| <html> |
| <head> |
| <title>Clang Language Extensions</title> |
| <link type="text/css" rel="stylesheet" href="../menu.css" /> |
| <link type="text/css" rel="stylesheet" href="../content.css" /> |
| <style type="text/css"> |
| td { |
| vertical-align: top; |
| } |
| </style> |
| </head> |
| <body> |
| |
| <!--#include virtual="../menu.html.incl"--> |
| |
| <div id="content"> |
| |
| <h1>Clang Language Extensions</h1> |
| |
| <ul> |
| <li><a href="#intro">Introduction</a></li> |
| <li><a href="#feature_check">Feature Checking Macros</a></li> |
| <li><a href="#has_include">Include File Checking Macros</a></li> |
| <li><a href="#builtinmacros">Builtin Macros</a></li> |
| <li><a href="#vectors">Vectors and Extended Vectors</a></li> |
| <li><a href="#checking_language_features">Checks for Standard Language Features</a></li> |
| <ul> |
| <li><a href="#cxx_exceptions">C++ exceptions</a></li> |
| <li><a href="#cxx_rtti">C++ RTTI</a></li> |
| </ul> |
| <li><a href="#checking_upcoming_features">Checks for Upcoming Standard Language Features</a></li> |
| <ul> |
| <li><a href="#cxx_attributes">C++0x attributes</a></li> |
| <li><a href="#cxx_decltype">C++0x <tt>decltype()</tt></a></li> |
| <li><a href="#cxx_deleted_functions">C++0x deleted functions</a></li> |
| <li><a href="#cxx_concepts">C++ TR concepts</a></li> |
| <li><a href="#cxx_lambdas">C++0x lambdas</a></li> |
| <li><a href="#cxx_nullptr">C++0x nullptr</a></li> |
| <li><a href="#cxx_rvalue_references">C++0x rvalue references</a></li> |
| <li><a href="#cxx_static_assert">C++0x <tt>static_assert()</tt></a></li> |
| <li><a href="#cxx_auto_type">C++0x type inference</a></li> |
| <li><a href="#cxx_variadic_templates">C++0x variadic templates</a></li> |
| </ul> |
| <li><a href="#blocks">Blocks</a></li> |
| <li><a href="#overloading-in-c">Function Overloading in C</a></li> |
| <li><a href="#builtins">Builtin Functions</a> |
| <ul> |
| <li><a href="#__builtin_shufflevector">__builtin_shufflevector</a></li> |
| <li><a href="#__builtin_unreachable">__builtin_unreachable</a></li> |
| </ul> |
| </li> |
| <li><a href="#targetspecific">Target-Specific Extensions</a> |
| <ul> |
| <li><a href="#x86-specific">X86/X86-64 Language Extensions</a></li> |
| </ul> |
| </li> |
| <li><a href="#analyzerspecific">Static Analysis-Specific Extensions</a> |
| <ul> |
| <li><a href="#analyzerattributes">Analyzer Attributes</a></li> |
| </ul> |
| </li> |
| </ul> |
| |
| <!-- ======================================================================= --> |
| <h2 id="intro">Introduction</h2> |
| <!-- ======================================================================= --> |
| |
| <p>This document describes the language extensions provided by Clang. In |
| addition to the language extensions listed here, Clang aims to support a broad |
| range of GCC extensions. Please see the <a |
| href="http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html">GCC manual</a> for |
| more information on these extensions.</p> |
| |
| <!-- ======================================================================= --> |
| <h2 id="feature_check">Feature Checking Macros</h2> |
| <!-- ======================================================================= --> |
| |
| <p>Language extensions can be very useful, but only if you know you can depend |
| on them. In order to allow fine-grain features checks, we support two builtin |
| function-like macros. This allows you to directly test for a feature in your |
| code without having to resort to something like autoconf or fragile "compiler |
| version checks".</p> |
| |
| <!-- ======================================================================= --> |
| <h3 id="__has_builtin">__has_builtin</h3> |
| <!-- ======================================================================= --> |
| |
| <p>This function-like macro takes a single identifier argument that is the name |
| of a builtin function. It evaluates to 1 if the builtin is supported or 0 if |
| not. It can be used like this:</p> |
| |
| <blockquote> |
| <pre> |
| #ifndef __has_builtin // Optional of course. |
| #define __has_builtin(x) 0 // Compatibility with non-clang compilers. |
| #endif |
| |
| ... |
| #if __has_builtin(__builtin_trap) |
| __builtin_trap(); |
| #else |
| abort(); |
| #endif |
| ... |
| </pre> |
| </blockquote> |
| |
| |
| <!-- ======================================================================= --> |
| <h3 id="__has_feature">__has_feature</h3> |
| <!-- ======================================================================= --> |
| |
| <p>This function-like macro takes a single identifier argument that is the name |
| of a feature. It evaluates to 1 if the feature is supported or 0 if not. It |
| can be used like this:</p> |
| |
| <blockquote> |
| <pre> |
| #ifndef __has_feature // Optional of course. |
| #define __has_feature(x) 0 // Compatibility with non-clang compilers. |
| #endif |
| |
| ... |
| #if __has_feature(attribute_overloadable) || \ |
| __has_feature(blocks) |
| ... |
| #endif |
| ... |
| </pre> |
| </blockquote> |
| |
| <p>The feature tag is described along with the language feature below.</p> |
| |
| <!-- ======================================================================= --> |
| <h2 id="has_include">Include File Checking Macros</h2> |
| <!-- ======================================================================= --> |
| |
| <p>Not all developments systems have the same include files. |
| The <a href="#__has_include">__has_include</a> and |
| <a href="#__has_include_next">__has_include_next</a> macros allow you to |
| check for the existence of an include file before doing |
| a possibly failing #include directive.</p> |
| |
| <!-- ======================================================================= --> |
| <h3 id="__has_include">__has_include</h3> |
| <!-- ======================================================================= --> |
| |
| <p>This function-like macro takes a single file name string argument that |
| is the name of an include file. It evaluates to 1 if the file can |
| be found using the include paths, or 0 otherwise:</p> |
| |
| <blockquote> |
| <pre> |
| // Note the two possible file name string formats. |
| #if __has_include("myinclude.h") && __has_include(<stdint.h>) |
| # include "myinclude.h" |
| #endif |
| |
| // To avoid problem with non-clang compilers not having this macro. |
| #if defined(__has_include) && __has_include("myinclude.h") |
| # include "myinclude.h" |
| #endif |
| </pre> |
| </blockquote> |
| |
| <p>To test for this feature, use #if defined(__has_include).</p> |
| |
| <!-- ======================================================================= --> |
| <h3 id="__has_include_next">__has_include_next</h3> |
| <!-- ======================================================================= --> |
| |
| <p>This function-like macro takes a single file name string argument that |
| is the name of an include file. It is like __has_include except that it |
| looks for the second instance of the given file found in the include |
| paths. It evaluates to 1 if the second instance of the file can |
| be found using the include paths, or 0 otherwise:</p> |
| |
| <blockquote> |
| <pre> |
| // Note the two possible file name string formats. |
| #if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>) |
| # include_next "myinclude.h" |
| #endif |
| |
| // To avoid problem with non-clang compilers not having this macro. |
| #if defined(__has_include_next) && __has_include_next("myinclude.h") |
| # include_next "myinclude.h" |
| #endif |
| </pre> |
| </blockquote> |
| |
| <p>Note that __has_include_next, like the GNU extension |
| #include_next directive, is intended for use in headers only, |
| and will issue a warning if used in the top-level compilation |
| file. A warning will also be issued if an absolute path |
| is used in the file argument.</p> |
| |
| <!-- ======================================================================= --> |
| <h2 id="builtinmacros">Builtin Macros</h2> |
| <!-- ======================================================================= --> |
| |
| <p>__BASE_FILE__, __INCLUDE_LEVEL__, __TIMESTAMP__, __COUNTER__</p> |
| |
| <!-- ======================================================================= --> |
| <h2 id="vectors">Vectors and Extended Vectors</h2> |
| <!-- ======================================================================= --> |
| |
| <p>Supports the GCC vector extensions, plus some stuff like V[1].</p> |
| |
| <p>Also supports <tt>ext_vector</tt>, which additionally support for V.xyzw |
| syntax and other tidbits as seen in OpenCL. An example is:</p> |
| |
| <blockquote> |
| <pre> |
| typedef float float4 <b>__attribute__((ext_vector_type(4)))</b>; |
| typedef float float2 <b>__attribute__((ext_vector_type(2)))</b>; |
| |
| float4 foo(float2 a, float2 b) { |
| float4 c; |
| c.xz = a; |
| c.yw = b; |
| return c; |
| } |
| </blockquote> |
| |
| <p>Query for this feature with __has_feature(attribute_ext_vector_type).</p> |
| |
| <p>See also <a href="#__builtin_shufflevector">__builtin_shufflevector</a>.</p> |
| |
| <!-- ======================================================================= --> |
| <h2 id="checking_language_features">Checks for Standard Language Features</h2> |
| <!-- ======================================================================= --> |
| |
| <p>The <tt>__has_feature</tt> macro can be used to query if certain standard language features are |
| enabled. Those features are listed here.</p> |
| |
| <h3 id="cxx_exceptions">C++ exceptions</h3> |
| |
| <p>Use <tt>__has_feature(cxx_exceptions)</tt> to determine if C++ exceptions have been enabled. For |
| example, compiling code with <tt>-fexceptions</tt> enables C++ exceptions.</p> |
| |
| <h3 id="cxx_rtti">C++ RTTI</h3> |
| |
| <p>Use <tt>__has_feature(cxx_rtti)</tt> to determine if C++ RTTI has been enabled. For example, |
| compiling code with <tt>-fno-rtti</tt> disables the use of RTTI.</p> |
| |
| <!-- ======================================================================= --> |
| <h2 id="checking_upcoming_features">Checks for Upcoming Standard Language Features</h2> |
| <!-- ======================================================================= --> |
| |
| <p>The <tt>__has_feature</tt> macro can be used to query if certain upcoming |
| standard language features are enabled. Those features are listed here.</p> |
| |
| <p>Currently, all features listed here are slated for inclusion in the upcoming |
| C++0x standard. As a result, all the features that clang supports are enabled |
| with the <tt>-std=c++0x</tt> option when compiling C++ code. Features that are |
| not yet implemented will be noted.</p> |
| |
| <h3 id="cxx_decltype">C++0x <tt>decltype()</tt></h3> |
| |
| <p>Use <tt>__has_feature(cxx_decltype)</tt> to determine if support for the |
| <tt>decltype()</tt> specifier is enabled.</p> |
| |
| <h3 id="cxx_attributes">C++0x attributes</h3> |
| |
| <p>Use <tt>__has_feature(cxx_attributes)</tt> to determine if support for |
| attribute parsing with C++0x's square bracket notation is enabled. |
| |
| <h3 id="cxx_deleted_functions">C++0x deleted functions</tt></h3> |
| |
| <p>Use <tt>__has_feature(cxx_deleted_functions)</tt> to determine if support for |
| deleted function definitions (with <tt>= delete</tt>) is enabled. |
| |
| <h3 id="cxx_concepts">C++ TR <tt>concepts</tt></h3> |
| |
| <p>Use <tt>__has_feature(cxx_lambdas)</tt> to determine if support for |
| concepts is enabled. clang does not currently implement this feature. |
| |
| <h3 id="cxx_lambdas">C++0x lambdas</h3> |
| |
| <p>Use <tt>__has_feature(cxx_lambdas)</tt> to determine if support for |
| lambdas is enabled. clang does not currently implement this feature. |
| |
| <h3 id="cxx_nullptr">C++0x <tt>nullptr</tt></h3> |
| |
| <p>Use <tt>__has_feature(cxx_nullptr)</tt> to determine if support for |
| <tt>nullptr</tt> is enabled. clang does not yet fully implement this feature. |
| |
| <h3 id="cxx_rvalue_references">C++0x rvalue references</tt></h3> |
| |
| <p>Use <tt>__has_feature(cxx_rvalue_references)</tt> to determine if support for |
| rvalue references is enabled. clang does not yet fully implement this feature. |
| |
| <h3 id="cxx_static_assert">C++0x <tt>static_assert()</tt></h3> |
| |
| <p>Use <tt>__has_feature(cxx_static_assert)</tt> to determine if support for |
| compile-time assertions using <tt>static_assert</tt> is enabled.</p> |
| |
| <h3 id="cxx_auto_type">C++0x type inference</h3> |
| |
| <p>Use <tt>__has_feature(cxx_auto_type)</tt> to determine C++0x type inference |
| is supported using the <tt>auto</tt> specifier. If this is disabled, |
| <tt>auto</tt> will instead be a storage class specifier, as in C or C++98.</p> |
| |
| <h3 id="cxx_variadic_templates">C++0x variadic templates</tt></h3> |
| |
| <p>Use <tt>__has_feature(cxx_variadic_templates)</tt> to determine if support |
| for templates taking any number of arguments with the ellipsis notation is |
| enabled. clang does not yet fully implement this feature.</p> |
| |
| <!-- ======================================================================= --> |
| <h2 id="blocks">Blocks</h2> |
| <!-- ======================================================================= --> |
| |
| <p>The syntax and high level language feature description is in <a |
| href="BlockLanguageSpec.txt">BlockLanguageSpec.txt</a>. Implementation and ABI |
| details for the clang implementation are in <a |
| href="Block-ABI-Apple.txt">Block-ABI-Apple.txt</a>.</p> |
| |
| |
| <p>Query for this feature with __has_feature(blocks).</p> |
| |
| <!-- ======================================================================= --> |
| <h2 id="overloading-in-c">Function Overloading in C</h2> |
| <!-- ======================================================================= --> |
| |
| <p>Clang provides support for C++ function overloading in C. Function |
| overloading in C is introduced using the <tt>overloadable</tt> attribute. For |
| example, one might provide several overloaded versions of a <tt>tgsin</tt> |
| function that invokes the appropriate standard function computing the sine of a |
| value with <tt>float</tt>, <tt>double</tt>, or <tt>long double</tt> |
| precision:</p> |
| |
| <blockquote> |
| <pre> |
| #include <math.h> |
| float <b>__attribute__((overloadable))</b> tgsin(float x) { return sinf(x); } |
| double <b>__attribute__((overloadable))</b> tgsin(double x) { return sin(x); } |
| long double <b>__attribute__((overloadable))</b> tgsin(long double x) { return sinl(x); } |
| </pre> |
| </blockquote> |
| |
| <p>Given these declarations, one can call <tt>tgsin</tt> with a |
| <tt>float</tt> value to receive a <tt>float</tt> result, with a |
| <tt>double</tt> to receive a <tt>double</tt> result, etc. Function |
| overloading in C follows the rules of C++ function overloading to pick |
| the best overload given the call arguments, with a few C-specific |
| semantics:</p> |
| <ul> |
| <li>Conversion from <tt>float</tt> or <tt>double</tt> to <tt>long |
| double</tt> is ranked as a floating-point promotion (per C99) rather |
| than as a floating-point conversion (as in C++).</li> |
| |
| <li>A conversion from a pointer of type <tt>T*</tt> to a pointer of type |
| <tt>U*</tt> is considered a pointer conversion (with conversion |
| rank) if <tt>T</tt> and <tt>U</tt> are compatible types.</li> |
| |
| <li>A conversion from type <tt>T</tt> to a value of type <tt>U</tt> |
| is permitted if <tt>T</tt> and <tt>U</tt> are compatible types. This |
| conversion is given "conversion" rank.</li> |
| </ul> |
| |
| <p>The declaration of <tt>overloadable</tt> functions is restricted to |
| function declarations and definitions. Most importantly, if any |
| function with a given name is given the <tt>overloadable</tt> |
| attribute, then all function declarations and definitions with that |
| name (and in that scope) must have the <tt>overloadable</tt> |
| attribute. This rule even applies to redeclarations of functions whose original |
| declaration had the <tt>overloadable</tt> attribute, e.g.,</p> |
| |
| <blockquote> |
| <pre> |
| int f(int) __attribute__((overloadable)); |
| float f(float); <i>// error: declaration of "f" must have the "overloadable" attribute</i> |
| |
| int g(int) __attribute__((overloadable)); |
| int g(int) { } <i>// error: redeclaration of "g" must also have the "overloadable" attribute</i> |
| </pre> |
| </blockquote> |
| |
| <p>Functions marked <tt>overloadable</tt> must have |
| prototypes. Therefore, the following code is ill-formed:</p> |
| |
| <blockquote> |
| <pre> |
| int h() __attribute__((overloadable)); <i>// error: h does not have a prototype</i> |
| </pre> |
| </blockquote> |
| |
| <p>However, <tt>overloadable</tt> functions are allowed to use a |
| ellipsis even if there are no named parameters (as is permitted in C++). This feature is particularly useful when combined with the <tt>unavailable</tt> attribute:</p> |
| |
| <blockquote> |
| <pre> |
| void honeypot(...) __attribute__((overloadable, unavailable)); <i>// calling me is an error</i> |
| </pre> |
| </blockquote> |
| |
| <p>Functions declared with the <tt>overloadable</tt> attribute have |
| their names mangled according to the same rules as C++ function |
| names. For example, the three <tt>tgsin</tt> functions in our |
| motivating example get the mangled names <tt>_Z5tgsinf</tt>, |
| <tt>_Z5tgsind</tt>, and <tt>Z5tgsine</tt>, respectively. There are two |
| caveats to this use of name mangling:</p> |
| |
| <ul> |
| |
| <li>Future versions of Clang may change the name mangling of |
| functions overloaded in C, so you should not depend on an specific |
| mangling. To be completely safe, we strongly urge the use of |
| <tt>static inline</tt> with <tt>overloadable</tt> functions.</li> |
| |
| <li>The <tt>overloadable</tt> attribute has almost no meaning when |
| used in C++, because names will already be mangled and functions are |
| already overloadable. However, when an <tt>overloadable</tt> |
| function occurs within an <tt>extern "C"</tt> linkage specification, |
| it's name <i>will</i> be mangled in the same way as it would in |
| C.</li> |
| </ul> |
| |
| <p>Query for this feature with __has_feature(attribute_overloadable).</p> |
| |
| |
| <!-- ======================================================================= --> |
| <h2 id="builtins">Builtin Functions</h2> |
| <!-- ======================================================================= --> |
| |
| <p>Clang supports a number of builtin library functions with the same syntax as |
| GCC, including things like <tt>__builtin_nan</tt>, |
| <tt>__builtin_constant_p</tt>, <tt>__builtin_choose_expr</tt>, |
| <tt>__builtin_types_compatible_p</tt>, <tt>__sync_fetch_and_add</tt>, etc. In |
| addition to the GCC builtins, Clang supports a number of builtins that GCC does |
| not, which are listed here.</p> |
| |
| <p>Please note that Clang does not and will not support all of the GCC builtins |
| for vector operations. Instead of using builtins, you should use the functions |
| defined in target-specific header files like <tt><xmmintrin.h></tt>, which |
| define portable wrappers for these. Many of the Clang versions of these |
| functions are implemented directly in terms of <a href="#vectors">extended |
| vector support</a> instead of builtins, in order to reduce the number of |
| builtins that we need to implement.</p> |
| |
| <!-- ======================================================================= --> |
| <h3 id="__builtin_shufflevector">__builtin_shufflevector</h3> |
| <!-- ======================================================================= --> |
| |
| <p><tt>__builtin_shufflevector</tt> is used to express generic vector |
| permutation/shuffle/swizzle operations. This builtin is also very important for |
| the implementation of various target-specific header files like |
| <tt><xmmintrin.h></tt>. |
| </p> |
| |
| <p><b>Syntax:</b></p> |
| |
| <pre> |
| __builtin_shufflevector(vec1, vec2, index1, index2, ...) |
| </pre> |
| |
| <p><b>Examples:</b></p> |
| |
| <pre> |
| // Identity operation - return 4-element vector V1. |
| __builtin_shufflevector(V1, V1, 0, 1, 2, 3) |
| |
| // "Splat" element 0 of V1 into a 4-element result. |
| __builtin_shufflevector(V1, V1, 0, 0, 0, 0) |
| |
| // Reverse 4-element vector V1. |
| __builtin_shufflevector(V1, V1, 3, 2, 1, 0) |
| |
| // Concatenate every other element of 4-element vectors V1 and V2. |
| __builtin_shufflevector(V1, V2, 0, 2, 4, 6) |
| |
| // Concatenate every other element of 8-element vectors V1 and V2. |
| __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14) |
| </pre> |
| |
| <p><b>Description:</b></p> |
| |
| <p>The first two arguments to __builtin_shufflevector are vectors that have the |
| same element type. The remaining arguments are a list of integers that specify |
| the elements indices of the first two vectors that should be extracted and |
| returned in a new vector. These element indices are numbered sequentially |
| starting with the first vector, continuing into the second vector. Thus, if |
| vec1 is a 4-element vector, index 5 would refer to the second element of vec2. |
| </p> |
| |
| <p>The result of __builtin_shufflevector is a vector |
| with the same element type as vec1/vec2 but that has an element count equal to |
| the number of indices specified. |
| </p> |
| |
| <p>Query for this feature with __has_builtin(__builtin_shufflevector).</p> |
| |
| <!-- ======================================================================= --> |
| <h3 id="__builtin_unreachable">__builtin_unreachable</h3> |
| <!-- ======================================================================= --> |
| |
| <p><tt>__builtin_unreachable</tt> is used to indicate that a specific point in |
| the program cannot be reached, even if the compiler might otherwise think it |
| can. This is useful to improve optimization and eliminates certain warnings. |
| For example, without the <tt>__builtin_unreachable</tt> in the example below, |
| the compiler assumes that the inline asm can fall through and prints a "function |
| declared 'noreturn' should not return" warning. |
| </p> |
| |
| <p><b>Syntax:</b></p> |
| |
| <pre> |
| __builtin_unreachable() |
| </pre> |
| |
| <p><b>Example of Use:</b></p> |
| |
| <pre> |
| void myabort(void) __attribute__((noreturn)); |
| void myabort(void) { |
| asm("int3"); |
| __builtin_unreachable(); |
| } |
| </pre> |
| |
| <p><b>Description:</b></p> |
| |
| <p>The __builtin_unreachable() builtin has completely undefined behavior. Since |
| it has undefined behavior, it is a statement that it is never reached and the |
| optimizer can take advantage of this to produce better code. This builtin takes |
| no arguments and produces a void result. |
| </p> |
| |
| <p>Query for this feature with __has_builtin(__builtin_unreachable).</p> |
| |
| |
| <!-- ======================================================================= --> |
| <h2 id="targetspecific">Target-Specific Extensions</h2> |
| <!-- ======================================================================= --> |
| |
| <p>Clang supports some language features conditionally on some targets.</p> |
| |
| <!-- ======================================================================= --> |
| <h3 id="x86-specific">X86/X86-64 Language Extensions</h3> |
| <!-- ======================================================================= --> |
| |
| <p>The X86 backend has these language extensions:</p> |
| |
| <!-- ======================================================================= --> |
| <h4 id="x86-gs-segment">Memory references off the GS segment</h4> |
| <!-- ======================================================================= --> |
| |
| <p>Annotating a pointer with address space #256 causes it to be code generated |
| relative to the X86 GS segment register, and address space #257 causes it to be |
| relative to the X86 FS segment. Note that this is a very very low-level |
| feature that should only be used if you know what you're doing (for example in |
| an OS kernel).</p> |
| |
| <p>Here is an example:</p> |
| |
| <pre> |
| #define GS_RELATIVE __attribute__((address_space(256))) |
| int foo(int GS_RELATIVE *P) { |
| return *P; |
| } |
| </pre> |
| |
| <p>Which compiles to (on X86-32):</p> |
| |
| <pre> |
| _foo: |
| movl 4(%esp), %eax |
| movl %gs:(%eax), %eax |
| ret |
| </pre> |
| |
| <!-- ======================================================================= --> |
| <h2 id="analyzerspecific">Static Analysis-Specific Extensions</h2> |
| <!-- ======================================================================= --> |
| |
| <p>Clang supports additional attributes that are useful for documenting program |
| invariants and rules for static analysis tools. The extensions documented here |
| are used by the <a |
| href="http://clang.llvm.org/StaticAnalysis.html">path-sensitive static analyzer |
| engine</a> that is part of Clang's Analysis library.</p> |
| |
| <!-- ======================================================================= --> |
| <h3 id="analyzerattributes">Analyzer Attributes</h3> |
| <!-- ======================================================================= --> |
| |
| <h4 id="attr_analyzer_noreturn"><tt>analyzer_noreturn</tt></h4> |
| |
| <p>Clang's static analysis engine understands the standard <tt>noreturn</tt> |
| attribute. This attribute, which is typically affixed to a function prototype, |
| indicates that a call to a given function never returns. Function prototypes for |
| common functions like <tt>exit</tt> are typically annotated with this attribute, |
| as well as a variety of common assertion handlers. Users can educate the static |
| analyzer about their own custom assertion handles (thus cutting down on false |
| positives due to false paths) by marking their own "panic" functions |
| with this attribute.</p> |
| |
| <p>While useful, <tt>noreturn</tt> is not applicable in all cases. Sometimes |
| there are special functions that for all intents and purposes should be |
| considered panic functions (i.e., they are only called when an internal program |
| error occurs) but may actually return so that the program can fail gracefully. |
| The <tt>analyzer_noreturn</tt> attribute allows one to annotate such functions |
| as being interpreted as "no return" functions by the analyzer (thus |
| pruning bogus paths) but will not affect compilation (as in the case of |
| <tt>noreturn</tt>).</p> |
| |
| <p><b>Usage</b>: The <tt>analyzer_noreturn</tt> attribute can be placed in the |
| same places where the <tt>noreturn</tt> attribute can be placed. It is commonly |
| placed at the end of function prototypes:</p> |
| |
| <pre> |
| void foo() <b>__attribute__((analyzer_noreturn))</b>; |
| </pre> |
| |
| <p>Query for this feature with __has_feature(attribute_analyzer_noreturn).</p> |
| |
| |
| </div> |
| </body> |
| </html> |