blob: 3caca9d7e6c2e2247dfb69173a746649fba551f1 [file] [log] [blame]
//===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Decl subclasses.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
using namespace clang;
//===----------------------------------------------------------------------===//
// NamedDecl Implementation
//===----------------------------------------------------------------------===//
static llvm::Optional<Visibility> getVisibilityOf(const Decl *D) {
// If this declaration has an explicit visibility attribute, use it.
if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
switch (A->getVisibility()) {
case VisibilityAttr::Default:
return DefaultVisibility;
case VisibilityAttr::Hidden:
return HiddenVisibility;
case VisibilityAttr::Protected:
return ProtectedVisibility;
}
return DefaultVisibility;
}
// If we're on Mac OS X, an 'availability' for Mac OS X attribute
// implies visibility(default).
if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
for (specific_attr_iterator<AvailabilityAttr>
A = D->specific_attr_begin<AvailabilityAttr>(),
AEnd = D->specific_attr_end<AvailabilityAttr>();
A != AEnd; ++A)
if ((*A)->getPlatform()->getName().equals("macosx"))
return DefaultVisibility;
}
return llvm::Optional<Visibility>();
}
typedef NamedDecl::LinkageInfo LinkageInfo;
namespace {
/// Flags controlling the computation of linkage and visibility.
struct LVFlags {
bool ConsiderGlobalVisibility;
bool ConsiderVisibilityAttributes;
bool ConsiderTemplateParameterTypes;
LVFlags() : ConsiderGlobalVisibility(true),
ConsiderVisibilityAttributes(true),
ConsiderTemplateParameterTypes(true) {
}
/// \brief Returns a set of flags that is only useful for computing the
/// linkage, not the visibility, of a declaration.
static LVFlags CreateOnlyDeclLinkage() {
LVFlags F;
F.ConsiderGlobalVisibility = false;
F.ConsiderVisibilityAttributes = false;
F.ConsiderTemplateParameterTypes = false;
return F;
}
/// Returns a set of flags, otherwise based on these, which ignores
/// off all sources of visibility except template arguments.
LVFlags onlyTemplateVisibility() const {
LVFlags F = *this;
F.ConsiderGlobalVisibility = false;
F.ConsiderVisibilityAttributes = false;
F.ConsiderTemplateParameterTypes = false;
return F;
}
};
} // end anonymous namespace
static LinkageInfo getLVForType(QualType T) {
std::pair<Linkage,Visibility> P = T->getLinkageAndVisibility();
return LinkageInfo(P.first, P.second, T->isVisibilityExplicit());
}
/// \brief Get the most restrictive linkage for the types in the given
/// template parameter list.
static LinkageInfo
getLVForTemplateParameterList(const TemplateParameterList *Params) {
LinkageInfo LV(ExternalLinkage, DefaultVisibility, false);
for (TemplateParameterList::const_iterator P = Params->begin(),
PEnd = Params->end();
P != PEnd; ++P) {
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
if (NTTP->isExpandedParameterPack()) {
for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
QualType T = NTTP->getExpansionType(I);
if (!T->isDependentType())
LV.merge(getLVForType(T));
}
continue;
}
if (!NTTP->getType()->isDependentType()) {
LV.merge(getLVForType(NTTP->getType()));
continue;
}
}
if (TemplateTemplateParmDecl *TTP
= dyn_cast<TemplateTemplateParmDecl>(*P)) {
LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters()));
}
}
return LV;
}
/// getLVForDecl - Get the linkage and visibility for the given declaration.
static LinkageInfo getLVForDecl(const NamedDecl *D, LVFlags F);
/// \brief Get the most restrictive linkage for the types and
/// declarations in the given template argument list.
static LinkageInfo getLVForTemplateArgumentList(const TemplateArgument *Args,
unsigned NumArgs,
LVFlags &F) {
LinkageInfo LV(ExternalLinkage, DefaultVisibility, false);
for (unsigned I = 0; I != NumArgs; ++I) {
switch (Args[I].getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Expression:
break;
case TemplateArgument::Type:
LV.merge(getLVForType(Args[I].getAsType()));
break;
case TemplateArgument::Declaration:
// The decl can validly be null as the representation of nullptr
// arguments, valid only in C++0x.
if (Decl *D = Args[I].getAsDecl()) {
if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
LV = merge(LV, getLVForDecl(ND, F));
}
break;
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
if (TemplateDecl *Template
= Args[I].getAsTemplateOrTemplatePattern().getAsTemplateDecl())
LV.merge(getLVForDecl(Template, F));
break;
case TemplateArgument::Pack:
LV.merge(getLVForTemplateArgumentList(Args[I].pack_begin(),
Args[I].pack_size(),
F));
break;
}
}
return LV;
}
static LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
LVFlags &F) {
return getLVForTemplateArgumentList(TArgs.data(), TArgs.size(), F);
}
static bool shouldConsiderTemplateLV(const FunctionDecl *fn,
const FunctionTemplateSpecializationInfo *spec) {
return !(spec->isExplicitSpecialization() &&
fn->hasAttr<VisibilityAttr>());
}
static bool shouldConsiderTemplateLV(const ClassTemplateSpecializationDecl *d) {
return !(d->isExplicitSpecialization() && d->hasAttr<VisibilityAttr>());
}
static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D, LVFlags F) {
assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
"Not a name having namespace scope");
ASTContext &Context = D->getASTContext();
// C++ [basic.link]p3:
// A name having namespace scope (3.3.6) has internal linkage if it
// is the name of
// - an object, reference, function or function template that is
// explicitly declared static; or,
// (This bullet corresponds to C99 6.2.2p3.)
if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
// Explicitly declared static.
if (Var->getStorageClass() == SC_Static)
return LinkageInfo::internal();
// - an object or reference that is explicitly declared const
// and neither explicitly declared extern nor previously
// declared to have external linkage; or
// (there is no equivalent in C99)
if (Context.getLangOptions().CPlusPlus &&
Var->getType().isConstant(Context) &&
Var->getStorageClass() != SC_Extern &&
Var->getStorageClass() != SC_PrivateExtern) {
bool FoundExtern = false;
for (const VarDecl *PrevVar = Var->getPreviousDeclaration();
PrevVar && !FoundExtern;
PrevVar = PrevVar->getPreviousDeclaration())
if (isExternalLinkage(PrevVar->getLinkage()))
FoundExtern = true;
if (!FoundExtern)
return LinkageInfo::internal();
}
if (Var->getStorageClass() == SC_None) {
const VarDecl *PrevVar = Var->getPreviousDeclaration();
for (; PrevVar; PrevVar = PrevVar->getPreviousDeclaration())
if (PrevVar->getStorageClass() == SC_PrivateExtern)
break;
if (PrevVar)
return PrevVar->getLinkageAndVisibility();
}
} else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) {
// C++ [temp]p4:
// A non-member function template can have internal linkage; any
// other template name shall have external linkage.
const FunctionDecl *Function = 0;
if (const FunctionTemplateDecl *FunTmpl
= dyn_cast<FunctionTemplateDecl>(D))
Function = FunTmpl->getTemplatedDecl();
else
Function = cast<FunctionDecl>(D);
// Explicitly declared static.
if (Function->getStorageClass() == SC_Static)
return LinkageInfo(InternalLinkage, DefaultVisibility, false);
} else if (const FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
// - a data member of an anonymous union.
if (cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
return LinkageInfo::internal();
}
if (D->isInAnonymousNamespace()) {
const VarDecl *Var = dyn_cast<VarDecl>(D);
const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
if ((!Var || !Var->isExternC()) && (!Func || !Func->isExternC()))
return LinkageInfo::uniqueExternal();
}
// Set up the defaults.
// C99 6.2.2p5:
// If the declaration of an identifier for an object has file
// scope and no storage-class specifier, its linkage is
// external.
LinkageInfo LV;
if (F.ConsiderVisibilityAttributes) {
if (llvm::Optional<Visibility> Vis = D->getExplicitVisibility()) {
LV.setVisibility(*Vis, true);
F.ConsiderGlobalVisibility = false;
} else {
// If we're declared in a namespace with a visibility attribute,
// use that namespace's visibility, but don't call it explicit.
for (const DeclContext *DC = D->getDeclContext();
!isa<TranslationUnitDecl>(DC);
DC = DC->getParent()) {
const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
if (!ND) continue;
if (llvm::Optional<Visibility> Vis = ND->getExplicitVisibility()) {
LV.setVisibility(*Vis, true);
F.ConsiderGlobalVisibility = false;
break;
}
}
}
}
// C++ [basic.link]p4:
// A name having namespace scope has external linkage if it is the
// name of
//
// - an object or reference, unless it has internal linkage; or
if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
// GCC applies the following optimization to variables and static
// data members, but not to functions:
//
// Modify the variable's LV by the LV of its type unless this is
// C or extern "C". This follows from [basic.link]p9:
// A type without linkage shall not be used as the type of a
// variable or function with external linkage unless
// - the entity has C language linkage, or
// - the entity is declared within an unnamed namespace, or
// - the entity is not used or is defined in the same
// translation unit.
// and [basic.link]p10:
// ...the types specified by all declarations referring to a
// given variable or function shall be identical...
// C does not have an equivalent rule.
//
// Ignore this if we've got an explicit attribute; the user
// probably knows what they're doing.
//
// Note that we don't want to make the variable non-external
// because of this, but unique-external linkage suits us.
if (Context.getLangOptions().CPlusPlus && !Var->isExternC()) {
LinkageInfo TypeLV = getLVForType(Var->getType());
if (TypeLV.linkage() != ExternalLinkage)
return LinkageInfo::uniqueExternal();
if (!LV.visibilityExplicit())
LV.mergeVisibility(TypeLV.visibility(), TypeLV.visibilityExplicit());
}
if (Var->getStorageClass() == SC_PrivateExtern)
LV.setVisibility(HiddenVisibility, true);
if (!Context.getLangOptions().CPlusPlus &&
(Var->getStorageClass() == SC_Extern ||
Var->getStorageClass() == SC_PrivateExtern)) {
// C99 6.2.2p4:
// For an identifier declared with the storage-class specifier
// extern in a scope in which a prior declaration of that
// identifier is visible, if the prior declaration specifies
// internal or external linkage, the linkage of the identifier
// at the later declaration is the same as the linkage
// specified at the prior declaration. If no prior declaration
// is visible, or if the prior declaration specifies no
// linkage, then the identifier has external linkage.
if (const VarDecl *PrevVar = Var->getPreviousDeclaration()) {
LinkageInfo PrevLV = getLVForDecl(PrevVar, F);
if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
LV.mergeVisibility(PrevLV);
}
}
// - a function, unless it has internal linkage; or
} else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
// In theory, we can modify the function's LV by the LV of its
// type unless it has C linkage (see comment above about variables
// for justification). In practice, GCC doesn't do this, so it's
// just too painful to make work.
if (Function->getStorageClass() == SC_PrivateExtern)
LV.setVisibility(HiddenVisibility, true);
// C99 6.2.2p5:
// If the declaration of an identifier for a function has no
// storage-class specifier, its linkage is determined exactly
// as if it were declared with the storage-class specifier
// extern.
if (!Context.getLangOptions().CPlusPlus &&
(Function->getStorageClass() == SC_Extern ||
Function->getStorageClass() == SC_PrivateExtern ||
Function->getStorageClass() == SC_None)) {
// C99 6.2.2p4:
// For an identifier declared with the storage-class specifier
// extern in a scope in which a prior declaration of that
// identifier is visible, if the prior declaration specifies
// internal or external linkage, the linkage of the identifier
// at the later declaration is the same as the linkage
// specified at the prior declaration. If no prior declaration
// is visible, or if the prior declaration specifies no
// linkage, then the identifier has external linkage.
if (const FunctionDecl *PrevFunc = Function->getPreviousDeclaration()) {
LinkageInfo PrevLV = getLVForDecl(PrevFunc, F);
if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
LV.mergeVisibility(PrevLV);
}
}
// In C++, then if the type of the function uses a type with
// unique-external linkage, it's not legally usable from outside
// this translation unit. However, we should use the C linkage
// rules instead for extern "C" declarations.
if (Context.getLangOptions().CPlusPlus && !Function->isExternC() &&
Function->getType()->getLinkage() == UniqueExternalLinkage)
return LinkageInfo::uniqueExternal();
// Consider LV from the template and the template arguments unless
// this is an explicit specialization with a visibility attribute.
if (FunctionTemplateSpecializationInfo *specInfo
= Function->getTemplateSpecializationInfo()) {
if (shouldConsiderTemplateLV(Function, specInfo)) {
LV.merge(getLVForDecl(specInfo->getTemplate(),
F.onlyTemplateVisibility()));
const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
LV.merge(getLVForTemplateArgumentList(templateArgs, F));
}
}
// - a named class (Clause 9), or an unnamed class defined in a
// typedef declaration in which the class has the typedef name
// for linkage purposes (7.1.3); or
// - a named enumeration (7.2), or an unnamed enumeration
// defined in a typedef declaration in which the enumeration
// has the typedef name for linkage purposes (7.1.3); or
} else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
// Unnamed tags have no linkage.
if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl())
return LinkageInfo::none();
// If this is a class template specialization, consider the
// linkage of the template and template arguments.
if (const ClassTemplateSpecializationDecl *spec
= dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
if (shouldConsiderTemplateLV(spec)) {
// From the template.
LV.merge(getLVForDecl(spec->getSpecializedTemplate(),
F.onlyTemplateVisibility()));
// The arguments at which the template was instantiated.
const TemplateArgumentList &TemplateArgs = spec->getTemplateArgs();
LV.merge(getLVForTemplateArgumentList(TemplateArgs, F));
}
}
// Consider -fvisibility unless the type has C linkage.
if (F.ConsiderGlobalVisibility)
F.ConsiderGlobalVisibility =
(Context.getLangOptions().CPlusPlus &&
!Tag->getDeclContext()->isExternCContext());
// - an enumerator belonging to an enumeration with external linkage;
} else if (isa<EnumConstantDecl>(D)) {
LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), F);
if (!isExternalLinkage(EnumLV.linkage()))
return LinkageInfo::none();
LV.merge(EnumLV);
// - a template, unless it is a function template that has
// internal linkage (Clause 14);
} else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
if (F.ConsiderTemplateParameterTypes)
LV.merge(getLVForTemplateParameterList(temp->getTemplateParameters()));
// - a namespace (7.3), unless it is declared within an unnamed
// namespace.
} else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
return LV;
// By extension, we assign external linkage to Objective-C
// interfaces.
} else if (isa<ObjCInterfaceDecl>(D)) {
// fallout
// Everything not covered here has no linkage.
} else {
return LinkageInfo::none();
}
// If we ended up with non-external linkage, visibility should
// always be default.
if (LV.linkage() != ExternalLinkage)
return LinkageInfo(LV.linkage(), DefaultVisibility, false);
// If we didn't end up with hidden visibility, consider attributes
// and -fvisibility.
if (F.ConsiderGlobalVisibility)
LV.mergeVisibility(Context.getLangOptions().getVisibilityMode());
return LV;
}
static LinkageInfo getLVForClassMember(const NamedDecl *D, LVFlags F) {
// Only certain class members have linkage. Note that fields don't
// really have linkage, but it's convenient to say they do for the
// purposes of calculating linkage of pointer-to-data-member
// template arguments.
if (!(isa<CXXMethodDecl>(D) ||
isa<VarDecl>(D) ||
isa<FieldDecl>(D) ||
(isa<TagDecl>(D) &&
(D->getDeclName() || cast<TagDecl>(D)->getTypedefNameForAnonDecl()))))
return LinkageInfo::none();
LinkageInfo LV;
// The flags we're going to use to compute the class's visibility.
LVFlags ClassF = F;
// If we have an explicit visibility attribute, merge that in.
if (F.ConsiderVisibilityAttributes) {
if (llvm::Optional<Visibility> Vis = D->getExplicitVisibility()) {
LV.mergeVisibility(*Vis, true);
// Ignore global visibility later, but not this attribute.
F.ConsiderGlobalVisibility = false;
// Ignore both global visibility and attributes when computing our
// parent's visibility.
ClassF = F.onlyTemplateVisibility();
}
}
// Class members only have linkage if their class has external
// linkage.
LV.merge(getLVForDecl(cast<RecordDecl>(D->getDeclContext()), ClassF));
if (!isExternalLinkage(LV.linkage()))
return LinkageInfo::none();
// If the class already has unique-external linkage, we can't improve.
if (LV.linkage() == UniqueExternalLinkage)
return LinkageInfo::uniqueExternal();
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
// If the type of the function uses a type with unique-external
// linkage, it's not legally usable from outside this translation unit.
if (MD->getType()->getLinkage() == UniqueExternalLinkage)
return LinkageInfo::uniqueExternal();
TemplateSpecializationKind TSK = TSK_Undeclared;
// If this is a method template specialization, use the linkage for
// the template parameters and arguments.
if (FunctionTemplateSpecializationInfo *spec
= MD->getTemplateSpecializationInfo()) {
if (shouldConsiderTemplateLV(MD, spec)) {
LV.merge(getLVForTemplateArgumentList(*spec->TemplateArguments, F));
if (F.ConsiderTemplateParameterTypes)
LV.merge(getLVForTemplateParameterList(
spec->getTemplate()->getTemplateParameters()));
}
TSK = spec->getTemplateSpecializationKind();
} else if (MemberSpecializationInfo *MSI =
MD->getMemberSpecializationInfo()) {
TSK = MSI->getTemplateSpecializationKind();
}
// If we're paying attention to global visibility, apply
// -finline-visibility-hidden if this is an inline method.
//
// Note that ConsiderGlobalVisibility doesn't yet have information
// about whether containing classes have visibility attributes,
// and that's intentional.
if (TSK != TSK_ExplicitInstantiationDeclaration &&
TSK != TSK_ExplicitInstantiationDefinition &&
F.ConsiderGlobalVisibility &&
MD->getASTContext().getLangOptions().InlineVisibilityHidden) {
// InlineVisibilityHidden only applies to definitions, and
// isInlined() only gives meaningful answers on definitions
// anyway.
const FunctionDecl *Def = 0;
if (MD->hasBody(Def) && Def->isInlined())
LV.setVisibility(HiddenVisibility);
}
// Note that in contrast to basically every other situation, we
// *do* apply -fvisibility to method declarations.
} else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
if (const ClassTemplateSpecializationDecl *spec
= dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
if (shouldConsiderTemplateLV(spec)) {
// Merge template argument/parameter information for member
// class template specializations.
LV.merge(getLVForTemplateArgumentList(spec->getTemplateArgs(), F));
if (F.ConsiderTemplateParameterTypes)
LV.merge(getLVForTemplateParameterList(
spec->getSpecializedTemplate()->getTemplateParameters()));
}
}
// Static data members.
} else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
// Modify the variable's linkage by its type, but ignore the
// type's visibility unless it's a definition.
LinkageInfo TypeLV = getLVForType(VD->getType());
if (TypeLV.linkage() != ExternalLinkage)
LV.mergeLinkage(UniqueExternalLinkage);
if (!LV.visibilityExplicit())
LV.mergeVisibility(TypeLV.visibility(), TypeLV.visibilityExplicit());
}
F.ConsiderGlobalVisibility &= !LV.visibilityExplicit();
// Apply -fvisibility if desired.
if (F.ConsiderGlobalVisibility && LV.visibility() != HiddenVisibility) {
LV.mergeVisibility(D->getASTContext().getLangOptions().getVisibilityMode());
}
return LV;
}
static void clearLinkageForClass(const CXXRecordDecl *record) {
for (CXXRecordDecl::decl_iterator
i = record->decls_begin(), e = record->decls_end(); i != e; ++i) {
Decl *child = *i;
if (isa<NamedDecl>(child))
cast<NamedDecl>(child)->ClearLinkageCache();
}
}
void NamedDecl::anchor() { }
void NamedDecl::ClearLinkageCache() {
// Note that we can't skip clearing the linkage of children just
// because the parent doesn't have cached linkage: we don't cache
// when computing linkage for parent contexts.
HasCachedLinkage = 0;
// If we're changing the linkage of a class, we need to reset the
// linkage of child declarations, too.
if (const CXXRecordDecl *record = dyn_cast<CXXRecordDecl>(this))
clearLinkageForClass(record);
if (ClassTemplateDecl *temp =
dyn_cast<ClassTemplateDecl>(const_cast<NamedDecl*>(this))) {
// Clear linkage for the template pattern.
CXXRecordDecl *record = temp->getTemplatedDecl();
record->HasCachedLinkage = 0;
clearLinkageForClass(record);
// We need to clear linkage for specializations, too.
for (ClassTemplateDecl::spec_iterator
i = temp->spec_begin(), e = temp->spec_end(); i != e; ++i)
i->ClearLinkageCache();
}
// Clear cached linkage for function template decls, too.
if (FunctionTemplateDecl *temp =
dyn_cast<FunctionTemplateDecl>(const_cast<NamedDecl*>(this))) {
temp->getTemplatedDecl()->ClearLinkageCache();
for (FunctionTemplateDecl::spec_iterator
i = temp->spec_begin(), e = temp->spec_end(); i != e; ++i)
i->ClearLinkageCache();
}
}
Linkage NamedDecl::getLinkage() const {
if (HasCachedLinkage) {
assert(Linkage(CachedLinkage) ==
getLVForDecl(this, LVFlags::CreateOnlyDeclLinkage()).linkage());
return Linkage(CachedLinkage);
}
CachedLinkage = getLVForDecl(this,
LVFlags::CreateOnlyDeclLinkage()).linkage();
HasCachedLinkage = 1;
return Linkage(CachedLinkage);
}
LinkageInfo NamedDecl::getLinkageAndVisibility() const {
LinkageInfo LI = getLVForDecl(this, LVFlags());
assert(!HasCachedLinkage || Linkage(CachedLinkage) == LI.linkage());
HasCachedLinkage = 1;
CachedLinkage = LI.linkage();
return LI;
}
llvm::Optional<Visibility> NamedDecl::getExplicitVisibility() const {
// Use the most recent declaration of a variable.
if (const VarDecl *var = dyn_cast<VarDecl>(this))
return getVisibilityOf(var->getMostRecentDeclaration());
// Use the most recent declaration of a function, and also handle
// function template specializations.
if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(this)) {
if (llvm::Optional<Visibility> V
= getVisibilityOf(fn->getMostRecentDeclaration()))
return V;
// If the function is a specialization of a template with an
// explicit visibility attribute, use that.
if (FunctionTemplateSpecializationInfo *templateInfo
= fn->getTemplateSpecializationInfo())
return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl());
return llvm::Optional<Visibility>();
}
// Otherwise, just check the declaration itself first.
if (llvm::Optional<Visibility> V = getVisibilityOf(this))
return V;
// If there wasn't explicit visibility there, and this is a
// specialization of a class template, check for visibility
// on the pattern.
if (const ClassTemplateSpecializationDecl *spec
= dyn_cast<ClassTemplateSpecializationDecl>(this))
return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl());
return llvm::Optional<Visibility>();
}
static LinkageInfo getLVForDecl(const NamedDecl *D, LVFlags Flags) {
// Objective-C: treat all Objective-C declarations as having external
// linkage.
switch (D->getKind()) {
default:
break;
case Decl::ParmVar:
return LinkageInfo::none();
case Decl::TemplateTemplateParm: // count these as external
case Decl::NonTypeTemplateParm:
case Decl::ObjCAtDefsField:
case Decl::ObjCCategory:
case Decl::ObjCCategoryImpl:
case Decl::ObjCCompatibleAlias:
case Decl::ObjCImplementation:
case Decl::ObjCMethod:
case Decl::ObjCProperty:
case Decl::ObjCPropertyImpl:
case Decl::ObjCProtocol:
return LinkageInfo::external();
}
// Handle linkage for namespace-scope names.
if (D->getDeclContext()->getRedeclContext()->isFileContext())
return getLVForNamespaceScopeDecl(D, Flags);
// C++ [basic.link]p5:
// In addition, a member function, static data member, a named
// class or enumeration of class scope, or an unnamed class or
// enumeration defined in a class-scope typedef declaration such
// that the class or enumeration has the typedef name for linkage
// purposes (7.1.3), has external linkage if the name of the class
// has external linkage.
if (D->getDeclContext()->isRecord())
return getLVForClassMember(D, Flags);
// C++ [basic.link]p6:
// The name of a function declared in block scope and the name of
// an object declared by a block scope extern declaration have
// linkage. If there is a visible declaration of an entity with
// linkage having the same name and type, ignoring entities
// declared outside the innermost enclosing namespace scope, the
// block scope declaration declares that same entity and receives
// the linkage of the previous declaration. If there is more than
// one such matching entity, the program is ill-formed. Otherwise,
// if no matching entity is found, the block scope entity receives
// external linkage.
if (D->getLexicalDeclContext()->isFunctionOrMethod()) {
if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
if (Function->isInAnonymousNamespace() && !Function->isExternC())
return LinkageInfo::uniqueExternal();
LinkageInfo LV;
if (Flags.ConsiderVisibilityAttributes) {
if (llvm::Optional<Visibility> Vis = Function->getExplicitVisibility())
LV.setVisibility(*Vis);
}
if (const FunctionDecl *Prev = Function->getPreviousDeclaration()) {
LinkageInfo PrevLV = getLVForDecl(Prev, Flags);
if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
LV.mergeVisibility(PrevLV);
}
return LV;
}
if (const VarDecl *Var = dyn_cast<VarDecl>(D))
if (Var->getStorageClass() == SC_Extern ||
Var->getStorageClass() == SC_PrivateExtern) {
if (Var->isInAnonymousNamespace() && !Var->isExternC())
return LinkageInfo::uniqueExternal();
LinkageInfo LV;
if (Var->getStorageClass() == SC_PrivateExtern)
LV.setVisibility(HiddenVisibility);
else if (Flags.ConsiderVisibilityAttributes) {
if (llvm::Optional<Visibility> Vis = Var->getExplicitVisibility())
LV.setVisibility(*Vis);
}
if (const VarDecl *Prev = Var->getPreviousDeclaration()) {
LinkageInfo PrevLV = getLVForDecl(Prev, Flags);
if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
LV.mergeVisibility(PrevLV);
}
return LV;
}
}
// C++ [basic.link]p6:
// Names not covered by these rules have no linkage.
return LinkageInfo::none();
}
std::string NamedDecl::getQualifiedNameAsString() const {
return getQualifiedNameAsString(getASTContext().getLangOptions());
}
std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const {
const DeclContext *Ctx = getDeclContext();
if (Ctx->isFunctionOrMethod())
return getNameAsString();
typedef SmallVector<const DeclContext *, 8> ContextsTy;
ContextsTy Contexts;
// Collect contexts.
while (Ctx && isa<NamedDecl>(Ctx)) {
Contexts.push_back(Ctx);
Ctx = Ctx->getParent();
};
std::string QualName;
llvm::raw_string_ostream OS(QualName);
for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
I != E; ++I) {
if (const ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
std::string TemplateArgsStr
= TemplateSpecializationType::PrintTemplateArgumentList(
TemplateArgs.data(),
TemplateArgs.size(),
P);
OS << Spec->getName() << TemplateArgsStr;
} else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
if (ND->isAnonymousNamespace())
OS << "<anonymous namespace>";
else
OS << *ND;
} else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
if (!RD->getIdentifier())
OS << "<anonymous " << RD->getKindName() << '>';
else
OS << *RD;
} else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
const FunctionProtoType *FT = 0;
if (FD->hasWrittenPrototype())
FT = dyn_cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
OS << *FD << '(';
if (FT) {
unsigned NumParams = FD->getNumParams();
for (unsigned i = 0; i < NumParams; ++i) {
if (i)
OS << ", ";
std::string Param;
FD->getParamDecl(i)->getType().getAsStringInternal(Param, P);
OS << Param;
}
if (FT->isVariadic()) {
if (NumParams > 0)
OS << ", ";
OS << "...";
}
}
OS << ')';
} else {
OS << *cast<NamedDecl>(*I);
}
OS << "::";
}
if (getDeclName())
OS << *this;
else
OS << "<anonymous>";
return OS.str();
}
bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
// UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
// We want to keep it, unless it nominates same namespace.
if (getKind() == Decl::UsingDirective) {
return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
->getOriginalNamespace() ==
cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
->getOriginalNamespace();
}
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
// For function declarations, we keep track of redeclarations.
return FD->getPreviousDeclaration() == OldD;
// For function templates, the underlying function declarations are linked.
if (const FunctionTemplateDecl *FunctionTemplate
= dyn_cast<FunctionTemplateDecl>(this))
if (const FunctionTemplateDecl *OldFunctionTemplate
= dyn_cast<FunctionTemplateDecl>(OldD))
return FunctionTemplate->getTemplatedDecl()
->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
// For method declarations, we keep track of redeclarations.
if (isa<ObjCMethodDecl>(this))
return false;
if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
return true;
if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
return cast<UsingShadowDecl>(this)->getTargetDecl() ==
cast<UsingShadowDecl>(OldD)->getTargetDecl();
if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
ASTContext &Context = getASTContext();
return Context.getCanonicalNestedNameSpecifier(
cast<UsingDecl>(this)->getQualifier()) ==
Context.getCanonicalNestedNameSpecifier(
cast<UsingDecl>(OldD)->getQualifier());
}
// A typedef of an Objective-C class type can replace an Objective-C class
// declaration or definition, and vice versa.
if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) ||
(isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD)))
return true;
// For non-function declarations, if the declarations are of the
// same kind then this must be a redeclaration, or semantic analysis
// would not have given us the new declaration.
return this->getKind() == OldD->getKind();
}
bool NamedDecl::hasLinkage() const {
return getLinkage() != NoLinkage;
}
NamedDecl *NamedDecl::getUnderlyingDecl() {
NamedDecl *ND = this;
while (true) {
if (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
ND = UD->getTargetDecl();
else if (ObjCCompatibleAliasDecl *AD
= dyn_cast<ObjCCompatibleAliasDecl>(ND))
return AD->getClassInterface();
else
return ND;
}
}
bool NamedDecl::isCXXInstanceMember() const {
assert(isCXXClassMember() &&
"checking whether non-member is instance member");
const NamedDecl *D = this;
if (isa<UsingShadowDecl>(D))
D = cast<UsingShadowDecl>(D)->getTargetDecl();
if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D))
return true;
if (isa<CXXMethodDecl>(D))
return cast<CXXMethodDecl>(D)->isInstance();
if (isa<FunctionTemplateDecl>(D))
return cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D)
->getTemplatedDecl())->isInstance();
return false;
}
//===----------------------------------------------------------------------===//
// DeclaratorDecl Implementation
//===----------------------------------------------------------------------===//
template <typename DeclT>
static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
if (decl->getNumTemplateParameterLists() > 0)
return decl->getTemplateParameterList(0)->getTemplateLoc();
else
return decl->getInnerLocStart();
}
SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
TypeSourceInfo *TSI = getTypeSourceInfo();
if (TSI) return TSI->getTypeLoc().getBeginLoc();
return SourceLocation();
}
void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
if (QualifierLoc) {
// Make sure the extended decl info is allocated.
if (!hasExtInfo()) {
// Save (non-extended) type source info pointer.
TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
// Allocate external info struct.
DeclInfo = new (getASTContext()) ExtInfo;
// Restore savedTInfo into (extended) decl info.
getExtInfo()->TInfo = savedTInfo;
}
// Set qualifier info.
getExtInfo()->QualifierLoc = QualifierLoc;
} else {
// Here Qualifier == 0, i.e., we are removing the qualifier (if any).
if (hasExtInfo()) {
if (getExtInfo()->NumTemplParamLists == 0) {
// Save type source info pointer.
TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
// Deallocate the extended decl info.
getASTContext().Deallocate(getExtInfo());
// Restore savedTInfo into (non-extended) decl info.
DeclInfo = savedTInfo;
}
else
getExtInfo()->QualifierLoc = QualifierLoc;
}
}
}
void
DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
unsigned NumTPLists,
TemplateParameterList **TPLists) {
assert(NumTPLists > 0);
// Make sure the extended decl info is allocated.
if (!hasExtInfo()) {
// Save (non-extended) type source info pointer.
TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
// Allocate external info struct.
DeclInfo = new (getASTContext()) ExtInfo;
// Restore savedTInfo into (extended) decl info.
getExtInfo()->TInfo = savedTInfo;
}
// Set the template parameter lists info.
getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
}
SourceLocation DeclaratorDecl::getOuterLocStart() const {
return getTemplateOrInnerLocStart(this);
}
namespace {
// Helper function: returns true if QT is or contains a type
// having a postfix component.
bool typeIsPostfix(clang::QualType QT) {
while (true) {
const Type* T = QT.getTypePtr();
switch (T->getTypeClass()) {
default:
return false;
case Type::Pointer:
QT = cast<PointerType>(T)->getPointeeType();
break;
case Type::BlockPointer:
QT = cast<BlockPointerType>(T)->getPointeeType();
break;
case Type::MemberPointer:
QT = cast<MemberPointerType>(T)->getPointeeType();
break;
case Type::LValueReference:
case Type::RValueReference:
QT = cast<ReferenceType>(T)->getPointeeType();
break;
case Type::PackExpansion:
QT = cast<PackExpansionType>(T)->getPattern();
break;
case Type::Paren:
case Type::ConstantArray:
case Type::DependentSizedArray:
case Type::IncompleteArray:
case Type::VariableArray:
case Type::FunctionProto:
case Type::FunctionNoProto:
return true;
}
}
}
} // namespace
SourceRange DeclaratorDecl::getSourceRange() const {
SourceLocation RangeEnd = getLocation();
if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
if (typeIsPostfix(TInfo->getType()))
RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
}
return SourceRange(getOuterLocStart(), RangeEnd);
}
void
QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
unsigned NumTPLists,
TemplateParameterList **TPLists) {
assert((NumTPLists == 0 || TPLists != 0) &&
"Empty array of template parameters with positive size!");
// Free previous template parameters (if any).
if (NumTemplParamLists > 0) {
Context.Deallocate(TemplParamLists);
TemplParamLists = 0;
NumTemplParamLists = 0;
}
// Set info on matched template parameter lists (if any).
if (NumTPLists > 0) {
TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
NumTemplParamLists = NumTPLists;
for (unsigned i = NumTPLists; i-- > 0; )
TemplParamLists[i] = TPLists[i];
}
}
//===----------------------------------------------------------------------===//
// VarDecl Implementation
//===----------------------------------------------------------------------===//
const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
switch (SC) {
case SC_None: break;
case SC_Auto: return "auto";
case SC_Extern: return "extern";
case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
case SC_PrivateExtern: return "__private_extern__";
case SC_Register: return "register";
case SC_Static: return "static";
}
llvm_unreachable("Invalid storage class");
return 0;
}
VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StartL, SourceLocation IdL,
IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
StorageClass S, StorageClass SCAsWritten) {
return new (C) VarDecl(Var, DC, StartL, IdL, Id, T, TInfo, S, SCAsWritten);
}
VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(VarDecl));
return new (Mem) VarDecl(Var, 0, SourceLocation(), SourceLocation(), 0,
QualType(), 0, SC_None, SC_None);
}
void VarDecl::setStorageClass(StorageClass SC) {
assert(isLegalForVariable(SC));
if (getStorageClass() != SC)
ClearLinkageCache();
VarDeclBits.SClass = SC;
}
SourceRange VarDecl::getSourceRange() const {
if (getInit())
return SourceRange(getOuterLocStart(), getInit()->getLocEnd());
return DeclaratorDecl::getSourceRange();
}
bool VarDecl::isExternC() const {
ASTContext &Context = getASTContext();
if (!Context.getLangOptions().CPlusPlus)
return (getDeclContext()->isTranslationUnit() &&
getStorageClass() != SC_Static) ||
(getDeclContext()->isFunctionOrMethod() && hasExternalStorage());
const DeclContext *DC = getDeclContext();
if (DC->isFunctionOrMethod())
return false;
for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC)) {
if (Linkage->getLanguage() == LinkageSpecDecl::lang_c)
return getStorageClass() != SC_Static;
break;
}
}
return false;
}
VarDecl *VarDecl::getCanonicalDecl() {
return getFirstDeclaration();
}
VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition() const {
// C++ [basic.def]p2:
// A declaration is a definition unless [...] it contains the 'extern'
// specifier or a linkage-specification and neither an initializer [...],
// it declares a static data member in a class declaration [...].
// C++ [temp.expl.spec]p15:
// An explicit specialization of a static data member of a template is a
// definition if the declaration includes an initializer; otherwise, it is
// a declaration.
if (isStaticDataMember()) {
if (isOutOfLine() && (hasInit() ||
getTemplateSpecializationKind() != TSK_ExplicitSpecialization))
return Definition;
else
return DeclarationOnly;
}
// C99 6.7p5:
// A definition of an identifier is a declaration for that identifier that
// [...] causes storage to be reserved for that object.
// Note: that applies for all non-file-scope objects.
// C99 6.9.2p1:
// If the declaration of an identifier for an object has file scope and an
// initializer, the declaration is an external definition for the identifier
if (hasInit())
return Definition;
// AST for 'extern "C" int foo;' is annotated with 'extern'.
if (hasExternalStorage())
return DeclarationOnly;
if (getStorageClassAsWritten() == SC_Extern ||
getStorageClassAsWritten() == SC_PrivateExtern) {
for (const VarDecl *PrevVar = getPreviousDeclaration();
PrevVar; PrevVar = PrevVar->getPreviousDeclaration()) {
if (PrevVar->getLinkage() == InternalLinkage && PrevVar->hasInit())
return DeclarationOnly;
}
}
// C99 6.9.2p2:
// A declaration of an object that has file scope without an initializer,
// and without a storage class specifier or the scs 'static', constitutes
// a tentative definition.
// No such thing in C++.
if (!getASTContext().getLangOptions().CPlusPlus && isFileVarDecl())
return TentativeDefinition;
// What's left is (in C, block-scope) declarations without initializers or
// external storage. These are definitions.
return Definition;
}
VarDecl *VarDecl::getActingDefinition() {
DefinitionKind Kind = isThisDeclarationADefinition();
if (Kind != TentativeDefinition)
return 0;
VarDecl *LastTentative = 0;
VarDecl *First = getFirstDeclaration();
for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
I != E; ++I) {
Kind = (*I)->isThisDeclarationADefinition();
if (Kind == Definition)
return 0;
else if (Kind == TentativeDefinition)
LastTentative = *I;
}
return LastTentative;
}
bool VarDecl::isTentativeDefinitionNow() const {
DefinitionKind Kind = isThisDeclarationADefinition();
if (Kind != TentativeDefinition)
return false;
for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
if ((*I)->isThisDeclarationADefinition() == Definition)
return false;
}
return true;
}
VarDecl *VarDecl::getDefinition() {
VarDecl *First = getFirstDeclaration();
for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
I != E; ++I) {
if ((*I)->isThisDeclarationADefinition() == Definition)
return *I;
}
return 0;
}
VarDecl::DefinitionKind VarDecl::hasDefinition() const {
DefinitionKind Kind = DeclarationOnly;
const VarDecl *First = getFirstDeclaration();
for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
I != E; ++I)
Kind = std::max(Kind, (*I)->isThisDeclarationADefinition());
return Kind;
}
const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
redecl_iterator I = redecls_begin(), E = redecls_end();
while (I != E && !I->getInit())
++I;
if (I != E) {
D = *I;
return I->getInit();
}
return 0;
}
bool VarDecl::isOutOfLine() const {
if (Decl::isOutOfLine())
return true;
if (!isStaticDataMember())
return false;
// If this static data member was instantiated from a static data member of
// a class template, check whether that static data member was defined
// out-of-line.
if (VarDecl *VD = getInstantiatedFromStaticDataMember())
return VD->isOutOfLine();
return false;
}
VarDecl *VarDecl::getOutOfLineDefinition() {
if (!isStaticDataMember())
return 0;
for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end();
RD != RDEnd; ++RD) {
if (RD->getLexicalDeclContext()->isFileContext())
return *RD;
}
return 0;
}
void VarDecl::setInit(Expr *I) {
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
Eval->~EvaluatedStmt();
getASTContext().Deallocate(Eval);
}
Init = I;
}
bool VarDecl::isUsableInConstantExpressions() const {
const LangOptions &Lang = getASTContext().getLangOptions();
// Only const variables can be used in constant expressions in C++. C++98 does
// not require the variable to be non-volatile, but we consider this to be a
// defect.
if (!Lang.CPlusPlus ||
!getType().isConstQualified() || getType().isVolatileQualified())
return false;
// In C++, const, non-volatile variables of integral or enumeration types
// can be used in constant expressions.
if (getType()->isIntegralOrEnumerationType())
return true;
// Additionally, in C++11, non-volatile constexpr variables and references can
// be used in constant expressions.
return Lang.CPlusPlus0x && (isConstexpr() || getType()->isReferenceType());
}
/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
/// form, which contains extra information on the evaluated value of the
/// initializer.
EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
if (!Eval) {
Stmt *S = Init.get<Stmt *>();
Eval = new (getASTContext()) EvaluatedStmt;
Eval->Value = S;
Init = Eval;
}
return Eval;
}
APValue *VarDecl::evaluateValue() const {
llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
return evaluateValue(Notes);
}
APValue *VarDecl::evaluateValue(
llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
EvaluatedStmt *Eval = ensureEvaluatedStmt();
// We only produce notes indicating why an initializer is non-constant the
// first time it is evaluated. FIXME: The notes won't always be emitted the
// first time we try evaluation, so might not be produced at all.
if (Eval->WasEvaluated)
return Eval->Evaluated.isUninit() ? 0 : &Eval->Evaluated;
const Expr *Init = cast<Expr>(Eval->Value);
assert(!Init->isValueDependent());
if (Eval->IsEvaluating) {
// FIXME: Produce a diagnostic for self-initialization.
Eval->CheckedICE = true;
Eval->IsICE = false;
return 0;
}
Eval->IsEvaluating = true;
bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
this, Notes);
// Ensure the result is an uninitialized APValue if evaluation fails.
if (!Result)
Eval->Evaluated = APValue();
Eval->IsEvaluating = false;
Eval->WasEvaluated = true;
// In C++11, we have determined whether the initializer was a constant
// expression as a side-effect.
if (getASTContext().getLangOptions().CPlusPlus0x && !Eval->CheckedICE) {
Eval->CheckedICE = true;
Eval->IsICE = Notes.empty();
}
return Result ? &Eval->Evaluated : 0;
}
bool VarDecl::checkInitIsICE() const {
// Initializers of weak variables are never ICEs.
if (isWeak())
return false;
EvaluatedStmt *Eval = ensureEvaluatedStmt();
if (Eval->CheckedICE)
// We have already checked whether this subexpression is an
// integral constant expression.
return Eval->IsICE;
const Expr *Init = cast<Expr>(Eval->Value);
assert(!Init->isValueDependent());
// In C++11, evaluate the initializer to check whether it's a constant
// expression.
if (getASTContext().getLangOptions().CPlusPlus0x) {
llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
evaluateValue(Notes);
return Eval->IsICE;
}
// It's an ICE whether or not the definition we found is
// out-of-line. See DR 721 and the discussion in Clang PR
// 6206 for details.
if (Eval->CheckingICE)
return false;
Eval->CheckingICE = true;
Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
Eval->CheckingICE = false;
Eval->CheckedICE = true;
return Eval->IsICE;
}
bool VarDecl::extendsLifetimeOfTemporary() const {
assert(getType()->isReferenceType() &&"Non-references never extend lifetime");
const Expr *E = getInit();
if (!E)
return false;
if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(E))
E = Cleanups->getSubExpr();
return isa<MaterializeTemporaryExpr>(E);
}
VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
return cast<VarDecl>(MSI->getInstantiatedFrom());
return 0;
}
TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
return MSI->getTemplateSpecializationKind();
return TSK_Undeclared;
}
MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
return getASTContext().getInstantiatedFromStaticDataMember(this);
}
void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation) {
MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
assert(MSI && "Not an instantiated static data member?");
MSI->setTemplateSpecializationKind(TSK);
if (TSK != TSK_ExplicitSpecialization &&
PointOfInstantiation.isValid() &&
MSI->getPointOfInstantiation().isInvalid())
MSI->setPointOfInstantiation(PointOfInstantiation);
}
//===----------------------------------------------------------------------===//
// ParmVarDecl Implementation
//===----------------------------------------------------------------------===//
ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo,
StorageClass S, StorageClass SCAsWritten,
Expr *DefArg) {
return new (C) ParmVarDecl(ParmVar, DC, StartLoc, IdLoc, Id, T, TInfo,
S, SCAsWritten, DefArg);
}
ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ParmVarDecl));
return new (Mem) ParmVarDecl(ParmVar, 0, SourceLocation(), SourceLocation(),
0, QualType(), 0, SC_None, SC_None, 0);
}
SourceRange ParmVarDecl::getSourceRange() const {
if (!hasInheritedDefaultArg()) {
SourceRange ArgRange = getDefaultArgRange();
if (ArgRange.isValid())
return SourceRange(getOuterLocStart(), ArgRange.getEnd());
}
return DeclaratorDecl::getSourceRange();
}
Expr *ParmVarDecl::getDefaultArg() {
assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
assert(!hasUninstantiatedDefaultArg() &&
"Default argument is not yet instantiated!");
Expr *Arg = getInit();
if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
return E->getSubExpr();
return Arg;
}
SourceRange ParmVarDecl::getDefaultArgRange() const {
if (const Expr *E = getInit())
return E->getSourceRange();
if (hasUninstantiatedDefaultArg())
return getUninstantiatedDefaultArg()->getSourceRange();
return SourceRange();
}
bool ParmVarDecl::isParameterPack() const {
return isa<PackExpansionType>(getType());
}
void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
getASTContext().setParameterIndex(this, parameterIndex);
ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
}
unsigned ParmVarDecl::getParameterIndexLarge() const {
return getASTContext().getParameterIndex(this);
}
//===----------------------------------------------------------------------===//
// FunctionDecl Implementation
//===----------------------------------------------------------------------===//
void FunctionDecl::getNameForDiagnostic(std::string &S,
const PrintingPolicy &Policy,
bool Qualified) const {
NamedDecl::getNameForDiagnostic(S, Policy, Qualified);
const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
if (TemplateArgs)
S += TemplateSpecializationType::PrintTemplateArgumentList(
TemplateArgs->data(),
TemplateArgs->size(),
Policy);
}
bool FunctionDecl::isVariadic() const {
if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
return FT->isVariadic();
return false;
}
bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
if (I->Body || I->IsLateTemplateParsed) {
Definition = *I;
return true;
}
}
return false;
}
bool FunctionDecl::hasTrivialBody() const
{
Stmt *S = getBody();
if (!S) {
// Since we don't have a body for this function, we don't know if it's
// trivial or not.
return false;
}
if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
return true;
return false;
}
bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed) {
Definition = I->IsDeleted ? I->getCanonicalDecl() : *I;
return true;
}
}
return false;
}
Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
if (I->Body) {
Definition = *I;
return I->Body.get(getASTContext().getExternalSource());
} else if (I->IsLateTemplateParsed) {
Definition = *I;
return 0;
}
}
return 0;
}
void FunctionDecl::setBody(Stmt *B) {
Body = B;
if (B)
EndRangeLoc = B->getLocEnd();
}
void FunctionDecl::setPure(bool P) {
IsPure = P;
if (P)
if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
Parent->markedVirtualFunctionPure();
}
bool FunctionDecl::isMain() const {
const TranslationUnitDecl *tunit =
dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
return tunit &&
!tunit->getASTContext().getLangOptions().Freestanding &&
getIdentifier() &&
getIdentifier()->isStr("main");
}
bool FunctionDecl::isReservedGlobalPlacementOperator() const {
assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
getDeclName().getCXXOverloadedOperator() == OO_Delete ||
getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
if (isa<CXXRecordDecl>(getDeclContext())) return false;
assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
if (proto->getNumArgs() != 2 || proto->isVariadic()) return false;
ASTContext &Context =
cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
->getASTContext();
// The result type and first argument type are constant across all
// these operators. The second argument must be exactly void*.
return (proto->getArgType(1).getCanonicalType() == Context.VoidPtrTy);
}
bool FunctionDecl::isExternC() const {
ASTContext &Context = getASTContext();
// In C, any non-static, non-overloadable function has external
// linkage.
if (!Context.getLangOptions().CPlusPlus)
return getStorageClass() != SC_Static && !getAttr<OverloadableAttr>();
const DeclContext *DC = getDeclContext();
if (DC->isRecord())
return false;
for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC)) {
if (Linkage->getLanguage() == LinkageSpecDecl::lang_c)
return getStorageClass() != SC_Static &&
!getAttr<OverloadableAttr>();
break;
}
}
return isMain();
}
bool FunctionDecl::isGlobal() const {
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
return Method->isStatic();
if (getStorageClass() == SC_Static)
return false;
for (const DeclContext *DC = getDeclContext();
DC->isNamespace();
DC = DC->getParent()) {
if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
if (!Namespace->getDeclName())
return false;
break;
}
}
return true;
}
void
FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
redeclarable_base::setPreviousDeclaration(PrevDecl);
if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
FunctionTemplateDecl *PrevFunTmpl
= PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0;
assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
FunTmpl->setPreviousDeclaration(PrevFunTmpl);
}
if (PrevDecl && PrevDecl->IsInline)
IsInline = true;
}
const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
return getFirstDeclaration();
}
FunctionDecl *FunctionDecl::getCanonicalDecl() {
return getFirstDeclaration();
}
void FunctionDecl::setStorageClass(StorageClass SC) {
assert(isLegalForFunction(SC));
if (getStorageClass() != SC)
ClearLinkageCache();
SClass = SC;
}
/// \brief Returns a value indicating whether this function
/// corresponds to a builtin function.
///
/// The function corresponds to a built-in function if it is
/// declared at translation scope or within an extern "C" block and
/// its name matches with the name of a builtin. The returned value
/// will be 0 for functions that do not correspond to a builtin, a
/// value of type \c Builtin::ID if in the target-independent range
/// \c [1,Builtin::First), or a target-specific builtin value.
unsigned FunctionDecl::getBuiltinID() const {
ASTContext &Context = getASTContext();
if (!getIdentifier() || !getIdentifier()->getBuiltinID())
return 0;
unsigned BuiltinID = getIdentifier()->getBuiltinID();
if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
return BuiltinID;
// This function has the name of a known C library
// function. Determine whether it actually refers to the C library
// function or whether it just has the same name.
// If this is a static function, it's not a builtin.
if (getStorageClass() == SC_Static)
return 0;
// If this function is at translation-unit scope and we're not in
// C++, it refers to the C library function.
if (!Context.getLangOptions().CPlusPlus &&
getDeclContext()->isTranslationUnit())
return BuiltinID;
// If the function is in an extern "C" linkage specification and is
// not marked "overloadable", it's the real function.
if (isa<LinkageSpecDecl>(getDeclContext()) &&
cast<LinkageSpecDecl>(getDeclContext())->getLanguage()
== LinkageSpecDecl::lang_c &&
!getAttr<OverloadableAttr>())
return BuiltinID;
// Not a builtin
return 0;
}
/// getNumParams - Return the number of parameters this function must have
/// based on its FunctionType. This is the length of the ParamInfo array
/// after it has been created.
unsigned FunctionDecl::getNumParams() const {
const FunctionType *FT = getType()->getAs<FunctionType>();
if (isa<FunctionNoProtoType>(FT))
return 0;
return cast<FunctionProtoType>(FT)->getNumArgs();
}
void FunctionDecl::setParams(ASTContext &C,
llvm::ArrayRef<ParmVarDecl *> NewParamInfo) {
assert(ParamInfo == 0 && "Already has param info!");
assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
// Zero params -> null pointer.
if (!NewParamInfo.empty()) {
ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
}
}
/// getMinRequiredArguments - Returns the minimum number of arguments
/// needed to call this function. This may be fewer than the number of
/// function parameters, if some of the parameters have default
/// arguments (in C++) or the last parameter is a parameter pack.
unsigned FunctionDecl::getMinRequiredArguments() const {
if (!getASTContext().getLangOptions().CPlusPlus)
return getNumParams();
unsigned NumRequiredArgs = getNumParams();
// If the last parameter is a parameter pack, we don't need an argument for
// it.
if (NumRequiredArgs > 0 &&
getParamDecl(NumRequiredArgs - 1)->isParameterPack())
--NumRequiredArgs;
// If this parameter has a default argument, we don't need an argument for
// it.
while (NumRequiredArgs > 0 &&
getParamDecl(NumRequiredArgs-1)->hasDefaultArg())
--NumRequiredArgs;
// We might have parameter packs before the end. These can't be deduced,
// but they can still handle multiple arguments.
unsigned ArgIdx = NumRequiredArgs;
while (ArgIdx > 0) {
if (getParamDecl(ArgIdx - 1)->isParameterPack())
NumRequiredArgs = ArgIdx;
--ArgIdx;
}
return NumRequiredArgs;
}
bool FunctionDecl::isInlined() const {
if (IsInline)
return true;
if (isa<CXXMethodDecl>(this)) {
if (!isOutOfLine() || getCanonicalDecl()->isInlineSpecified())
return true;
}
switch (getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ExplicitSpecialization:
return false;
case TSK_ImplicitInstantiation:
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
// Handle below.
break;
}
const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
bool HasPattern = false;
if (PatternDecl)
HasPattern = PatternDecl->hasBody(PatternDecl);
if (HasPattern && PatternDecl)
return PatternDecl->isInlined();
return false;
}
/// \brief For a function declaration in C or C++, determine whether this
/// declaration causes the definition to be externally visible.
///
/// Determines whether this is the first non-inline redeclaration of an inline
/// function in a language where "inline" does not normally require an
/// externally visible definition.
bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
assert(!doesThisDeclarationHaveABody() &&
"Must have a declaration without a body.");
ASTContext &Context = getASTContext();
// In C99 mode, a function may have an inline definition (causing it to
// be deferred) then redeclared later. As a special case, "extern inline"
// is not required to produce an external symbol.
if (Context.getLangOptions().GNUInline || !Context.getLangOptions().C99 ||
Context.getLangOptions().CPlusPlus)
return false;
if (getLinkage() != ExternalLinkage || isInlineSpecified())
return false;
const FunctionDecl *Definition = 0;
if (hasBody(Definition))
return Definition->isInlined() &&
Definition->isInlineDefinitionExternallyVisible();
return false;
}
/// \brief For an inline function definition in C or C++, determine whether the
/// definition will be externally visible.
///
/// Inline function definitions are always available for inlining optimizations.
/// However, depending on the language dialect, declaration specifiers, and
/// attributes, the definition of an inline function may or may not be
/// "externally" visible to other translation units in the program.
///
/// In C99, inline definitions are not externally visible by default. However,
/// if even one of the global-scope declarations is marked "extern inline", the
/// inline definition becomes externally visible (C99 6.7.4p6).
///
/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
/// definition, we use the GNU semantics for inline, which are nearly the
/// opposite of C99 semantics. In particular, "inline" by itself will create
/// an externally visible symbol, but "extern inline" will not create an
/// externally visible symbol.
bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
assert(doesThisDeclarationHaveABody() && "Must have the function definition");
assert(isInlined() && "Function must be inline");
ASTContext &Context = getASTContext();
if (Context.getLangOptions().GNUInline || hasAttr<GNUInlineAttr>()) {
// If it's not the case that both 'inline' and 'extern' are
// specified on the definition, then this inline definition is
// externally visible.
if (!(isInlineSpecified() && getStorageClassAsWritten() == SC_Extern))
return true;
// If any declaration is 'inline' but not 'extern', then this definition
// is externally visible.
for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
Redecl != RedeclEnd;
++Redecl) {
if (Redecl->isInlineSpecified() &&
Redecl->getStorageClassAsWritten() != SC_Extern)
return true;
}
return false;
}
// C99 6.7.4p6:
// [...] If all of the file scope declarations for a function in a
// translation unit include the inline function specifier without extern,
// then the definition in that translation unit is an inline definition.
for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
Redecl != RedeclEnd;
++Redecl) {
// Only consider file-scope declarations in this test.
if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
continue;
// Only consider explicit declarations; the presence of a builtin for a
// libcall shouldn't affect whether a definition is externally visible.
if (Redecl->isImplicit())
continue;
if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
return true; // Not an inline definition
}
// C99 6.7.4p6:
// An inline definition does not provide an external definition for the
// function, and does not forbid an external definition in another
// translation unit.
return false;
}
/// getOverloadedOperator - Which C++ overloaded operator this
/// function represents, if any.
OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
return getDeclName().getCXXOverloadedOperator();
else
return OO_None;
}
/// getLiteralIdentifier - The literal suffix identifier this function
/// represents, if any.
const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
return getDeclName().getCXXLiteralIdentifier();
else
return 0;
}
FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
if (TemplateOrSpecialization.isNull())
return TK_NonTemplate;
if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
return TK_FunctionTemplate;
if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
return TK_MemberSpecialization;
if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
return TK_FunctionTemplateSpecialization;
if (TemplateOrSpecialization.is
<DependentFunctionTemplateSpecializationInfo*>())
return TK_DependentFunctionTemplateSpecialization;
llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
}
FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
return cast<FunctionDecl>(Info->getInstantiatedFrom());
return 0;
}
MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
}
void
FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
FunctionDecl *FD,
TemplateSpecializationKind TSK) {
assert(TemplateOrSpecialization.isNull() &&
"Member function is already a specialization");
MemberSpecializationInfo *Info
= new (C) MemberSpecializationInfo(FD, TSK);
TemplateOrSpecialization = Info;
}
bool FunctionDecl::isImplicitlyInstantiable() const {
// If the function is invalid, it can't be implicitly instantiated.
if (isInvalidDecl())
return false;
switch (getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ExplicitInstantiationDefinition:
return false;
case TSK_ImplicitInstantiation:
return true;
// It is possible to instantiate TSK_ExplicitSpecialization kind
// if the FunctionDecl has a class scope specialization pattern.
case TSK_ExplicitSpecialization:
return getClassScopeSpecializationPattern() != 0;
case TSK_ExplicitInstantiationDeclaration:
// Handled below.
break;
}
// Find the actual template from which we will instantiate.
const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
bool HasPattern = false;
if (PatternDecl)
HasPattern = PatternDecl->hasBody(PatternDecl);
// C++0x [temp.explicit]p9:
// Except for inline functions, other explicit instantiation declarations
// have the effect of suppressing the implicit instantiation of the entity
// to which they refer.
if (!HasPattern || !PatternDecl)
return true;
return PatternDecl->isInlined();
}
bool FunctionDecl::isTemplateInstantiation() const {
switch (getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ExplicitSpecialization:
return false;
case TSK_ImplicitInstantiation:
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
return true;
}
llvm_unreachable("All TSK values handled.");
}
FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
// Handle class scope explicit specialization special case.
if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
return getClassScopeSpecializationPattern();
if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
while (Primary->getInstantiatedFromMemberTemplate()) {
// If we have hit a point where the user provided a specialization of
// this template, we're done looking.
if (Primary->isMemberSpecialization())
break;
Primary = Primary->getInstantiatedFromMemberTemplate();
}
return Primary->getTemplatedDecl();
}
return getInstantiatedFromMemberFunction();
}
FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
if (FunctionTemplateSpecializationInfo *Info
= TemplateOrSpecialization
.dyn_cast<FunctionTemplateSpecializationInfo*>()) {
return Info->Template.getPointer();
}
return 0;
}
FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
return getASTContext().getClassScopeSpecializationPattern(this);
}
const TemplateArgumentList *
FunctionDecl::getTemplateSpecializationArgs() const {
if (FunctionTemplateSpecializationInfo *Info
= TemplateOrSpecialization
.dyn_cast<FunctionTemplateSpecializationInfo*>()) {
return Info->TemplateArguments;
}
return 0;
}
const ASTTemplateArgumentListInfo *
FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
if (FunctionTemplateSpecializationInfo *Info
= TemplateOrSpecialization
.dyn_cast<FunctionTemplateSpecializationInfo*>()) {
return Info->TemplateArgumentsAsWritten;
}
return 0;
}
void
FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
FunctionTemplateDecl *Template,
const TemplateArgumentList *TemplateArgs,
void *InsertPos,
TemplateSpecializationKind TSK,
const TemplateArgumentListInfo *TemplateArgsAsWritten,
SourceLocation PointOfInstantiation) {
assert(TSK != TSK_Undeclared &&
"Must specify the type of function template specialization");
FunctionTemplateSpecializationInfo *Info
= TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
if (!Info)
Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
TemplateArgs,
TemplateArgsAsWritten,
PointOfInstantiation);
TemplateOrSpecialization = Info;
// Insert this function template specialization into the set of known
// function template specializations.
if (InsertPos)
Template->addSpecialization(Info, InsertPos);
else {
// Try to insert the new node. If there is an existing node, leave it, the
// set will contain the canonical decls while
// FunctionTemplateDecl::findSpecialization will return
// the most recent redeclarations.
FunctionTemplateSpecializationInfo *Existing
= Template->getSpecializations().GetOrInsertNode(Info);
(void)Existing;
assert((!Existing || Existing->Function->isCanonicalDecl()) &&
"Set is supposed to only contain canonical decls");
}
}
void
FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
const UnresolvedSetImpl &Templates,
const TemplateArgumentListInfo &TemplateArgs) {
assert(TemplateOrSpecialization.isNull());
size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
Size += Templates.size() * sizeof(FunctionTemplateDecl*);
Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
void *Buffer = Context.Allocate(Size);
DependentFunctionTemplateSpecializationInfo *Info =
new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
TemplateArgs);
TemplateOrSpecialization = Info;
}
DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
const TemplateArgumentListInfo &TArgs)
: AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
d.NumTemplates = Ts.size();
d.NumArgs = TArgs.size();
FunctionTemplateDecl **TsArray =
const_cast<FunctionTemplateDecl**>(getTemplates());
for (unsigned I = 0, E = Ts.size(); I != E; ++I)
TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
TemplateArgumentLoc *ArgsArray =
const_cast<TemplateArgumentLoc*>(getTemplateArgs());
for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
}
TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
// For a function template specialization, query the specialization
// information object.
FunctionTemplateSpecializationInfo *FTSInfo
= TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
if (FTSInfo)
return FTSInfo->getTemplateSpecializationKind();
MemberSpecializationInfo *MSInfo
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
if (MSInfo)
return MSInfo->getTemplateSpecializationKind();
return TSK_Undeclared;
}
void
FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation) {
if (FunctionTemplateSpecializationInfo *FTSInfo
= TemplateOrSpecialization.dyn_cast<
FunctionTemplateSpecializationInfo*>()) {
FTSInfo->setTemplateSpecializationKind(TSK);
if (TSK != TSK_ExplicitSpecialization &&
PointOfInstantiation.isValid() &&
FTSInfo->getPointOfInstantiation().isInvalid())
FTSInfo->setPointOfInstantiation(PointOfInstantiation);
} else if (MemberSpecializationInfo *MSInfo
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
MSInfo->setTemplateSpecializationKind(TSK);
if (TSK != TSK_ExplicitSpecialization &&
PointOfInstantiation.isValid() &&
MSInfo->getPointOfInstantiation().isInvalid())
MSInfo->setPointOfInstantiation(PointOfInstantiation);
} else
llvm_unreachable("Function cannot have a template specialization kind");
}
SourceLocation FunctionDecl::getPointOfInstantiation() const {
if (FunctionTemplateSpecializationInfo *FTSInfo
= TemplateOrSpecialization.dyn_cast<
FunctionTemplateSpecializationInfo*>())
return FTSInfo->getPointOfInstantiation();
else if (MemberSpecializationInfo *MSInfo
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
return MSInfo->getPointOfInstantiation();
return SourceLocation();
}
bool FunctionDecl::isOutOfLine() const {
if (Decl::isOutOfLine())
return true;
// If this function was instantiated from a member function of a
// class template, check whether that member function was defined out-of-line.
if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
const FunctionDecl *Definition;
if (FD->hasBody(Definition))
return Definition->isOutOfLine();
}
// If this function was instantiated from a function template,
// check whether that function template was defined out-of-line.
if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
const FunctionDecl *Definition;
if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
return Definition->isOutOfLine();
}
return false;
}
SourceRange FunctionDecl::getSourceRange() const {
return SourceRange(getOuterLocStart(), EndRangeLoc);
}
FunctionDecl::MemoryFunctionKind FunctionDecl::getMemoryFunctionKind() {
IdentifierInfo *FnInfo = getIdentifier();
if (!FnInfo)
return MFK_Invalid;
// Builtin handling.
switch (getBuiltinID()) {
case Builtin::BI__builtin_memset:
case Builtin::BI__builtin___memset_chk:
case Builtin::BImemset:
return MFK_Memset;
case Builtin::BI__builtin_memcpy:
case Builtin::BI__builtin___memcpy_chk:
case Builtin::BImemcpy:
return MFK_Memcpy;
case Builtin::BI__builtin_memmove:
case Builtin::BI__builtin___memmove_chk:
case Builtin::BImemmove:
return MFK_Memmove;
case Builtin::BIstrlcpy:
return MFK_Strlcpy;
case Builtin::BIstrlcat:
return MFK_Strlcat;
case Builtin::BI__builtin_memcmp:
return MFK_Memcmp;
case Builtin::BI__builtin_strncpy:
case Builtin::BI__builtin___strncpy_chk:
case Builtin::BIstrncpy:
return MFK_Strncpy;
case Builtin::BI__builtin_strncmp:
return MFK_Strncmp;
case Builtin::BI__builtin_strncasecmp:
return MFK_Strncasecmp;
case Builtin::BI__builtin_strncat:
case Builtin::BIstrncat:
return MFK_Strncat;
case Builtin::BI__builtin_strndup:
case Builtin::BIstrndup:
return MFK_Strndup;
default:
if (getLinkage() == ExternalLinkage &&
(!getASTContext().getLangOptions().CPlusPlus || isExternC())) {
if (FnInfo->isStr("memset"))
return MFK_Memset;
else if (FnInfo->isStr("memcpy"))
return MFK_Memcpy;
else if (FnInfo->isStr("memmove"))
return MFK_Memmove;
else if (FnInfo->isStr("memcmp"))
return MFK_Memcmp;
else if (FnInfo->isStr("strncpy"))
return MFK_Strncpy;
else if (FnInfo->isStr("strncmp"))
return MFK_Strncmp;
else if (FnInfo->isStr("strncasecmp"))
return MFK_Strncasecmp;
else if (FnInfo->isStr("strncat"))
return MFK_Strncat;
else if (FnInfo->isStr("strndup"))
return MFK_Strndup;
}
break;
}
return MFK_Invalid;
}
//===----------------------------------------------------------------------===//
// FieldDecl Implementation
//===----------------------------------------------------------------------===//
FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
bool HasInit) {
return new (C) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
BW, Mutable, HasInit);
}
FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FieldDecl));
return new (Mem) FieldDecl(Field, 0, SourceLocation(), SourceLocation(),
0, QualType(), 0, 0, false, false);
}
bool FieldDecl::isAnonymousStructOrUnion() const {
if (!isImplicit() || getDeclName())
return false;
if (const RecordType *Record = getType()->getAs<RecordType>())
return Record->getDecl()->isAnonymousStructOrUnion();
return false;
}
unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
assert(isBitField() && "not a bitfield");
Expr *BitWidth = InitializerOrBitWidth.getPointer();
return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
}
unsigned FieldDecl::getFieldIndex() const {
if (CachedFieldIndex) return CachedFieldIndex - 1;
unsigned Index = 0;
const RecordDecl *RD = getParent();
const FieldDecl *LastFD = 0;
bool IsMsStruct = RD->hasAttr<MsStructAttr>();
for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
I != E; ++I, ++Index) {
(*I)->CachedFieldIndex = Index + 1;
if (IsMsStruct) {
// Zero-length bitfields following non-bitfield members are ignored.
if (getASTContext().ZeroBitfieldFollowsNonBitfield((*I), LastFD)) {
--Index;
continue;
}
LastFD = (*I);
}
}
assert(CachedFieldIndex && "failed to find field in parent");
return CachedFieldIndex - 1;
}
SourceRange FieldDecl::getSourceRange() const {
if (const Expr *E = InitializerOrBitWidth.getPointer())
return SourceRange(getInnerLocStart(), E->getLocEnd());
return DeclaratorDecl::getSourceRange();
}
void FieldDecl::setInClassInitializer(Expr *Init) {
assert(!InitializerOrBitWidth.getPointer() &&
"bit width or initializer already set");
InitializerOrBitWidth.setPointer(Init);
InitializerOrBitWidth.setInt(0);
}
//===----------------------------------------------------------------------===//
// TagDecl Implementation
//===----------------------------------------------------------------------===//
SourceLocation TagDecl::getOuterLocStart() const {
return getTemplateOrInnerLocStart(this);
}
SourceRange TagDecl::getSourceRange() const {
SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
return SourceRange(getOuterLocStart(), E);
}
TagDecl* TagDecl::getCanonicalDecl() {
return getFirstDeclaration();
}
void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
TypedefNameDeclOrQualifier = TDD;
if (TypeForDecl)
const_cast<Type*>(TypeForDecl)->ClearLinkageCache();
ClearLinkageCache();
}
void TagDecl::startDefinition() {
IsBeingDefined = true;
if (isa<CXXRecordDecl>(this)) {
CXXRecordDecl *D = cast<CXXRecordDecl>(this);
struct CXXRecordDecl::DefinitionData *Data =
new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I)
cast<CXXRecordDecl>(*I)->DefinitionData = Data;
}
}
void TagDecl::completeDefinition() {
assert((!isa<CXXRecordDecl>(this) ||
cast<CXXRecordDecl>(this)->hasDefinition()) &&
"definition completed but not started");
IsCompleteDefinition = true;
IsBeingDefined = false;
if (ASTMutationListener *L = getASTMutationListener())
L->CompletedTagDefinition(this);
}
TagDecl *TagDecl::getDefinition() const {
if (isCompleteDefinition())
return const_cast<TagDecl *>(this);
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
return CXXRD->getDefinition();
for (redecl_iterator R = redecls_begin(), REnd = redecls_end();
R != REnd; ++R)
if (R->isCompleteDefinition())
return *R;
return 0;
}
void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
if (QualifierLoc) {
// Make sure the extended qualifier info is allocated.
if (!hasExtInfo())
TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
// Set qualifier info.
getExtInfo()->QualifierLoc = QualifierLoc;
} else {
// Here Qualifier == 0, i.e., we are removing the qualifier (if any).
if (hasExtInfo()) {
if (getExtInfo()->NumTemplParamLists == 0) {
getASTContext().Deallocate(getExtInfo());
TypedefNameDeclOrQualifier = (TypedefNameDecl*) 0;
}
else
getExtInfo()->QualifierLoc = QualifierLoc;
}
}
}
void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
unsigned NumTPLists,
TemplateParameterList **TPLists) {
assert(NumTPLists > 0);
// Make sure the extended decl info is allocated.
if (!hasExtInfo())
// Allocate external info struct.
TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
// Set the template parameter lists info.
getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
}
//===----------------------------------------------------------------------===//
// EnumDecl Implementation
//===----------------------------------------------------------------------===//
void EnumDecl::anchor() { }
EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id,
EnumDecl *PrevDecl, bool IsScoped,
bool IsScopedUsingClassTag, bool IsFixed) {
EnumDecl *Enum = new (C) EnumDecl(DC, StartLoc, IdLoc, Id, PrevDecl,
IsScoped, IsScopedUsingClassTag, IsFixed);
C.getTypeDeclType(Enum, PrevDecl);
return Enum;
}
EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumDecl));
return new (Mem) EnumDecl(0, SourceLocation(), SourceLocation(), 0, 0,
false, false, false);
}
void EnumDecl::completeDefinition(QualType NewType,
QualType NewPromotionType,
unsigned NumPositiveBits,
unsigned NumNegativeBits) {
assert(!isCompleteDefinition() && "Cannot redefine enums!");
if (!IntegerType)
IntegerType = NewType.getTypePtr();
PromotionType = NewPromotionType;
setNumPositiveBits(NumPositiveBits);
setNumNegativeBits(NumNegativeBits);
TagDecl::completeDefinition();
}
//===----------------------------------------------------------------------===//
// RecordDecl Implementation
//===----------------------------------------------------------------------===//
RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, RecordDecl *PrevDecl)
: TagDecl(DK, TK, DC, IdLoc, Id, PrevDecl, StartLoc) {
HasFlexibleArrayMember = false;
AnonymousStructOrUnion = false;
HasObjectMember = false;
LoadedFieldsFromExternalStorage = false;
assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
}
RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, RecordDecl* PrevDecl) {
RecordDecl* R = new (C) RecordDecl(Record, TK, DC, StartLoc, IdLoc, Id,
PrevDecl);
C.getTypeDeclType(R, PrevDecl);
return R;
}
RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(RecordDecl));
return new (Mem) RecordDecl(Record, TTK_Struct, 0, SourceLocation(),
SourceLocation(), 0, 0);
}
bool RecordDecl::isInjectedClassName() const {
return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
}
RecordDecl::field_iterator RecordDecl::field_begin() const {
if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
LoadFieldsFromExternalStorage();
return field_iterator(decl_iterator(FirstDecl));
}
/// completeDefinition - Notes that the definition of this type is now
/// complete.
void RecordDecl::completeDefinition() {
assert(!isCompleteDefinition() && "Cannot redefine record!");
TagDecl::completeDefinition();
}
void RecordDecl::LoadFieldsFromExternalStorage() const {
ExternalASTSource *Source = getASTContext().getExternalSource();
assert(hasExternalLexicalStorage() && Source && "No external storage?");
// Notify that we have a RecordDecl doing some initialization.
ExternalASTSource::Deserializing TheFields(Source);
SmallVector<Decl*, 64> Decls;
LoadedFieldsFromExternalStorage = true;
switch (Source->FindExternalLexicalDeclsBy<FieldDecl>(this, Decls)) {
case ELR_Success:
break;
case ELR_AlreadyLoaded:
case ELR_Failure:
return;
}
#ifndef NDEBUG
// Check that all decls we got were FieldDecls.
for (unsigned i=0, e=Decls.size(); i != e; ++i)
assert(isa<FieldDecl>(Decls[i]));
#endif
if (Decls.empty())
return;
llvm::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
/*FieldsAlreadyLoaded=*/false);
}
//===----------------------------------------------------------------------===//
// BlockDecl Implementation
//===----------------------------------------------------------------------===//
void BlockDecl::setParams(llvm::ArrayRef<ParmVarDecl *> NewParamInfo) {
assert(ParamInfo == 0 && "Already has param info!");
// Zero params -> null pointer.
if (!NewParamInfo.empty()) {
NumParams = NewParamInfo.size();
ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
}
}
void BlockDecl::setCaptures(ASTContext &Context,
const Capture *begin,
const Capture *end,
bool capturesCXXThis) {
CapturesCXXThis = capturesCXXThis;
if (begin == end) {
NumCaptures = 0;
Captures = 0;
return;
}
NumCaptures = end - begin;
// Avoid new Capture[] because we don't want to provide a default
// constructor.
size_t allocationSize = NumCaptures * sizeof(Capture);
void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
memcpy(buffer, begin, allocationSize);
Captures = static_cast<Capture*>(buffer);
}
bool BlockDecl::capturesVariable(const VarDecl *variable) const {
for (capture_const_iterator
i = capture_begin(), e = capture_end(); i != e; ++i)
// Only auto vars can be captured, so no redeclaration worries.
if (i->getVariable() == variable)
return true;
return false;
}
SourceRange BlockDecl::getSourceRange() const {
return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
}
//===----------------------------------------------------------------------===//
// Other Decl Allocation/Deallocation Method Implementations
//===----------------------------------------------------------------------===//
void TranslationUnitDecl::anchor() { }
TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
return new (C) TranslationUnitDecl(C);
}
void LabelDecl::anchor() { }
LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation IdentL, IdentifierInfo *II) {
return new (C) LabelDecl(DC, IdentL, II, 0, IdentL);
}
LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation IdentL, IdentifierInfo *II,
SourceLocation GnuLabelL) {
assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
return new (C) LabelDecl(DC, IdentL, II, 0, GnuLabelL);
}
LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LabelDecl));
return new (Mem) LabelDecl(0, SourceLocation(), 0, 0, SourceLocation());
}
void ValueDecl::anchor() { }
void ImplicitParamDecl::anchor() { }
ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation IdLoc,
IdentifierInfo *Id,
QualType Type) {
return new (C) ImplicitParamDecl(DC, IdLoc, Id, Type);
}
ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ImplicitParamDecl));
return new (Mem) ImplicitParamDecl(0, SourceLocation(), 0, QualType());
}
FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
StorageClass SC, StorageClass SCAsWritten,
bool isInlineSpecified,
bool hasWrittenPrototype,
bool isConstexprSpecified) {
FunctionDecl *New = new (C) FunctionDecl(Function, DC, StartLoc, NameInfo,
T, TInfo, SC, SCAsWritten,
isInlineSpecified,
isConstexprSpecified);
New->HasWrittenPrototype = hasWrittenPrototype;
return New;
}
FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FunctionDecl));
return new (Mem) FunctionDecl(Function, 0, SourceLocation(),
DeclarationNameInfo(), QualType(), 0,
SC_None, SC_None, false, false);
}
BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
return new (C) BlockDecl(DC, L);
}
BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(BlockDecl));
return new (Mem) BlockDecl(0, SourceLocation());
}
EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
SourceLocation L,
IdentifierInfo *Id, QualType T,
Expr *E, const llvm::APSInt &V) {
return new (C) EnumConstantDecl(CD, L, Id, T, E, V);
}
EnumConstantDecl *
EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumConstantDecl));
return new (Mem) EnumConstantDecl(0, SourceLocation(), 0, QualType(), 0,
llvm::APSInt());
}
void IndirectFieldDecl::anchor() { }
IndirectFieldDecl *
IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T, NamedDecl **CH,
unsigned CHS) {
return new (C) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
}
IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(IndirectFieldDecl));
return new (Mem) IndirectFieldDecl(0, SourceLocation(), DeclarationName(),
QualType(), 0, 0);
}
SourceRange EnumConstantDecl::getSourceRange() const {
SourceLocation End = getLocation();
if (Init)
End = Init->getLocEnd();
return SourceRange(getLocation(), End);
}
void TypeDecl::anchor() { }
TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, TypeSourceInfo *TInfo) {
return new (C) TypedefDecl(DC, StartLoc, IdLoc, Id, TInfo);
}
void TypedefNameDecl::anchor() { }
TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypedefDecl));
return new (Mem) TypedefDecl(0, SourceLocation(), SourceLocation(), 0, 0);
}
TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
TypeSourceInfo *TInfo) {
return new (C) TypeAliasDecl(DC, StartLoc, IdLoc, Id, TInfo);
}
TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypeAliasDecl));
return new (Mem) TypeAliasDecl(0, SourceLocation(), SourceLocation(), 0, 0);
}
SourceRange TypedefDecl::getSourceRange() const {
SourceLocation RangeEnd = getLocation();
if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
if (typeIsPostfix(TInfo->getType()))
RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
}
return SourceRange(getLocStart(), RangeEnd);
}
SourceRange TypeAliasDecl::getSourceRange() const {
SourceLocation RangeEnd = getLocStart();
if (TypeSourceInfo *TInfo = getTypeSourceInfo())
RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
return SourceRange(getLocStart(), RangeEnd);
}
void FileScopeAsmDecl::anchor() { }
FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
StringLiteral *Str,
SourceLocation AsmLoc,
SourceLocation RParenLoc) {
return new (C) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
}
FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FileScopeAsmDecl));
return new (Mem) FileScopeAsmDecl(0, 0, SourceLocation(), SourceLocation());
}
//===----------------------------------------------------------------------===//
// ImportDecl Implementation
//===----------------------------------------------------------------------===//
/// \brief Retrieve the number of module identifiers needed to name the given
/// module.
static unsigned getNumModuleIdentifiers(Module *Mod) {
unsigned Result = 1;
while (Mod->Parent) {
Mod = Mod->Parent;
++Result;
}
return Result;
}
ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
Module *Imported,
ArrayRef<SourceLocation> IdentifierLocs)
: Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
NextLocalImport()
{
assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
memcpy(StoredLocs, IdentifierLocs.data(),
IdentifierLocs.size() * sizeof(SourceLocation));
}
ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
Module *Imported, SourceLocation EndLoc)
: Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
NextLocalImport()
{
*reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
}
ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, Module *Imported,
ArrayRef<SourceLocation> IdentifierLocs) {
void *Mem = C.Allocate(sizeof(ImportDecl) +
IdentifierLocs.size() * sizeof(SourceLocation));
return new (Mem) ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
}
ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
Module *Imported,
SourceLocation EndLoc) {
void *Mem = C.Allocate(sizeof(ImportDecl) + sizeof(SourceLocation));
ImportDecl *Import = new (Mem) ImportDecl(DC, StartLoc, Imported, EndLoc);
Import->setImplicit();
return Import;
}
ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumLocations) {
void *Mem = AllocateDeserializedDecl(C, ID,
(sizeof(ImportDecl) +
NumLocations * sizeof(SourceLocation)));
return new (Mem) ImportDecl(EmptyShell());
}
ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
if (!ImportedAndComplete.getInt())
return ArrayRef<SourceLocation>();
const SourceLocation *StoredLocs
= reinterpret_cast<const SourceLocation *>(this + 1);
return ArrayRef<SourceLocation>(StoredLocs,
getNumModuleIdentifiers(getImportedModule()));
}
SourceRange ImportDecl::getSourceRange() const {
if (!ImportedAndComplete.getInt())
return SourceRange(getLocation(),
*reinterpret_cast<const SourceLocation *>(this + 1));
return SourceRange(getLocation(), getIdentifierLocs().back());
}