| //===--- Expr.cpp - Expression AST Node Implementation --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Expr class and subclasses. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Basic/TargetInfo.h" |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // Primary Expressions. |
| //===----------------------------------------------------------------------===// |
| |
| /// getValueAsApproximateDouble - This returns the value as an inaccurate |
| /// double. Note that this may cause loss of precision, but is useful for |
| /// debugging dumps, etc. |
| double FloatingLiteral::getValueAsApproximateDouble() const { |
| llvm::APFloat V = getValue(); |
| bool ignored; |
| V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, |
| &ignored); |
| return V.convertToDouble(); |
| } |
| |
| StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData, |
| unsigned ByteLength, bool Wide, |
| QualType Ty, |
| SourceLocation *Loc, unsigned NumStrs) { |
| // Allocate enough space for the StringLiteral plus an array of locations for |
| // any concatenated string tokens. |
| void *Mem = C.Allocate(sizeof(StringLiteral)+ |
| sizeof(SourceLocation)*(NumStrs-1), |
| llvm::alignof<StringLiteral>()); |
| StringLiteral *SL = new (Mem) StringLiteral(Ty); |
| |
| // OPTIMIZE: could allocate this appended to the StringLiteral. |
| char *AStrData = new (C, 1) char[ByteLength]; |
| memcpy(AStrData, StrData, ByteLength); |
| SL->StrData = AStrData; |
| SL->ByteLength = ByteLength; |
| SL->IsWide = Wide; |
| SL->TokLocs[0] = Loc[0]; |
| SL->NumConcatenated = NumStrs; |
| |
| if (NumStrs != 1) |
| memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); |
| return SL; |
| } |
| |
| |
| void StringLiteral::Destroy(ASTContext &C) { |
| C.Deallocate(const_cast<char*>(StrData)); |
| this->~StringLiteral(); |
| C.Deallocate(this); |
| } |
| |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
| /// corresponds to, e.g. "sizeof" or "[pre]++". |
| const char *UnaryOperator::getOpcodeStr(Opcode Op) { |
| switch (Op) { |
| default: assert(0 && "Unknown unary operator"); |
| case PostInc: return "++"; |
| case PostDec: return "--"; |
| case PreInc: return "++"; |
| case PreDec: return "--"; |
| case AddrOf: return "&"; |
| case Deref: return "*"; |
| case Plus: return "+"; |
| case Minus: return "-"; |
| case Not: return "~"; |
| case LNot: return "!"; |
| case Real: return "__real"; |
| case Imag: return "__imag"; |
| case Extension: return "__extension__"; |
| case OffsetOf: return "__builtin_offsetof"; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Postfix Operators. |
| //===----------------------------------------------------------------------===// |
| |
| CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, |
| unsigned numargs, QualType t, SourceLocation rparenloc) |
| : Expr(SC, t, |
| fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs), |
| fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)), |
| NumArgs(numargs) { |
| |
| SubExprs = new (C) Stmt*[numargs+1]; |
| SubExprs[FN] = fn; |
| for (unsigned i = 0; i != numargs; ++i) |
| SubExprs[i+ARGS_START] = args[i]; |
| |
| RParenLoc = rparenloc; |
| } |
| |
| CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, |
| QualType t, SourceLocation rparenloc) |
| : Expr(CallExprClass, t, |
| fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs), |
| fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)), |
| NumArgs(numargs) { |
| |
| SubExprs = new (C) Stmt*[numargs+1]; |
| SubExprs[FN] = fn; |
| for (unsigned i = 0; i != numargs; ++i) |
| SubExprs[i+ARGS_START] = args[i]; |
| |
| RParenLoc = rparenloc; |
| } |
| |
| void CallExpr::Destroy(ASTContext& C) { |
| DestroyChildren(C); |
| if (SubExprs) C.Deallocate(SubExprs); |
| this->~CallExpr(); |
| C.Deallocate(this); |
| } |
| |
| /// setNumArgs - This changes the number of arguments present in this call. |
| /// Any orphaned expressions are deleted by this, and any new operands are set |
| /// to null. |
| void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) { |
| // No change, just return. |
| if (NumArgs == getNumArgs()) return; |
| |
| // If shrinking # arguments, just delete the extras and forgot them. |
| if (NumArgs < getNumArgs()) { |
| for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i) |
| getArg(i)->Destroy(C); |
| this->NumArgs = NumArgs; |
| return; |
| } |
| |
| // Otherwise, we are growing the # arguments. New an bigger argument array. |
| Stmt **NewSubExprs = new Stmt*[NumArgs+1]; |
| // Copy over args. |
| for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i) |
| NewSubExprs[i] = SubExprs[i]; |
| // Null out new args. |
| for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i) |
| NewSubExprs[i] = 0; |
| |
| delete [] SubExprs; |
| SubExprs = NewSubExprs; |
| this->NumArgs = NumArgs; |
| } |
| |
| /// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If |
| /// not, return 0. |
| unsigned CallExpr::isBuiltinCall(ASTContext &Context) const { |
| // All simple function calls (e.g. func()) are implicitly cast to pointer to |
| // function. As a result, we try and obtain the DeclRefExpr from the |
| // ImplicitCastExpr. |
| const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); |
| if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). |
| return 0; |
| |
| const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); |
| if (!DRE) |
| return 0; |
| |
| const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); |
| if (!FDecl) |
| return 0; |
| |
| if (!FDecl->getIdentifier()) |
| return 0; |
| |
| return FDecl->getBuiltinID(Context); |
| } |
| |
| |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
| /// corresponds to, e.g. "<<=". |
| const char *BinaryOperator::getOpcodeStr(Opcode Op) { |
| switch (Op) { |
| default: assert(0 && "Unknown binary operator"); |
| case Mul: return "*"; |
| case Div: return "/"; |
| case Rem: return "%"; |
| case Add: return "+"; |
| case Sub: return "-"; |
| case Shl: return "<<"; |
| case Shr: return ">>"; |
| case LT: return "<"; |
| case GT: return ">"; |
| case LE: return "<="; |
| case GE: return ">="; |
| case EQ: return "=="; |
| case NE: return "!="; |
| case And: return "&"; |
| case Xor: return "^"; |
| case Or: return "|"; |
| case LAnd: return "&&"; |
| case LOr: return "||"; |
| case Assign: return "="; |
| case MulAssign: return "*="; |
| case DivAssign: return "/="; |
| case RemAssign: return "%="; |
| case AddAssign: return "+="; |
| case SubAssign: return "-="; |
| case ShlAssign: return "<<="; |
| case ShrAssign: return ">>="; |
| case AndAssign: return "&="; |
| case XorAssign: return "^="; |
| case OrAssign: return "|="; |
| case Comma: return ","; |
| } |
| } |
| |
| InitListExpr::InitListExpr(SourceLocation lbraceloc, |
| Expr **initExprs, unsigned numInits, |
| SourceLocation rbraceloc) |
| : Expr(InitListExprClass, QualType()), |
| LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0), |
| UnionFieldInit(0), HadArrayRangeDesignator(false) { |
| |
| InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits); |
| } |
| |
| void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) { |
| for (unsigned Idx = NumInits, LastIdx = InitExprs.size(); |
| Idx < LastIdx; ++Idx) |
| delete InitExprs[Idx]; |
| InitExprs.resize(NumInits, 0); |
| } |
| |
| Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) { |
| if (Init >= InitExprs.size()) { |
| InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0); |
| InitExprs.back() = expr; |
| return 0; |
| } |
| |
| Expr *Result = cast_or_null<Expr>(InitExprs[Init]); |
| InitExprs[Init] = expr; |
| return Result; |
| } |
| |
| /// getFunctionType - Return the underlying function type for this block. |
| /// |
| const FunctionType *BlockExpr::getFunctionType() const { |
| return getType()->getAsBlockPointerType()-> |
| getPointeeType()->getAsFunctionType(); |
| } |
| |
| SourceLocation BlockExpr::getCaretLocation() const { |
| return TheBlock->getCaretLocation(); |
| } |
| const Stmt *BlockExpr::getBody() const { return TheBlock->getBody(); } |
| Stmt *BlockExpr::getBody() { return TheBlock->getBody(); } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Generic Expression Routines |
| //===----------------------------------------------------------------------===// |
| |
| /// isUnusedResultAWarning - Return true if this immediate expression should |
| /// be warned about if the result is unused. If so, fill in Loc and Ranges |
| /// with location to warn on and the source range[s] to report with the |
| /// warning. |
| bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1, |
| SourceRange &R2) const { |
| switch (getStmtClass()) { |
| default: |
| Loc = getExprLoc(); |
| R1 = getSourceRange(); |
| return true; |
| case ParenExprClass: |
| return cast<ParenExpr>(this)->getSubExpr()-> |
| isUnusedResultAWarning(Loc, R1, R2); |
| case UnaryOperatorClass: { |
| const UnaryOperator *UO = cast<UnaryOperator>(this); |
| |
| switch (UO->getOpcode()) { |
| default: break; |
| case UnaryOperator::PostInc: |
| case UnaryOperator::PostDec: |
| case UnaryOperator::PreInc: |
| case UnaryOperator::PreDec: // ++/-- |
| return false; // Not a warning. |
| case UnaryOperator::Deref: |
| // Dereferencing a volatile pointer is a side-effect. |
| if (getType().isVolatileQualified()) |
| return false; |
| break; |
| case UnaryOperator::Real: |
| case UnaryOperator::Imag: |
| // accessing a piece of a volatile complex is a side-effect. |
| if (UO->getSubExpr()->getType().isVolatileQualified()) |
| return false; |
| break; |
| case UnaryOperator::Extension: |
| return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2); |
| } |
| Loc = UO->getOperatorLoc(); |
| R1 = UO->getSubExpr()->getSourceRange(); |
| return true; |
| } |
| case BinaryOperatorClass: { |
| const BinaryOperator *BO = cast<BinaryOperator>(this); |
| // Consider comma to have side effects if the LHS or RHS does. |
| if (BO->getOpcode() == BinaryOperator::Comma) |
| return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2) || |
| BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2); |
| |
| if (BO->isAssignmentOp()) |
| return false; |
| Loc = BO->getOperatorLoc(); |
| R1 = BO->getLHS()->getSourceRange(); |
| R2 = BO->getRHS()->getSourceRange(); |
| return true; |
| } |
| case CompoundAssignOperatorClass: |
| return false; |
| |
| case ConditionalOperatorClass: { |
| // The condition must be evaluated, but if either the LHS or RHS is a |
| // warning, warn about them. |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(this); |
| if (Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2)) |
| return true; |
| return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2); |
| } |
| |
| case MemberExprClass: |
| // If the base pointer or element is to a volatile pointer/field, accessing |
| // it is a side effect. |
| if (getType().isVolatileQualified()) |
| return false; |
| Loc = cast<MemberExpr>(this)->getMemberLoc(); |
| R1 = SourceRange(Loc, Loc); |
| R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); |
| return true; |
| |
| case ArraySubscriptExprClass: |
| // If the base pointer or element is to a volatile pointer/field, accessing |
| // it is a side effect. |
| if (getType().isVolatileQualified()) |
| return false; |
| Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); |
| R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); |
| R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); |
| return true; |
| |
| case CallExprClass: |
| case CXXOperatorCallExprClass: { |
| // If this is a direct call, get the callee. |
| const CallExpr *CE = cast<CallExpr>(this); |
| const Expr *CalleeExpr = CE->getCallee()->IgnoreParenCasts(); |
| if (const DeclRefExpr *CalleeDRE = dyn_cast<DeclRefExpr>(CalleeExpr)) { |
| // If the callee has attribute pure, const, or warn_unused_result, warn |
| // about it. void foo() { strlen("bar"); } should warn. |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeDRE->getDecl())) |
| if (FD->getAttr<WarnUnusedResultAttr>() || |
| FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) { |
| Loc = CE->getCallee()->getLocStart(); |
| R1 = CE->getCallee()->getSourceRange(); |
| |
| if (unsigned NumArgs = CE->getNumArgs()) |
| R2 = SourceRange(CE->getArg(0)->getLocStart(), |
| CE->getArg(NumArgs-1)->getLocEnd()); |
| return true; |
| } |
| } |
| return false; |
| } |
| case ObjCMessageExprClass: |
| return false; |
| case StmtExprClass: { |
| // Statement exprs don't logically have side effects themselves, but are |
| // sometimes used in macros in ways that give them a type that is unused. |
| // For example ({ blah; foo(); }) will end up with a type if foo has a type. |
| // however, if the result of the stmt expr is dead, we don't want to emit a |
| // warning. |
| const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); |
| if (!CS->body_empty()) |
| if (const Expr *E = dyn_cast<Expr>(CS->body_back())) |
| return E->isUnusedResultAWarning(Loc, R1, R2); |
| |
| Loc = cast<StmtExpr>(this)->getLParenLoc(); |
| R1 = getSourceRange(); |
| return true; |
| } |
| case CStyleCastExprClass: |
| // If this is a cast to void, check the operand. Otherwise, the result of |
| // the cast is unused. |
| if (getType()->isVoidType()) |
| return cast<CastExpr>(this)->getSubExpr()->isUnusedResultAWarning(Loc, |
| R1, R2); |
| Loc = cast<CStyleCastExpr>(this)->getLParenLoc(); |
| R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange(); |
| return true; |
| case CXXFunctionalCastExprClass: |
| // If this is a cast to void, check the operand. Otherwise, the result of |
| // the cast is unused. |
| if (getType()->isVoidType()) |
| return cast<CastExpr>(this)->getSubExpr()->isUnusedResultAWarning(Loc, |
| R1, R2); |
| Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc(); |
| R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange(); |
| return true; |
| |
| case ImplicitCastExprClass: |
| // Check the operand, since implicit casts are inserted by Sema |
| return cast<ImplicitCastExpr>(this) |
| ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2); |
| |
| case CXXDefaultArgExprClass: |
| return cast<CXXDefaultArgExpr>(this) |
| ->getExpr()->isUnusedResultAWarning(Loc, R1, R2); |
| |
| case CXXNewExprClass: |
| // FIXME: In theory, there might be new expressions that don't have side |
| // effects (e.g. a placement new with an uninitialized POD). |
| case CXXDeleteExprClass: |
| return false; |
| } |
| } |
| |
| /// DeclCanBeLvalue - Determine whether the given declaration can be |
| /// an lvalue. This is a helper routine for isLvalue. |
| static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) { |
| // C++ [temp.param]p6: |
| // A non-type non-reference template-parameter is not an lvalue. |
| if (const NonTypeTemplateParmDecl *NTTParm |
| = dyn_cast<NonTypeTemplateParmDecl>(Decl)) |
| return NTTParm->getType()->isReferenceType(); |
| |
| return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) || |
| // C++ 3.10p2: An lvalue refers to an object or function. |
| (Ctx.getLangOptions().CPlusPlus && |
| (isa<FunctionDecl>(Decl) || isa<OverloadedFunctionDecl>(Decl))); |
| } |
| |
| /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an |
| /// incomplete type other than void. Nonarray expressions that can be lvalues: |
| /// - name, where name must be a variable |
| /// - e[i] |
| /// - (e), where e must be an lvalue |
| /// - e.name, where e must be an lvalue |
| /// - e->name |
| /// - *e, the type of e cannot be a function type |
| /// - string-constant |
| /// - (__real__ e) and (__imag__ e) where e is an lvalue [GNU extension] |
| /// - reference type [C++ [expr]] |
| /// |
| Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const { |
| // first, check the type (C99 6.3.2.1). Expressions with function |
| // type in C are not lvalues, but they can be lvalues in C++. |
| if (!Ctx.getLangOptions().CPlusPlus && TR->isFunctionType()) |
| return LV_NotObjectType; |
| |
| // Allow qualified void which is an incomplete type other than void (yuck). |
| if (TR->isVoidType() && !Ctx.getCanonicalType(TR).getCVRQualifiers()) |
| return LV_IncompleteVoidType; |
| |
| /// FIXME: Expressions can't have reference type, so the following |
| /// isn't needed. |
| if (TR->isReferenceType()) // C++ [expr] |
| return LV_Valid; |
| |
| // the type looks fine, now check the expression |
| switch (getStmtClass()) { |
| case StringLiteralClass: // C99 6.5.1p4 |
| return LV_Valid; |
| case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2)))) |
| // For vectors, make sure base is an lvalue (i.e. not a function call). |
| if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType()) |
| return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx); |
| return LV_Valid; |
| case DeclRefExprClass: |
| case QualifiedDeclRefExprClass: { // C99 6.5.1p2 |
| const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl(); |
| if (DeclCanBeLvalue(RefdDecl, Ctx)) |
| return LV_Valid; |
| break; |
| } |
| case BlockDeclRefExprClass: { |
| const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this); |
| if (isa<VarDecl>(BDR->getDecl())) |
| return LV_Valid; |
| break; |
| } |
| case MemberExprClass: { |
| const MemberExpr *m = cast<MemberExpr>(this); |
| if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4: |
| NamedDecl *Member = m->getMemberDecl(); |
| // C++ [expr.ref]p4: |
| // If E2 is declared to have type "reference to T", then E1.E2 |
| // is an lvalue. |
| if (ValueDecl *Value = dyn_cast<ValueDecl>(Member)) |
| if (Value->getType()->isReferenceType()) |
| return LV_Valid; |
| |
| // -- If E2 is a static data member [...] then E1.E2 is an lvalue. |
| if (isa<CXXClassVarDecl>(Member)) |
| return LV_Valid; |
| |
| // -- If E2 is a non-static data member [...]. If E1 is an |
| // lvalue, then E1.E2 is an lvalue. |
| if (isa<FieldDecl>(Member)) |
| return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx); |
| |
| // -- If it refers to a static member function [...], then |
| // E1.E2 is an lvalue. |
| // -- Otherwise, if E1.E2 refers to a non-static member |
| // function [...], then E1.E2 is not an lvalue. |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) |
| return Method->isStatic()? LV_Valid : LV_MemberFunction; |
| |
| // -- If E2 is a member enumerator [...], the expression E1.E2 |
| // is not an lvalue. |
| if (isa<EnumConstantDecl>(Member)) |
| return LV_InvalidExpression; |
| |
| // Not an lvalue. |
| return LV_InvalidExpression; |
| } |
| |
| // C99 6.5.2.3p4 |
| return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx); |
| } |
| case UnaryOperatorClass: |
| if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref) |
| return LV_Valid; // C99 6.5.3p4 |
| |
| if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real || |
| cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag || |
| cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension) |
| return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx); // GNU. |
| |
| if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1 |
| (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc || |
| cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec)) |
| return LV_Valid; |
| break; |
| case ImplicitCastExprClass: |
| return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid |
| : LV_InvalidExpression; |
| case ParenExprClass: // C99 6.5.1p5 |
| return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx); |
| case BinaryOperatorClass: |
| case CompoundAssignOperatorClass: { |
| const BinaryOperator *BinOp = cast<BinaryOperator>(this); |
| |
| if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1 |
| BinOp->getOpcode() == BinaryOperator::Comma) |
| return BinOp->getRHS()->isLvalue(Ctx); |
| |
| // C++ [expr.mptr.oper]p6 |
| if ((BinOp->getOpcode() == BinaryOperator::PtrMemD || |
| BinOp->getOpcode() == BinaryOperator::PtrMemI) && |
| !BinOp->getType()->isFunctionType()) |
| return BinOp->getLHS()->isLvalue(Ctx); |
| |
| if (!BinOp->isAssignmentOp()) |
| return LV_InvalidExpression; |
| |
| if (Ctx.getLangOptions().CPlusPlus) |
| // C++ [expr.ass]p1: |
| // The result of an assignment operation [...] is an lvalue. |
| return LV_Valid; |
| |
| |
| // C99 6.5.16: |
| // An assignment expression [...] is not an lvalue. |
| return LV_InvalidExpression; |
| } |
| case CallExprClass: |
| case CXXOperatorCallExprClass: |
| case CXXMemberCallExprClass: { |
| // C++ [expr.call]p10: |
| // A function call is an lvalue if and only if the result type |
| // is a reference. |
| QualType CalleeType = cast<CallExpr>(this)->getCallee()->getType(); |
| if (const PointerType *FnTypePtr = CalleeType->getAsPointerType()) |
| CalleeType = FnTypePtr->getPointeeType(); |
| if (const FunctionType *FnType = CalleeType->getAsFunctionType()) |
| if (FnType->getResultType()->isReferenceType()) |
| return LV_Valid; |
| |
| break; |
| } |
| case CompoundLiteralExprClass: // C99 6.5.2.5p5 |
| return LV_Valid; |
| case ChooseExprClass: |
| // __builtin_choose_expr is an lvalue if the selected operand is. |
| if (cast<ChooseExpr>(this)->isConditionTrue(Ctx)) |
| return cast<ChooseExpr>(this)->getLHS()->isLvalue(Ctx); |
| else |
| return cast<ChooseExpr>(this)->getRHS()->isLvalue(Ctx); |
| |
| case ExtVectorElementExprClass: |
| if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements()) |
| return LV_DuplicateVectorComponents; |
| return LV_Valid; |
| case ObjCIvarRefExprClass: // ObjC instance variables are lvalues. |
| return LV_Valid; |
| case ObjCPropertyRefExprClass: // FIXME: check if read-only property. |
| return LV_Valid; |
| case ObjCKVCRefExprClass: // FIXME: check if read-only property. |
| return LV_Valid; |
| case PredefinedExprClass: |
| return LV_Valid; |
| case VAArgExprClass: |
| return LV_NotObjectType; |
| case CXXDefaultArgExprClass: |
| return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx); |
| case CXXConditionDeclExprClass: |
| return LV_Valid; |
| case CStyleCastExprClass: |
| case CXXFunctionalCastExprClass: |
| case CXXStaticCastExprClass: |
| case CXXDynamicCastExprClass: |
| case CXXReinterpretCastExprClass: |
| case CXXConstCastExprClass: |
| // The result of an explicit cast is an lvalue if the type we are |
| // casting to is a reference type. See C++ [expr.cast]p1, |
| // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2, |
| // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1. |
| if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->isReferenceType()) |
| return LV_Valid; |
| break; |
| case CXXTypeidExprClass: |
| // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ... |
| return LV_Valid; |
| default: |
| break; |
| } |
| return LV_InvalidExpression; |
| } |
| |
| /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type, |
| /// does not have an incomplete type, does not have a const-qualified type, and |
| /// if it is a structure or union, does not have any member (including, |
| /// recursively, any member or element of all contained aggregates or unions) |
| /// with a const-qualified type. |
| Expr::isModifiableLvalueResult Expr::isModifiableLvalue(ASTContext &Ctx) const { |
| isLvalueResult lvalResult = isLvalue(Ctx); |
| |
| switch (lvalResult) { |
| case LV_Valid: |
| // C++ 3.10p11: Functions cannot be modified, but pointers to |
| // functions can be modifiable. |
| if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType()) |
| return MLV_NotObjectType; |
| break; |
| |
| case LV_NotObjectType: return MLV_NotObjectType; |
| case LV_IncompleteVoidType: return MLV_IncompleteVoidType; |
| case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents; |
| case LV_InvalidExpression: |
| // If the top level is a C-style cast, and the subexpression is a valid |
| // lvalue, then this is probably a use of the old-school "cast as lvalue" |
| // GCC extension. We don't support it, but we want to produce good |
| // diagnostics when it happens so that the user knows why. |
| if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(this)) |
| if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) |
| return MLV_LValueCast; |
| return MLV_InvalidExpression; |
| case LV_MemberFunction: return MLV_MemberFunction; |
| } |
| |
| QualType CT = Ctx.getCanonicalType(getType()); |
| |
| if (CT.isConstQualified()) |
| return MLV_ConstQualified; |
| if (CT->isArrayType()) |
| return MLV_ArrayType; |
| if (CT->isIncompleteType()) |
| return MLV_IncompleteType; |
| |
| if (const RecordType *r = CT->getAsRecordType()) { |
| if (r->hasConstFields()) |
| return MLV_ConstQualified; |
| } |
| // The following is illegal: |
| // void takeclosure(void (^C)(void)); |
| // void func() { int x = 1; takeclosure(^{ x = 7 }); } |
| // |
| if (getStmtClass() == BlockDeclRefExprClass) { |
| const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this); |
| if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl())) |
| return MLV_NotBlockQualified; |
| } |
| |
| // Assigning to an 'implicit' property? |
| else if (getStmtClass() == ObjCKVCRefExprClass) { |
| const ObjCKVCRefExpr* KVCExpr = cast<ObjCKVCRefExpr>(this); |
| if (KVCExpr->getSetterMethod() == 0) |
| return MLV_NoSetterProperty; |
| } |
| return MLV_Valid; |
| } |
| |
| /// hasGlobalStorage - Return true if this expression has static storage |
| /// duration. This means that the address of this expression is a link-time |
| /// constant. |
| bool Expr::hasGlobalStorage() const { |
| switch (getStmtClass()) { |
| default: |
| return false; |
| case ParenExprClass: |
| return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage(); |
| case ImplicitCastExprClass: |
| return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage(); |
| case CompoundLiteralExprClass: |
| return cast<CompoundLiteralExpr>(this)->isFileScope(); |
| case DeclRefExprClass: |
| case QualifiedDeclRefExprClass: { |
| const Decl *D = cast<DeclRefExpr>(this)->getDecl(); |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| return VD->hasGlobalStorage(); |
| if (isa<FunctionDecl>(D)) |
| return true; |
| return false; |
| } |
| case MemberExprClass: { |
| const MemberExpr *M = cast<MemberExpr>(this); |
| return !M->isArrow() && M->getBase()->hasGlobalStorage(); |
| } |
| case ArraySubscriptExprClass: |
| return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage(); |
| case PredefinedExprClass: |
| return true; |
| case CXXDefaultArgExprClass: |
| return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage(); |
| } |
| } |
| |
| Expr* Expr::IgnoreParens() { |
| Expr* E = this; |
| while (ParenExpr* P = dyn_cast<ParenExpr>(E)) |
| E = P->getSubExpr(); |
| |
| return E; |
| } |
| |
| /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr |
| /// or CastExprs or ImplicitCastExprs, returning their operand. |
| Expr *Expr::IgnoreParenCasts() { |
| Expr *E = this; |
| while (true) { |
| if (ParenExpr *P = dyn_cast<ParenExpr>(E)) |
| E = P->getSubExpr(); |
| else if (CastExpr *P = dyn_cast<CastExpr>(E)) |
| E = P->getSubExpr(); |
| else |
| return E; |
| } |
| } |
| |
| /// hasAnyTypeDependentArguments - Determines if any of the expressions |
| /// in Exprs is type-dependent. |
| bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) { |
| for (unsigned I = 0; I < NumExprs; ++I) |
| if (Exprs[I]->isTypeDependent()) |
| return true; |
| |
| return false; |
| } |
| |
| /// hasAnyValueDependentArguments - Determines if any of the expressions |
| /// in Exprs is value-dependent. |
| bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) { |
| for (unsigned I = 0; I < NumExprs; ++I) |
| if (Exprs[I]->isValueDependent()) |
| return true; |
| |
| return false; |
| } |
| |
| bool Expr::isConstantInitializer(ASTContext &Ctx) const { |
| // This function is attempting whether an expression is an initializer |
| // which can be evaluated at compile-time. isEvaluatable handles most |
| // of the cases, but it can't deal with some initializer-specific |
| // expressions, and it can't deal with aggregates; we deal with those here, |
| // and fall back to isEvaluatable for the other cases. |
| |
| // FIXME: This function assumes the variable being assigned to |
| // isn't a reference type! |
| |
| switch (getStmtClass()) { |
| default: break; |
| case StringLiteralClass: |
| return true; |
| case CompoundLiteralExprClass: { |
| // This handles gcc's extension that allows global initializers like |
| // "struct x {int x;} x = (struct x) {};". |
| // FIXME: This accepts other cases it shouldn't! |
| const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); |
| return Exp->isConstantInitializer(Ctx); |
| } |
| case InitListExprClass: { |
| // FIXME: This doesn't deal with fields with reference types correctly. |
| // FIXME: This incorrectly allows pointers cast to integers to be assigned |
| // to bitfields. |
| const InitListExpr *Exp = cast<InitListExpr>(this); |
| unsigned numInits = Exp->getNumInits(); |
| for (unsigned i = 0; i < numInits; i++) { |
| if (!Exp->getInit(i)->isConstantInitializer(Ctx)) |
| return false; |
| } |
| return true; |
| } |
| case ImplicitValueInitExprClass: |
| return true; |
| case ParenExprClass: { |
| return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); |
| } |
| case UnaryOperatorClass: { |
| const UnaryOperator* Exp = cast<UnaryOperator>(this); |
| if (Exp->getOpcode() == UnaryOperator::Extension) |
| return Exp->getSubExpr()->isConstantInitializer(Ctx); |
| break; |
| } |
| case CStyleCastExprClass: |
| // Handle casts with a destination that's a struct or union; this |
| // deals with both the gcc no-op struct cast extension and the |
| // cast-to-union extension. |
| if (getType()->isRecordType()) |
| return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); |
| break; |
| } |
| |
| return isEvaluatable(Ctx); |
| } |
| |
| /// isIntegerConstantExpr - this recursive routine will test if an expression is |
| /// an integer constant expression. Note: With the introduction of VLA's in |
| /// C99 the result of the sizeof operator is no longer always a constant |
| /// expression. The generalization of the wording to include any subexpression |
| /// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions |
| /// can appear as operands to other operators (e.g. &&, ||, ?:). For instance, |
| /// "0 || f()" can be treated as a constant expression. In C90 this expression, |
| /// occurring in a context requiring a constant, would have been a constraint |
| /// violation. FIXME: This routine currently implements C90 semantics. |
| /// To properly implement C99 semantics this routine will need to evaluate |
| /// expressions involving operators previously mentioned. |
| |
| /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, |
| /// comma, etc |
| /// |
| /// FIXME: This should ext-warn on overflow during evaluation! ISO C does not |
| /// permit this. This includes things like (int)1e1000 |
| /// |
| /// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof |
| /// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer |
| /// cast+dereference. |
| bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx, |
| SourceLocation *Loc, bool isEvaluated) const { |
| if (!isIntegerConstantExprInternal(Result, Ctx, Loc, isEvaluated)) |
| return false; |
| assert(Result == EvaluateAsInt(Ctx) && "Inconsistent Evaluate() result!"); |
| return true; |
| } |
| |
| bool Expr::isIntegerConstantExprInternal(llvm::APSInt &Result, ASTContext &Ctx, |
| SourceLocation *Loc, bool isEvaluated) const { |
| |
| // Pretest for integral type; some parts of the code crash for types that |
| // can't be sized. |
| if (!getType()->isIntegralType()) { |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| } |
| switch (getStmtClass()) { |
| default: |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| case ParenExprClass: |
| return cast<ParenExpr>(this)->getSubExpr()-> |
| isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated); |
| case IntegerLiteralClass: |
| // NOTE: getValue() returns an APInt, we must set sign. |
| Result = cast<IntegerLiteral>(this)->getValue(); |
| Result.setIsUnsigned(getType()->isUnsignedIntegerType()); |
| break; |
| case CharacterLiteralClass: { |
| const CharacterLiteral *CL = cast<CharacterLiteral>(this); |
| Result = Ctx.MakeIntValue(CL->getValue(), getType()); |
| break; |
| } |
| case CXXBoolLiteralExprClass: { |
| const CXXBoolLiteralExpr *BL = cast<CXXBoolLiteralExpr>(this); |
| Result = Ctx.MakeIntValue(BL->getValue(), getType()); |
| break; |
| } |
| case CXXZeroInitValueExprClass: |
| Result = Ctx.MakeIntValue(0, getType()); |
| break; |
| case TypesCompatibleExprClass: { |
| const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this); |
| // Per gcc docs "this built-in function ignores top level |
| // qualifiers". We need to use the canonical version to properly |
| // be able to strip CRV qualifiers from the type. |
| QualType T0 = Ctx.getCanonicalType(TCE->getArgType1()); |
| QualType T1 = Ctx.getCanonicalType(TCE->getArgType2()); |
| Result = Ctx.MakeIntValue(Ctx.typesAreCompatible(T0.getUnqualifiedType(), |
| T1.getUnqualifiedType()), |
| getType()); |
| break; |
| } |
| case CallExprClass: |
| case CXXOperatorCallExprClass: { |
| const CallExpr *CE = cast<CallExpr>(this); |
| |
| // If this is a call to a builtin function, constant fold it otherwise |
| // reject it. |
| if (CE->isBuiltinCall(Ctx)) { |
| EvalResult EvalResult; |
| if (CE->Evaluate(EvalResult, Ctx)) { |
| assert(!EvalResult.HasSideEffects && |
| "Foldable builtin call should not have side effects!"); |
| Result = EvalResult.Val.getInt(); |
| break; // It is a constant, expand it. |
| } |
| } |
| |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| } |
| case DeclRefExprClass: |
| case QualifiedDeclRefExprClass: |
| if (const EnumConstantDecl *D = |
| dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) { |
| Result = D->getInitVal(); |
| break; |
| } |
| if (Ctx.getLangOptions().CPlusPlus && |
| getType().getCVRQualifiers() == QualType::Const) { |
| // C++ 7.1.5.1p2 |
| // A variable of non-volatile const-qualified integral or enumeration |
| // type initialized by an ICE can be used in ICEs. |
| if (const VarDecl *Dcl = |
| dyn_cast<VarDecl>(cast<DeclRefExpr>(this)->getDecl())) { |
| if (const Expr *Init = Dcl->getInit()) |
| return Init->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated); |
| } |
| } |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| case UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(this); |
| |
| // Get the operand value. If this is offsetof, do not evalute the |
| // operand. This affects C99 6.6p3. |
| if (!Exp->isOffsetOfOp() && !Exp->getSubExpr()-> |
| isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) |
| return false; |
| |
| switch (Exp->getOpcode()) { |
| // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. |
| // See C99 6.6p3. |
| default: |
| if (Loc) *Loc = Exp->getOperatorLoc(); |
| return false; |
| case UnaryOperator::Extension: |
| return true; // FIXME: this is wrong. |
| case UnaryOperator::LNot: { |
| Result = Ctx.MakeIntValue(Result == 0, getType()); |
| break; |
| } |
| case UnaryOperator::Plus: |
| break; |
| case UnaryOperator::Minus: |
| Result = -Result; |
| break; |
| case UnaryOperator::Not: |
| Result = ~Result; |
| break; |
| case UnaryOperator::OffsetOf: |
| Result = Ctx.MakeIntValue(Exp->evaluateOffsetOf(Ctx), getType()); |
| break; |
| } |
| break; |
| } |
| case SizeOfAlignOfExprClass: { |
| const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(this); |
| QualType ArgTy = Exp->getTypeOfArgument(); |
| |
| // alignof is always an ICE; sizeof is an ICE if and only if |
| // the operand isn't a VLA |
| if (Exp->isSizeOf() && ArgTy->isVariableArrayType()) { |
| if (Loc) *Loc = Exp->getOperatorLoc(); |
| return false; |
| } |
| |
| // Use the Evaluate logic to calculate the value, since the |
| // calculation is non-trivial. |
| Result = EvaluateAsInt(Ctx); |
| break; |
| } |
| case BinaryOperatorClass: { |
| const BinaryOperator *Exp = cast<BinaryOperator>(this); |
| llvm::APSInt LHS, RHS; |
| |
| // Initialize result to have correct signedness and width. |
| Result = Ctx.MakeIntValue(0, getType()); |
| |
| // The LHS of a constant expr is always evaluated and needed. |
| if (!Exp->getLHS()->isIntegerConstantExpr(LHS, Ctx, Loc, isEvaluated)) |
| return false; |
| |
| // The short-circuiting &&/|| operators don't necessarily evaluate their |
| // RHS. Make sure to pass isEvaluated down correctly. |
| if (Exp->isLogicalOp()) { |
| bool RHSEval; |
| if (Exp->getOpcode() == BinaryOperator::LAnd) |
| RHSEval = LHS != 0; |
| else { |
| assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical"); |
| RHSEval = LHS == 0; |
| } |
| |
| if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, |
| isEvaluated & RHSEval)) |
| return false; |
| } else { |
| if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated)) |
| return false; |
| } |
| |
| switch (Exp->getOpcode()) { |
| default: |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| case BinaryOperator::Mul: |
| Result = LHS * RHS; |
| break; |
| case BinaryOperator::Div: |
| if (RHS == 0) { |
| if (!isEvaluated) break; |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| } |
| Result = LHS / RHS; |
| break; |
| case BinaryOperator::Rem: |
| if (RHS == 0) { |
| if (!isEvaluated) break; |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| } |
| Result = LHS % RHS; |
| break; |
| case BinaryOperator::Add: Result = LHS + RHS; break; |
| case BinaryOperator::Sub: Result = LHS - RHS; break; |
| case BinaryOperator::Shl: |
| Result = LHS << |
| static_cast<uint32_t>(RHS.getLimitedValue(LHS.getBitWidth()-1)); |
| break; |
| case BinaryOperator::Shr: |
| Result = LHS >> |
| static_cast<uint32_t>(RHS.getLimitedValue(LHS.getBitWidth()-1)); |
| break; |
| case BinaryOperator::LT: Result = LHS < RHS; break; |
| case BinaryOperator::GT: Result = LHS > RHS; break; |
| case BinaryOperator::LE: Result = LHS <= RHS; break; |
| case BinaryOperator::GE: Result = LHS >= RHS; break; |
| case BinaryOperator::EQ: Result = LHS == RHS; break; |
| case BinaryOperator::NE: Result = LHS != RHS; break; |
| case BinaryOperator::And: Result = LHS & RHS; break; |
| case BinaryOperator::Xor: Result = LHS ^ RHS; break; |
| case BinaryOperator::Or: Result = LHS | RHS; break; |
| case BinaryOperator::LAnd: |
| Result = LHS != 0 && RHS != 0; |
| break; |
| case BinaryOperator::LOr: |
| Result = LHS != 0 || RHS != 0; |
| break; |
| |
| case BinaryOperator::Comma: |
| // C99 6.6p3: "shall not contain assignment, ..., or comma operators, |
| // *except* when they are contained within a subexpression that is not |
| // evaluated". Note that Assignment can never happen due to constraints |
| // on the LHS subexpr, so we don't need to check it here. |
| if (isEvaluated) { |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| } |
| |
| // The result of the constant expr is the RHS. |
| Result = RHS; |
| break; |
| } |
| |
| assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!"); |
| break; |
| } |
| case ImplicitCastExprClass: |
| case CStyleCastExprClass: |
| case CXXFunctionalCastExprClass: { |
| const Expr *SubExpr = cast<CastExpr>(this)->getSubExpr(); |
| SourceLocation CastLoc = getLocStart(); |
| |
| // C99 6.6p6: shall only convert arithmetic types to integer types. |
| if (!SubExpr->getType()->isArithmeticType() || |
| !getType()->isIntegerType()) { |
| if (Loc) *Loc = SubExpr->getLocStart(); |
| return false; |
| } |
| |
| uint32_t DestWidth = static_cast<uint32_t>(Ctx.getTypeSize(getType())); |
| |
| // Handle simple integer->integer casts. |
| if (SubExpr->getType()->isIntegerType()) { |
| if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) |
| return false; |
| |
| // Figure out if this is a truncate, extend or noop cast. |
| // If the input is signed, do a sign extend, noop, or truncate. |
| if (getType()->isBooleanType()) { |
| // Conversion to bool compares against zero. |
| Result = Ctx.MakeIntValue(Result != 0, getType()); |
| } else if (SubExpr->getType()->isSignedIntegerType()) { |
| Result.sextOrTrunc(DestWidth); |
| Result.setIsUnsigned(getType()->isUnsignedIntegerType()); |
| } else { // If the input is unsigned, do a zero extend, noop, |
| // or truncate. |
| Result.zextOrTrunc(DestWidth); |
| Result.setIsUnsigned(getType()->isUnsignedIntegerType()); |
| } |
| break; |
| } |
| |
| // Allow floating constants that are the immediate operands of casts or that |
| // are parenthesized. |
| const Expr *Operand = SubExpr->IgnoreParens(); |
| |
| // If this isn't a floating literal, we can't handle it. |
| const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand); |
| if (!FL) { |
| if (Loc) *Loc = Operand->getLocStart(); |
| return false; |
| } |
| |
| // If the destination is boolean, compare against zero. |
| if (getType()->isBooleanType()) { |
| Result = Ctx.MakeIntValue(!FL->getValue().isZero(), getType()); |
| break; |
| } |
| |
| // Determine whether we are converting to unsigned or signed. |
| bool DestSigned = getType()->isSignedIntegerType(); |
| |
| // TODO: Warn on overflow, but probably not here: isIntegerConstantExpr can |
| // be called multiple times per AST. |
| uint64_t Space[4]; |
| bool ignored; |
| (void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned, |
| llvm::APFloat::rmTowardZero, |
| &ignored); |
| Result = llvm::APInt(DestWidth, 4, Space); |
| Result.setIsUnsigned(getType()->isUnsignedIntegerType()); |
| break; |
| } |
| case ConditionalOperatorClass: { |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(this); |
| |
| const Expr *Cond = Exp->getCond(); |
| |
| if (!Cond->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) |
| return false; |
| |
| const Expr *TrueExp = Exp->getLHS(); |
| const Expr *FalseExp = Exp->getRHS(); |
| if (Result == 0) std::swap(TrueExp, FalseExp); |
| |
| // If the condition (ignoring parens) is a __builtin_constant_p call, |
| // then only the true side is actually considered in an integer constant |
| // expression, and it is fully evaluated. This is an important GNU |
| // extension. See GCC PR38377 for discussion. |
| if (const CallExpr *CallCE = dyn_cast<CallExpr>(Cond->IgnoreParenCasts())) |
| if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) { |
| EvalResult EVResult; |
| if (!Evaluate(EVResult, Ctx) || EVResult.HasSideEffects) |
| return false; |
| assert(EVResult.Val.isInt() && "FP conditional expr not expected"); |
| Result = EVResult.Val.getInt(); |
| if (Loc) *Loc = EVResult.DiagLoc; |
| return true; |
| } |
| |
| // Evaluate the false one first, discard the result. |
| llvm::APSInt Tmp; |
| if (FalseExp && !FalseExp->isIntegerConstantExpr(Tmp, Ctx, Loc, false)) |
| return false; |
| // Evalute the true one, capture the result. Note that if TrueExp |
| // is False then this is an instant of the gcc missing LHS |
| // extension, and we will just reuse Result. |
| if (TrueExp && |
| !TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) |
| return false; |
| break; |
| } |
| case CXXDefaultArgExprClass: |
| return cast<CXXDefaultArgExpr>(this) |
| ->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated); |
| |
| case UnaryTypeTraitExprClass: |
| Result = Ctx.MakeIntValue(cast<UnaryTypeTraitExpr>(this)->EvaluateTrait(), |
| getType()); |
| break; |
| } |
| |
| return true; |
| } |
| |
| /// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an |
| /// integer constant expression with the value zero, or if this is one that is |
| /// cast to void*. |
| bool Expr::isNullPointerConstant(ASTContext &Ctx) const |
| { |
| // Strip off a cast to void*, if it exists. Except in C++. |
| if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { |
| if (!Ctx.getLangOptions().CPlusPlus) { |
| // Check that it is a cast to void*. |
| if (const PointerType *PT = CE->getType()->getAsPointerType()) { |
| QualType Pointee = PT->getPointeeType(); |
| if (Pointee.getCVRQualifiers() == 0 && |
| Pointee->isVoidType() && // to void* |
| CE->getSubExpr()->getType()->isIntegerType()) // from int. |
| return CE->getSubExpr()->isNullPointerConstant(Ctx); |
| } |
| } |
| } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { |
| // Ignore the ImplicitCastExpr type entirely. |
| return ICE->getSubExpr()->isNullPointerConstant(Ctx); |
| } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { |
| // Accept ((void*)0) as a null pointer constant, as many other |
| // implementations do. |
| return PE->getSubExpr()->isNullPointerConstant(Ctx); |
| } else if (const CXXDefaultArgExpr *DefaultArg |
| = dyn_cast<CXXDefaultArgExpr>(this)) { |
| // See through default argument expressions |
| return DefaultArg->getExpr()->isNullPointerConstant(Ctx); |
| } else if (isa<GNUNullExpr>(this)) { |
| // The GNU __null extension is always a null pointer constant. |
| return true; |
| } |
| |
| // This expression must be an integer type. |
| if (!getType()->isIntegerType()) |
| return false; |
| |
| // If we have an integer constant expression, we need to *evaluate* it and |
| // test for the value 0. |
| // FIXME: We should probably return false if we're compiling in strict mode |
| // and Diag is not null (this indicates that the value was foldable but not |
| // an ICE. |
| EvalResult Result; |
| return Evaluate(Result, Ctx) && !Result.HasSideEffects && |
| Result.Val.isInt() && Result.Val.getInt() == 0; |
| } |
| |
| /// isBitField - Return true if this expression is a bit-field. |
| bool Expr::isBitField() { |
| Expr *E = this->IgnoreParenCasts(); |
| if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) |
| if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) |
| return Field->isBitField(); |
| return false; |
| } |
| |
| /// isArrow - Return true if the base expression is a pointer to vector, |
| /// return false if the base expression is a vector. |
| bool ExtVectorElementExpr::isArrow() const { |
| return getBase()->getType()->isPointerType(); |
| } |
| |
| unsigned ExtVectorElementExpr::getNumElements() const { |
| if (const VectorType *VT = getType()->getAsVectorType()) |
| return VT->getNumElements(); |
| return 1; |
| } |
| |
| /// containsDuplicateElements - Return true if any element access is repeated. |
| bool ExtVectorElementExpr::containsDuplicateElements() const { |
| const char *compStr = Accessor.getName(); |
| unsigned length = Accessor.getLength(); |
| |
| // Halving swizzles do not contain duplicate elements. |
| if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || |
| !strcmp(compStr, "even") || !strcmp(compStr, "odd")) |
| return false; |
| |
| // Advance past s-char prefix on hex swizzles. |
| if (*compStr == 's') { |
| compStr++; |
| length--; |
| } |
| |
| for (unsigned i = 0; i != length-1; i++) { |
| const char *s = compStr+i; |
| for (const char c = *s++; *s; s++) |
| if (c == *s) |
| return true; |
| } |
| return false; |
| } |
| |
| /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. |
| void ExtVectorElementExpr::getEncodedElementAccess( |
| llvm::SmallVectorImpl<unsigned> &Elts) const { |
| const char *compStr = Accessor.getName(); |
| if (*compStr == 's') |
| compStr++; |
| |
| bool isHi = !strcmp(compStr, "hi"); |
| bool isLo = !strcmp(compStr, "lo"); |
| bool isEven = !strcmp(compStr, "even"); |
| bool isOdd = !strcmp(compStr, "odd"); |
| |
| for (unsigned i = 0, e = getNumElements(); i != e; ++i) { |
| uint64_t Index; |
| |
| if (isHi) |
| Index = e + i; |
| else if (isLo) |
| Index = i; |
| else if (isEven) |
| Index = 2 * i; |
| else if (isOdd) |
| Index = 2 * i + 1; |
| else |
| Index = ExtVectorType::getAccessorIdx(compStr[i]); |
| |
| Elts.push_back(Index); |
| } |
| } |
| |
| // constructor for instance messages. |
| ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo, |
| QualType retType, ObjCMethodDecl *mproto, |
| SourceLocation LBrac, SourceLocation RBrac, |
| Expr **ArgExprs, unsigned nargs) |
| : Expr(ObjCMessageExprClass, retType), SelName(selInfo), |
| MethodProto(mproto) { |
| NumArgs = nargs; |
| SubExprs = new Stmt*[NumArgs+1]; |
| SubExprs[RECEIVER] = receiver; |
| if (NumArgs) { |
| for (unsigned i = 0; i != NumArgs; ++i) |
| SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); |
| } |
| LBracloc = LBrac; |
| RBracloc = RBrac; |
| } |
| |
| // constructor for class messages. |
| // FIXME: clsName should be typed to ObjCInterfaceType |
| ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo, |
| QualType retType, ObjCMethodDecl *mproto, |
| SourceLocation LBrac, SourceLocation RBrac, |
| Expr **ArgExprs, unsigned nargs) |
| : Expr(ObjCMessageExprClass, retType), SelName(selInfo), |
| MethodProto(mproto) { |
| NumArgs = nargs; |
| SubExprs = new Stmt*[NumArgs+1]; |
| SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown); |
| if (NumArgs) { |
| for (unsigned i = 0; i != NumArgs; ++i) |
| SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); |
| } |
| LBracloc = LBrac; |
| RBracloc = RBrac; |
| } |
| |
| // constructor for class messages. |
| ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo, |
| QualType retType, ObjCMethodDecl *mproto, |
| SourceLocation LBrac, SourceLocation RBrac, |
| Expr **ArgExprs, unsigned nargs) |
| : Expr(ObjCMessageExprClass, retType), SelName(selInfo), |
| MethodProto(mproto) { |
| NumArgs = nargs; |
| SubExprs = new Stmt*[NumArgs+1]; |
| SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown); |
| if (NumArgs) { |
| for (unsigned i = 0; i != NumArgs; ++i) |
| SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); |
| } |
| LBracloc = LBrac; |
| RBracloc = RBrac; |
| } |
| |
| ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const { |
| uintptr_t x = (uintptr_t) SubExprs[RECEIVER]; |
| switch (x & Flags) { |
| default: |
| assert(false && "Invalid ObjCMessageExpr."); |
| case IsInstMeth: |
| return ClassInfo(0, 0); |
| case IsClsMethDeclUnknown: |
| return ClassInfo(0, (IdentifierInfo*) (x & ~Flags)); |
| case IsClsMethDeclKnown: { |
| ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags); |
| return ClassInfo(D, D->getIdentifier()); |
| } |
| } |
| } |
| |
| bool ChooseExpr::isConditionTrue(ASTContext &C) const { |
| return getCond()->getIntegerConstantExprValue(C) != 0; |
| } |
| |
| static int64_t evaluateOffsetOf(ASTContext& C, const Expr *E) { |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { |
| QualType Ty = ME->getBase()->getType(); |
| |
| RecordDecl *RD = Ty->getAsRecordType()->getDecl(); |
| const ASTRecordLayout &RL = C.getASTRecordLayout(RD); |
| if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { |
| // FIXME: This is linear time. And the fact that we're indexing |
| // into the layout by position in the record means that we're |
| // either stuck numbering the fields in the AST or we have to keep |
| // the linear search (yuck and yuck). |
| unsigned i = 0; |
| for (RecordDecl::field_iterator Field = RD->field_begin(), |
| FieldEnd = RD->field_end(); |
| Field != FieldEnd; (void)++Field, ++i) { |
| if (*Field == FD) |
| break; |
| } |
| |
| return RL.getFieldOffset(i) + evaluateOffsetOf(C, ME->getBase()); |
| } |
| } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) { |
| const Expr *Base = ASE->getBase(); |
| |
| int64_t size = C.getTypeSize(ASE->getType()); |
| size *= ASE->getIdx()->getIntegerConstantExprValue(C).getSExtValue(); |
| |
| return size + evaluateOffsetOf(C, Base); |
| } else if (isa<CompoundLiteralExpr>(E)) |
| return 0; |
| |
| assert(0 && "Unknown offsetof subexpression!"); |
| return 0; |
| } |
| |
| int64_t UnaryOperator::evaluateOffsetOf(ASTContext& C) const |
| { |
| assert(Opc == OffsetOf && "Unary operator not offsetof!"); |
| |
| unsigned CharSize = C.Target.getCharWidth(); |
| return ::evaluateOffsetOf(C, cast<Expr>(Val)) / CharSize; |
| } |
| |
| void SizeOfAlignOfExpr::Destroy(ASTContext& C) { |
| // Override default behavior of traversing children. If this has a type |
| // operand and the type is a variable-length array, the child iteration |
| // will iterate over the size expression. However, this expression belongs |
| // to the type, not to this, so we don't want to delete it. |
| // We still want to delete this expression. |
| if (isArgumentType()) { |
| this->~SizeOfAlignOfExpr(); |
| C.Deallocate(this); |
| } |
| else |
| Expr::Destroy(C); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DesignatedInitExpr |
| //===----------------------------------------------------------------------===// |
| |
| IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() { |
| assert(Kind == FieldDesignator && "Only valid on a field designator"); |
| if (Field.NameOrField & 0x01) |
| return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); |
| else |
| return getField()->getIdentifier(); |
| } |
| |
| DesignatedInitExpr * |
| DesignatedInitExpr::Create(ASTContext &C, Designator *Designators, |
| unsigned NumDesignators, |
| Expr **IndexExprs, unsigned NumIndexExprs, |
| SourceLocation ColonOrEqualLoc, |
| bool UsesColonSyntax, Expr *Init) { |
| void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + |
| sizeof(Designator) * NumDesignators + |
| sizeof(Stmt *) * (NumIndexExprs + 1), 8); |
| DesignatedInitExpr *DIE |
| = new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, |
| ColonOrEqualLoc, UsesColonSyntax, |
| NumIndexExprs + 1); |
| |
| // Fill in the designators |
| unsigned ExpectedNumSubExprs = 0; |
| designators_iterator Desig = DIE->designators_begin(); |
| for (unsigned Idx = 0; Idx < NumDesignators; ++Idx, ++Desig) { |
| new (static_cast<void*>(Desig)) Designator(Designators[Idx]); |
| if (Designators[Idx].isArrayDesignator()) |
| ++ExpectedNumSubExprs; |
| else if (Designators[Idx].isArrayRangeDesignator()) |
| ExpectedNumSubExprs += 2; |
| } |
| assert(ExpectedNumSubExprs == NumIndexExprs && "Wrong number of indices!"); |
| |
| // Fill in the subexpressions, including the initializer expression. |
| child_iterator Child = DIE->child_begin(); |
| *Child++ = Init; |
| for (unsigned Idx = 0; Idx < NumIndexExprs; ++Idx, ++Child) |
| *Child = IndexExprs[Idx]; |
| |
| return DIE; |
| } |
| |
| SourceRange DesignatedInitExpr::getSourceRange() const { |
| SourceLocation StartLoc; |
| Designator &First = |
| *const_cast<DesignatedInitExpr*>(this)->designators_begin(); |
| if (First.isFieldDesignator()) { |
| if (UsesColonSyntax) |
| StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); |
| else |
| StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); |
| } else |
| StartLoc = |
| SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); |
| return SourceRange(StartLoc, getInit()->getSourceRange().getEnd()); |
| } |
| |
| DesignatedInitExpr::designators_iterator |
| DesignatedInitExpr::designators_begin() { |
| char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| Ptr += sizeof(DesignatedInitExpr); |
| return static_cast<Designator*>(static_cast<void*>(Ptr)); |
| } |
| |
| DesignatedInitExpr::designators_iterator DesignatedInitExpr::designators_end() { |
| return designators_begin() + NumDesignators; |
| } |
| |
| Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) { |
| assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); |
| char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| Ptr += sizeof(DesignatedInitExpr); |
| Ptr += sizeof(Designator) * NumDesignators; |
| Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); |
| return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); |
| } |
| |
| Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) { |
| assert(D.Kind == Designator::ArrayRangeDesignator && |
| "Requires array range designator"); |
| char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| Ptr += sizeof(DesignatedInitExpr); |
| Ptr += sizeof(Designator) * NumDesignators; |
| Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); |
| return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); |
| } |
| |
| Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) { |
| assert(D.Kind == Designator::ArrayRangeDesignator && |
| "Requires array range designator"); |
| char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| Ptr += sizeof(DesignatedInitExpr); |
| Ptr += sizeof(Designator) * NumDesignators; |
| Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); |
| return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ExprIterator. |
| //===----------------------------------------------------------------------===// |
| |
| Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); } |
| Expr* ExprIterator::operator*() const { return cast<Expr>(*I); } |
| Expr* ExprIterator::operator->() const { return cast<Expr>(*I); } |
| const Expr* ConstExprIterator::operator[](size_t idx) const { |
| return cast<Expr>(I[idx]); |
| } |
| const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); } |
| const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); } |
| |
| //===----------------------------------------------------------------------===// |
| // Child Iterators for iterating over subexpressions/substatements |
| //===----------------------------------------------------------------------===// |
| |
| // DeclRefExpr |
| Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); } |
| |
| // ObjCIvarRefExpr |
| Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; } |
| Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; } |
| |
| // ObjCPropertyRefExpr |
| Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; } |
| Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; } |
| |
| // ObjCKVCRefExpr |
| Stmt::child_iterator ObjCKVCRefExpr::child_begin() { return &Base; } |
| Stmt::child_iterator ObjCKVCRefExpr::child_end() { return &Base+1; } |
| |
| // ObjCSuperExpr |
| Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); } |
| |
| // PredefinedExpr |
| Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); } |
| |
| // IntegerLiteral |
| Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); } |
| Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); } |
| |
| // CharacterLiteral |
| Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();} |
| Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); } |
| |
| // FloatingLiteral |
| Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); } |
| Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); } |
| |
| // ImaginaryLiteral |
| Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; } |
| Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; } |
| |
| // StringLiteral |
| Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); } |
| Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); } |
| |
| // ParenExpr |
| Stmt::child_iterator ParenExpr::child_begin() { return &Val; } |
| Stmt::child_iterator ParenExpr::child_end() { return &Val+1; } |
| |
| // UnaryOperator |
| Stmt::child_iterator UnaryOperator::child_begin() { return &Val; } |
| Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; } |
| |
| // SizeOfAlignOfExpr |
| Stmt::child_iterator SizeOfAlignOfExpr::child_begin() { |
| // If this is of a type and the type is a VLA type (and not a typedef), the |
| // size expression of the VLA needs to be treated as an executable expression. |
| // Why isn't this weirdness documented better in StmtIterator? |
| if (isArgumentType()) { |
| if (VariableArrayType* T = dyn_cast<VariableArrayType>( |
| getArgumentType().getTypePtr())) |
| return child_iterator(T); |
| return child_iterator(); |
| } |
| return child_iterator(&Argument.Ex); |
| } |
| Stmt::child_iterator SizeOfAlignOfExpr::child_end() { |
| if (isArgumentType()) |
| return child_iterator(); |
| return child_iterator(&Argument.Ex + 1); |
| } |
| |
| // ArraySubscriptExpr |
| Stmt::child_iterator ArraySubscriptExpr::child_begin() { |
| return &SubExprs[0]; |
| } |
| Stmt::child_iterator ArraySubscriptExpr::child_end() { |
| return &SubExprs[0]+END_EXPR; |
| } |
| |
| // CallExpr |
| Stmt::child_iterator CallExpr::child_begin() { |
| return &SubExprs[0]; |
| } |
| Stmt::child_iterator CallExpr::child_end() { |
| return &SubExprs[0]+NumArgs+ARGS_START; |
| } |
| |
| // MemberExpr |
| Stmt::child_iterator MemberExpr::child_begin() { return &Base; } |
| Stmt::child_iterator MemberExpr::child_end() { return &Base+1; } |
| |
| // ExtVectorElementExpr |
| Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; } |
| Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; } |
| |
| // CompoundLiteralExpr |
| Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; } |
| Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; } |
| |
| // CastExpr |
| Stmt::child_iterator CastExpr::child_begin() { return &Op; } |
| Stmt::child_iterator CastExpr::child_end() { return &Op+1; } |
| |
| // BinaryOperator |
| Stmt::child_iterator BinaryOperator::child_begin() { |
| return &SubExprs[0]; |
| } |
| Stmt::child_iterator BinaryOperator::child_end() { |
| return &SubExprs[0]+END_EXPR; |
| } |
| |
| // ConditionalOperator |
| Stmt::child_iterator ConditionalOperator::child_begin() { |
| return &SubExprs[0]; |
| } |
| Stmt::child_iterator ConditionalOperator::child_end() { |
| return &SubExprs[0]+END_EXPR; |
| } |
| |
| // AddrLabelExpr |
| Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); } |
| |
| // StmtExpr |
| Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; } |
| Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; } |
| |
| // TypesCompatibleExpr |
| Stmt::child_iterator TypesCompatibleExpr::child_begin() { |
| return child_iterator(); |
| } |
| |
| Stmt::child_iterator TypesCompatibleExpr::child_end() { |
| return child_iterator(); |
| } |
| |
| // ChooseExpr |
| Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; } |
| Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; } |
| |
| // GNUNullExpr |
| Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); } |
| |
| // ShuffleVectorExpr |
| Stmt::child_iterator ShuffleVectorExpr::child_begin() { |
| return &SubExprs[0]; |
| } |
| Stmt::child_iterator ShuffleVectorExpr::child_end() { |
| return &SubExprs[0]+NumExprs; |
| } |
| |
| // VAArgExpr |
| Stmt::child_iterator VAArgExpr::child_begin() { return &Val; } |
| Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; } |
| |
| // InitListExpr |
| Stmt::child_iterator InitListExpr::child_begin() { |
| return InitExprs.size() ? &InitExprs[0] : 0; |
| } |
| Stmt::child_iterator InitListExpr::child_end() { |
| return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0; |
| } |
| |
| // DesignatedInitExpr |
| Stmt::child_iterator DesignatedInitExpr::child_begin() { |
| char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| Ptr += sizeof(DesignatedInitExpr); |
| Ptr += sizeof(Designator) * NumDesignators; |
| return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); |
| } |
| Stmt::child_iterator DesignatedInitExpr::child_end() { |
| return child_iterator(&*child_begin() + NumSubExprs); |
| } |
| |
| // ImplicitValueInitExpr |
| Stmt::child_iterator ImplicitValueInitExpr::child_begin() { |
| return child_iterator(); |
| } |
| |
| Stmt::child_iterator ImplicitValueInitExpr::child_end() { |
| return child_iterator(); |
| } |
| |
| // ObjCStringLiteral |
| Stmt::child_iterator ObjCStringLiteral::child_begin() { |
| return &String; |
| } |
| Stmt::child_iterator ObjCStringLiteral::child_end() { |
| return &String+1; |
| } |
| |
| // ObjCEncodeExpr |
| Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); } |
| |
| // ObjCSelectorExpr |
| Stmt::child_iterator ObjCSelectorExpr::child_begin() { |
| return child_iterator(); |
| } |
| Stmt::child_iterator ObjCSelectorExpr::child_end() { |
| return child_iterator(); |
| } |
| |
| // ObjCProtocolExpr |
| Stmt::child_iterator ObjCProtocolExpr::child_begin() { |
| return child_iterator(); |
| } |
| Stmt::child_iterator ObjCProtocolExpr::child_end() { |
| return child_iterator(); |
| } |
| |
| // ObjCMessageExpr |
| Stmt::child_iterator ObjCMessageExpr::child_begin() { |
| return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START; |
| } |
| Stmt::child_iterator ObjCMessageExpr::child_end() { |
| return &SubExprs[0]+ARGS_START+getNumArgs(); |
| } |
| |
| // Blocks |
| Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); } |
| |
| Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();} |
| Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); } |