blob: 3e4cd3bbe2911351cb3ef9cbba86e75c58e42f81 [file] [log] [blame]
//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the internal per-function state used for llvm translation.
//
//===----------------------------------------------------------------------===//
#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
#define CLANG_CODEGEN_CODEGENFUNCTION_H
#include "clang/AST/Type.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/CharUnits.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/ValueHandle.h"
#include "CodeGenModule.h"
#include "CGBlocks.h"
#include "CGBuilder.h"
#include "CGCall.h"
#include "CGCXX.h"
#include "CGValue.h"
namespace llvm {
class BasicBlock;
class LLVMContext;
class MDNode;
class Module;
class SwitchInst;
class Twine;
class Value;
class CallSite;
}
namespace clang {
class ASTContext;
class CXXDestructorDecl;
class CXXTryStmt;
class Decl;
class EnumConstantDecl;
class FunctionDecl;
class FunctionProtoType;
class LabelStmt;
class ObjCContainerDecl;
class ObjCInterfaceDecl;
class ObjCIvarDecl;
class ObjCMethodDecl;
class ObjCImplementationDecl;
class ObjCPropertyImplDecl;
class TargetInfo;
class TargetCodeGenInfo;
class VarDecl;
class ObjCForCollectionStmt;
class ObjCAtTryStmt;
class ObjCAtThrowStmt;
class ObjCAtSynchronizedStmt;
namespace CodeGen {
class CodeGenTypes;
class CGDebugInfo;
class CGFunctionInfo;
class CGRecordLayout;
class CGBlockInfo;
/// A branch fixup. These are required when emitting a goto to a
/// label which hasn't been emitted yet. The goto is optimistically
/// emitted as a branch to the basic block for the label, and (if it
/// occurs in a scope with non-trivial cleanups) a fixup is added to
/// the innermost cleanup. When a (normal) cleanup is popped, any
/// unresolved fixups in that scope are threaded through the cleanup.
struct BranchFixup {
/// The origin of the branch. Any switch-index stores required by
/// cleanup threading are added before this instruction.
llvm::Instruction *Origin;
/// The destination of the branch.
///
/// This can be set to null to indicate that this fixup was
/// successfully resolved.
llvm::BasicBlock *Destination;
/// The last branch of the fixup. It is an invariant that
/// LatestBranch->getSuccessor(LatestBranchIndex) == Destination.
///
/// The branch is always either a BranchInst or a SwitchInst.
llvm::TerminatorInst *LatestBranch;
unsigned LatestBranchIndex;
};
/// A stack of scopes which respond to exceptions, including cleanups
/// and catch blocks.
class EHScopeStack {
public:
/// A saved depth on the scope stack. This is necessary because
/// pushing scopes onto the stack invalidates iterators.
class stable_iterator {
friend class EHScopeStack;
/// Offset from StartOfData to EndOfBuffer.
ptrdiff_t Size;
stable_iterator(ptrdiff_t Size) : Size(Size) {}
public:
static stable_iterator invalid() { return stable_iterator(-1); }
stable_iterator() : Size(-1) {}
bool isValid() const { return Size >= 0; }
friend bool operator==(stable_iterator A, stable_iterator B) {
return A.Size == B.Size;
}
friend bool operator!=(stable_iterator A, stable_iterator B) {
return A.Size != B.Size;
}
};
private:
// The implementation for this class is in CGException.h and
// CGException.cpp; the definition is here because it's used as a
// member of CodeGenFunction.
/// The start of the scope-stack buffer, i.e. the allocated pointer
/// for the buffer. All of these pointers are either simultaneously
/// null or simultaneously valid.
char *StartOfBuffer;
/// The end of the buffer.
char *EndOfBuffer;
/// The first valid entry in the buffer.
char *StartOfData;
/// The innermost normal cleanup on the stack.
stable_iterator InnermostNormalCleanup;
/// The innermost EH cleanup on the stack.
stable_iterator InnermostEHCleanup;
/// The number of catches on the stack.
unsigned CatchDepth;
/// The current set of branch fixups. A branch fixup is a jump to
/// an as-yet unemitted label, i.e. a label for which we don't yet
/// know the EH stack depth. Whenever we pop a cleanup, we have
/// to thread all the current branch fixups through it.
///
/// Fixups are recorded as the Use of the respective branch or
/// switch statement. The use points to the final destination.
/// When popping out of a cleanup, these uses are threaded through
/// the cleanup and adjusted to point to the new cleanup.
///
/// Note that branches are allowed to jump into protected scopes
/// in certain situations; e.g. the following code is legal:
/// struct A { ~A(); }; // trivial ctor, non-trivial dtor
/// goto foo;
/// A a;
/// foo:
/// bar();
llvm::SmallVector<BranchFixup, 8> BranchFixups;
char *allocate(size_t Size);
void popNullFixups();
public:
EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
InnermostNormalCleanup(stable_end()),
InnermostEHCleanup(stable_end()),
CatchDepth(0) {}
~EHScopeStack() { delete[] StartOfBuffer; }
/// Push a cleanup on the stack.
void pushCleanup(llvm::BasicBlock *NormalEntry,
llvm::BasicBlock *NormalExit,
llvm::BasicBlock *EHEntry,
llvm::BasicBlock *EHExit);
/// Pops a cleanup scope off the stack. This should only be called
/// by CodeGenFunction::PopCleanupBlock.
void popCleanup();
/// Push a set of catch handlers on the stack. The catch is
/// uninitialized and will need to have the given number of handlers
/// set on it.
class EHCatchScope *pushCatch(unsigned NumHandlers);
/// Pops a catch scope off the stack.
void popCatch();
/// Push an exceptions filter on the stack.
class EHFilterScope *pushFilter(unsigned NumFilters);
/// Pops an exceptions filter off the stack.
void popFilter();
/// Push a terminate handler on the stack.
void pushTerminate();
/// Pops a terminate handler off the stack.
void popTerminate();
/// Determines whether the exception-scopes stack is empty.
bool empty() const { return StartOfData == EndOfBuffer; }
bool requiresLandingPad() const {
return (CatchDepth || hasEHCleanups());
}
/// Determines whether there are any normal cleanups on the stack.
bool hasNormalCleanups() const {
return InnermostNormalCleanup != stable_end();
}
/// Returns the innermost normal cleanup on the stack, or
/// stable_end() if there are no normal cleanups.
stable_iterator getInnermostNormalCleanup() const {
return InnermostNormalCleanup;
}
/// Determines whether there are any EH cleanups on the stack.
bool hasEHCleanups() const {
return InnermostEHCleanup != stable_end();
}
/// Returns the innermost EH cleanup on the stack, or stable_end()
/// if there are no EH cleanups.
stable_iterator getInnermostEHCleanup() const {
return InnermostEHCleanup;
}
/// An unstable reference to a scope-stack depth. Invalidated by
/// pushes but not pops.
class iterator;
/// Returns an iterator pointing to the innermost EH scope.
iterator begin() const;
/// Returns an iterator pointing to the outermost EH scope.
iterator end() const;
/// Create a stable reference to the top of the EH stack. The
/// returned reference is valid until that scope is popped off the
/// stack.
stable_iterator stable_begin() const {
return stable_iterator(EndOfBuffer - StartOfData);
}
/// Create a stable reference to the bottom of the EH stack.
static stable_iterator stable_end() {
return stable_iterator(0);
}
/// Translates an iterator into a stable_iterator.
stable_iterator stabilize(iterator it) const;
/// Finds the nearest cleanup enclosing the given iterator.
/// Returns stable_iterator::invalid() if there are no such cleanups.
stable_iterator getEnclosingEHCleanup(iterator it) const;
/// Turn a stable reference to a scope depth into a unstable pointer
/// to the EH stack.
iterator find(stable_iterator save) const;
/// Removes the cleanup pointed to by the given stable_iterator.
void removeCleanup(stable_iterator save);
/// Add a branch fixup to the current cleanup scope.
BranchFixup &addBranchFixup() {
assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
BranchFixups.push_back(BranchFixup());
return BranchFixups.back();
}
unsigned getNumBranchFixups() const { return BranchFixups.size(); }
BranchFixup &getBranchFixup(unsigned I) {
assert(I < getNumBranchFixups());
return BranchFixups[I];
}
/// Mark any branch fixups leading to the given block as resolved.
void resolveBranchFixups(llvm::BasicBlock *Dest);
};
/// CodeGenFunction - This class organizes the per-function state that is used
/// while generating LLVM code.
class CodeGenFunction : public BlockFunction {
CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT
public:
/// A jump destination is a pair of a basic block and a cleanup
/// depth. They are used to implement direct jumps across cleanup
/// scopes, e.g. goto, break, continue, and return.
struct JumpDest {
JumpDest() : Block(0), ScopeDepth() {}
JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth)
: Block(Block), ScopeDepth(Depth) {}
llvm::BasicBlock *Block;
EHScopeStack::stable_iterator ScopeDepth;
};
CodeGenModule &CGM; // Per-module state.
const TargetInfo &Target;
typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
CGBuilderTy Builder;
/// CurFuncDecl - Holds the Decl for the current function or ObjC method.
/// This excludes BlockDecls.
const Decl *CurFuncDecl;
/// CurCodeDecl - This is the inner-most code context, which includes blocks.
const Decl *CurCodeDecl;
const CGFunctionInfo *CurFnInfo;
QualType FnRetTy;
llvm::Function *CurFn;
/// CurGD - The GlobalDecl for the current function being compiled.
GlobalDecl CurGD;
/// ReturnBlock - Unified return block.
JumpDest ReturnBlock;
/// ReturnValue - The temporary alloca to hold the return value. This is null
/// iff the function has no return value.
llvm::Value *ReturnValue;
/// AllocaInsertPoint - This is an instruction in the entry block before which
/// we prefer to insert allocas.
llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
// intptr_t, i32, i64
const llvm::IntegerType *IntPtrTy, *Int32Ty, *Int64Ty;
uint32_t LLVMPointerWidth;
bool Exceptions;
bool CatchUndefined;
/// \brief A mapping from NRVO variables to the flags used to indicate
/// when the NRVO has been applied to this variable.
llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
EHScopeStack EHStack;
/// The exception slot. All landing pads write the current
/// exception pointer into this alloca.
llvm::Value *ExceptionSlot;
/// Emits a landing pad for the current EH stack.
llvm::BasicBlock *EmitLandingPad();
llvm::BasicBlock *getInvokeDestImpl();
public:
/// ObjCEHValueStack - Stack of Objective-C exception values, used for
/// rethrows.
llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack;
// A struct holding information about a finally block's IR
// generation. For now, doesn't actually hold anything.
struct FinallyInfo {
};
FinallyInfo EnterFinallyBlock(const Stmt *Stmt,
llvm::Constant *BeginCatchFn,
llvm::Constant *EndCatchFn,
llvm::Constant *RethrowFn);
void ExitFinallyBlock(FinallyInfo &FinallyInfo);
enum CleanupKind { NormalAndEHCleanup, EHCleanup, NormalCleanup };
/// PushDestructorCleanup - Push a cleanup to call the
/// complete-object destructor of an object of the given type at the
/// given address. Does nothing if T is not a C++ class type with a
/// non-trivial destructor.
void PushDestructorCleanup(QualType T, llvm::Value *Addr);
/// PopCleanupBlock - Will pop the cleanup entry on the stack and
/// process all branch fixups.
void PopCleanupBlock();
/// CleanupBlock - RAII object that will create a cleanup block and
/// set the insert point to that block. When destructed, it sets the
/// insert point to the previous block and pushes a new cleanup
/// entry on the stack.
class CleanupBlock {
CodeGenFunction &CGF;
CGBuilderTy::InsertPoint SavedIP;
llvm::BasicBlock *NormalCleanupEntryBB;
llvm::BasicBlock *NormalCleanupExitBB;
llvm::BasicBlock *EHCleanupEntryBB;
public:
CleanupBlock(CodeGenFunction &CGF, CleanupKind Kind);
/// If we're currently writing a normal cleanup, tie that off and
/// start writing an EH cleanup.
void beginEHCleanup();
~CleanupBlock();
};
/// \brief Enters a new scope for capturing cleanups, all of which
/// will be executed once the scope is exited.
class RunCleanupsScope {
CodeGenFunction& CGF;
EHScopeStack::stable_iterator CleanupStackDepth;
bool OldDidCallStackSave;
bool PerformCleanup;
RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
public:
/// \brief Enter a new cleanup scope.
explicit RunCleanupsScope(CodeGenFunction &CGF)
: CGF(CGF), PerformCleanup(true)
{
CleanupStackDepth = CGF.EHStack.stable_begin();
OldDidCallStackSave = CGF.DidCallStackSave;
}
/// \brief Exit this cleanup scope, emitting any accumulated
/// cleanups.
~RunCleanupsScope() {
if (PerformCleanup) {
CGF.DidCallStackSave = OldDidCallStackSave;
CGF.PopCleanupBlocks(CleanupStackDepth);
}
}
/// \brief Determine whether this scope requires any cleanups.
bool requiresCleanups() const {
return CGF.EHStack.stable_begin() != CleanupStackDepth;
}
/// \brief Force the emission of cleanups now, instead of waiting
/// until this object is destroyed.
void ForceCleanup() {
assert(PerformCleanup && "Already forced cleanup");
CGF.DidCallStackSave = OldDidCallStackSave;
CGF.PopCleanupBlocks(CleanupStackDepth);
PerformCleanup = false;
}
};
/// PopCleanupBlocks - Takes the old cleanup stack size and emits
/// the cleanup blocks that have been added.
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
/// The given basic block lies in the current EH scope, but may be a
/// target of a potentially scope-crossing jump; get a stable handle
/// to which we can perform this jump later.
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) const {
return JumpDest(Target, EHStack.stable_begin());
}
/// The given basic block lies in the current EH scope, but may be a
/// target of a potentially scope-crossing jump; get a stable handle
/// to which we can perform this jump later.
JumpDest getJumpDestInCurrentScope(const char *Name = 0) {
return JumpDest(createBasicBlock(Name), EHStack.stable_begin());
}
/// EmitBranchThroughCleanup - Emit a branch from the current insert
/// block through the normal cleanup handling code (if any) and then
/// on to \arg Dest.
void EmitBranchThroughCleanup(JumpDest Dest);
/// EmitBranchThroughEHCleanup - Emit a branch from the current
/// insert block through the EH cleanup handling code (if any) and
/// then on to \arg Dest.
void EmitBranchThroughEHCleanup(JumpDest Dest);
/// BeginConditionalBranch - Should be called before a conditional part of an
/// expression is emitted. For example, before the RHS of the expression below
/// is emitted:
///
/// b && f(T());
///
/// This is used to make sure that any temporaries created in the conditional
/// branch are only destroyed if the branch is taken.
void BeginConditionalBranch() {
++ConditionalBranchLevel;
}
/// EndConditionalBranch - Should be called after a conditional part of an
/// expression has been emitted.
void EndConditionalBranch() {
assert(ConditionalBranchLevel != 0 &&
"Conditional branch mismatch!");
--ConditionalBranchLevel;
}
private:
CGDebugInfo *DebugInfo;
/// IndirectBranch - The first time an indirect goto is seen we create a block
/// with an indirect branch. Every time we see the address of a label taken,
/// we add the label to the indirect goto. Every subsequent indirect goto is
/// codegen'd as a jump to the IndirectBranch's basic block.
llvm::IndirectBrInst *IndirectBranch;
/// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
/// decls.
llvm::DenseMap<const Decl*, llvm::Value*> LocalDeclMap;
/// LabelMap - This keeps track of the LLVM basic block for each C label.
llvm::DenseMap<const LabelStmt*, JumpDest> LabelMap;
// BreakContinueStack - This keeps track of where break and continue
// statements should jump to.
struct BreakContinue {
BreakContinue(JumpDest Break, JumpDest Continue)
: BreakBlock(Break), ContinueBlock(Continue) {}
JumpDest BreakBlock;
JumpDest ContinueBlock;
};
llvm::SmallVector<BreakContinue, 8> BreakContinueStack;
/// SwitchInsn - This is nearest current switch instruction. It is null if if
/// current context is not in a switch.
llvm::SwitchInst *SwitchInsn;
/// CaseRangeBlock - This block holds if condition check for last case
/// statement range in current switch instruction.
llvm::BasicBlock *CaseRangeBlock;
/// InvokeDest - This is the nearest exception target for calls
/// which can unwind, when exceptions are being used.
llvm::BasicBlock *InvokeDest;
// VLASizeMap - This keeps track of the associated size for each VLA type.
// We track this by the size expression rather than the type itself because
// in certain situations, like a const qualifier applied to an VLA typedef,
// multiple VLA types can share the same size expression.
// FIXME: Maybe this could be a stack of maps that is pushed/popped as we
// enter/leave scopes.
llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
/// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
/// calling llvm.stacksave for multiple VLAs in the same scope.
bool DidCallStackSave;
/// A block containing a single 'unreachable' instruction. Created
/// lazily by getUnreachableBlock().
llvm::BasicBlock *UnreachableBlock;
/// CXXThisDecl - When generating code for a C++ member function,
/// this will hold the implicit 'this' declaration.
ImplicitParamDecl *CXXThisDecl;
llvm::Value *CXXThisValue;
/// CXXVTTDecl - When generating code for a base object constructor or
/// base object destructor with virtual bases, this will hold the implicit
/// VTT parameter.
ImplicitParamDecl *CXXVTTDecl;
llvm::Value *CXXVTTValue;
/// ConditionalBranchLevel - Contains the nesting level of the current
/// conditional branch. This is used so that we know if a temporary should be
/// destroyed conditionally.
unsigned ConditionalBranchLevel;
/// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
/// type as well as the field number that contains the actual data.
llvm::DenseMap<const ValueDecl *, std::pair<const llvm::Type *,
unsigned> > ByRefValueInfo;
/// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
/// number that holds the value.
unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
llvm::BasicBlock *TerminateLandingPad;
llvm::BasicBlock *TerminateHandler;
llvm::BasicBlock *TrapBB;
public:
CodeGenFunction(CodeGenModule &cgm);
ASTContext &getContext() const;
CGDebugInfo *getDebugInfo() { return DebugInfo; }
/// Returns a pointer to the function's exception object slot, which
/// is assigned in every landing pad.
llvm::Value *getExceptionSlot();
llvm::BasicBlock *getUnreachableBlock() {
if (!UnreachableBlock) {
UnreachableBlock = createBasicBlock("unreachable");
new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
}
return UnreachableBlock;
}
llvm::BasicBlock *getInvokeDest() {
if (!EHStack.requiresLandingPad()) return 0;
return getInvokeDestImpl();
}
llvm::LLVMContext &getLLVMContext() { return VMContext; }
//===--------------------------------------------------------------------===//
// Objective-C
//===--------------------------------------------------------------------===//
void GenerateObjCMethod(const ObjCMethodDecl *OMD);
void StartObjCMethod(const ObjCMethodDecl *MD,
const ObjCContainerDecl *CD);
/// GenerateObjCGetter - Synthesize an Objective-C property getter function.
void GenerateObjCGetter(ObjCImplementationDecl *IMP,
const ObjCPropertyImplDecl *PID);
void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
ObjCMethodDecl *MD, bool ctor);
/// GenerateObjCSetter - Synthesize an Objective-C property setter function
/// for the given property.
void GenerateObjCSetter(ObjCImplementationDecl *IMP,
const ObjCPropertyImplDecl *PID);
bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
bool IvarTypeWithAggrGCObjects(QualType Ty);
//===--------------------------------------------------------------------===//
// Block Bits
//===--------------------------------------------------------------------===//
llvm::Value *BuildBlockLiteralTmp(const BlockExpr *);
llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
bool BlockHasCopyDispose,
CharUnits Size,
const llvm::StructType *,
std::vector<HelperInfo> *);
llvm::Function *GenerateBlockFunction(GlobalDecl GD,
const BlockExpr *BExpr,
CGBlockInfo &Info,
const Decl *OuterFuncDecl,
llvm::DenseMap<const Decl*, llvm::Value*> ldm);
llvm::Value *LoadBlockStruct();
void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
void AllocateBlockDecl(const BlockDeclRefExpr *E);
llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
}
llvm::Value *GetAddrOfBlockDecl(const ValueDecl *D, bool ByRef);
const llvm::Type *BuildByRefType(const ValueDecl *D);
void GenerateCode(GlobalDecl GD, llvm::Function *Fn);
void StartFunction(GlobalDecl GD, QualType RetTy,
llvm::Function *Fn,
const FunctionArgList &Args,
SourceLocation StartLoc);
void EmitConstructorBody(FunctionArgList &Args);
void EmitDestructorBody(FunctionArgList &Args);
void EmitFunctionBody(FunctionArgList &Args);
/// EmitReturnBlock - Emit the unified return block, trying to avoid its
/// emission when possible.
void EmitReturnBlock();
/// FinishFunction - Complete IR generation of the current function. It is
/// legal to call this function even if there is no current insertion point.
void FinishFunction(SourceLocation EndLoc=SourceLocation());
/// GenerateThunk - Generate a thunk for the given method.
void GenerateThunk(llvm::Function *Fn, GlobalDecl GD, const ThunkInfo &Thunk);
void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
FunctionArgList &Args);
/// InitializeVTablePointer - Initialize the vtable pointer of the given
/// subobject.
///
void InitializeVTablePointer(BaseSubobject Base,
const CXXRecordDecl *NearestVBase,
uint64_t OffsetFromNearestVBase,
llvm::Constant *VTable,
const CXXRecordDecl *VTableClass);
typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
void InitializeVTablePointers(BaseSubobject Base,
const CXXRecordDecl *NearestVBase,
uint64_t OffsetFromNearestVBase,
bool BaseIsNonVirtualPrimaryBase,
llvm::Constant *VTable,
const CXXRecordDecl *VTableClass,
VisitedVirtualBasesSetTy& VBases);
void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
/// EmitDtorEpilogue - Emit all code that comes at the end of class's
/// destructor. This is to call destructors on members and base classes in
/// reverse order of their construction.
void EmitDtorEpilogue(const CXXDestructorDecl *Dtor,
CXXDtorType Type);
/// ShouldInstrumentFunction - Return true if the current function should be
/// instrumented with __cyg_profile_func_* calls
bool ShouldInstrumentFunction();
/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
/// instrumentation function with the current function and the call site, if
/// function instrumentation is enabled.
void EmitFunctionInstrumentation(const char *Fn);
/// EmitFunctionProlog - Emit the target specific LLVM code to load the
/// arguments for the given function. This is also responsible for naming the
/// LLVM function arguments.
void EmitFunctionProlog(const CGFunctionInfo &FI,
llvm::Function *Fn,
const FunctionArgList &Args);
/// EmitFunctionEpilog - Emit the target specific LLVM code to return the
/// given temporary.
void EmitFunctionEpilog(const CGFunctionInfo &FI);
/// EmitStartEHSpec - Emit the start of the exception spec.
void EmitStartEHSpec(const Decl *D);
/// EmitEndEHSpec - Emit the end of the exception spec.
void EmitEndEHSpec(const Decl *D);
/// getTerminateLandingPad - Return a landing pad that just calls terminate.
llvm::BasicBlock *getTerminateLandingPad();
/// getTerminateHandler - Return a handler (not a landing pad, just
/// a catch handler) that just calls terminate. This is used when
/// a terminate scope encloses a try.
llvm::BasicBlock *getTerminateHandler();
const llvm::Type *ConvertTypeForMem(QualType T);
const llvm::Type *ConvertType(QualType T);
const llvm::Type *ConvertType(const TypeDecl *T) {
return ConvertType(getContext().getTypeDeclType(T));
}
/// LoadObjCSelf - Load the value of self. This function is only valid while
/// generating code for an Objective-C method.
llvm::Value *LoadObjCSelf();
/// TypeOfSelfObject - Return type of object that this self represents.
QualType TypeOfSelfObject();
/// hasAggregateLLVMType - Return true if the specified AST type will map into
/// an aggregate LLVM type or is void.
static bool hasAggregateLLVMType(QualType T);
/// createBasicBlock - Create an LLVM basic block.
llvm::BasicBlock *createBasicBlock(const char *Name="",
llvm::Function *Parent=0,
llvm::BasicBlock *InsertBefore=0) {
#ifdef NDEBUG
return llvm::BasicBlock::Create(VMContext, "", Parent, InsertBefore);
#else
return llvm::BasicBlock::Create(VMContext, Name, Parent, InsertBefore);
#endif
}
/// getBasicBlockForLabel - Return the LLVM basicblock that the specified
/// label maps to.
JumpDest getJumpDestForLabel(const LabelStmt *S);
/// SimplifyForwardingBlocks - If the given basic block is only a branch to
/// another basic block, simplify it. This assumes that no other code could
/// potentially reference the basic block.
void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
/// EmitBlock - Emit the given block \arg BB and set it as the insert point,
/// adding a fall-through branch from the current insert block if
/// necessary. It is legal to call this function even if there is no current
/// insertion point.
///
/// IsFinished - If true, indicates that the caller has finished emitting
/// branches to the given block and does not expect to emit code into it. This
/// means the block can be ignored if it is unreachable.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
/// EmitBranch - Emit a branch to the specified basic block from the current
/// insert block, taking care to avoid creation of branches from dummy
/// blocks. It is legal to call this function even if there is no current
/// insertion point.
///
/// This function clears the current insertion point. The caller should follow
/// calls to this function with calls to Emit*Block prior to generation new
/// code.
void EmitBranch(llvm::BasicBlock *Block);
/// HaveInsertPoint - True if an insertion point is defined. If not, this
/// indicates that the current code being emitted is unreachable.
bool HaveInsertPoint() const {
return Builder.GetInsertBlock() != 0;
}
/// EnsureInsertPoint - Ensure that an insertion point is defined so that
/// emitted IR has a place to go. Note that by definition, if this function
/// creates a block then that block is unreachable; callers may do better to
/// detect when no insertion point is defined and simply skip IR generation.
void EnsureInsertPoint() {
if (!HaveInsertPoint())
EmitBlock(createBasicBlock());
}
/// ErrorUnsupported - Print out an error that codegen doesn't support the
/// specified stmt yet.
void ErrorUnsupported(const Stmt *S, const char *Type,
bool OmitOnError=false);
//===--------------------------------------------------------------------===//
// Helpers
//===--------------------------------------------------------------------===//
Qualifiers MakeQualifiers(QualType T) {
Qualifiers Quals = getContext().getCanonicalType(T).getQualifiers();
Quals.setObjCGCAttr(getContext().getObjCGCAttrKind(T));
return Quals;
}
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
/// block. The caller is responsible for setting an appropriate alignment on
/// the alloca.
llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty,
const llvm::Twine &Name = "tmp");
/// InitTempAlloca - Provide an initial value for the given alloca.
void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
/// CreateIRTemp - Create a temporary IR object of the given type, with
/// appropriate alignment. This routine should only be used when an temporary
/// value needs to be stored into an alloca (for example, to avoid explicit
/// PHI construction), but the type is the IR type, not the type appropriate
/// for storing in memory.
llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp");
/// CreateMemTemp - Create a temporary memory object of the given type, with
/// appropriate alignment.
llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp");
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
/// expression and compare the result against zero, returning an Int1Ty value.
llvm::Value *EvaluateExprAsBool(const Expr *E);
/// EmitAnyExpr - Emit code to compute the specified expression which can have
/// any type. The result is returned as an RValue struct. If this is an
/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
/// the result should be returned.
///
/// \param IgnoreResult - True if the resulting value isn't used.
RValue EmitAnyExpr(const Expr *E, llvm::Value *AggLoc = 0,
bool IsAggLocVolatile = false, bool IgnoreResult = false,
bool IsInitializer = false);
// EmitVAListRef - Emit a "reference" to a va_list; this is either the address
// or the value of the expression, depending on how va_list is defined.
llvm::Value *EmitVAListRef(const Expr *E);
/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
/// always be accessible even if no aggregate location is provided.
RValue EmitAnyExprToTemp(const Expr *E, bool IsAggLocVolatile = false,
bool IsInitializer = false);
/// EmitsAnyExprToMem - Emits the code necessary to evaluate an
/// arbitrary expression into the given memory location.
void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
bool IsLocationVolatile = false,
bool IsInitializer = false);
/// EmitAggregateCopy - Emit an aggrate copy.
///
/// \param isVolatile - True iff either the source or the destination is
/// volatile.
void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
QualType EltTy, bool isVolatile=false);
/// StartBlock - Start new block named N. If insert block is a dummy block
/// then reuse it.
void StartBlock(const char *N);
/// GetAddrOfStaticLocalVar - Return the address of a static local variable.
llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD);
/// GetAddrOfLocalVar - Return the address of a local variable.
llvm::Value *GetAddrOfLocalVar(const VarDecl *VD);
/// getAccessedFieldNo - Given an encoded value and a result number, return
/// the input field number being accessed.
static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
llvm::BlockAddress *GetAddrOfLabel(const LabelStmt *L);
llvm::BasicBlock *GetIndirectGotoBlock();
/// EmitNullInitialization - Generate code to set a value of the given type to
/// null, If the type contains data member pointers, they will be initialized
/// to -1 in accordance with the Itanium C++ ABI.
void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
// EmitVAArg - Generate code to get an argument from the passed in pointer
// and update it accordingly. The return value is a pointer to the argument.
// FIXME: We should be able to get rid of this method and use the va_arg
// instruction in LLVM instead once it works well enough.
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
/// EmitVLASize - Generate code for any VLA size expressions that might occur
/// in a variably modified type. If Ty is a VLA, will return the value that
/// corresponds to the size in bytes of the VLA type. Will return 0 otherwise.
///
/// This function can be called with a null (unreachable) insert point.
llvm::Value *EmitVLASize(QualType Ty);
// GetVLASize - Returns an LLVM value that corresponds to the size in bytes
// of a variable length array type.
llvm::Value *GetVLASize(const VariableArrayType *);
/// LoadCXXThis - Load the value of 'this'. This function is only valid while
/// generating code for an C++ member function.
llvm::Value *LoadCXXThis() {
assert(CXXThisValue && "no 'this' value for this function");
return CXXThisValue;
}
/// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
/// virtual bases.
llvm::Value *LoadCXXVTT() {
assert(CXXVTTValue && "no VTT value for this function");
return CXXVTTValue;
}
/// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
/// complete class to the given direct base.
llvm::Value *
GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
const CXXRecordDecl *Derived,
const CXXRecordDecl *Base,
bool BaseIsVirtual);
/// GetAddressOfBaseClass - This function will add the necessary delta to the
/// load of 'this' and returns address of the base class.
llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
const CXXRecordDecl *Derived,
const CXXBaseSpecifierArray &BasePath,
bool NullCheckValue);
llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
const CXXRecordDecl *Derived,
const CXXBaseSpecifierArray &BasePath,
bool NullCheckValue);
llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
const CXXRecordDecl *ClassDecl,
const CXXRecordDecl *BaseClassDecl);
void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
CXXCtorType CtorType,
const FunctionArgList &Args);
void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
bool ForVirtualBase, llvm::Value *This,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd);
void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
const ConstantArrayType *ArrayTy,
llvm::Value *ArrayPtr,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd);
void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
llvm::Value *NumElements,
llvm::Value *ArrayPtr,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd);
void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
const ArrayType *Array,
llvm::Value *This);
void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
llvm::Value *NumElements,
llvm::Value *This);
llvm::Function *GenerateCXXAggrDestructorHelper(const CXXDestructorDecl *D,
const ArrayType *Array,
llvm::Value *This);
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
bool ForVirtualBase, llvm::Value *This);
void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr,
llvm::Value *NumElements);
void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
QualType DeleteTy);
llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
void EmitCheck(llvm::Value *, unsigned Size);
llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
bool isInc, bool isPre);
ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
bool isInc, bool isPre);
//===--------------------------------------------------------------------===//
// Declaration Emission
//===--------------------------------------------------------------------===//
/// EmitDecl - Emit a declaration.
///
/// This function can be called with a null (unreachable) insert point.
void EmitDecl(const Decl &D);
/// EmitBlockVarDecl - Emit a block variable declaration.
///
/// This function can be called with a null (unreachable) insert point.
void EmitBlockVarDecl(const VarDecl &D);
typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
llvm::Value *Address);
/// EmitLocalBlockVarDecl - Emit a local block variable declaration.
///
/// This function can be called with a null (unreachable) insert point.
void EmitLocalBlockVarDecl(const VarDecl &D, SpecialInitFn *SpecialInit = 0);
void EmitStaticBlockVarDecl(const VarDecl &D,
llvm::GlobalValue::LinkageTypes Linkage);
/// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
void EmitParmDecl(const VarDecl &D, llvm::Value *Arg);
//===--------------------------------------------------------------------===//
// Statement Emission
//===--------------------------------------------------------------------===//
/// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
void EmitStopPoint(const Stmt *S);
/// EmitStmt - Emit the code for the statement \arg S. It is legal to call
/// this function even if there is no current insertion point.
///
/// This function may clear the current insertion point; callers should use
/// EnsureInsertPoint if they wish to subsequently generate code without first
/// calling EmitBlock, EmitBranch, or EmitStmt.
void EmitStmt(const Stmt *S);
/// EmitSimpleStmt - Try to emit a "simple" statement which does not
/// necessarily require an insertion point or debug information; typically
/// because the statement amounts to a jump or a container of other
/// statements.
///
/// \return True if the statement was handled.
bool EmitSimpleStmt(const Stmt *S);
RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
llvm::Value *AggLoc = 0, bool isAggVol = false);
/// EmitLabel - Emit the block for the given label. It is legal to call this
/// function even if there is no current insertion point.
void EmitLabel(const LabelStmt &S); // helper for EmitLabelStmt.
void EmitLabelStmt(const LabelStmt &S);
void EmitGotoStmt(const GotoStmt &S);
void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
void EmitIfStmt(const IfStmt &S);
void EmitWhileStmt(const WhileStmt &S);
void EmitDoStmt(const DoStmt &S);
void EmitForStmt(const ForStmt &S);
void EmitReturnStmt(const ReturnStmt &S);
void EmitDeclStmt(const DeclStmt &S);
void EmitBreakStmt(const BreakStmt &S);
void EmitContinueStmt(const ContinueStmt &S);
void EmitSwitchStmt(const SwitchStmt &S);
void EmitDefaultStmt(const DefaultStmt &S);
void EmitCaseStmt(const CaseStmt &S);
void EmitCaseStmtRange(const CaseStmt &S);
void EmitAsmStmt(const AsmStmt &S);
void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
llvm::Constant *getUnwindResumeOrRethrowFn();
void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
void EmitCXXTryStmt(const CXXTryStmt &S);
//===--------------------------------------------------------------------===//
// LValue Expression Emission
//===--------------------------------------------------------------------===//
/// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
RValue GetUndefRValue(QualType Ty);
/// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
/// and issue an ErrorUnsupported style diagnostic (using the
/// provided Name).
RValue EmitUnsupportedRValue(const Expr *E,
const char *Name);
/// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
/// an ErrorUnsupported style diagnostic (using the provided Name).
LValue EmitUnsupportedLValue(const Expr *E,
const char *Name);
/// EmitLValue - Emit code to compute a designator that specifies the location
/// of the expression.
///
/// This can return one of two things: a simple address or a bitfield
/// reference. In either case, the LLVM Value* in the LValue structure is
/// guaranteed to be an LLVM pointer type.
///
/// If this returns a bitfield reference, nothing about the pointee type of
/// the LLVM value is known: For example, it may not be a pointer to an
/// integer.
///
/// If this returns a normal address, and if the lvalue's C type is fixed
/// size, this method guarantees that the returned pointer type will point to
/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
/// variable length type, this is not possible.
///
LValue EmitLValue(const Expr *E);
/// EmitCheckedLValue - Same as EmitLValue but additionally we generate
/// checking code to guard against undefined behavior. This is only
/// suitable when we know that the address will be used to access the
/// object.
LValue EmitCheckedLValue(const Expr *E);
/// EmitLoadOfScalar - Load a scalar value from an address, taking
/// care to appropriately convert from the memory representation to
/// the LLVM value representation.
llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
QualType Ty);
/// EmitStoreOfScalar - Store a scalar value to an address, taking
/// care to appropriately convert from the memory representation to
/// the LLVM value representation.
void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
bool Volatile, QualType Ty);
/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
/// this method emits the address of the lvalue, then loads the result as an
/// rvalue, returning the rvalue.
RValue EmitLoadOfLValue(LValue V, QualType LVType);
RValue EmitLoadOfExtVectorElementLValue(LValue V, QualType LVType);
RValue EmitLoadOfBitfieldLValue(LValue LV, QualType ExprType);
RValue EmitLoadOfPropertyRefLValue(LValue LV, QualType ExprType);
RValue EmitLoadOfKVCRefLValue(LValue LV, QualType ExprType);
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
/// lvalue, where both are guaranteed to the have the same type, and that type
/// is 'Ty'.
void EmitStoreThroughLValue(RValue Src, LValue Dst, QualType Ty);
void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst,
QualType Ty);
void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst, QualType Ty);
void EmitStoreThroughKVCRefLValue(RValue Src, LValue Dst, QualType Ty);
/// EmitStoreThroughLValue - Store Src into Dst with same constraints as
/// EmitStoreThroughLValue.
///
/// \param Result [out] - If non-null, this will be set to a Value* for the
/// bit-field contents after the store, appropriate for use as the result of
/// an assignment to the bit-field.
void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, QualType Ty,
llvm::Value **Result=0);
// Note: only availabe for agg return types
LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
LValue EmitCompoundAssignOperatorLValue(const CompoundAssignOperator *E);
// Note: only available for agg return types
LValue EmitCallExprLValue(const CallExpr *E);
// Note: only available for agg return types
LValue EmitVAArgExprLValue(const VAArgExpr *E);
LValue EmitDeclRefLValue(const DeclRefExpr *E);
LValue EmitStringLiteralLValue(const StringLiteral *E);
LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
LValue EmitPredefinedFunctionName(unsigned Type);
LValue EmitPredefinedLValue(const PredefinedExpr *E);
LValue EmitUnaryOpLValue(const UnaryOperator *E);
LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
LValue EmitMemberExpr(const MemberExpr *E);
LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
LValue EmitConditionalOperatorLValue(const ConditionalOperator *E);
LValue EmitCastLValue(const CastExpr *E);
LValue EmitNullInitializationLValue(const CXXZeroInitValueExpr *E);
llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
const ObjCIvarDecl *Ivar);
LValue EmitLValueForAnonRecordField(llvm::Value* Base,
const FieldDecl* Field,
unsigned CVRQualifiers);
LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
unsigned CVRQualifiers);
/// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
/// if the Field is a reference, this will return the address of the reference
/// and not the address of the value stored in the reference.
LValue EmitLValueForFieldInitialization(llvm::Value* Base,
const FieldDecl* Field,
unsigned CVRQualifiers);
LValue EmitLValueForIvar(QualType ObjectTy,
llvm::Value* Base, const ObjCIvarDecl *Ivar,
unsigned CVRQualifiers);
LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
unsigned CVRQualifiers);
LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
LValue EmitCXXExprWithTemporariesLValue(const CXXExprWithTemporaries *E);
LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E);
LValue EmitObjCKVCRefLValue(const ObjCImplicitSetterGetterRefExpr *E);
LValue EmitObjCSuperExprLValue(const ObjCSuperExpr *E);
LValue EmitStmtExprLValue(const StmtExpr *E);
LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
//===--------------------------------------------------------------------===//
// Scalar Expression Emission
//===--------------------------------------------------------------------===//
/// EmitCall - Generate a call of the given function, expecting the given
/// result type, and using the given argument list which specifies both the
/// LLVM arguments and the types they were derived from.
///
/// \param TargetDecl - If given, the decl of the function in a direct call;
/// used to set attributes on the call (noreturn, etc.).
RValue EmitCall(const CGFunctionInfo &FnInfo,
llvm::Value *Callee,
ReturnValueSlot ReturnValue,
const CallArgList &Args,
const Decl *TargetDecl = 0,
llvm::Instruction **callOrInvoke = 0);
RValue EmitCall(QualType FnType, llvm::Value *Callee,
ReturnValueSlot ReturnValue,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd,
const Decl *TargetDecl = 0);
RValue EmitCallExpr(const CallExpr *E,
ReturnValueSlot ReturnValue = ReturnValueSlot());
llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
llvm::Value * const *ArgBegin,
llvm::Value * const *ArgEnd,
const llvm::Twine &Name = "");
llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
const llvm::Type *Ty);
llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
llvm::Value *&This, const llvm::Type *Ty);
RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
llvm::Value *Callee,
ReturnValueSlot ReturnValue,
llvm::Value *This,
llvm::Value *VTT,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd);
RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
ReturnValueSlot ReturnValue);
RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
ReturnValueSlot ReturnValue);
RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
const CXXMethodDecl *MD,
ReturnValueSlot ReturnValue);
RValue EmitBuiltinExpr(const FunctionDecl *FD,
unsigned BuiltinID, const CallExpr *E);
RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
/// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
/// is unhandled by the current target.
llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitNeonCall(llvm::Function *F,
llvm::SmallVectorImpl<llvm::Value*> &O,
const char *name, bool splat = false,
unsigned shift = 0, bool rightshift = false);
llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
llvm::Value *EmitNeonShiftVector(llvm::Value *V, const llvm::Type *Ty,
bool negateForRightShift);
llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
ReturnValueSlot Return = ReturnValueSlot());
RValue EmitObjCPropertyGet(const Expr *E,
ReturnValueSlot Return = ReturnValueSlot());
RValue EmitObjCSuperPropertyGet(const Expr *Exp, const Selector &S,
ReturnValueSlot Return = ReturnValueSlot());
void EmitObjCPropertySet(const Expr *E, RValue Src);
void EmitObjCSuperPropertySet(const Expr *E, const Selector &S, RValue Src);
/// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
/// expression. Will emit a temporary variable if E is not an LValue.
RValue EmitReferenceBindingToExpr(const Expr* E,
const NamedDecl *InitializedDecl);
//===--------------------------------------------------------------------===//
// Expression Emission
//===--------------------------------------------------------------------===//
// Expressions are broken into three classes: scalar, complex, aggregate.
/// EmitScalarExpr - Emit the computation of the specified expression of LLVM
/// scalar type, returning the result.
llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
/// EmitScalarConversion - Emit a conversion from the specified type to the
/// specified destination type, both of which are LLVM scalar types.
llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
QualType DstTy);
/// EmitComplexToScalarConversion - Emit a conversion from the specified
/// complex type to the specified destination type, where the destination type
/// is an LLVM scalar type.
llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
QualType DstTy);
/// EmitAggExpr - Emit the computation of the specified expression of
/// aggregate type. The result is computed into DestPtr. Note that if
/// DestPtr is null, the value of the aggregate expression is not needed.
void EmitAggExpr(const Expr *E, llvm::Value *DestPtr, bool VolatileDest,
bool IgnoreResult = false, bool IsInitializer = false,
bool RequiresGCollection = false);
/// EmitAggExprToLValue - Emit the computation of the specified expression of
/// aggregate type into a temporary LValue.
LValue EmitAggExprToLValue(const Expr *E);
/// EmitGCMemmoveCollectable - Emit special API for structs with object
/// pointers.
void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
QualType Ty);
/// EmitComplexExpr - Emit the computation of the specified expression of
/// complex type, returning the result.
ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal = false,
bool IgnoreImag = false,
bool IgnoreRealAssign = false,
bool IgnoreImagAssign = false);
/// EmitComplexExprIntoAddr - Emit the computation of the specified expression
/// of complex type, storing into the specified Value*.
void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
bool DestIsVolatile);
/// StoreComplexToAddr - Store a complex number into the specified address.
void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
bool DestIsVolatile);
/// LoadComplexFromAddr - Load a complex number from the specified address.
ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
/// CreateStaticBlockVarDecl - Create a zero-initialized LLVM global for a
/// static block var decl.
llvm::GlobalVariable *CreateStaticBlockVarDecl(const VarDecl &D,
const char *Separator,
llvm::GlobalValue::LinkageTypes Linkage);
/// AddInitializerToGlobalBlockVarDecl - Add the initializer for 'D' to the
/// global variable that has already been created for it. If the initializer
/// has a different type than GV does, this may free GV and return a different
/// one. Otherwise it just returns GV.
llvm::GlobalVariable *
AddInitializerToGlobalBlockVarDecl(const VarDecl &D,
llvm::GlobalVariable *GV);
/// EmitStaticCXXBlockVarDeclInit - Create the initializer for a C++ runtime
/// initialized static block var decl.
void EmitStaticCXXBlockVarDeclInit(const VarDecl &D,
llvm::GlobalVariable *GV);
/// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
/// variable with global storage.
void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
/// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
/// with the C++ runtime so that its destructor will be called at exit.
void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
llvm::Constant *DeclPtr);
/// GenerateCXXGlobalInitFunc - Generates code for initializing global
/// variables.
void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
llvm::Constant **Decls,
unsigned NumDecls);
/// GenerateCXXGlobalDtorFunc - Generates code for destroying global
/// variables.
void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
const std::vector<std::pair<llvm::WeakVH,
llvm::Constant*> > &DtorsAndObjects);
void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, const VarDecl *D);
void EmitCXXConstructExpr(llvm::Value *Dest, const CXXConstructExpr *E);
RValue EmitCXXExprWithTemporaries(const CXXExprWithTemporaries *E,
llvm::Value *AggLoc = 0,
bool IsAggLocVolatile = false,
bool IsInitializer = false);
void EmitCXXThrowExpr(const CXXThrowExpr *E);
//===--------------------------------------------------------------------===//
// Internal Helpers
//===--------------------------------------------------------------------===//
/// ContainsLabel - Return true if the statement contains a label in it. If
/// this statement is not executed normally, it not containing a label means
/// that we can just remove the code.
static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
/// to a constant, or if it does but contains a label, return 0. If it
/// constant folds to 'true' and does not contain a label, return 1, if it
/// constant folds to 'false' and does not contain a label, return -1.
int ConstantFoldsToSimpleInteger(const Expr *Cond);
/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
/// if statement) to the specified blocks. Based on the condition, this might
/// try to simplify the codegen of the conditional based on the branch.
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
llvm::BasicBlock *FalseBlock);
/// getTrapBB - Create a basic block that will call the trap intrinsic. We'll
/// generate a branch around the created basic block as necessary.
llvm::BasicBlock* getTrapBB();
/// EmitCallArg - Emit a single call argument.
RValue EmitCallArg(const Expr *E, QualType ArgType);
/// EmitDelegateCallArg - We are performing a delegate call; that
/// is, the current function is delegating to another one. Produce
/// a r-value suitable for passing the given parameter.
RValue EmitDelegateCallArg(const VarDecl *Param);
private:
void EmitReturnOfRValue(RValue RV, QualType Ty);
/// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
/// from function arguments into \arg Dst. See ABIArgInfo::Expand.
///
/// \param AI - The first function argument of the expansion.
/// \return The argument following the last expanded function
/// argument.
llvm::Function::arg_iterator
ExpandTypeFromArgs(QualType Ty, LValue Dst,
llvm::Function::arg_iterator AI);
/// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
/// Ty, into individual arguments on the provided vector \arg Args. See
/// ABIArgInfo::Expand.
void ExpandTypeToArgs(QualType Ty, RValue Src,
llvm::SmallVector<llvm::Value*, 16> &Args);
llvm::Value* EmitAsmInput(const AsmStmt &S,
const TargetInfo::ConstraintInfo &Info,
const Expr *InputExpr, std::string &ConstraintStr);
/// EmitCallArgs - Emit call arguments for a function.
/// The CallArgTypeInfo parameter is used for iterating over the known
/// argument types of the function being called.
template<typename T>
void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd) {
CallExpr::const_arg_iterator Arg = ArgBeg;
// First, use the argument types that the type info knows about
if (CallArgTypeInfo) {
for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
assert(Arg != ArgEnd && "Running over edge of argument list!");
QualType ArgType = *I;
assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
getTypePtr() ==
getContext().getCanonicalType(Arg->getType()).getTypePtr() &&
"type mismatch in call argument!");
Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType),
ArgType));
}
// Either we've emitted all the call args, or we have a call to a
// variadic function.
assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
"Extra arguments in non-variadic function!");
}
// If we still have any arguments, emit them using the type of the argument.
for (; Arg != ArgEnd; ++Arg) {
QualType ArgType = Arg->getType();
Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType),
ArgType));
}
}
const TargetCodeGenInfo &getTargetHooks() const {
return CGM.getTargetCodeGenInfo();
}
void EmitDeclMetadata();
};
} // end namespace CodeGen
} // end namespace clang
#endif