blob: 75b355889d28e9706390253759eb7235ff913771 [file] [log] [blame]
//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the C++ related Decl classes.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/IdentifierTable.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Decl Allocation/Deallocation Method Implementations
//===----------------------------------------------------------------------===//
CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
: UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
UserDeclaredCopyAssignment(false), UserDeclaredDestructor(false),
Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
Abstract(false), HasTrivialConstructor(true),
HasTrivialCopyConstructor(true), HasTrivialCopyAssignment(true),
HasTrivialDestructor(true), ComputedVisibleConversions(false),
DeclaredDefaultConstructor(false), DeclaredCopyConstructor(false),
DeclaredCopyAssignment(false), DeclaredDestructor(false),
Bases(0), NumBases(0), VBases(0), NumVBases(0),
Definition(D), FirstFriend(0) {
}
CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
CXXRecordDecl *PrevDecl,
SourceLocation TKL)
: RecordDecl(K, TK, DC, L, Id, PrevDecl, TKL),
DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
TemplateOrInstantiation() { }
CXXRecordDecl *CXXRecordDecl::Create(ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
SourceLocation TKL,
CXXRecordDecl* PrevDecl,
bool DelayTypeCreation) {
CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, L, Id,
PrevDecl, TKL);
// FIXME: DelayTypeCreation seems like such a hack
if (!DelayTypeCreation)
C.getTypeDeclType(R, PrevDecl);
return R;
}
CXXRecordDecl *CXXRecordDecl::Create(ASTContext &C, EmptyShell Empty) {
return new (C) CXXRecordDecl(CXXRecord, TTK_Struct, 0, SourceLocation(), 0, 0,
SourceLocation());
}
void
CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
unsigned NumBases) {
ASTContext &C = getASTContext();
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class (clause 9) with [...]
// no base classes [...].
data().Aggregate = false;
if (data().Bases)
C.Deallocate(data().Bases);
// The set of seen virtual base types.
llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
// The virtual bases of this class.
llvm::SmallVector<const CXXBaseSpecifier *, 8> VBases;
data().Bases = new(C) CXXBaseSpecifier [NumBases];
data().NumBases = NumBases;
for (unsigned i = 0; i < NumBases; ++i) {
data().Bases[i] = *Bases[i];
// Keep track of inherited vbases for this base class.
const CXXBaseSpecifier *Base = Bases[i];
QualType BaseType = Base->getType();
// Skip dependent types; we can't do any checking on them now.
if (BaseType->isDependentType())
continue;
CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
// Now go through all virtual bases of this base and add them.
for (CXXRecordDecl::base_class_iterator VBase =
BaseClassDecl->vbases_begin(),
E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
// Add this base if it's not already in the list.
if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType())))
VBases.push_back(VBase);
}
if (Base->isVirtual()) {
// Add this base if it's not already in the list.
if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
VBases.push_back(Base);
}
}
if (VBases.empty())
return;
// Create base specifier for any direct or indirect virtual bases.
data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
data().NumVBases = VBases.size();
for (int I = 0, E = VBases.size(); I != E; ++I) {
TypeSourceInfo *VBaseTypeInfo = VBases[I]->getTypeSourceInfo();
// Skip dependent types; we can't do any checking on them now.
if (VBaseTypeInfo->getType()->isDependentType())
continue;
CXXRecordDecl *VBaseClassDecl = cast<CXXRecordDecl>(
VBaseTypeInfo->getType()->getAs<RecordType>()->getDecl());
data().VBases[I] =
CXXBaseSpecifier(VBaseClassDecl->getSourceRange(), true,
VBaseClassDecl->getTagKind() == TTK_Class,
VBases[I]->getAccessSpecifier(), VBaseTypeInfo);
}
}
/// Callback function for CXXRecordDecl::forallBases that acknowledges
/// that it saw a base class.
static bool SawBase(const CXXRecordDecl *, void *) {
return true;
}
bool CXXRecordDecl::hasAnyDependentBases() const {
if (!isDependentContext())
return false;
return !forallBases(SawBase, 0);
}
bool CXXRecordDecl::hasConstCopyConstructor(ASTContext &Context) const {
return getCopyConstructor(Context, Qualifiers::Const) != 0;
}
/// \brief Perform a simplistic form of overload resolution that only considers
/// cv-qualifiers on a single parameter, and return the best overload candidate
/// (if there is one).
static CXXMethodDecl *
GetBestOverloadCandidateSimple(
const llvm::SmallVectorImpl<std::pair<CXXMethodDecl *, Qualifiers> > &Cands) {
if (Cands.empty())
return 0;
if (Cands.size() == 1)
return Cands[0].first;
unsigned Best = 0, N = Cands.size();
for (unsigned I = 1; I != N; ++I)
if (Cands[Best].second.isSupersetOf(Cands[I].second))
Best = I;
for (unsigned I = 1; I != N; ++I)
if (Cands[Best].second.isSupersetOf(Cands[I].second))
return 0;
return Cands[Best].first;
}
CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(ASTContext &Context,
unsigned TypeQuals) const{
QualType ClassType
= Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
DeclarationName ConstructorName
= Context.DeclarationNames.getCXXConstructorName(
Context.getCanonicalType(ClassType));
unsigned FoundTQs;
llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
DeclContext::lookup_const_iterator Con, ConEnd;
for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
Con != ConEnd; ++Con) {
// C++ [class.copy]p2:
// A non-template constructor for class X is a copy constructor if [...]
if (isa<FunctionTemplateDecl>(*Con))
continue;
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
if (Constructor->isCopyConstructor(FoundTQs)) {
if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) ||
(!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const)))
Found.push_back(std::make_pair(
const_cast<CXXConstructorDecl *>(Constructor),
Qualifiers::fromCVRMask(FoundTQs)));
}
}
return cast_or_null<CXXConstructorDecl>(
GetBestOverloadCandidateSimple(Found));
}
CXXMethodDecl *CXXRecordDecl::getCopyAssignmentOperator(bool ArgIsConst) const {
ASTContext &Context = getASTContext();
QualType Class = Context.getTypeDeclType(const_cast<CXXRecordDecl *>(this));
DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
DeclContext::lookup_const_iterator Op, OpEnd;
for (llvm::tie(Op, OpEnd) = this->lookup(Name); Op != OpEnd; ++Op) {
// C++ [class.copy]p9:
// A user-declared copy assignment operator is a non-static non-template
// member function of class X with exactly one parameter of type X, X&,
// const X&, volatile X& or const volatile X&.
const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
if (!Method || Method->isStatic() || Method->getPrimaryTemplate())
continue;
const FunctionProtoType *FnType
= Method->getType()->getAs<FunctionProtoType>();
assert(FnType && "Overloaded operator has no prototype.");
// Don't assert on this; an invalid decl might have been left in the AST.
if (FnType->getNumArgs() != 1 || FnType->isVariadic())
continue;
QualType ArgType = FnType->getArgType(0);
Qualifiers Quals;
if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) {
ArgType = Ref->getPointeeType();
// If we have a const argument and we have a reference to a non-const,
// this function does not match.
if (ArgIsConst && !ArgType.isConstQualified())
continue;
Quals = ArgType.getQualifiers();
} else {
// By-value copy-assignment operators are treated like const X&
// copy-assignment operators.
Quals = Qualifiers::fromCVRMask(Qualifiers::Const);
}
if (!Context.hasSameUnqualifiedType(ArgType, Class))
continue;
// Save this copy-assignment operator. It might be "the one".
Found.push_back(std::make_pair(const_cast<CXXMethodDecl *>(Method), Quals));
}
// Use a simplistic form of overload resolution to find the candidate.
return GetBestOverloadCandidateSimple(Found);
}
void
CXXRecordDecl::addedConstructor(ASTContext &Context,
CXXConstructorDecl *ConDecl) {
assert(!ConDecl->isImplicit() && "addedConstructor - not for implicit decl");
// Note that we have a user-declared constructor.
data().UserDeclaredConstructor = true;
// Note that we have no need of an implicitly-declared default constructor.
data().DeclaredDefaultConstructor = true;
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class (clause 9) with no
// user-declared constructors (12.1) [...].
data().Aggregate = false;
// C++ [class]p4:
// A POD-struct is an aggregate class [...]
data().PlainOldData = false;
// C++ [class.ctor]p5:
// A constructor is trivial if it is an implicitly-declared default
// constructor.
// FIXME: C++0x: don't do this for "= default" default constructors.
data().HasTrivialConstructor = false;
// Note when we have a user-declared copy constructor, which will
// suppress the implicit declaration of a copy constructor.
if (ConDecl->isCopyConstructor()) {
data().UserDeclaredCopyConstructor = true;
data().DeclaredCopyConstructor = true;
// C++ [class.copy]p6:
// A copy constructor is trivial if it is implicitly declared.
// FIXME: C++0x: don't do this for "= default" copy constructors.
data().HasTrivialCopyConstructor = false;
}
}
void CXXRecordDecl::addedAssignmentOperator(ASTContext &Context,
CXXMethodDecl *OpDecl) {
// We're interested specifically in copy assignment operators.
const FunctionProtoType *FnType = OpDecl->getType()->getAs<FunctionProtoType>();
assert(FnType && "Overloaded operator has no proto function type.");
assert(FnType->getNumArgs() == 1 && !FnType->isVariadic());
// Copy assignment operators must be non-templates.
if (OpDecl->getPrimaryTemplate() || OpDecl->getDescribedFunctionTemplate())
return;
QualType ArgType = FnType->getArgType(0);
if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>())
ArgType = Ref->getPointeeType();
ArgType = ArgType.getUnqualifiedType();
QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
const_cast<CXXRecordDecl*>(this)));
if (!Context.hasSameUnqualifiedType(ClassType, ArgType))
return;
// This is a copy assignment operator.
// Note on the decl that it is a copy assignment operator.
OpDecl->setCopyAssignment(true);
// Suppress the implicit declaration of a copy constructor.
data().UserDeclaredCopyAssignment = true;
data().DeclaredCopyAssignment = true;
// C++ [class.copy]p11:
// A copy assignment operator is trivial if it is implicitly declared.
// FIXME: C++0x: don't do this for "= default" copy operators.
data().HasTrivialCopyAssignment = false;
// C++ [class]p4:
// A POD-struct is an aggregate class that [...] has no user-defined copy
// assignment operator [...].
data().PlainOldData = false;
}
static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
QualType T;
if (isa<UsingShadowDecl>(Conv))
Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
T = ConvTemp->getTemplatedDecl()->getResultType();
else
T = cast<CXXConversionDecl>(Conv)->getConversionType();
return Context.getCanonicalType(T);
}
/// Collect the visible conversions of a base class.
///
/// \param Base a base class of the class we're considering
/// \param InVirtual whether this base class is a virtual base (or a base
/// of a virtual base)
/// \param Access the access along the inheritance path to this base
/// \param ParentHiddenTypes the conversions provided by the inheritors
/// of this base
/// \param Output the set to which to add conversions from non-virtual bases
/// \param VOutput the set to which to add conversions from virtual bases
/// \param HiddenVBaseCs the set of conversions which were hidden in a
/// virtual base along some inheritance path
static void CollectVisibleConversions(ASTContext &Context,
CXXRecordDecl *Record,
bool InVirtual,
AccessSpecifier Access,
const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
UnresolvedSetImpl &Output,
UnresolvedSetImpl &VOutput,
llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
// The set of types which have conversions in this class or its
// subclasses. As an optimization, we don't copy the derived set
// unless it might change.
const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
// Collect the direct conversions and figure out which conversions
// will be hidden in the subclasses.
UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
if (!Cs.empty()) {
HiddenTypesBuffer = ParentHiddenTypes;
HiddenTypes = &HiddenTypesBuffer;
for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
bool Hidden =
!HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl()));
// If this conversion is hidden and we're in a virtual base,
// remember that it's hidden along some inheritance path.
if (Hidden && InVirtual)
HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
// If this conversion isn't hidden, add it to the appropriate output.
else if (!Hidden) {
AccessSpecifier IAccess
= CXXRecordDecl::MergeAccess(Access, I.getAccess());
if (InVirtual)
VOutput.addDecl(I.getDecl(), IAccess);
else
Output.addDecl(I.getDecl(), IAccess);
}
}
}
// Collect information recursively from any base classes.
for (CXXRecordDecl::base_class_iterator
I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
const RecordType *RT = I->getType()->getAs<RecordType>();
if (!RT) continue;
AccessSpecifier BaseAccess
= CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
bool BaseInVirtual = InVirtual || I->isVirtual();
CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
*HiddenTypes, Output, VOutput, HiddenVBaseCs);
}
}
/// Collect the visible conversions of a class.
///
/// This would be extremely straightforward if it weren't for virtual
/// bases. It might be worth special-casing that, really.
static void CollectVisibleConversions(ASTContext &Context,
CXXRecordDecl *Record,
UnresolvedSetImpl &Output) {
// The collection of all conversions in virtual bases that we've
// found. These will be added to the output as long as they don't
// appear in the hidden-conversions set.
UnresolvedSet<8> VBaseCs;
// The set of conversions in virtual bases that we've determined to
// be hidden.
llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
// The set of types hidden by classes derived from this one.
llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
// Go ahead and collect the direct conversions and add them to the
// hidden-types set.
UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
Output.append(Cs.begin(), Cs.end());
for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
HiddenTypes.insert(GetConversionType(Context, I.getDecl()));
// Recursively collect conversions from base classes.
for (CXXRecordDecl::base_class_iterator
I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
const RecordType *RT = I->getType()->getAs<RecordType>();
if (!RT) continue;
CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
I->isVirtual(), I->getAccessSpecifier(),
HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
}
// Add any unhidden conversions provided by virtual bases.
for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
I != E; ++I) {
if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
Output.addDecl(I.getDecl(), I.getAccess());
}
}
/// getVisibleConversionFunctions - get all conversion functions visible
/// in current class; including conversion function templates.
const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() {
// If root class, all conversions are visible.
if (bases_begin() == bases_end())
return &data().Conversions;
// If visible conversion list is already evaluated, return it.
if (data().ComputedVisibleConversions)
return &data().VisibleConversions;
CollectVisibleConversions(getASTContext(), this, data().VisibleConversions);
data().ComputedVisibleConversions = true;
return &data().VisibleConversions;
}
#ifndef NDEBUG
void CXXRecordDecl::CheckConversionFunction(NamedDecl *ConvDecl) {
assert(ConvDecl->getDeclContext() == this &&
"conversion function does not belong to this record");
ConvDecl = ConvDecl->getUnderlyingDecl();
if (FunctionTemplateDecl *Temp = dyn_cast<FunctionTemplateDecl>(ConvDecl)) {
assert(isa<CXXConversionDecl>(Temp->getTemplatedDecl()));
} else {
assert(isa<CXXConversionDecl>(ConvDecl));
}
}
#endif
void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
// This operation is O(N) but extremely rare. Sema only uses it to
// remove UsingShadowDecls in a class that were followed by a direct
// declaration, e.g.:
// class A : B {
// using B::operator int;
// operator int();
// };
// This is uncommon by itself and even more uncommon in conjunction
// with sufficiently large numbers of directly-declared conversions
// that asymptotic behavior matters.
UnresolvedSetImpl &Convs = *getConversionFunctions();
for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
if (Convs[I].getDecl() == ConvDecl) {
Convs.erase(I);
assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
&& "conversion was found multiple times in unresolved set");
return;
}
}
llvm_unreachable("conversion not found in set!");
}
void CXXRecordDecl::setMethodAsVirtual(FunctionDecl *Method) {
Method->setVirtualAsWritten(true);
setAggregate(false);
setPOD(false);
setEmpty(false);
setPolymorphic(true);
setHasTrivialConstructor(false);
setHasTrivialCopyConstructor(false);
setHasTrivialCopyAssignment(false);
}
CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
return 0;
}
MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
}
void
CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
TemplateSpecializationKind TSK) {
assert(TemplateOrInstantiation.isNull() &&
"Previous template or instantiation?");
assert(!isa<ClassTemplateSpecializationDecl>(this));
TemplateOrInstantiation
= new (getASTContext()) MemberSpecializationInfo(RD, TSK);
}
TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
if (const ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(this))
return Spec->getSpecializationKind();
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
return MSInfo->getTemplateSpecializationKind();
return TSK_Undeclared;
}
void
CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(this)) {
Spec->setSpecializationKind(TSK);
return;
}
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
MSInfo->setTemplateSpecializationKind(TSK);
return;
}
assert(false && "Not a class template or member class specialization");
}
CXXConstructorDecl *
CXXRecordDecl::getDefaultConstructor() {
ASTContext &Context = getASTContext();
QualType ClassType = Context.getTypeDeclType(this);
DeclarationName ConstructorName
= Context.DeclarationNames.getCXXConstructorName(
Context.getCanonicalType(ClassType.getUnqualifiedType()));
DeclContext::lookup_const_iterator Con, ConEnd;
for (llvm::tie(Con, ConEnd) = lookup(ConstructorName);
Con != ConEnd; ++Con) {
// FIXME: In C++0x, a constructor template can be a default constructor.
if (isa<FunctionTemplateDecl>(*Con))
continue;
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
if (Constructor->isDefaultConstructor())
return Constructor;
}
return 0;
}
CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
ASTContext &Context = getASTContext();
QualType ClassType = Context.getTypeDeclType(this);
DeclarationName Name
= Context.DeclarationNames.getCXXDestructorName(
Context.getCanonicalType(ClassType));
DeclContext::lookup_const_iterator I, E;
llvm::tie(I, E) = lookup(Name);
assert(I != E && "Did not find a destructor!");
CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I);
assert(++I == E && "Found more than one destructor!");
return Dtor;
}
CXXMethodDecl *
CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isStatic, StorageClass SCAsWritten, bool isInline) {
return new (C) CXXMethodDecl(CXXMethod, RD, NameInfo, T, TInfo,
isStatic, SCAsWritten, isInline);
}
bool CXXMethodDecl::isUsualDeallocationFunction() const {
if (getOverloadedOperator() != OO_Delete &&
getOverloadedOperator() != OO_Array_Delete)
return false;
// C++ [basic.stc.dynamic.deallocation]p2:
// A template instance is never a usual deallocation function,
// regardless of its signature.
if (getPrimaryTemplate())
return false;
// C++ [basic.stc.dynamic.deallocation]p2:
// If a class T has a member deallocation function named operator delete
// with exactly one parameter, then that function is a usual (non-placement)
// deallocation function. [...]
if (getNumParams() == 1)
return true;
// C++ [basic.stc.dynamic.deallocation]p2:
// [...] If class T does not declare such an operator delete but does
// declare a member deallocation function named operator delete with
// exactly two parameters, the second of which has type std::size_t (18.1),
// then this function is a usual deallocation function.
ASTContext &Context = getASTContext();
if (getNumParams() != 2 ||
!Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
Context.getSizeType()))
return false;
// This function is a usual deallocation function if there are no
// single-parameter deallocation functions of the same kind.
for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
R.first != R.second; ++R.first) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first))
if (FD->getNumParams() == 1)
return false;
}
return true;
}
bool CXXMethodDecl::isCopyAssignmentOperator() const {
// C++0x [class.copy]p19:
// A user-declared copy assignment operator X::operator= is a non-static
// non-template member function of class X with exactly one parameter of
// type X, X&, const X&, volatile X& or const volatile X&.
if (/*operator=*/getOverloadedOperator() != OO_Equal ||
/*non-static*/ isStatic() ||
/*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
/*exactly one parameter*/getNumParams() != 1)
return false;
QualType ParamType = getParamDecl(0)->getType();
if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
ParamType = Ref->getPointeeType();
ASTContext &Context = getASTContext();
QualType ClassType
= Context.getCanonicalType(Context.getTypeDeclType(getParent()));
return Context.hasSameUnqualifiedType(ClassType, ParamType);
}
void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
assert(MD->isCanonicalDecl() && "Method is not canonical!");
assert(!MD->getParent()->isDependentContext() &&
"Can't add an overridden method to a class template!");
getASTContext().addOverriddenMethod(this, MD);
}
CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
return getASTContext().overridden_methods_begin(this);
}
CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
return getASTContext().overridden_methods_end(this);
}
unsigned CXXMethodDecl::size_overridden_methods() const {
return getASTContext().overridden_methods_size(this);
}
QualType CXXMethodDecl::getThisType(ASTContext &C) const {
// C++ 9.3.2p1: The type of this in a member function of a class X is X*.
// If the member function is declared const, the type of this is const X*,
// if the member function is declared volatile, the type of this is
// volatile X*, and if the member function is declared const volatile,
// the type of this is const volatile X*.
assert(isInstance() && "No 'this' for static methods!");
QualType ClassTy = C.getTypeDeclType(getParent());
ClassTy = C.getQualifiedType(ClassTy,
Qualifiers::fromCVRMask(getTypeQualifiers()));
return C.getPointerType(ClassTy);
}
bool CXXMethodDecl::hasInlineBody() const {
// If this function is a template instantiation, look at the template from
// which it was instantiated.
const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
if (!CheckFn)
CheckFn = this;
const FunctionDecl *fn;
return CheckFn->hasBody(fn) && !fn->isOutOfLine();
}
CXXBaseOrMemberInitializer::
CXXBaseOrMemberInitializer(ASTContext &Context,
TypeSourceInfo *TInfo, bool IsVirtual,
SourceLocation L, Expr *Init, SourceLocation R)
: BaseOrMember(TInfo), Init(Init), AnonUnionMember(0),
LParenLoc(L), RParenLoc(R), IsVirtual(IsVirtual), IsWritten(false),
SourceOrderOrNumArrayIndices(0)
{
}
CXXBaseOrMemberInitializer::
CXXBaseOrMemberInitializer(ASTContext &Context,
FieldDecl *Member, SourceLocation MemberLoc,
SourceLocation L, Expr *Init, SourceLocation R)
: BaseOrMember(Member), MemberLocation(MemberLoc), Init(Init),
AnonUnionMember(0), LParenLoc(L), RParenLoc(R), IsVirtual(false),
IsWritten(false), SourceOrderOrNumArrayIndices(0)
{
}
CXXBaseOrMemberInitializer::
CXXBaseOrMemberInitializer(ASTContext &Context,
FieldDecl *Member, SourceLocation MemberLoc,
SourceLocation L, Expr *Init, SourceLocation R,
VarDecl **Indices,
unsigned NumIndices)
: BaseOrMember(Member), MemberLocation(MemberLoc), Init(Init),
AnonUnionMember(0), LParenLoc(L), RParenLoc(R), IsVirtual(false),
IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
{
VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
}
CXXBaseOrMemberInitializer *
CXXBaseOrMemberInitializer::Create(ASTContext &Context,
FieldDecl *Member,
SourceLocation MemberLoc,
SourceLocation L,
Expr *Init,
SourceLocation R,
VarDecl **Indices,
unsigned NumIndices) {
void *Mem = Context.Allocate(sizeof(CXXBaseOrMemberInitializer) +
sizeof(VarDecl *) * NumIndices,
llvm::alignof<CXXBaseOrMemberInitializer>());
return new (Mem) CXXBaseOrMemberInitializer(Context, Member, MemberLoc,
L, Init, R, Indices, NumIndices);
}
TypeLoc CXXBaseOrMemberInitializer::getBaseClassLoc() const {
if (isBaseInitializer())
return BaseOrMember.get<TypeSourceInfo*>()->getTypeLoc();
else
return TypeLoc();
}
Type *CXXBaseOrMemberInitializer::getBaseClass() {
if (isBaseInitializer())
return BaseOrMember.get<TypeSourceInfo*>()->getType().getTypePtr();
else
return 0;
}
const Type *CXXBaseOrMemberInitializer::getBaseClass() const {
if (isBaseInitializer())
return BaseOrMember.get<TypeSourceInfo*>()->getType().getTypePtr();
else
return 0;
}
SourceLocation CXXBaseOrMemberInitializer::getSourceLocation() const {
if (isMemberInitializer())
return getMemberLocation();
return getBaseClassLoc().getLocalSourceRange().getBegin();
}
SourceRange CXXBaseOrMemberInitializer::getSourceRange() const {
return SourceRange(getSourceLocation(), getRParenLoc());
}
CXXConstructorDecl *
CXXConstructorDecl::Create(ASTContext &C, EmptyShell Empty) {
return new (C) CXXConstructorDecl(0, DeclarationNameInfo(),
QualType(), 0, false, false, false);
}
CXXConstructorDecl *
CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isExplicit,
bool isInline,
bool isImplicitlyDeclared) {
assert(NameInfo.getName().getNameKind()
== DeclarationName::CXXConstructorName &&
"Name must refer to a constructor");
return new (C) CXXConstructorDecl(RD, NameInfo, T, TInfo, isExplicit,
isInline, isImplicitlyDeclared);
}
bool CXXConstructorDecl::isDefaultConstructor() const {
// C++ [class.ctor]p5:
// A default constructor for a class X is a constructor of class
// X that can be called without an argument.
return (getNumParams() == 0) ||
(getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
}
bool
CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
// C++ [class.copy]p2:
// A non-template constructor for class X is a copy constructor
// if its first parameter is of type X&, const X&, volatile X& or
// const volatile X&, and either there are no other parameters
// or else all other parameters have default arguments (8.3.6).
if ((getNumParams() < 1) ||
(getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
(getPrimaryTemplate() != 0) ||
(getDescribedFunctionTemplate() != 0))
return false;
const ParmVarDecl *Param = getParamDecl(0);
// Do we have a reference type? Rvalue references don't count.
const LValueReferenceType *ParamRefType =
Param->getType()->getAs<LValueReferenceType>();
if (!ParamRefType)
return false;
// Is it a reference to our class type?
ASTContext &Context = getASTContext();
CanQualType PointeeType
= Context.getCanonicalType(ParamRefType->getPointeeType());
CanQualType ClassTy
= Context.getCanonicalType(Context.getTagDeclType(getParent()));
if (PointeeType.getUnqualifiedType() != ClassTy)
return false;
// FIXME: other qualifiers?
// We have a copy constructor.
TypeQuals = PointeeType.getCVRQualifiers();
return true;
}
bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
// C++ [class.conv.ctor]p1:
// A constructor declared without the function-specifier explicit
// that can be called with a single parameter specifies a
// conversion from the type of its first parameter to the type of
// its class. Such a constructor is called a converting
// constructor.
if (isExplicit() && !AllowExplicit)
return false;
return (getNumParams() == 0 &&
getType()->getAs<FunctionProtoType>()->isVariadic()) ||
(getNumParams() == 1) ||
(getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
}
bool CXXConstructorDecl::isCopyConstructorLikeSpecialization() const {
if ((getNumParams() < 1) ||
(getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
(getPrimaryTemplate() == 0) ||
(getDescribedFunctionTemplate() != 0))
return false;
const ParmVarDecl *Param = getParamDecl(0);
ASTContext &Context = getASTContext();
CanQualType ParamType = Context.getCanonicalType(Param->getType());
// Strip off the lvalue reference, if any.
if (CanQual<LValueReferenceType> ParamRefType
= ParamType->getAs<LValueReferenceType>())
ParamType = ParamRefType->getPointeeType();
// Is it the same as our our class type?
CanQualType ClassTy
= Context.getCanonicalType(Context.getTagDeclType(getParent()));
if (ParamType.getUnqualifiedType() != ClassTy)
return false;
return true;
}
CXXDestructorDecl *
CXXDestructorDecl::Create(ASTContext &C, EmptyShell Empty) {
return new (C) CXXDestructorDecl(0, DeclarationNameInfo(),
QualType(), false, false);
}
CXXDestructorDecl *
CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
const DeclarationNameInfo &NameInfo,
QualType T, bool isInline,
bool isImplicitlyDeclared) {
assert(NameInfo.getName().getNameKind()
== DeclarationName::CXXDestructorName &&
"Name must refer to a destructor");
return new (C) CXXDestructorDecl(RD, NameInfo, T, isInline,
isImplicitlyDeclared);
}
CXXConversionDecl *
CXXConversionDecl::Create(ASTContext &C, EmptyShell Empty) {
return new (C) CXXConversionDecl(0, DeclarationNameInfo(),
QualType(), 0, false, false);
}
CXXConversionDecl *
CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isInline, bool isExplicit) {
assert(NameInfo.getName().getNameKind()
== DeclarationName::CXXConversionFunctionName &&
"Name must refer to a conversion function");
return new (C) CXXConversionDecl(RD, NameInfo, T, TInfo,
isInline, isExplicit);
}
LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
DeclContext *DC,
SourceLocation L,
LanguageIDs Lang, bool Braces) {
return new (C) LinkageSpecDecl(DC, L, Lang, Braces);
}
UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
SourceLocation NamespaceLoc,
SourceRange QualifierRange,
NestedNameSpecifier *Qualifier,
SourceLocation IdentLoc,
NamedDecl *Used,
DeclContext *CommonAncestor) {
if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
Used = NS->getOriginalNamespace();
return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierRange,
Qualifier, IdentLoc, Used, CommonAncestor);
}
NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
if (NamespaceAliasDecl *NA =
dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
return NA->getNamespace();
return cast_or_null<NamespaceDecl>(NominatedNamespace);
}
void UsingDirectiveDecl::setNominatedNamespace(NamedDecl* ND) {
assert((isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND)) &&
"expected a NamespaceDecl or NamespaceAliasDecl");
NominatedNamespace = ND;
}
NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
SourceRange QualifierRange,
NestedNameSpecifier *Qualifier,
SourceLocation IdentLoc,
NamedDecl *Namespace) {
if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
Namespace = NS->getOriginalNamespace();
return new (C) NamespaceAliasDecl(DC, L, AliasLoc, Alias, QualifierRange,
Qualifier, IdentLoc, Namespace);
}
UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L, SourceRange NNR, SourceLocation UL,
NestedNameSpecifier* TargetNNS, DeclarationName Name,
bool IsTypeNameArg) {
return new (C) UsingDecl(DC, L, NNR, UL, TargetNNS, Name, IsTypeNameArg);
}
UnresolvedUsingValueDecl *
UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
SourceRange TargetNNR,
NestedNameSpecifier *TargetNNS,
SourceLocation TargetNameLoc,
DeclarationName TargetName) {
return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
TargetNNR, TargetNNS,
TargetNameLoc, TargetName);
}
UnresolvedUsingTypenameDecl *
UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
SourceLocation TypenameLoc,
SourceRange TargetNNR,
NestedNameSpecifier *TargetNNS,
SourceLocation TargetNameLoc,
DeclarationName TargetName) {
return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
TargetNNR, TargetNNS,
TargetNameLoc,
TargetName.getAsIdentifierInfo());
}
StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L, Expr *AssertExpr,
StringLiteral *Message) {
return new (C) StaticAssertDecl(DC, L, AssertExpr, Message);
}
static const char *getAccessName(AccessSpecifier AS) {
switch (AS) {
default:
case AS_none:
assert("Invalid access specifier!");
return 0;
case AS_public:
return "public";
case AS_private:
return "private";
case AS_protected:
return "protected";
}
}
const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
AccessSpecifier AS) {
return DB << getAccessName(AS);
}