 
 |      | 
 |     // We don't use "MakeNode" here because the node will be a sink | 
 |     // and we have no intention of processing it later. | 
 |     NodeTy* NullNode = | 
 |       Builder->generateNode(Ex, StNull, Pred,  | 
 |                             ProgramPoint::PostNullCheckFailedKind); | 
 |  | 
 |     if (NullNode) { | 
 |        | 
 |       NullNode->markAsSink(); | 
 |        | 
 |       if (isFeasibleNotNull) ImplicitNullDeref.insert(NullNode); | 
 |       else ExplicitNullDeref.insert(NullNode); | 
 |     } | 
 |   } | 
 |    | 
 |   if (!isFeasibleNotNull) | 
 |     return 0; | 
 |  | 
 |   // Check for out-of-bound array access. | 
 |   if (isa<loc::MemRegionVal>(LV)) { | 
 |     const MemRegion* R = cast<loc::MemRegionVal>(LV).getRegion(); | 
 |     if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) { | 
 |       // Get the index of the accessed element. | 
 |       SVal Idx = ER->getIndex(); | 
 |       // Get the extent of the array. | 
 |       SVal NumElements = getStoreManager().getSizeInElements(StNotNull, | 
 |                                                           ER->getSuperRegion()); | 
 |  | 
 |       bool isFeasibleInBound = false; | 
 |       const GRState* StInBound = AssumeInBound(StNotNull, Idx, NumElements,  | 
 |                                                true, isFeasibleInBound); | 
 |  | 
 |       bool isFeasibleOutBound = false; | 
 |       const GRState* StOutBound = AssumeInBound(StNotNull, Idx, NumElements,  | 
 |                                                 false, isFeasibleOutBound); | 
 |  | 
 |       if (isFeasibleOutBound) { | 
 |         // Report warning.  Make sink node manually. | 
 |         NodeTy* OOBNode = | 
 |           Builder->generateNode(Ex, StOutBound, Pred, | 
 |                                 ProgramPoint::PostOutOfBoundsCheckFailedKind); | 
 |  | 
 |         if (OOBNode) { | 
 |           OOBNode->markAsSink(); | 
 |  | 
 |           if (isFeasibleInBound) | 
 |             ImplicitOOBMemAccesses.insert(OOBNode); | 
 |           else | 
 |             ExplicitOOBMemAccesses.insert(OOBNode); | 
 |         } | 
 |       } | 
 |  | 
 |       if (!isFeasibleInBound) | 
 |         return 0; | 
 |        | 
 |       StNotNull = StInBound; | 
 |     } | 
 |   } | 
 |    | 
 |   // Generate a new node indicating the checks succeed. | 
 |   return Builder->generateNode(Ex, StNotNull, Pred, | 
 |                                ProgramPoint::PostLocationChecksSucceedKind); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer function: Function calls. | 
 | //===----------------------------------------------------------------------===// | 
 | void GRExprEngine::VisitCall(CallExpr* CE, NodeTy* Pred, | 
 |                              CallExpr::arg_iterator AI, | 
 |                              CallExpr::arg_iterator AE, | 
 |                              NodeSet& Dst) | 
 | { | 
 |   // Determine the type of function we're calling (if available). | 
 |   const FunctionProtoType *Proto = NULL; | 
 |   QualType FnType = CE->getCallee()->IgnoreParens()->getType(); | 
 |   if (const PointerType *FnTypePtr = FnType->getAsPointerType()) | 
 |     Proto = FnTypePtr->getPointeeType()->getAsFunctionProtoType(); | 
 |  | 
 |   VisitCallRec(CE, Pred, AI, AE, Dst, Proto, /*ParamIdx=*/0); | 
 | } | 
 |  | 
 | void GRExprEngine::VisitCallRec(CallExpr* CE, NodeTy* Pred, | 
 |                                 CallExpr::arg_iterator AI, | 
 |                                 CallExpr::arg_iterator AE, | 
 |                                 NodeSet& Dst, const FunctionProtoType *Proto, | 
 |                                 unsigned ParamIdx) { | 
 |    | 
 |   // Process the arguments. | 
 |   if (AI != AE) { | 
 |     // If the call argument is being bound to a reference parameter, | 
 |     // visit it as an lvalue, not an rvalue. | 
 |     bool VisitAsLvalue = false; | 
 |     if (Proto && ParamIdx < Proto->getNumArgs()) | 
 |       VisitAsLvalue = Proto->getArgType(ParamIdx)->isReferenceType(); | 
 |  | 
 |     NodeSet DstTmp;   | 
 |     if (VisitAsLvalue) | 
 |       VisitLValue(*AI, Pred, DstTmp);     | 
 |     else | 
 |       Visit(*AI, Pred, DstTmp);     | 
 |     ++AI; | 
 |      | 
 |     for (NodeSet::iterator DI=DstTmp.begin(), DE=DstTmp.end(); DI != DE; ++DI) | 
 |       VisitCallRec(CE, *DI, AI, AE, Dst, Proto, ParamIdx + 1); | 
 |      | 
 |     return; | 
 |   } | 
 |  | 
 |   // If we reach here we have processed all of the arguments.  Evaluate | 
 |   // the callee expression. | 
 |    | 
 |   NodeSet DstTmp;     | 
 |   Expr* Callee = CE->getCallee()->IgnoreParens(); | 
 |  | 
 |   Visit(Callee, Pred, DstTmp); | 
 |    | 
 |   // Finally, evaluate the function call. | 
 |   for (NodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); DI!=DE; ++DI) { | 
 |  | 
 |     const GRState* state = GetState(*DI); | 
 |     SVal L = GetSVal(state, Callee); | 
 |  | 
 |     // FIXME: Add support for symbolic function calls (calls involving | 
 |     //  function pointer values that are symbolic). | 
 |      | 
 |     // Check for undefined control-flow or calls to NULL. | 
 |      | 
 |     if (L.isUndef() || isa<loc::ConcreteInt>(L)) {       | 
 |       NodeTy* N = Builder->generateNode(CE, state, *DI); | 
 |        | 
 |       if (N) { | 
 |         N->markAsSink(); | 
 |         BadCalls.insert(N); | 
 |       } | 
 |        | 
 |       continue; | 
 |     } | 
 |      | 
 |     // Check for the "noreturn" attribute. | 
 |      | 
 |     SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
 |      | 
 |     if (isa<loc::FuncVal>(L)) {       | 
 |        | 
 |       FunctionDecl* FD = cast<loc::FuncVal>(L).getDecl(); | 
 |        | 
 |       if (FD->getAttr<NoReturnAttr>()) | 
 |         Builder->BuildSinks = true; | 
 |       else { | 
 |         // HACK: Some functions are not marked noreturn, and don't return. | 
 |         //  Here are a few hardwired ones.  If this takes too long, we can | 
 |         //  potentially cache these results. | 
 |         const char* s = FD->getIdentifier()->getName(); | 
 |         unsigned n = strlen(s); | 
 |          | 
 |         switch (n) { | 
 |           default: | 
 |             break; | 
 |              | 
 |           case 4: | 
 |             if (!memcmp(s, "exit", 4)) Builder->BuildSinks = true; | 
 |             break; | 
 |  | 
 |           case 5: | 
 |             if (!memcmp(s, "panic", 5)) Builder->BuildSinks = true; | 
 |             else if (!memcmp(s, "error", 5)) { | 
 |               if (CE->getNumArgs() > 0) { | 
 |                 SVal X = GetSVal(state, *CE->arg_begin()); | 
 |                 // FIXME: use Assume to inspect the possible symbolic value of | 
 |                 // X. Also check the specific signature of error(). | 
 |                 nonloc::ConcreteInt* CI = dyn_cast<nonloc::ConcreteInt>(&X); | 
 |                 if (CI && CI->getValue() != 0) | 
 |                   Builder->BuildSinks = true; | 
 |               } | 
 |             } | 
 |             break; | 
 |  | 
 |           case 6: | 
 |             if (!memcmp(s, "Assert", 6)) { | 
 |               Builder->BuildSinks = true; | 
 |               break; | 
 |             } | 
 |              | 
 |             // FIXME: This is just a wrapper around throwing an exception. | 
 |             //  Eventually inter-procedural analysis should handle this easily. | 
 |             if (!memcmp(s, "ziperr", 6)) Builder->BuildSinks = true; | 
 |  | 
 |             break; | 
 |            | 
 |           case 7: | 
 |             if (!memcmp(s, "assfail", 7)) Builder->BuildSinks = true; | 
 |             break; | 
 |              | 
 |           case 8: | 
 |             if (!memcmp(s ,"db_error", 8) ||  | 
 |                 !memcmp(s, "__assert", 8)) | 
 |               Builder->BuildSinks = true; | 
 |             break; | 
 |            | 
 |           case 12: | 
 |             if (!memcmp(s, "__assert_rtn", 12)) Builder->BuildSinks = true; | 
 |             break; | 
 |              | 
 |           case 13: | 
 |             if (!memcmp(s, "__assert_fail", 13)) Builder->BuildSinks = true; | 
 |             break; | 
 |              | 
 |           case 14: | 
 |             if (!memcmp(s, "dtrace_assfail", 14) || | 
 |                 !memcmp(s, "yy_fatal_error", 14)) | 
 |               Builder->BuildSinks = true; | 
 |             break; | 
 |              | 
 |           case 26: | 
 |             if (!memcmp(s, "_XCAssertionFailureHandler", 26) || | 
 |                 !memcmp(s, "_DTAssertionFailureHandler", 26) || | 
 |                 !memcmp(s, "_TSAssertionFailureHandler", 26)) | 
 |               Builder->BuildSinks = true; | 
 |  | 
 |             break; | 
 |         } | 
 |          | 
 |       } | 
 |     } | 
 |      | 
 |     // Evaluate the call. | 
 |  | 
 |     if (isa<loc::FuncVal>(L)) { | 
 |        | 
 |       if (unsigned id  | 
 |             = cast<loc::FuncVal>(L).getDecl()->getBuiltinID(getContext())) | 
 |         switch (id) { | 
 |           case Builtin::BI__builtin_expect: { | 
 |             // For __builtin_expect, just return the value of the subexpression. | 
 |             assert (CE->arg_begin() != CE->arg_end());             | 
 |             SVal X = GetSVal(state, *(CE->arg_begin())); | 
 |             MakeNode(Dst, CE, *DI, BindExpr(state, CE, X)); | 
 |             continue;             | 
 |           } | 
 |              | 
 |           case Builtin::BI__builtin_alloca: { | 
 |             // FIXME: Refactor into StoreManager itself? | 
 |             MemRegionManager& RM = getStateManager().getRegionManager(); | 
 |             const MemRegion* R = | 
 |               RM.getAllocaRegion(CE, Builder->getCurrentBlockCount()); | 
 |  | 
 |             // Set the extent of the region in bytes. This enables us to use the | 
 |             // SVal of the argument directly. If we save the extent in bits, we | 
 |             // cannot represent values like symbol*8. | 
 |             SVal Extent = GetSVal(state, *(CE->arg_begin())); | 
 |             state = getStoreManager().setExtent(state, R, Extent); | 
 |  | 
 |             MakeNode(Dst, CE, *DI, BindExpr(state, CE, loc::MemRegionVal(R))); | 
 |             continue;             | 
 |           } | 
 |              | 
 |           default: | 
 |             break; | 
 |         } | 
 |     } | 
 |  | 
 |     // Check any arguments passed-by-value against being undefined. | 
 |  | 
 |     bool badArg = false; | 
 |      | 
 |     for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); | 
 |          I != E; ++I) { | 
 |  | 
 |       if (GetSVal(GetState(*DI), *I).isUndef()) {         | 
 |         NodeTy* N = Builder->generateNode(CE, GetState(*DI), *DI); | 
 |        | 
 |         if (N) { | 
 |           N->markAsSink(); | 
 |           UndefArgs[N] = *I; | 
 |         } | 
 |          | 
 |         badArg = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |      | 
 |     if (badArg) | 
 |       continue;         | 
 |  | 
 |     // Dispatch to the plug-in transfer function.       | 
 |      | 
 |     unsigned size = Dst.size(); | 
 |     SaveOr OldHasGen(Builder->HasGeneratedNode); | 
 |     EvalCall(Dst, CE, L, *DI); | 
 |      | 
 |     // Handle the case where no nodes where generated.  Auto-generate that | 
 |     // contains the updated state if we aren't generating sinks. | 
 |      | 
 |     if (!Builder->BuildSinks && Dst.size() == size && | 
 |         !Builder->HasGeneratedNode) | 
 |       MakeNode(Dst, CE, *DI, state); | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer function: Objective-C ivar references. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static std::pair<const void*,const void*> EagerlyAssumeTag | 
 |   = std::pair<const void*,const void*>(&EagerlyAssumeTag,0); | 
 |  | 
 | void GRExprEngine::EvalEagerlyAssume(NodeSet &Dst, NodeSet &Src, Expr *Ex) { | 
 |   for (NodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) { | 
 |     NodeTy *Pred = *I; | 
 |      | 
 |     // Test if the previous node was as the same expression.  This can happen | 
 |     // when the expression fails to evaluate to anything meaningful and | 
 |     // (as an optimization) we don't generate a node. | 
 |     ProgramPoint P = Pred->getLocation();     | 
 |     if (!isa<PostStmt>(P) || cast<PostStmt>(P).getStmt() != Ex) { | 
 |       Dst.Add(Pred);       | 
 |       continue; | 
 |     }     | 
 |  | 
 |     const GRState* state = Pred->getState();     | 
 |     SVal V = GetSVal(state, Ex);     | 
 |     if (isa<nonloc::SymIntConstraintVal>(V)) { | 
 |       // First assume that the condition is true. | 
 |       bool isFeasible = false; | 
 |       const GRState *stateTrue = Assume(state, V, true, isFeasible); | 
 |       if (isFeasible) { | 
 |         stateTrue = BindExpr(stateTrue, Ex, MakeConstantVal(1U, Ex));         | 
 |         Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag), | 
 |                                       stateTrue, Pred)); | 
 |       } | 
 |          | 
 |       // Next, assume that the condition is false. | 
 |       isFeasible = false; | 
 |       const GRState *stateFalse = Assume(state, V, false, isFeasible); | 
 |       if (isFeasible) { | 
 |         stateFalse = BindExpr(stateFalse, Ex, MakeConstantVal(0U, Ex)); | 
 |         Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag), | 
 |                                       stateFalse, Pred)); | 
 |       } | 
 |     } | 
 |     else | 
 |       Dst.Add(Pred); | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer function: Objective-C ivar references. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::VisitObjCIvarRefExpr(ObjCIvarRefExpr* Ex, | 
 |                                             NodeTy* Pred, NodeSet& Dst, | 
 |                                             bool asLValue) { | 
 |    | 
 |   Expr* Base = cast<Expr>(Ex->getBase()); | 
 |   NodeSet Tmp; | 
 |   Visit(Base, Pred, Tmp); | 
 |    | 
 |   for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
 |     const GRState* state = GetState(*I); | 
 |     SVal BaseVal = GetSVal(state, Base); | 
 |     SVal location = StateMgr.GetLValue(state, Ex->getDecl(), BaseVal); | 
 |      | 
 |     if (asLValue) | 
 |       MakeNode(Dst, Ex, *I, BindExpr(state, Ex, location)); | 
 |     else | 
 |       EvalLoad(Dst, Ex, *I, state, location); | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer function: Objective-C fast enumeration 'for' statements. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S, | 
 |                                               NodeTy* Pred, NodeSet& Dst) { | 
 |      | 
 |   // ObjCForCollectionStmts are processed in two places.  This method | 
 |   // handles the case where an ObjCForCollectionStmt* occurs as one of the | 
 |   // statements within a basic block.  This transfer function does two things: | 
 |   // | 
 |   //  (1) binds the next container value to 'element'.  This creates a new | 
 |   //      node in the ExplodedGraph. | 
 |   // | 
 |   //  (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating | 
 |   //      whether or not the container has any more elements.  This value | 
 |   //      will be tested in ProcessBranch.  We need to explicitly bind | 
 |   //      this value because a container can contain nil elements. | 
 |   //   | 
 |   // FIXME: Eventually this logic should actually do dispatches to | 
 |   //   'countByEnumeratingWithState:objects:count:' (NSFastEnumeration). | 
 |   //   This will require simulating a temporary NSFastEnumerationState, either | 
 |   //   through an SVal or through the use of MemRegions.  This value can | 
 |   //   be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop | 
 |   //   terminates we reclaim the temporary (it goes out of scope) and we | 
 |   //   we can test if the SVal is 0 or if the MemRegion is null (depending | 
 |   //   on what approach we take). | 
 |   // | 
 |   //  For now: simulate (1) by assigning either a symbol or nil if the | 
 |   //    container is empty.  Thus this transfer function will by default | 
 |   //    result in state splitting. | 
 |    | 
 |   Stmt* elem = S->getElement(); | 
 |   SVal ElementV; | 
 |      | 
 |   if (DeclStmt* DS = dyn_cast<DeclStmt>(elem)) { | 
 |     VarDecl* ElemD = cast<VarDecl>(DS->getSolitaryDecl()); | 
 |     assert (ElemD->getInit() == 0); | 
 |     ElementV = getStateManager().GetLValue(GetState(Pred), ElemD); | 
 |     VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV); | 
 |     return; | 
 |   } | 
 |  | 
 |   NodeSet Tmp; | 
 |   VisitLValue(cast<Expr>(elem), Pred, Tmp); | 
 |    | 
 |   for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { | 
 |     const GRState* state = GetState(*I); | 
 |     VisitObjCForCollectionStmtAux(S, *I, Dst, GetSVal(state, elem)); | 
 |   } | 
 | } | 
 |  | 
 | void GRExprEngine::VisitObjCForCollectionStmtAux(ObjCForCollectionStmt* S, | 
 |                                                  NodeTy* Pred, NodeSet& Dst, | 
 |                                                  SVal ElementV) { | 
 |      | 
 |  | 
 |    | 
 |   // Get the current state.  Use 'EvalLocation' to determine if it is a null | 
 |   // pointer, etc. | 
 |   Stmt* elem = S->getElement(); | 
 |    | 
 |   Pred = EvalLocation(elem, Pred, GetState(Pred), ElementV); | 
 |   if (!Pred) | 
 |     return; | 
 |      | 
 |   GRStateRef state = GRStateRef(GetState(Pred), getStateManager()); | 
 |  | 
 |   // Handle the case where the container still has elements. | 
 |   QualType IntTy = getContext().IntTy; | 
 |   SVal TrueV = NonLoc::MakeVal(getBasicVals(), 1, IntTy); | 
 |   GRStateRef hasElems = state.BindExpr(S, TrueV); | 
 |    | 
 |   // Handle the case where the container has no elements. | 
 |   SVal FalseV = NonLoc::MakeVal(getBasicVals(), 0, IntTy); | 
 |   GRStateRef noElems = state.BindExpr(S, FalseV); | 
 |    | 
 |   if (loc::MemRegionVal* MV = dyn_cast<loc::MemRegionVal>(&ElementV)) | 
 |     if (const TypedRegion* R = dyn_cast<TypedRegion>(MV->getRegion())) { | 
 |       // FIXME: The proper thing to do is to really iterate over the | 
 |       //  container.  We will do this with dispatch logic to the store. | 
 |       //  For now, just 'conjure' up a symbolic value. | 
 |       QualType T = R->getRValueType(getContext()); | 
 |       assert (Loc::IsLocType(T)); | 
 |       unsigned Count = Builder->getCurrentBlockCount(); | 
 |       loc::SymbolVal SymV(SymMgr.getConjuredSymbol(elem, T, Count)); | 
 |       hasElems = hasElems.BindLoc(ElementV, SymV); | 
 |  | 
 |       // Bind the location to 'nil' on the false branch. | 
 |       SVal nilV = loc::ConcreteInt(getBasicVals().getValue(0, T));       | 
 |       noElems = noElems.BindLoc(ElementV, nilV);       | 
 |     } | 
 |    | 
 |   // Create the new nodes. | 
 |   MakeNode(Dst, S, Pred, hasElems); | 
 |   MakeNode(Dst, S, Pred, noElems); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer function: Objective-C message expressions. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::VisitObjCMessageExpr(ObjCMessageExpr* ME, NodeTy* Pred, | 
 |                                         NodeSet& Dst){ | 
 |    | 
 |   VisitObjCMessageExprArgHelper(ME, ME->arg_begin(), ME->arg_end(), | 
 |                                 Pred, Dst); | 
 | }   | 
 |  | 
 | void GRExprEngine::VisitObjCMessageExprArgHelper(ObjCMessageExpr* ME, | 
 |                                               ObjCMessageExpr::arg_iterator AI, | 
 |                                               ObjCMessageExpr::arg_iterator AE, | 
 |                                               NodeTy* Pred, NodeSet& Dst) { | 
 |   if (AI == AE) { | 
 |      | 
 |     // Process the receiver. | 
 |      | 
 |     if (Expr* Receiver = ME->getReceiver()) { | 
 |       NodeSet Tmp; | 
 |       Visit(Receiver, Pred, Tmp); | 
 |        | 
 |       for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) | 
 |         VisitObjCMessageExprDispatchHelper(ME, *NI, Dst); | 
 |        | 
 |       return; | 
 |     } | 
 |      | 
 |     VisitObjCMessageExprDispatchHelper(ME, Pred, Dst); | 
 |     return; | 
 |   } | 
 |    | 
 |   NodeSet Tmp; | 
 |   Visit(*AI, Pred, Tmp); | 
 |    | 
 |   ++AI; | 
 |    | 
 |   for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) | 
 |     VisitObjCMessageExprArgHelper(ME, AI, AE, *NI, Dst); | 
 | } | 
 |  | 
 | void GRExprEngine::VisitObjCMessageExprDispatchHelper(ObjCMessageExpr* ME, | 
 |                                                       NodeTy* Pred, | 
 |                                                       NodeSet& Dst) { | 
 |    | 
 |   // FIXME: More logic for the processing the method call.  | 
 |    | 
 |   const GRState* state = GetState(Pred); | 
 |   bool RaisesException = false; | 
 |    | 
 |    | 
 |   if (Expr* Receiver = ME->getReceiver()) { | 
 |      | 
 |     SVal L = GetSVal(state, Receiver); | 
 |      | 
 |     // Check for undefined control-flow.     | 
 |     if (L.isUndef()) { | 
 |       NodeTy* N = Builder->generateNode(ME, state, Pred); | 
 |        | 
 |       if (N) { | 
 |         N->markAsSink(); | 
 |         UndefReceivers.insert(N); | 
 |       } | 
 |        | 
 |       return; | 
 |     } | 
 |      | 
 |     // "Assume" that the receiver is not NULL.     | 
 |     bool isFeasibleNotNull = false; | 
 |     Assume(state, L, true, isFeasibleNotNull); | 
 |      | 
 |     // "Assume" that the receiver is NULL.     | 
 |     bool isFeasibleNull = false; | 
 |     const GRState *StNull = Assume(state, L, false, isFeasibleNull); | 
 |      | 
 |     if (isFeasibleNull) { | 
 |       // Check if the receiver was nil and the return value a struct. | 
 |       if (ME->getType()->isRecordType()) { | 
 |         // The [0 ...] expressions will return garbage.  Flag either an | 
 |         // explicit or implicit error.  Because of the structure of this | 
 |         // function we currently do not bifurfacte the state graph at | 
 |         // this point. | 
 |         // FIXME: We should bifurcate and fill the returned struct with | 
 |         //  garbage.                 | 
 |         if (NodeTy* N = Builder->generateNode(ME, StNull, Pred)) { | 
 |           N->markAsSink(); | 
 |           if (isFeasibleNotNull) | 
 |             NilReceiverStructRetImplicit.insert(N); | 
 |           else | 
 |             NilReceiverStructRetExplicit.insert(N); | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     // Check if the "raise" message was sent. | 
 |     if (ME->getSelector() == RaiseSel) | 
 |       RaisesException = true; | 
 |   } | 
 |   else { | 
 |      | 
 |     IdentifierInfo* ClsName = ME->getClassName(); | 
 |     Selector S = ME->getSelector(); | 
 |      | 
 |     // Check for special instance methods. | 
 |          | 
 |     if (!NSExceptionII) {       | 
 |       ASTContext& Ctx = getContext(); | 
 |        | 
 |       NSExceptionII = &Ctx.Idents.get("NSException"); | 
 |     } | 
 |      | 
 |     if (ClsName == NSExceptionII) { | 
 |          | 
 |       enum { NUM_RAISE_SELECTORS = 2 }; | 
 |        | 
 |       // Lazily create a cache of the selectors. | 
 |  | 
 |       if (!NSExceptionInstanceRaiseSelectors) { | 
 |          | 
 |         ASTContext& Ctx = getContext(); | 
 |          | 
 |         NSExceptionInstanceRaiseSelectors = new Selector[NUM_RAISE_SELECTORS]; | 
 |        | 
 |         llvm::SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II; | 
 |         unsigned idx = 0; | 
 |          | 
 |         // raise:format:       | 
 |         II.push_back(&Ctx.Idents.get("raise")); | 
 |         II.push_back(&Ctx.Idents.get("format"));       | 
 |         NSExceptionInstanceRaiseSelectors[idx++] = | 
 |           Ctx.Selectors.getSelector(II.size(), &II[0]);       | 
 |          | 
 |         // raise:format::arguments:       | 
 |         II.push_back(&Ctx.Idents.get("arguments")); | 
 |         NSExceptionInstanceRaiseSelectors[idx++] = | 
 |           Ctx.Selectors.getSelector(II.size(), &II[0]); | 
 |       } | 
 |        | 
 |       for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i) | 
 |         if (S == NSExceptionInstanceRaiseSelectors[i]) { | 
 |           RaisesException = true; break; | 
 |         } | 
 |     } | 
 |   } | 
 |    | 
 |   // Check for any arguments that are uninitialized/undefined. | 
 |    | 
 |   for (ObjCMessageExpr::arg_iterator I = ME->arg_begin(), E = ME->arg_end(); | 
 |        I != E; ++I) { | 
 |      | 
 |     if (GetSVal(state, *I).isUndef()) { | 
 |        | 
 |       // Generate an error node for passing an uninitialized/undefined value | 
 |       // as an argument to a message expression.  This node is a sink. | 
 |       NodeTy* N = Builder->generateNode(ME, state, Pred); | 
 |        | 
 |       if (N) { | 
 |         N->markAsSink(); | 
 |         MsgExprUndefArgs[N] = *I; | 
 |       } | 
 |        | 
 |       return; | 
 |     }     | 
 |   } | 
 |    | 
 |   // Check if we raise an exception.  For now treat these as sinks.  Eventually | 
 |   // we will want to handle exceptions properly. | 
 |    | 
 |   SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
 |  | 
 |   if (RaisesException) | 
 |     Builder->BuildSinks = true; | 
 |    | 
 |   // Dispatch to plug-in transfer function. | 
 |    | 
 |   unsigned size = Dst.size(); | 
 |   SaveOr OldHasGen(Builder->HasGeneratedNode); | 
 |   | 
 |   EvalObjCMessageExpr(Dst, ME, Pred); | 
 |    | 
 |   // Handle the case where no nodes where generated.  Auto-generate that | 
 |   // contains the updated state if we aren't generating sinks. | 
 |    | 
 |   if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode) | 
 |     MakeNode(Dst, ME, Pred, state); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer functions: Miscellaneous statements. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::VisitCastPointerToInteger(SVal V, const GRState* state, | 
 |                                              QualType PtrTy, | 
 |                                              Expr* CastE, NodeTy* Pred, | 
 |                                              NodeSet& Dst) { | 
 |   if (!V.isUnknownOrUndef()) { | 
 |     // FIXME: Determine if the number of bits of the target type is  | 
 |     // equal or exceeds the number of bits to store the pointer value. | 
 |     // If not, flag an error.     | 
 |     MakeNode(Dst, CastE, Pred, BindExpr(state, CastE, EvalCast(cast<Loc>(V), | 
 |                                                                CastE->getType()))); | 
 |   } | 
 |   else   | 
 |     MakeNode(Dst, CastE, Pred, BindExpr(state, CastE, V)); | 
 | } | 
 |  | 
 |    | 
 | void GRExprEngine::VisitCast(Expr* CastE, Expr* Ex, NodeTy* Pred, NodeSet& Dst){ | 
 |   NodeSet S1; | 
 |   QualType T = CastE->getType(); | 
 |   QualType ExTy = Ex->getType(); | 
 |  | 
 |   if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) | 
 |     T = ExCast->getTypeAsWritten(); | 
 |  | 
 |   if (ExTy->isArrayType() || ExTy->isFunctionType() || T->isReferenceType()) | 
 |     VisitLValue(Ex, Pred, S1); | 
 |   else | 
 |     Visit(Ex, Pred, S1); | 
 |    | 
 |   // Check for casting to "void". | 
 |   if (T->isVoidType()) {     | 
 |     for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) | 
 |       Dst.Add(*I1); | 
 |  | 
 |     return; | 
 |   } | 
 |    | 
 |   // FIXME: The rest of this should probably just go into EvalCall, and | 
 |   //   let the transfer function object be responsible for constructing | 
 |   //   nodes. | 
 |    | 
 |   for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) { | 
 |     NodeTy* N = *I1; | 
 |     const GRState* state = GetState(N); | 
 |     SVal V = GetSVal(state, Ex); | 
 |     ASTContext& C = getContext(); | 
 |  | 
 |     // Unknown? | 
 |     if (V.isUnknown()) { | 
 |       Dst.Add(N); | 
 |       continue; | 
 |     } | 
 |      | 
 |     // Undefined? | 
 |     if (V.isUndef()) | 
 |       goto PassThrough; | 
 |      | 
 |     // For const casts, just propagate the value. | 
 |     if (C.getCanonicalType(T).getUnqualifiedType() ==  | 
 |         C.getCanonicalType(ExTy).getUnqualifiedType()) | 
 |       goto PassThrough; | 
 |        | 
 |     // Check for casts from pointers to integers. | 
 |     if (T->isIntegerType() && Loc::IsLocType(ExTy)) { | 
 |       VisitCastPointerToInteger(V, state, ExTy, CastE, N, Dst); | 
 |       continue; | 
 |     } | 
 |      | 
 |     // Check for casts from integers to pointers. | 
 |     if (Loc::IsLocType(T) && ExTy->isIntegerType()) { | 
 |       if (nonloc::LocAsInteger *LV = dyn_cast<nonloc::LocAsInteger>(&V)) { | 
 |         // Just unpackage the lval and return it. | 
 |         V = LV->getLoc(); | 
 |         MakeNode(Dst, CastE, N, BindExpr(state, CastE, V)); | 
 |         continue; | 
 |       } | 
 |        | 
 |       goto DispatchCast; | 
 |     } | 
 |      | 
 |     // Just pass through function and block pointers. | 
 |     if (ExTy->isBlockPointerType() || ExTy->isFunctionPointerType()) { | 
 |       assert(Loc::IsLocType(T)); | 
 |       goto PassThrough; | 
 |     } | 
 |      | 
 |     // Check for casts from array type to another type. | 
 |     if (ExTy->isArrayType()) { | 
 |       // We will always decay to a pointer. | 
 |       V = StateMgr.ArrayToPointer(V); | 
 |        | 
 |       // Are we casting from an array to a pointer?  If so just pass on | 
 |       // the decayed value. | 
 |       if (T->isPointerType()) | 
 |         goto PassThrough; | 
 |        | 
 |       // Are we casting from an array to an integer?  If so, cast the decayed | 
 |       // pointer value to an integer. | 
 |       assert(T->isIntegerType()); | 
 |       QualType ElemTy = cast<ArrayType>(ExTy)->getElementType(); | 
 |       QualType PointerTy = getContext().getPointerType(ElemTy); | 
 |       VisitCastPointerToInteger(V, state, PointerTy, CastE, N, Dst); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Check for casts from a region to a specific type. | 
 |     if (loc::MemRegionVal *RV = dyn_cast<loc::MemRegionVal>(&V)) {       | 
 |       // FIXME: For TypedViewRegions, we should handle the case where the | 
 |       //  underlying symbolic pointer is a function pointer or | 
 |       //  block pointer. | 
 |        | 
 |       // FIXME: We should handle the case where we strip off view layers to get | 
 |       //  to a desugared type. | 
 |        | 
 |       assert(Loc::IsLocType(T)); | 
 |       assert(Loc::IsLocType(ExTy)); | 
 |  | 
 |       const MemRegion* R = RV->getRegion(); | 
 |       StoreManager& StoreMgr = getStoreManager(); | 
 |        | 
 |       // Delegate to store manager to get the result of casting a region | 
 |       // to a different type. | 
 |       const StoreManager::CastResult& Res = StoreMgr.CastRegion(state, R, T); | 
 |        | 
 |       // Inspect the result.  If the MemRegion* returned is NULL, this | 
 |       // expression evaluates to UnknownVal. | 
 |       R = Res.getRegion(); | 
 |       if (R) { V = loc::MemRegionVal(R); } else { V = UnknownVal(); } | 
 |        | 
 |       // Generate the new node in the ExplodedGraph. | 
 |       MakeNode(Dst, CastE, N, BindExpr(Res.getState(), CastE, V)); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // If we are casting a symbolic value, make a symbolic region and a | 
 |     // TypedViewRegion subregion. | 
 |     if (loc::SymbolVal* SV = dyn_cast<loc::SymbolVal>(&V)) { | 
 |       SymbolRef Sym = SV->getSymbol(); | 
 |       QualType SymTy = getSymbolManager().getType(Sym); | 
 |  | 
 |       // Just pass through symbols that are function or block pointers. | 
 |       if (SymTy->isFunctionPointerType() || SymTy->isBlockPointerType()) | 
 |         goto PassThrough; | 
 |        | 
 |       // Are we casting to a function or block pointer? | 
 |       if (T->isFunctionPointerType() || T->isBlockPointerType()) { | 
 |         // FIXME: We should verify that the underlying type of the symbolic  | 
 |         // pointer is a void* (or maybe char*).  Other things are an abuse | 
 |         // of the type system. | 
 |         goto PassThrough;         | 
 |       } | 
 |  | 
 |       StoreManager& StoreMgr = getStoreManager(); | 
 |       const MemRegion* R = | 
 |         StoreMgr.getRegionManager().getSymbolicRegion(Sym, getSymbolManager()); | 
 |        | 
 |       // Delegate to store manager to get the result of casting a region | 
 |       // to a different type. | 
 |       const StoreManager::CastResult& Res = StoreMgr.CastRegion(state, R, T); | 
 |        | 
 |       // Inspect the result.  If the MemRegion* returned is NULL, this | 
 |       // expression evaluates to UnknownVal. | 
 |       R = Res.getRegion(); | 
 |       if (R) { V = loc::MemRegionVal(R); } else { V = UnknownVal(); } | 
 |        | 
 |       // Generate the new node in the ExplodedGraph. | 
 |       MakeNode(Dst, CastE, N, BindExpr(Res.getState(), CastE, V)); | 
 |       continue; | 
 |     } | 
 |  | 
 |         // All other cases. | 
 |     DispatchCast: { | 
 |       MakeNode(Dst, CastE, N, BindExpr(state, CastE, | 
 |                                        EvalCast(V, CastE->getType()))); | 
 |       continue; | 
 |     } | 
 |      | 
 |     PassThrough: { | 
 |       MakeNode(Dst, CastE, N, BindExpr(state, CastE, V)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void GRExprEngine::VisitCompoundLiteralExpr(CompoundLiteralExpr* CL, | 
 |                                             NodeTy* Pred, NodeSet& Dst,  | 
 |                                             bool asLValue) { | 
 |   InitListExpr* ILE = cast<InitListExpr>(CL->getInitializer()->IgnoreParens()); | 
 |   NodeSet Tmp; | 
 |   Visit(ILE, Pred, Tmp); | 
 |    | 
 |   for (NodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) { | 
 |     const GRState* state = GetState(*I); | 
 |     SVal ILV = GetSVal(state, ILE); | 
 |     state = StateMgr.BindCompoundLiteral(state, CL, ILV); | 
 |  | 
 |     if (asLValue) | 
 |       MakeNode(Dst, CL, *I, BindExpr(state, CL, StateMgr.GetLValue(state, CL))); | 
 |     else | 
 |       MakeNode(Dst, CL, *I, BindExpr(state, CL, ILV)); | 
 |   } | 
 | } | 
 |  | 
 | void GRExprEngine::VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst) {   | 
 |  | 
 |   // The CFG has one DeclStmt per Decl.   | 
 |   Decl* D = *DS->decl_begin(); | 
 |    | 
 |   if (!D || !isa<VarDecl>(D)) | 
 |     return; | 
 |    | 
 |   const VarDecl* VD = dyn_cast<VarDecl>(D);     | 
 |   Expr* InitEx = const_cast<Expr*>(VD->getInit()); | 
 |  | 
 |   // FIXME: static variables may have an initializer, but the second | 
 |   //  time a function is called those values may not be current. | 
 |   NodeSet Tmp; | 
 |  | 
 |   if (InitEx) | 
 |     Visit(InitEx, Pred, Tmp); | 
 |  | 
 |   if (Tmp.empty()) | 
 |     Tmp.Add(Pred); | 
 |    | 
 |   for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
 |     const GRState* state = GetState(*I); | 
 |     unsigned Count = Builder->getCurrentBlockCount(); | 
 |  | 
 |     // Check if 'VD' is a VLA and if so check if has a non-zero size. | 
 |     QualType T = getContext().getCanonicalType(VD->getType()); | 
 |     if (VariableArrayType* VLA = dyn_cast<VariableArrayType>(T)) { | 
 |       // FIXME: Handle multi-dimensional VLAs. | 
 |        | 
 |       Expr* SE = VLA->getSizeExpr(); | 
 |       SVal Size = GetSVal(state, SE); | 
 |        | 
 |       if (Size.isUndef()) { | 
 |         if (NodeTy* N = Builder->generateNode(DS, state, Pred)) { | 
 |           N->markAsSink();           | 
 |           ExplicitBadSizedVLA.insert(N); | 
 |         } | 
 |         continue; | 
 |       } | 
 |        | 
 |       bool isFeasibleZero = false; | 
 |       const GRState* ZeroSt =  Assume(state, Size, false, isFeasibleZero); | 
 |        | 
 |       bool isFeasibleNotZero = false; | 
 |       state = Assume(state, Size, true, isFeasibleNotZero); | 
 |        | 
 |       if (isFeasibleZero) { | 
 |         if (NodeTy* N = Builder->generateNode(DS, ZeroSt, Pred)) { | 
 |           N->markAsSink();           | 
 |           if (isFeasibleNotZero) ImplicitBadSizedVLA.insert(N); | 
 |           else ExplicitBadSizedVLA.insert(N); | 
 |         } | 
 |       } | 
 |        | 
 |       if (!isFeasibleNotZero) | 
 |         continue;       | 
 |     } | 
 |      | 
 |     // Decls without InitExpr are not initialized explicitly. | 
 |     if (InitEx) { | 
 |       SVal InitVal = GetSVal(state, InitEx); | 
 |       QualType T = VD->getType(); | 
 |        | 
 |       // Recover some path-sensitivity if a scalar value evaluated to | 
 |       // UnknownVal. | 
 |       if (InitVal.isUnknown()) { | 
 |         if (Loc::IsLocType(T)) { | 
 |           SymbolRef Sym = SymMgr.getConjuredSymbol(InitEx, Count);         | 
 |           InitVal = loc::SymbolVal(Sym); | 
 |         } | 
 |         else if (T->isIntegerType() && T->isScalarType()) { | 
 |           SymbolRef Sym = SymMgr.getConjuredSymbol(InitEx, Count);         | 
 |           InitVal = nonloc::SymbolVal(Sym);                     | 
 |         } | 
 |       }         | 
 |        | 
 |       state = StateMgr.BindDecl(state, VD, InitVal); | 
 |        | 
 |       // The next thing to do is check if the GRTransferFuncs object wants to | 
 |       // update the state based on the new binding.  If the GRTransferFunc | 
 |       // object doesn't do anything, just auto-propagate the current state. | 
 |       GRStmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, state, DS,true); | 
 |       getTF().EvalBind(BuilderRef, loc::MemRegionVal(StateMgr.getRegion(VD)), | 
 |                        InitVal);       | 
 |     }  | 
 |     else { | 
 |       state = StateMgr.BindDeclWithNoInit(state, VD); | 
 |       MakeNode(Dst, DS, *I, state); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |   // This class is used by VisitInitListExpr as an item in a worklist | 
 |   // for processing the values contained in an InitListExpr. | 
 | class VISIBILITY_HIDDEN InitListWLItem { | 
 | public: | 
 |   llvm::ImmutableList<SVal> Vals; | 
 |   GRExprEngine::NodeTy* N; | 
 |   InitListExpr::reverse_iterator Itr; | 
 |    | 
 |   InitListWLItem(GRExprEngine::NodeTy* n, llvm::ImmutableList<SVal> vals, | 
 |          InitListExpr::reverse_iterator itr) | 
 |   : Vals(vals), N(n), Itr(itr) {} | 
 | }; | 
 | } | 
 |  | 
 |  | 
 | void GRExprEngine::VisitInitListExpr(InitListExpr* E, NodeTy* Pred,  | 
 |                                      NodeSet& Dst) { | 
 |  | 
 |   const GRState* state = GetState(Pred); | 
 |   QualType T = getContext().getCanonicalType(E->getType()); | 
 |   unsigned NumInitElements = E->getNumInits();   | 
 |  | 
 |   if (T->isArrayType() || T->isStructureType()) { | 
 |  | 
 |     llvm::ImmutableList<SVal> StartVals = getBasicVals().getEmptySValList(); | 
 |      | 
 |     // Handle base case where the initializer has no elements. | 
 |     // e.g: static int* myArray[] = {}; | 
 |     if (NumInitElements == 0) { | 
 |       SVal V = NonLoc::MakeCompoundVal(T, StartVals, getBasicVals()); | 
 |       MakeNode(Dst, E, Pred, BindExpr(state, E, V)); | 
 |       return; | 
 |     }       | 
 |      | 
 |     // Create a worklist to process the initializers. | 
 |     llvm::SmallVector<InitListWLItem, 10> WorkList; | 
 |     WorkList.reserve(NumInitElements);   | 
 |     WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin()));     | 
 |     InitListExpr::reverse_iterator ItrEnd = E->rend(); | 
 |      | 
 |     // Process the worklist until it is empty. | 
 |     while (!WorkList.empty()) { | 
 |       InitListWLItem X = WorkList.back(); | 
 |       WorkList.pop_back(); | 
 |        | 
 |       NodeSet Tmp; | 
 |       Visit(*X.Itr, X.N, Tmp); | 
 |        | 
 |       InitListExpr::reverse_iterator NewItr = X.Itr + 1; | 
 |  | 
 |       for (NodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { | 
 |         // Get the last initializer value. | 
 |         state = GetState(*NI); | 
 |         SVal InitV = GetSVal(state, cast<Expr>(*X.Itr)); | 
 |          | 
 |         // Construct the new list of values by prepending the new value to | 
 |         // the already constructed list. | 
 |         llvm::ImmutableList<SVal> NewVals = | 
 |           getBasicVals().consVals(InitV, X.Vals); | 
 |          | 
 |         if (NewItr == ItrEnd) { | 
 |           // Now we have a list holding all init values. Make CompoundValData. | 
 |           SVal V = NonLoc::MakeCompoundVal(T, NewVals, getBasicVals()); | 
 |  | 
 |           // Make final state and node. | 
 |           MakeNode(Dst, E, *NI, BindExpr(state, E, V)); | 
 |         } | 
 |         else { | 
 |           // Still some initializer values to go.  Push them onto the worklist. | 
 |           WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr)); | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     return; | 
 |   } | 
 |  | 
 |   if (T->isUnionType() || T->isVectorType()) { | 
 |     // FIXME: to be implemented. | 
 |     // Note: That vectors can return true for T->isIntegerType() | 
 |     MakeNode(Dst, E, Pred, state); | 
 |     return; | 
 |   } | 
 |    | 
 |   if (Loc::IsLocType(T) || T->isIntegerType()) { | 
 |     assert (E->getNumInits() == 1); | 
 |     NodeSet Tmp; | 
 |     Expr* Init = E->getInit(0); | 
 |     Visit(Init, Pred, Tmp); | 
 |     for (NodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I != EI; ++I) { | 
 |       state = GetState(*I); | 
 |       MakeNode(Dst, E, *I, BindExpr(state, E, GetSVal(state, Init))); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |  | 
 |   printf("InitListExpr type = %s\n", T.getAsString().c_str()); | 
 |   assert(0 && "unprocessed InitListExpr type"); | 
 | } | 
 |  | 
 | /// VisitSizeOfAlignOfExpr - Transfer function for sizeof(type). | 
 | void GRExprEngine::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr* Ex, | 
 |                                           NodeTy* Pred, | 
 |                                           NodeSet& Dst) { | 
 |   QualType T = Ex->getTypeOfArgument(); | 
 |   uint64_t amt;   | 
 |    | 
 |   if (Ex->isSizeOf()) { | 
 |     if (T == getContext().VoidTy) {           | 
 |       // sizeof(void) == 1 byte. | 
 |       amt = 1; | 
 |     } | 
 |     else if (!T.getTypePtr()->isConstantSizeType()) { | 
 |       // FIXME: Add support for VLAs. | 
 |       return; | 
 |     } | 
 |     else if (T->isObjCInterfaceType()) { | 
 |       // Some code tries to take the sizeof an ObjCInterfaceType, relying that | 
 |       // the compiler has laid out its representation.  Just report Unknown | 
 |       // for these.       | 
 |       return; | 
 |     } | 
 |     else { | 
 |       // All other cases. | 
 |       amt = getContext().getTypeSize(T) / 8; | 
 |     }     | 
 |   } | 
 |   else  // Get alignment of the type. | 
 |     amt = getContext().getTypeAlign(T) / 8; | 
 |    | 
 |   MakeNode(Dst, Ex, Pred, | 
 |            BindExpr(GetState(Pred), Ex, | 
 |                     NonLoc::MakeVal(getBasicVals(), amt, Ex->getType())));   | 
 | } | 
 |  | 
 |  | 
 | void GRExprEngine::VisitUnaryOperator(UnaryOperator* U, NodeTy* Pred, | 
 |                                       NodeSet& Dst, bool asLValue) { | 
 |  | 
 |   switch (U->getOpcode()) { | 
 |        | 
 |     default: | 
 |       break; | 
 |            | 
 |     case UnaryOperator::Deref: { | 
 |        | 
 |       Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
 |       NodeSet Tmp; | 
 |       Visit(Ex, Pred, Tmp); | 
 |        | 
 |       for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
 |          | 
 |         const GRState* state = GetState(*I); | 
 |         SVal location = GetSVal(state, Ex); | 
 |          | 
 |         if (asLValue) | 
 |           MakeNode(Dst, U, *I, BindExpr(state, U, location)); | 
 |         else | 
 |           EvalLoad(Dst, U, *I, state, location); | 
 |       }  | 
 |  | 
 |       return; | 
 |     } | 
 |        | 
 |     case UnaryOperator::Real: { | 
 |        | 
 |       Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
 |       NodeSet Tmp; | 
 |       Visit(Ex, Pred, Tmp); | 
 |        | 
 |       for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
 |          | 
 |         // FIXME: We don't have complex SValues yet. | 
 |         if (Ex->getType()->isAnyComplexType()) { | 
 |           // Just report "Unknown." | 
 |           Dst.Add(*I); | 
 |           continue; | 
 |         } | 
 |          | 
 |         // For all other types, UnaryOperator::Real is an identity operation. | 
 |         assert (U->getType() == Ex->getType()); | 
 |         const GRState* state = GetState(*I); | 
 |         MakeNode(Dst, U, *I, BindExpr(state, U, GetSVal(state, Ex))); | 
 |       }  | 
 |        | 
 |       return; | 
 |     } | 
 |        | 
 |     case UnaryOperator::Imag: { | 
 |        | 
 |       Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
 |       NodeSet Tmp; | 
 |       Visit(Ex, Pred, Tmp); | 
 |        | 
 |       for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
 |         // FIXME: We don't have complex SValues yet. | 
 |         if (Ex->getType()->isAnyComplexType()) { | 
 |           // Just report "Unknown." | 
 |           Dst.Add(*I); | 
 |           continue; | 
 |         } | 
 |          | 
 |         // For all other types, UnaryOperator::Float returns 0. | 
 |         assert (Ex->getType()->isIntegerType()); | 
 |         const GRState* state = GetState(*I); | 
 |         SVal X = NonLoc::MakeVal(getBasicVals(), 0, Ex->getType()); | 
 |         MakeNode(Dst, U, *I, BindExpr(state, U, X)); | 
 |       } | 
 |        | 
 |       return; | 
 |     } | 
 |        | 
 |       // FIXME: Just report "Unknown" for OffsetOf.       | 
 |     case UnaryOperator::OffsetOf: | 
 |       Dst.Add(Pred); | 
 |       return; | 
 |        | 
 |     case UnaryOperator::Plus: assert (!asLValue);  // FALL-THROUGH. | 
 |     case UnaryOperator::Extension: { | 
 |        | 
 |       // Unary "+" is a no-op, similar to a parentheses.  We still have places | 
 |       // where it may be a block-level expression, so we need to | 
 |       // generate an extra node that just propagates the value of the | 
 |       // subexpression. | 
 |  | 
 |       Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
 |       NodeSet Tmp; | 
 |       Visit(Ex, Pred, Tmp); | 
 |        | 
 |       for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {         | 
 |         const GRState* state = GetState(*I); | 
 |         MakeNode(Dst, U, *I, BindExpr(state, U, GetSVal(state, Ex))); | 
 |       } | 
 |        | 
 |       return; | 
 |     } | 
 |      | 
 |     case UnaryOperator::AddrOf: { | 
 |        | 
 |       assert(!asLValue); | 
 |       Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
 |       NodeSet Tmp; | 
 |       VisitLValue(Ex, Pred, Tmp); | 
 |       | 
 |       for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {         | 
 |         const GRState* state = GetState(*I); | 
 |         SVal V = GetSVal(state, Ex); | 
 |         state = BindExpr(state, U, V); | 
 |         MakeNode(Dst, U, *I, state); | 
 |       } | 
 |  | 
 |       return;  | 
 |     } | 
 |        | 
 |     case UnaryOperator::LNot: | 
 |     case UnaryOperator::Minus: | 
 |     case UnaryOperator::Not: { | 
 |        | 
 |       assert (!asLValue); | 
 |       Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
 |       NodeSet Tmp; | 
 |       Visit(Ex, Pred, Tmp); | 
 |        | 
 |       for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {         | 
 |         const GRState* state = GetState(*I); | 
 |          | 
 |         // Get the value of the subexpression. | 
 |         SVal V = GetSVal(state, Ex); | 
 |  | 
 |         if (V.isUnknownOrUndef()) { | 
 |           MakeNode(Dst, U, *I, BindExpr(state, U, V)); | 
 |           continue; | 
 |         } | 
 |          | 
 | //        QualType DstT = getContext().getCanonicalType(U->getType()); | 
 | //        QualType SrcT = getContext().getCanonicalType(Ex->getType()); | 
 | //         | 
 | //        if (DstT != SrcT) // Perform promotions. | 
 | //          V = EvalCast(V, DstT);  | 
 | //         | 
 | //        if (V.isUnknownOrUndef()) { | 
 | //          MakeNode(Dst, U, *I, BindExpr(St, U, V)); | 
 | //          continue; | 
 | //        } | 
 |          | 
 |         switch (U->getOpcode()) { | 
 |           default: | 
 |             assert(false && "Invalid Opcode."); | 
 |             break; | 
 |              | 
 |           case UnaryOperator::Not: | 
 |             // FIXME: Do we need to handle promotions? | 
 |             state = BindExpr(state, U, EvalComplement(cast<NonLoc>(V))); | 
 |             break;             | 
 |              | 
 |           case UnaryOperator::Minus: | 
 |             // FIXME: Do we need to handle promotions? | 
 |             state = BindExpr(state, U, EvalMinus(U, cast<NonLoc>(V))); | 
 |             break;    | 
 |              | 
 |           case UnaryOperator::LNot:    | 
 |              | 
 |             // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." | 
 |             // | 
 |             //  Note: technically we do "E == 0", but this is the same in the | 
 |             //    transfer functions as "0 == E". | 
 |              | 
 |             if (isa<Loc>(V)) { | 
 |               loc::ConcreteInt X(getBasicVals().getZeroWithPtrWidth()); | 
 |               SVal Result = EvalBinOp(BinaryOperator::EQ, cast<Loc>(V), X); | 
 |               state = BindExpr(state, U, Result); | 
 |             } | 
 |             else { | 
 |               nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); | 
 | #if 0             | 
 |               SVal Result = EvalBinOp(BinaryOperator::EQ, cast<NonLoc>(V), X); | 
 |               state = SetSVal(state, U, Result); | 
 | #else | 
 |               EvalBinOp(Dst, U, BinaryOperator::EQ, cast<NonLoc>(V), X, *I); | 
 |               continue; | 
 | #endif | 
 |             } | 
 |              | 
 |             break; | 
 |         } | 
 |          | 
 |         MakeNode(Dst, U, *I, state); | 
 |       } | 
 |        | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Handle ++ and -- (both pre- and post-increment). | 
 |  | 
 |   assert (U->isIncrementDecrementOp()); | 
 |   NodeSet Tmp; | 
 |   Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
 |   VisitLValue(Ex, Pred, Tmp); | 
 |    | 
 |   for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { | 
 |      | 
 |     const GRState* state = GetState(*I); | 
 |     SVal V1 = GetSVal(state, Ex); | 
 |      | 
 |     // Perform a load.       | 
 |     NodeSet Tmp2; | 
 |     EvalLoad(Tmp2, Ex, *I, state, V1); | 
 |  | 
 |     for (NodeSet::iterator I2 = Tmp2.begin(), E2 = Tmp2.end(); I2!=E2; ++I2) { | 
 |          | 
 |       state = GetState(*I2); | 
 |       SVal V2 = GetSVal(state, Ex); | 
 |          | 
 |       // Propagate unknown and undefined values.       | 
 |       if (V2.isUnknownOrUndef()) { | 
 |         MakeNode(Dst, U, *I2, BindExpr(state, U, V2)); | 
 |         continue; | 
 |       } | 
 |        | 
 |       // Handle all other values. | 
 |        | 
 |       BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add | 
 |                                                      : BinaryOperator::Sub; | 
 |        | 
 |       SVal Result = EvalBinOp(Op, V2, MakeConstantVal(1U, U));       | 
 |       state = BindExpr(state, U, U->isPostfix() ? V2 : Result); | 
 |  | 
 |       // Perform the store.       | 
 |       EvalStore(Dst, U, *I2, state, V1, Result); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void GRExprEngine::VisitAsmStmt(AsmStmt* A, NodeTy* Pred, NodeSet& Dst) { | 
 |   VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst); | 
 | }   | 
 |  | 
 | void GRExprEngine::VisitAsmStmtHelperOutputs(AsmStmt* A, | 
 |                                              AsmStmt::outputs_iterator I, | 
 |                                              AsmStmt::outputs_iterator E, | 
 |                                              NodeTy* Pred, NodeSet& Dst) { | 
 |   if (I == E) { | 
 |     VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst); | 
 |     return; | 
 |   } | 
 |    | 
 |   NodeSet Tmp; | 
 |   VisitLValue(*I, Pred, Tmp); | 
 |    | 
 |   ++I; | 
 |    | 
 |   for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) | 
 |     VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst); | 
 | } | 
 |  | 
 | void GRExprEngine::VisitAsmStmtHelperInputs(AsmStmt* A, | 
 |                                             AsmStmt::inputs_iterator I, | 
 |                                             AsmStmt::inputs_iterator E, | 
 |                                             NodeTy* Pred, NodeSet& Dst) { | 
 |   if (I == E) { | 
 |      | 
 |     // We have processed both the inputs and the outputs.  All of the outputs | 
 |     // should evaluate to Locs.  Nuke all of their values. | 
 |      | 
 |     // FIXME: Some day in the future it would be nice to allow a "plug-in" | 
 |     // which interprets the inline asm and stores proper results in the | 
 |     // outputs. | 
 |      | 
 |     const GRState* state = GetState(Pred); | 
 |      | 
 |     for (AsmStmt::outputs_iterator OI = A->begin_outputs(), | 
 |                                    OE = A->end_outputs(); OI != OE; ++OI) { | 
 |        | 
 |       SVal X = GetSVal(state, *OI);       | 
 |       assert (!isa<NonLoc>(X));  // Should be an Lval, or unknown, undef. | 
 |        | 
 |       if (isa<Loc>(X)) | 
 |         state = BindLoc(state, cast<Loc>(X), UnknownVal()); | 
 |     } | 
 |      | 
 |     MakeNode(Dst, A, Pred, state); | 
 |     return; | 
 |   } | 
 |    | 
 |   NodeSet Tmp; | 
 |   Visit(*I, Pred, Tmp); | 
 |    | 
 |   ++I; | 
 |    | 
 |   for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) | 
 |     VisitAsmStmtHelperInputs(A, I, E, *NI, Dst); | 
 | } | 
 |  | 
 | void GRExprEngine::EvalReturn(NodeSet& Dst, ReturnStmt* S, NodeTy* Pred) { | 
 |   assert (Builder && "GRStmtNodeBuilder must be defined."); | 
 |    | 
 |   unsigned size = Dst.size();   | 
 |  | 
 |   SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
 |   SaveOr OldHasGen(Builder->HasGeneratedNode); | 
 |  | 
 |   getTF().EvalReturn(Dst, *this, *Builder, S, Pred); | 
 |    | 
 |   // Handle the case where no nodes where generated. | 
 |    | 
 |   if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode) | 
 |     MakeNode(Dst, S, Pred, GetState(Pred)); | 
 | } | 
 |  | 
 | void GRExprEngine::VisitReturnStmt(ReturnStmt* S, NodeTy* Pred, NodeSet& Dst) { | 
 |  | 
 |   Expr* R = S->getRetValue(); | 
 |    | 
 |   if (!R) { | 
 |     EvalReturn(Dst, S, Pred); | 
 |     return; | 
 |   } | 
 |  | 
 |   NodeSet Tmp; | 
 |   Visit(R, Pred, Tmp); | 
 |  | 
 |   for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) { | 
 |     SVal X = GetSVal((*I)->getState(), R); | 
 |      | 
 |     // Check if we return the address of a stack variable. | 
 |     if (isa<loc::MemRegionVal>(X)) { | 
 |       // Determine if the value is on the stack. | 
 |       const MemRegion* R = cast<loc::MemRegionVal>(&X)->getRegion(); | 
 |        | 
 |       if (R && getStateManager().hasStackStorage(R)) { | 
 |         // Create a special node representing the error. | 
 |         if (NodeTy* N = Builder->generateNode(S, GetState(*I), *I)) { | 
 |           N->markAsSink(); | 
 |           RetsStackAddr.insert(N); | 
 |         } | 
 |         continue; | 
 |       } | 
 |     } | 
 |     // Check if we return an undefined value. | 
 |     else if (X.isUndef()) { | 
 |       if (NodeTy* N = Builder->generateNode(S, GetState(*I), *I)) { | 
 |         N->markAsSink(); | 
 |         RetsUndef.insert(N); | 
 |       } | 
 |       continue; | 
 |     } | 
 |      | 
 |     EvalReturn(Dst, S, *I); | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer functions: Binary operators. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | const GRState* GRExprEngine::CheckDivideZero(Expr* Ex, const GRState* state, | 
 |                                              NodeTy* Pred, SVal Denom) { | 
 |    | 
 |   // Divide by undefined? (potentially zero) | 
 |    | 
 |   if (Denom.isUndef()) { | 
 |     NodeTy* DivUndef = Builder->generateNode(Ex, state, Pred); | 
 |      | 
 |     if (DivUndef) { | 
 |       DivUndef->markAsSink(); | 
 |       ExplicitBadDivides.insert(DivUndef); | 
 |     } | 
 |      | 
 |     return 0; | 
 |   } | 
 |    | 
 |   // Check for divide/remainder-by-zero. | 
 |   // First, "assume" that the denominator is 0 or undefined.             | 
 |    | 
 |   bool isFeasibleZero = false; | 
 |   const GRState* ZeroSt =  Assume(state, Denom, false, isFeasibleZero); | 
 |    | 
 |   // Second, "assume" that the denominator cannot be 0.             | 
 |    | 
 |   bool isFeasibleNotZero = false; | 
 |   state = Assume(state, Denom, true, isFeasibleNotZero); | 
 |    | 
 |   // Create the node for the divide-by-zero (if it occurred). | 
 |    | 
 |   if (isFeasibleZero) | 
 |     if (NodeTy* DivZeroNode = Builder->generateNode(Ex, ZeroSt, Pred)) { | 
 |       DivZeroNode->markAsSink(); | 
 |        | 
 |       if (isFeasibleNotZero) | 
 |         ImplicitBadDivides.insert(DivZeroNode); | 
 |       else | 
 |         ExplicitBadDivides.insert(DivZeroNode); | 
 |        | 
 |     } | 
 |    | 
 |   return isFeasibleNotZero ? state : 0; | 
 | } | 
 |  | 
 | void GRExprEngine::VisitBinaryOperator(BinaryOperator* B, | 
 |                                        GRExprEngine::NodeTy* Pred, | 
 |                                        GRExprEngine::NodeSet& Dst) { | 
 |  | 
 |   NodeSet Tmp1; | 
 |   Expr* LHS = B->getLHS()->IgnoreParens(); | 
 |   Expr* RHS = B->getRHS()->IgnoreParens(); | 
 |    | 
 |   // FIXME: Add proper support for ObjCKVCRefExpr. | 
 |   if (isa<ObjCKVCRefExpr>(LHS)) { | 
 |     Visit(RHS, Pred, Dst);    | 
 |     return; | 
 |   } | 
 |    | 
 |    | 
 |   if (B->isAssignmentOp()) | 
 |     VisitLValue(LHS, Pred, Tmp1); | 
 |   else | 
 |     Visit(LHS, Pred, Tmp1); | 
 |  | 
 |   for (NodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1 != E1; ++I1) { | 
 |  | 
 |     SVal LeftV = GetSVal((*I1)->getState(), LHS); | 
 |      | 
 |     // Process the RHS. | 
 |      | 
 |     NodeSet Tmp2; | 
 |     Visit(RHS, *I1, Tmp2); | 
 |      | 
 |     // With both the LHS and RHS evaluated, process the operation itself. | 
 |      | 
 |     for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2 != E2; ++I2) { | 
 |  | 
 |       const GRState* state = GetState(*I2); | 
 |       const GRState* OldSt = state; | 
 |  | 
 |       SVal RightV = GetSVal(state, RHS); | 
 |       BinaryOperator::Opcode Op = B->getOpcode(); | 
 |        | 
 |       switch (Op) { | 
 |            | 
 |         case BinaryOperator::Assign: { | 
 |            | 
 |           // EXPERIMENTAL: "Conjured" symbols. | 
 |           // FIXME: Handle structs. | 
 |           QualType T = RHS->getType(); | 
 |            | 
 |           if (RightV.isUnknown() && (Loc::IsLocType(T) ||  | 
 |                                   (T->isScalarType() && T->isIntegerType()))) { | 
 |             unsigned Count = Builder->getCurrentBlockCount(); | 
 |             SymbolRef Sym = SymMgr.getConjuredSymbol(B->getRHS(), Count); | 
 |              | 
 |             RightV = Loc::IsLocType(T)  | 
 |                    ? cast<SVal>(loc::SymbolVal(Sym))  | 
 |                    : cast<SVal>(nonloc::SymbolVal(Sym));             | 
 |           } | 
 |            | 
 |           // Simulate the effects of a "store":  bind the value of the RHS | 
 |           // to the L-Value represented by the LHS. | 
 |            | 
 |           EvalStore(Dst, B, LHS, *I2, BindExpr(state, B, RightV), LeftV, | 
 |                     RightV); | 
 |           continue; | 
 |         } | 
 |            | 
 |         case BinaryOperator::Div: | 
 |         case BinaryOperator::Rem: | 
 |            | 
 |           // Special checking for integer denominators.           | 
 |           if (RHS->getType()->isIntegerType() &&  | 
 |               RHS->getType()->isScalarType()) { | 
 |              | 
 |             state = CheckDivideZero(B, state, *I2, RightV); | 
 |             if (!state) continue; | 
 |           } | 
 |            | 
 |           // FALL-THROUGH. | 
 |  | 
 |         default: { | 
 |        | 
 |           if (B->isAssignmentOp()) | 
 |             break; | 
 |            | 
 |           // Process non-assignements except commas or short-circuited | 
 |           // logical expressions (LAnd and LOr). | 
 |            | 
 |           SVal Result = EvalBinOp(Op, LeftV, RightV); | 
 |            | 
 |           if (Result.isUnknown()) { | 
 |             if (OldSt != state) { | 
 |               // Generate a new node if we have already created a new state. | 
 |               MakeNode(Dst, B, *I2, state); | 
 |             } | 
 |             else | 
 |               Dst.Add(*I2); | 
 |              | 
 |             continue; | 
 |           } | 
 |            | 
 |           if (Result.isUndef() && !LeftV.isUndef() && !RightV.isUndef()) { | 
 |              | 
 |             // The operands were *not* undefined, but the result is undefined. | 
 |             // This is a special node that should be flagged as an error. | 
 |              | 
 |             if (NodeTy* UndefNode = Builder->generateNode(B, state, *I2)) { | 
 |               UndefNode->markAsSink();             | 
 |               UndefResults.insert(UndefNode); | 
 |             } | 
 |              | 
 |             continue; | 
 |           } | 
 |            | 
 |           // Otherwise, create a new node. | 
 |            | 
 |           MakeNode(Dst, B, *I2, BindExpr(state, B, Result)); | 
 |           continue; | 
 |         } | 
 |       } | 
 |      | 
 |       assert (B->isCompoundAssignmentOp()); | 
 |  | 
 |       switch (Op) { | 
 |         default: | 
 |           assert(0 && "Invalid opcode for compound assignment."); | 
 |         case BinaryOperator::MulAssign: Op = BinaryOperator::Mul; break; | 
 |         case BinaryOperator::DivAssign: Op = BinaryOperator::Div; break; | 
 |         case BinaryOperator::RemAssign: Op = BinaryOperator::Rem; break; | 
 |         case BinaryOperator::AddAssign: Op = BinaryOperator::Add; break; | 
 |         case BinaryOperator::SubAssign: Op = BinaryOperator::Sub; break; | 
 |         case BinaryOperator::ShlAssign: Op = BinaryOperator::Shl; break; | 
 |         case BinaryOperator::ShrAssign: Op = BinaryOperator::Shr; break; | 
 |         case BinaryOperator::AndAssign: Op = BinaryOperator::And; break; | 
 |         case BinaryOperator::XorAssign: Op = BinaryOperator::Xor; break; | 
 |         case BinaryOperator::OrAssign:  Op = BinaryOperator::Or;  break; | 
 |       } | 
 |            | 
 |       // Perform a load (the LHS).  This performs the checks for | 
 |       // null dereferences, and so on. | 
 |       NodeSet Tmp3; | 
 |       SVal location = GetSVal(state, LHS); | 
 |       EvalLoad(Tmp3, LHS, *I2, state, location); | 
 |        | 
 |       for (NodeSet::iterator I3=Tmp3.begin(), E3=Tmp3.end(); I3!=E3; ++I3) { | 
 |          | 
 |         state = GetState(*I3); | 
 |         SVal V = GetSVal(state, LHS); | 
 |  | 
 |         // Check for divide-by-zero. | 
 |         if ((Op == BinaryOperator::Div || Op == BinaryOperator::Rem) | 
 |             && RHS->getType()->isIntegerType() | 
 |             && RHS->getType()->isScalarType()) { | 
 |            | 
 |           // CheckDivideZero returns a new state where the denominator | 
 |           // is assumed to be non-zero. | 
 |           state = CheckDivideZero(B, state, *I3, RightV); | 
 |            | 
 |           if (!state) | 
 |             continue; | 
 |         } | 
 |          | 
 |         // Propagate undefined values (left-side).           | 
 |         if (V.isUndef()) { | 
 |           EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, V), location, V); | 
 |           continue; | 
 |         } | 
 |          | 
 |         // Propagate unknown values (left and right-side). | 
 |         if (RightV.isUnknown() || V.isUnknown()) { | 
 |           EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, UnknownVal()), | 
 |                     location, UnknownVal()); | 
 |           continue; | 
 |         } | 
 |  | 
 |         // At this point: | 
 |         // | 
 |         //  The LHS is not Undef/Unknown. | 
 |         //  The RHS is not Unknown. | 
 |          | 
 |         // Get the computation type. | 
 |         QualType CTy = cast<CompoundAssignOperator>(B)->getComputationType(); | 
 |         CTy = getContext().getCanonicalType(CTy); | 
 |          | 
 |         QualType LTy = getContext().getCanonicalType(LHS->getType()); | 
 |         QualType RTy = getContext().getCanonicalType(RHS->getType()); | 
 |            | 
 |         // Perform promotions. | 
 |         if (LTy != CTy) V = EvalCast(V, CTy); | 
 |         if (RTy != CTy) RightV = EvalCast(RightV, CTy); | 
 |            | 
 |         // Evaluate operands and promote to result type.                     | 
 |         if (RightV.isUndef()) {             | 
 |           // Propagate undefined values (right-side).           | 
 |           EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, RightV), location, | 
 |                     RightV); | 
 |           continue; | 
 |         } | 
 |        | 
 |         // Compute the result of the operation.       | 
 |         SVal Result = EvalCast(EvalBinOp(Op, V, RightV), B->getType()); | 
 |            | 
 |         if (Result.isUndef()) { | 
 |           // The operands were not undefined, but the result is undefined. | 
 |           if (NodeTy* UndefNode = Builder->generateNode(B, state, *I3)) { | 
 |             UndefNode->markAsSink();             | 
 |             UndefResults.insert(UndefNode); | 
 |           } | 
 |           continue; | 
 |         } | 
 |  | 
 |         // EXPERIMENTAL: "Conjured" symbols. | 
 |         // FIXME: Handle structs. | 
 |          | 
 |         SVal LHSVal; | 
 |          | 
 |         if (Result.isUnknown() && (Loc::IsLocType(CTy)  | 
 |                             || (CTy->isScalarType() && CTy->isIntegerType()))) { | 
 |            | 
 |           unsigned Count = Builder->getCurrentBlockCount(); | 
 |            | 
 |           // The symbolic value is actually for the type of the left-hand side | 
 |           // expression, not the computation type, as this is the value the | 
 |           // LValue on the LHS will bind to. | 
 |           SymbolRef Sym = SymMgr.getConjuredSymbol(B->getRHS(), LTy, Count); | 
 |           LHSVal = Loc::IsLocType(LTy)  | 
 |                  ? cast<SVal>(loc::SymbolVal(Sym))  | 
 |                  : cast<SVal>(nonloc::SymbolVal(Sym)); | 
 |            | 
 |           // However, we need to convert the symbol to the computation type. | 
 |           Result = (LTy == CTy) ? LHSVal : EvalCast(LHSVal,CTy); | 
 |         } | 
 |         else { | 
 |           // The left-hand side may bind to a different value then the | 
 |           // computation type. | 
 |           LHSVal = (LTy == CTy) ? Result : EvalCast(Result,LTy); | 
 |         } | 
 |            | 
 |         EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, Result), location, | 
 |                   LHSVal); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer-function Helpers. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::EvalBinOp(ExplodedNodeSet<GRState>& Dst, Expr* Ex, | 
 |                              BinaryOperator::Opcode Op, | 
 |                              NonLoc L, NonLoc R, | 
 |                              ExplodedNode<GRState>* Pred) { | 
 |  | 
 |   GRStateSet OStates; | 
 |   EvalBinOp(OStates, GetState(Pred), Ex, Op, L, R); | 
 |  | 
 |   for (GRStateSet::iterator I=OStates.begin(), E=OStates.end(); I!=E; ++I) | 
 |     MakeNode(Dst, Ex, Pred, *I); | 
 | } | 
 |  | 
 | void GRExprEngine::EvalBinOp(GRStateSet& OStates, const GRState* state, | 
 |                              Expr* Ex, BinaryOperator::Opcode Op, | 
 |                              NonLoc L, NonLoc R) { | 
 |    | 
 |   GRStateSet::AutoPopulate AP(OStates, state); | 
 |   if (R.isValid()) getTF().EvalBinOpNN(OStates, *this, state, Ex, Op, L, R); | 
 | } | 
 |  | 
 | SVal GRExprEngine::EvalBinOp(BinaryOperator::Opcode Op, SVal L, SVal R) { | 
 |    | 
 |   if (L.isUndef() || R.isUndef()) | 
 |     return UndefinedVal(); | 
 |    | 
 |   if (L.isUnknown() || R.isUnknown()) | 
 |     return UnknownVal(); | 
 |    | 
 |   if (isa<Loc>(L)) { | 
 |     if (isa<Loc>(R)) | 
 |       return getTF().EvalBinOp(*this, Op, cast<Loc>(L), cast<Loc>(R)); | 
 |     else | 
 |       return getTF().EvalBinOp(*this, Op, cast<Loc>(L), cast<NonLoc>(R)); | 
 |   } | 
 |    | 
 |   if (isa<Loc>(R)) { | 
 |     // Support pointer arithmetic where the increment/decrement operand | 
 |     // is on the left and the pointer on the right. | 
 |      | 
 |     assert (Op == BinaryOperator::Add || Op == BinaryOperator::Sub); | 
 |      | 
 |     // Commute the operands. | 
 |     return getTF().EvalBinOp(*this, Op, cast<Loc>(R), | 
 |                              cast<NonLoc>(L)); | 
 |   } | 
 |   else | 
 |     return getTF().DetermEvalBinOpNN(*this, Op, cast<NonLoc>(L), | 
 |                                      cast<NonLoc>(R)); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Visualization. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef NDEBUG | 
 | static GRExprEngine* GraphPrintCheckerState; | 
 | static SourceManager* GraphPrintSourceManager; | 
 |  | 
 | namespace llvm { | 
 | template<> | 
 | struct VISIBILITY_HIDDEN DOTGraphTraits<GRExprEngine::NodeTy*> : | 
 |   public DefaultDOTGraphTraits { | 
 |      | 
 |   static std::string getNodeAttributes(const GRExprEngine::NodeTy* N, void*) { | 
 |      | 
 |     if (GraphPrintCheckerState->isImplicitNullDeref(N) || | 
 |         GraphPrintCheckerState->isExplicitNullDeref(N) || | 
 |         GraphPrintCheckerState->isUndefDeref(N) || | 
 |         GraphPrintCheckerState->isUndefStore(N) || | 
 |         GraphPrintCheckerState->isUndefControlFlow(N) || | 
 |         GraphPrintCheckerState->isExplicitBadDivide(N) || | 
 |         GraphPrintCheckerState->isImplicitBadDivide(N) || | 
 |         GraphPrintCheckerState->isUndefResult(N) || | 
 |         GraphPrintCheckerState->isBadCall(N) || | 
 |         GraphPrintCheckerState->isUndefArg(N)) | 
 |       return "color=\"red\",style=\"filled\""; | 
 |      | 
 |     if (GraphPrintCheckerState->isNoReturnCall(N)) | 
 |       return "color=\"blue\",style=\"filled\""; | 
 |      | 
 |     return ""; | 
 |   } | 
 |      | 
 |   static std::string getNodeLabel(const GRExprEngine::NodeTy* N, void*) { | 
 |     std::ostringstream Out; | 
 |  | 
 |     // Program Location. | 
 |     ProgramPoint Loc = N->getLocation(); | 
 |      | 
 |     switch (Loc.getKind()) { | 
 |       case ProgramPoint::BlockEntranceKind: | 
 |         Out << "Block Entrance: B"  | 
 |             << cast<BlockEntrance>(Loc).getBlock()->getBlockID(); | 
 |         break; | 
 |        | 
 |       case ProgramPoint::BlockExitKind: | 
 |         assert (false); | 
 |         break; | 
 |          | 
 |       default: { | 
 |         if (isa<PostStmt>(Loc)) { | 
 |           const PostStmt& L = cast<PostStmt>(Loc);         | 
 |           Stmt* S = L.getStmt(); | 
 |           SourceLocation SLoc = S->getLocStart(); | 
 |  | 
 |           Out << S->getStmtClassName() << ' ' << (void*) S << ' ';         | 
 |           llvm::raw_os_ostream OutS(Out); | 
 |           S->printPretty(OutS); | 
 |           OutS.flush(); | 
 |            | 
 |           if (SLoc.isFileID()) {         | 
 |             Out << "\\lline=" | 
 |               << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) | 
 |               << " col=" | 
 |               << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc) | 
 |               << "\\l"; | 
 |           } | 
 |            | 
 |           if (GraphPrintCheckerState->isImplicitNullDeref(N)) | 
 |             Out << "\\|Implicit-Null Dereference.\\l"; | 
 |           else if (GraphPrintCheckerState->isExplicitNullDeref(N)) | 
 |             Out << "\\|Explicit-Null Dereference.\\l"; | 
 |           else if (GraphPrintCheckerState->isUndefDeref(N)) | 
 |             Out << "\\|Dereference of undefialied value.\\l"; | 
 |           else if (GraphPrintCheckerState->isUndefStore(N)) | 
 |             Out << "\\|Store to Undefined Loc."; | 
 |           else if (GraphPrintCheckerState->isExplicitBadDivide(N)) | 
 |             Out << "\\|Explicit divide-by zero or undefined value."; | 
 |           else if (GraphPrintCheckerState->isImplicitBadDivide(N)) | 
 |             Out << "\\|Implicit divide-by zero or undefined value."; | 
 |           else if (GraphPrintCheckerState->isUndefResult(N)) | 
 |             Out << "\\|Result of operation is undefined."; | 
 |           else if (GraphPrintCheckerState->isNoReturnCall(N)) | 
 |             Out << "\\|Call to function marked \"noreturn\"."; | 
 |           else if (GraphPrintCheckerState->isBadCall(N)) | 
 |             Out << "\\|Call to NULL/Undefined."; | 
 |           else if (GraphPrintCheckerState->isUndefArg(N)) | 
 |             Out << "\\|Argument in call is undefined"; | 
 |            | 
 |           break; | 
 |         } | 
 |  | 
 |         const BlockEdge& E = cast<BlockEdge>(Loc); | 
 |         Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" | 
 |             << E.getDst()->getBlockID()  << ')'; | 
 |          | 
 |         if (Stmt* T = E.getSrc()->getTerminator()) { | 
 |            | 
 |           SourceLocation SLoc = T->getLocStart(); | 
 |           | 
 |           Out << "\\|Terminator: "; | 
 |            | 
 |           llvm::raw_os_ostream OutS(Out); | 
 |           E.getSrc()->printTerminator(OutS); | 
 |           OutS.flush(); | 
 |            | 
 |           if (SLoc.isFileID()) { | 
 |             Out << "\\lline=" | 
 |               << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) | 
 |               << " col=" | 
 |               << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc); | 
 |           } | 
 |              | 
 |           if (isa<SwitchStmt>(T)) { | 
 |             Stmt* Label = E.getDst()->getLabel(); | 
 |              | 
 |             if (Label) {                         | 
 |               if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) { | 
 |                 Out << "\\lcase "; | 
 |                 llvm::raw_os_ostream OutS(Out); | 
 |                 C->getLHS()->printPretty(OutS); | 
 |                 OutS.flush(); | 
 |                | 
 |                 if (Stmt* RHS = C->getRHS()) { | 
 |                   Out << " .. "; | 
 |                   RHS->printPretty(OutS); | 
 |                   OutS.flush(); | 
 |                 } | 
 |                  | 
 |                 Out << ":"; | 
 |               } | 
 |               else { | 
 |                 assert (isa<DefaultStmt>(Label)); | 
 |                 Out << "\\ldefault:"; | 
 |               } | 
 |             } | 
 |             else  | 
 |               Out << "\\l(implicit) default:"; | 
 |           } | 
 |           else if (isa<IndirectGotoStmt>(T)) { | 
 |             // FIXME | 
 |           } | 
 |           else { | 
 |             Out << "\\lCondition: "; | 
 |             if (*E.getSrc()->succ_begin() == E.getDst()) | 
 |               Out << "true"; | 
 |             else | 
 |               Out << "false";                         | 
 |           } | 
 |            | 
 |           Out << "\\l"; | 
 |         } | 
 |          | 
 |         if (GraphPrintCheckerState->isUndefControlFlow(N)) { | 
 |           Out << "\\|Control-flow based on\\lUndefined value.\\l"; | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     Out << "\\|StateID: " << (void*) N->getState() << "\\|"; | 
 |  | 
 |     GRStateRef state(N->getState(), GraphPrintCheckerState->getStateManager()); | 
 |     state.printDOT(Out); | 
 |        | 
 |     Out << "\\l"; | 
 |     return Out.str(); | 
 |   } | 
 | }; | 
 | } // end llvm namespace     | 
 | #endif | 
 |  | 
 | #ifndef NDEBUG | 
 |  | 
 | template <typename ITERATOR> | 
 | GRExprEngine::NodeTy* GetGraphNode(ITERATOR I) { return *I; } | 
 |  | 
 | template <> | 
 | GRExprEngine::NodeTy* | 
 | GetGraphNode<llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator> | 
 |   (llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator I) { | 
 |   return I->first; | 
 | } | 
 |  | 
 | template <typename ITERATOR> | 
 | static void AddSources(std::vector<GRExprEngine::NodeTy*>& Sources, | 
 |                        ITERATOR I, ITERATOR E) { | 
 |    | 
 |   llvm::SmallSet<ProgramPoint,10> CachedSources; | 
 |    | 
 |   for ( ; I != E; ++I ) { | 
 |     GRExprEngine::NodeTy* N = GetGraphNode(I); | 
 |     ProgramPoint P = N->getLocation(); | 
 |      | 
 |     if (CachedSources.count(P)) | 
 |       continue; | 
 |      | 
 |     CachedSources.insert(P);     | 
 |     Sources.push_back(N); | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | void GRExprEngine::ViewGraph(bool trim) { | 
 | #ifndef NDEBUG   | 
 |   if (trim) { | 
 |     std::vector<NodeTy*> Src; | 
 |      | 
 |     // FIXME: Migrate over to the new way of adding nodes. | 
 |     AddSources(Src, null_derefs_begin(), null_derefs_end()); | 
 |     AddSources(Src, undef_derefs_begin(), undef_derefs_end()); | 
 |     AddSources(Src, explicit_bad_divides_begin(), explicit_bad_divides_end()); | 
 |     AddSources(Src, undef_results_begin(), undef_results_end()); | 
 |     AddSources(Src, bad_calls_begin(), bad_calls_end()); | 
 |     AddSources(Src, undef_arg_begin(), undef_arg_end()); | 
 |     AddSources(Src, undef_branches_begin(), undef_branches_end()); | 
 |      | 
 |     // FIXME: Enhance BugReporter to have a clean way to query if a node | 
 |     // is involved in an error... and what kind. | 
 |      | 
 |     ViewGraph(&Src[0], &Src[0]+Src.size()); | 
 |   } | 
 |   else { | 
 |     GraphPrintCheckerState = this; | 
 |     GraphPrintSourceManager = &getContext().getSourceManager(); | 
 |  | 
 |     llvm::ViewGraph(*G.roots_begin(), "GRExprEngine"); | 
 |      | 
 |     GraphPrintCheckerState = NULL; | 
 |     GraphPrintSourceManager = NULL; | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | void GRExprEngine::ViewGraph(NodeTy** Beg, NodeTy** End) { | 
 | #ifndef NDEBUG | 
 |   GraphPrintCheckerState = this; | 
 |   GraphPrintSourceManager = &getContext().getSourceManager(); | 
 |      | 
 |   std::auto_ptr<GRExprEngine::GraphTy> TrimmedG(G.Trim(Beg, End).first); | 
 |  | 
 |   if (!TrimmedG.get()) | 
 |     llvm::cerr << "warning: Trimmed ExplodedGraph is empty.\n"; | 
 |   else | 
 |     llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedGRExprEngine");     | 
 |    | 
 |   GraphPrintCheckerState = NULL; | 
 |   GraphPrintSourceManager = NULL; | 
 | #endif | 
 | } |