| //=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the template classes ExplodedNode and ExplodedGraph, |
| // which represent a path-sensitive, intra-procedural "exploded graph." |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Checker/PathSensitive/ExplodedGraph.h" |
| #include "clang/Checker/PathSensitive/GRState.h" |
| #include "clang/AST/Stmt.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include <vector> |
| |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // Node auditing. |
| //===----------------------------------------------------------------------===// |
| |
| // An out of line virtual method to provide a home for the class vtable. |
| ExplodedNode::Auditor::~Auditor() {} |
| |
| #ifndef NDEBUG |
| static ExplodedNode::Auditor* NodeAuditor = 0; |
| #endif |
| |
| void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) { |
| #ifndef NDEBUG |
| NodeAuditor = A; |
| #endif |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ExplodedNode. |
| //===----------------------------------------------------------------------===// |
| |
| static inline BumpVector<ExplodedNode*>& getVector(void* P) { |
| return *reinterpret_cast<BumpVector<ExplodedNode*>*>(P); |
| } |
| |
| void ExplodedNode::addPredecessor(ExplodedNode* V, ExplodedGraph &G) { |
| assert (!V->isSink()); |
| Preds.addNode(V, G); |
| V->Succs.addNode(this, G); |
| #ifndef NDEBUG |
| if (NodeAuditor) NodeAuditor->AddEdge(V, this); |
| #endif |
| } |
| |
| void ExplodedNode::NodeGroup::addNode(ExplodedNode* N, ExplodedGraph &G) { |
| assert((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0); |
| assert(!getFlag()); |
| |
| if (getKind() == Size1) { |
| if (ExplodedNode* NOld = getNode()) { |
| BumpVectorContext &Ctx = G.getNodeAllocator(); |
| BumpVector<ExplodedNode*> *V = |
| G.getAllocator().Allocate<BumpVector<ExplodedNode*> >(); |
| new (V) BumpVector<ExplodedNode*>(Ctx, 4); |
| |
| assert((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0); |
| V->push_back(NOld, Ctx); |
| V->push_back(N, Ctx); |
| P = reinterpret_cast<uintptr_t>(V) | SizeOther; |
| assert(getPtr() == (void*) V); |
| assert(getKind() == SizeOther); |
| } |
| else { |
| P = reinterpret_cast<uintptr_t>(N); |
| assert(getKind() == Size1); |
| } |
| } |
| else { |
| assert(getKind() == SizeOther); |
| getVector(getPtr()).push_back(N, G.getNodeAllocator()); |
| } |
| } |
| |
| unsigned ExplodedNode::NodeGroup::size() const { |
| if (getFlag()) |
| return 0; |
| |
| if (getKind() == Size1) |
| return getNode() ? 1 : 0; |
| else |
| return getVector(getPtr()).size(); |
| } |
| |
| ExplodedNode **ExplodedNode::NodeGroup::begin() const { |
| if (getFlag()) |
| return NULL; |
| |
| if (getKind() == Size1) |
| return (ExplodedNode**) (getPtr() ? &P : NULL); |
| else |
| return const_cast<ExplodedNode**>(&*(getVector(getPtr()).begin())); |
| } |
| |
| ExplodedNode** ExplodedNode::NodeGroup::end() const { |
| if (getFlag()) |
| return NULL; |
| |
| if (getKind() == Size1) |
| return (ExplodedNode**) (getPtr() ? &P+1 : NULL); |
| else { |
| // Dereferencing end() is undefined behaviour. The vector is not empty, so |
| // we can dereference the last elem and then add 1 to the result. |
| return const_cast<ExplodedNode**>(getVector(getPtr()).end()); |
| } |
| } |
| |
| ExplodedNode *ExplodedGraph::getNode(const ProgramPoint& L, |
| const GRState* State, bool* IsNew) { |
| // Profile 'State' to determine if we already have an existing node. |
| llvm::FoldingSetNodeID profile; |
| void* InsertPos = 0; |
| |
| NodeTy::Profile(profile, L, State); |
| NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos); |
| |
| if (!V) { |
| // Allocate a new node. |
| V = (NodeTy*) getAllocator().Allocate<NodeTy>(); |
| new (V) NodeTy(L, State); |
| |
| // Insert the node into the node set and return it. |
| Nodes.InsertNode(V, InsertPos); |
| |
| ++NumNodes; |
| |
| if (IsNew) *IsNew = true; |
| } |
| else |
| if (IsNew) *IsNew = false; |
| |
| return V; |
| } |
| |
| std::pair<ExplodedGraph*, InterExplodedGraphMap*> |
| ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd, |
| llvm::DenseMap<const void*, const void*> *InverseMap) const { |
| |
| if (NBeg == NEnd) |
| return std::make_pair((ExplodedGraph*) 0, |
| (InterExplodedGraphMap*) 0); |
| |
| assert (NBeg < NEnd); |
| |
| llvm::OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap()); |
| |
| ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap); |
| |
| return std::make_pair(static_cast<ExplodedGraph*>(G), M.take()); |
| } |
| |
| ExplodedGraph* |
| ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources, |
| const ExplodedNode* const* EndSources, |
| InterExplodedGraphMap* M, |
| llvm::DenseMap<const void*, const void*> *InverseMap) const { |
| |
| typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty; |
| Pass1Ty Pass1; |
| |
| typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty; |
| Pass2Ty& Pass2 = M->M; |
| |
| llvm::SmallVector<const ExplodedNode*, 10> WL1, WL2; |
| |
| // ===- Pass 1 (reverse DFS) -=== |
| for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) { |
| assert(*I); |
| WL1.push_back(*I); |
| } |
| |
| // Process the first worklist until it is empty. Because it is a std::list |
| // it acts like a FIFO queue. |
| while (!WL1.empty()) { |
| const ExplodedNode *N = WL1.back(); |
| WL1.pop_back(); |
| |
| // Have we already visited this node? If so, continue to the next one. |
| if (Pass1.count(N)) |
| continue; |
| |
| // Otherwise, mark this node as visited. |
| Pass1.insert(N); |
| |
| // If this is a root enqueue it to the second worklist. |
| if (N->Preds.empty()) { |
| WL2.push_back(N); |
| continue; |
| } |
| |
| // Visit our predecessors and enqueue them. |
| for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) |
| WL1.push_back(*I); |
| } |
| |
| // We didn't hit a root? Return with a null pointer for the new graph. |
| if (WL2.empty()) |
| return 0; |
| |
| // Create an empty graph. |
| ExplodedGraph* G = MakeEmptyGraph(); |
| |
| // ===- Pass 2 (forward DFS to construct the new graph) -=== |
| while (!WL2.empty()) { |
| const ExplodedNode* N = WL2.back(); |
| WL2.pop_back(); |
| |
| // Skip this node if we have already processed it. |
| if (Pass2.find(N) != Pass2.end()) |
| continue; |
| |
| // Create the corresponding node in the new graph and record the mapping |
| // from the old node to the new node. |
| ExplodedNode* NewN = G->getNode(N->getLocation(), N->State, NULL); |
| Pass2[N] = NewN; |
| |
| // Also record the reverse mapping from the new node to the old node. |
| if (InverseMap) (*InverseMap)[NewN] = N; |
| |
| // If this node is a root, designate it as such in the graph. |
| if (N->Preds.empty()) |
| G->addRoot(NewN); |
| |
| // In the case that some of the intended predecessors of NewN have already |
| // been created, we should hook them up as predecessors. |
| |
| // Walk through the predecessors of 'N' and hook up their corresponding |
| // nodes in the new graph (if any) to the freshly created node. |
| for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) { |
| Pass2Ty::iterator PI = Pass2.find(*I); |
| if (PI == Pass2.end()) |
| continue; |
| |
| NewN->addPredecessor(PI->second, *G); |
| } |
| |
| // In the case that some of the intended successors of NewN have already |
| // been created, we should hook them up as successors. Otherwise, enqueue |
| // the new nodes from the original graph that should have nodes created |
| // in the new graph. |
| for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) { |
| Pass2Ty::iterator PI = Pass2.find(*I); |
| if (PI != Pass2.end()) { |
| PI->second->addPredecessor(NewN, *G); |
| continue; |
| } |
| |
| // Enqueue nodes to the worklist that were marked during pass 1. |
| if (Pass1.count(*I)) |
| WL2.push_back(*I); |
| } |
| |
| // Finally, explictly mark all nodes without any successors as sinks. |
| if (N->isSink()) |
| NewN->markAsSink(); |
| } |
| |
| return G; |
| } |
| |
| ExplodedNode* |
| InterExplodedGraphMap::getMappedNode(const ExplodedNode* N) const { |
| llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I = |
| M.find(N); |
| |
| return I == M.end() ? 0 : I->second; |
| } |
| |