| //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for declarations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/CXXFieldCollector.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/ParsedTemplate.h" |
| #include "clang/Parse/ParseDiagnostic.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's) |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Lex/HeaderSearch.h" |
| #include "llvm/ADT/Triple.h" |
| #include <algorithm> |
| #include <cstring> |
| #include <functional> |
| using namespace clang; |
| using namespace sema; |
| |
| Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) { |
| return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); |
| } |
| |
| /// \brief If the identifier refers to a type name within this scope, |
| /// return the declaration of that type. |
| /// |
| /// This routine performs ordinary name lookup of the identifier II |
| /// within the given scope, with optional C++ scope specifier SS, to |
| /// determine whether the name refers to a type. If so, returns an |
| /// opaque pointer (actually a QualType) corresponding to that |
| /// type. Otherwise, returns NULL. |
| /// |
| /// If name lookup results in an ambiguity, this routine will complain |
| /// and then return NULL. |
| ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc, |
| Scope *S, CXXScopeSpec *SS, |
| bool isClassName, |
| ParsedType ObjectTypePtr) { |
| // Determine where we will perform name lookup. |
| DeclContext *LookupCtx = 0; |
| if (ObjectTypePtr) { |
| QualType ObjectType = ObjectTypePtr.get(); |
| if (ObjectType->isRecordType()) |
| LookupCtx = computeDeclContext(ObjectType); |
| } else if (SS && SS->isNotEmpty()) { |
| LookupCtx = computeDeclContext(*SS, false); |
| |
| if (!LookupCtx) { |
| if (isDependentScopeSpecifier(*SS)) { |
| // C++ [temp.res]p3: |
| // A qualified-id that refers to a type and in which the |
| // nested-name-specifier depends on a template-parameter (14.6.2) |
| // shall be prefixed by the keyword typename to indicate that the |
| // qualified-id denotes a type, forming an |
| // elaborated-type-specifier (7.1.5.3). |
| // |
| // We therefore do not perform any name lookup if the result would |
| // refer to a member of an unknown specialization. |
| if (!isClassName) |
| return ParsedType(); |
| |
| // We know from the grammar that this name refers to a type, |
| // so build a dependent node to describe the type. |
| QualType T = |
| CheckTypenameType(ETK_None, SS->getScopeRep(), II, |
| SourceLocation(), SS->getRange(), NameLoc); |
| return ParsedType::make(T); |
| } |
| |
| return ParsedType(); |
| } |
| |
| if (!LookupCtx->isDependentContext() && |
| RequireCompleteDeclContext(*SS, LookupCtx)) |
| return ParsedType(); |
| } |
| |
| // FIXME: LookupNestedNameSpecifierName isn't the right kind of |
| // lookup for class-names. |
| LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : |
| LookupOrdinaryName; |
| LookupResult Result(*this, &II, NameLoc, Kind); |
| if (LookupCtx) { |
| // Perform "qualified" name lookup into the declaration context we |
| // computed, which is either the type of the base of a member access |
| // expression or the declaration context associated with a prior |
| // nested-name-specifier. |
| LookupQualifiedName(Result, LookupCtx); |
| |
| if (ObjectTypePtr && Result.empty()) { |
| // C++ [basic.lookup.classref]p3: |
| // If the unqualified-id is ~type-name, the type-name is looked up |
| // in the context of the entire postfix-expression. If the type T of |
| // the object expression is of a class type C, the type-name is also |
| // looked up in the scope of class C. At least one of the lookups shall |
| // find a name that refers to (possibly cv-qualified) T. |
| LookupName(Result, S); |
| } |
| } else { |
| // Perform unqualified name lookup. |
| LookupName(Result, S); |
| } |
| |
| NamedDecl *IIDecl = 0; |
| switch (Result.getResultKind()) { |
| case LookupResult::NotFound: |
| case LookupResult::NotFoundInCurrentInstantiation: |
| case LookupResult::FoundOverloaded: |
| case LookupResult::FoundUnresolvedValue: |
| Result.suppressDiagnostics(); |
| return ParsedType(); |
| |
| case LookupResult::Ambiguous: |
| // Recover from type-hiding ambiguities by hiding the type. We'll |
| // do the lookup again when looking for an object, and we can |
| // diagnose the error then. If we don't do this, then the error |
| // about hiding the type will be immediately followed by an error |
| // that only makes sense if the identifier was treated like a type. |
| if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { |
| Result.suppressDiagnostics(); |
| return ParsedType(); |
| } |
| |
| // Look to see if we have a type anywhere in the list of results. |
| for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); |
| Res != ResEnd; ++Res) { |
| if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) { |
| if (!IIDecl || |
| (*Res)->getLocation().getRawEncoding() < |
| IIDecl->getLocation().getRawEncoding()) |
| IIDecl = *Res; |
| } |
| } |
| |
| if (!IIDecl) { |
| // None of the entities we found is a type, so there is no way |
| // to even assume that the result is a type. In this case, don't |
| // complain about the ambiguity. The parser will either try to |
| // perform this lookup again (e.g., as an object name), which |
| // will produce the ambiguity, or will complain that it expected |
| // a type name. |
| Result.suppressDiagnostics(); |
| return ParsedType(); |
| } |
| |
| // We found a type within the ambiguous lookup; diagnose the |
| // ambiguity and then return that type. This might be the right |
| // answer, or it might not be, but it suppresses any attempt to |
| // perform the name lookup again. |
| break; |
| |
| case LookupResult::Found: |
| IIDecl = Result.getFoundDecl(); |
| break; |
| } |
| |
| assert(IIDecl && "Didn't find decl"); |
| |
| QualType T; |
| if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { |
| DiagnoseUseOfDecl(IIDecl, NameLoc); |
| |
| if (T.isNull()) |
| T = Context.getTypeDeclType(TD); |
| |
| if (SS) |
| T = getElaboratedType(ETK_None, *SS, T); |
| |
| } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { |
| T = Context.getObjCInterfaceType(IDecl); |
| } else { |
| // If it's not plausibly a type, suppress diagnostics. |
| Result.suppressDiagnostics(); |
| return ParsedType(); |
| } |
| |
| return ParsedType::make(T); |
| } |
| |
| /// isTagName() - This method is called *for error recovery purposes only* |
| /// to determine if the specified name is a valid tag name ("struct foo"). If |
| /// so, this returns the TST for the tag corresponding to it (TST_enum, |
| /// TST_union, TST_struct, TST_class). This is used to diagnose cases in C |
| /// where the user forgot to specify the tag. |
| DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { |
| // Do a tag name lookup in this scope. |
| LookupResult R(*this, &II, SourceLocation(), LookupTagName); |
| LookupName(R, S, false); |
| R.suppressDiagnostics(); |
| if (R.getResultKind() == LookupResult::Found) |
| if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { |
| switch (TD->getTagKind()) { |
| default: return DeclSpec::TST_unspecified; |
| case TTK_Struct: return DeclSpec::TST_struct; |
| case TTK_Union: return DeclSpec::TST_union; |
| case TTK_Class: return DeclSpec::TST_class; |
| case TTK_Enum: return DeclSpec::TST_enum; |
| } |
| } |
| |
| return DeclSpec::TST_unspecified; |
| } |
| |
| bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II, |
| SourceLocation IILoc, |
| Scope *S, |
| CXXScopeSpec *SS, |
| ParsedType &SuggestedType) { |
| // We don't have anything to suggest (yet). |
| SuggestedType = ParsedType(); |
| |
| // There may have been a typo in the name of the type. Look up typo |
| // results, in case we have something that we can suggest. |
| LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName, |
| NotForRedeclaration); |
| |
| if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) { |
| if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) { |
| if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) && |
| !Result->isInvalidDecl()) { |
| // We found a similarly-named type or interface; suggest that. |
| if (!SS || !SS->isSet()) |
| Diag(IILoc, diag::err_unknown_typename_suggest) |
| << &II << Lookup.getLookupName() |
| << FixItHint::CreateReplacement(SourceRange(IILoc), |
| Result->getNameAsString()); |
| else if (DeclContext *DC = computeDeclContext(*SS, false)) |
| Diag(IILoc, diag::err_unknown_nested_typename_suggest) |
| << &II << DC << Lookup.getLookupName() << SS->getRange() |
| << FixItHint::CreateReplacement(SourceRange(IILoc), |
| Result->getNameAsString()); |
| else |
| llvm_unreachable("could not have corrected a typo here"); |
| |
| Diag(Result->getLocation(), diag::note_previous_decl) |
| << Result->getDeclName(); |
| |
| SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS); |
| return true; |
| } |
| } else if (Lookup.empty()) { |
| // We corrected to a keyword. |
| // FIXME: Actually recover with the keyword we suggest, and emit a fix-it. |
| Diag(IILoc, diag::err_unknown_typename_suggest) |
| << &II << Corrected; |
| return true; |
| } |
| } |
| |
| if (getLangOptions().CPlusPlus) { |
| // See if II is a class template that the user forgot to pass arguments to. |
| UnqualifiedId Name; |
| Name.setIdentifier(&II, IILoc); |
| CXXScopeSpec EmptySS; |
| TemplateTy TemplateResult; |
| bool MemberOfUnknownSpecialization; |
| if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, |
| Name, ParsedType(), true, TemplateResult, |
| MemberOfUnknownSpecialization) == TNK_Type_template) { |
| TemplateName TplName = TemplateResult.getAsVal<TemplateName>(); |
| Diag(IILoc, diag::err_template_missing_args) << TplName; |
| if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) { |
| Diag(TplDecl->getLocation(), diag::note_template_decl_here) |
| << TplDecl->getTemplateParameters()->getSourceRange(); |
| } |
| return true; |
| } |
| } |
| |
| // FIXME: Should we move the logic that tries to recover from a missing tag |
| // (struct, union, enum) from Parser::ParseImplicitInt here, instead? |
| |
| if (!SS || (!SS->isSet() && !SS->isInvalid())) |
| Diag(IILoc, diag::err_unknown_typename) << &II; |
| else if (DeclContext *DC = computeDeclContext(*SS, false)) |
| Diag(IILoc, diag::err_typename_nested_not_found) |
| << &II << DC << SS->getRange(); |
| else if (isDependentScopeSpecifier(*SS)) { |
| Diag(SS->getRange().getBegin(), diag::err_typename_missing) |
| << (NestedNameSpecifier *)SS->getScopeRep() << II.getName() |
| << SourceRange(SS->getRange().getBegin(), IILoc) |
| << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); |
| SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get(); |
| } else { |
| assert(SS && SS->isInvalid() && |
| "Invalid scope specifier has already been diagnosed"); |
| } |
| |
| return true; |
| } |
| |
| // Determines the context to return to after temporarily entering a |
| // context. This depends in an unnecessarily complicated way on the |
| // exact ordering of callbacks from the parser. |
| DeclContext *Sema::getContainingDC(DeclContext *DC) { |
| |
| // Functions defined inline within classes aren't parsed until we've |
| // finished parsing the top-level class, so the top-level class is |
| // the context we'll need to return to. |
| if (isa<FunctionDecl>(DC)) { |
| DC = DC->getLexicalParent(); |
| |
| // A function not defined within a class will always return to its |
| // lexical context. |
| if (!isa<CXXRecordDecl>(DC)) |
| return DC; |
| |
| // A C++ inline method/friend is parsed *after* the topmost class |
| // it was declared in is fully parsed ("complete"); the topmost |
| // class is the context we need to return to. |
| while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent())) |
| DC = RD; |
| |
| // Return the declaration context of the topmost class the inline method is |
| // declared in. |
| return DC; |
| } |
| |
| // ObjCMethodDecls are parsed (for some reason) outside the context |
| // of the class. |
| if (isa<ObjCMethodDecl>(DC)) |
| return DC->getLexicalParent()->getLexicalParent(); |
| |
| return DC->getLexicalParent(); |
| } |
| |
| void Sema::PushDeclContext(Scope *S, DeclContext *DC) { |
| assert(getContainingDC(DC) == CurContext && |
| "The next DeclContext should be lexically contained in the current one."); |
| CurContext = DC; |
| S->setEntity(DC); |
| } |
| |
| void Sema::PopDeclContext() { |
| assert(CurContext && "DeclContext imbalance!"); |
| |
| CurContext = getContainingDC(CurContext); |
| assert(CurContext && "Popped translation unit!"); |
| } |
| |
| /// EnterDeclaratorContext - Used when we must lookup names in the context |
| /// of a declarator's nested name specifier. |
| /// |
| void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { |
| // C++0x [basic.lookup.unqual]p13: |
| // A name used in the definition of a static data member of class |
| // X (after the qualified-id of the static member) is looked up as |
| // if the name was used in a member function of X. |
| // C++0x [basic.lookup.unqual]p14: |
| // If a variable member of a namespace is defined outside of the |
| // scope of its namespace then any name used in the definition of |
| // the variable member (after the declarator-id) is looked up as |
| // if the definition of the variable member occurred in its |
| // namespace. |
| // Both of these imply that we should push a scope whose context |
| // is the semantic context of the declaration. We can't use |
| // PushDeclContext here because that context is not necessarily |
| // lexically contained in the current context. Fortunately, |
| // the containing scope should have the appropriate information. |
| |
| assert(!S->getEntity() && "scope already has entity"); |
| |
| #ifndef NDEBUG |
| Scope *Ancestor = S->getParent(); |
| while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); |
| assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch"); |
| #endif |
| |
| CurContext = DC; |
| S->setEntity(DC); |
| } |
| |
| void Sema::ExitDeclaratorContext(Scope *S) { |
| assert(S->getEntity() == CurContext && "Context imbalance!"); |
| |
| // Switch back to the lexical context. The safety of this is |
| // enforced by an assert in EnterDeclaratorContext. |
| Scope *Ancestor = S->getParent(); |
| while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); |
| CurContext = (DeclContext*) Ancestor->getEntity(); |
| |
| // We don't need to do anything with the scope, which is going to |
| // disappear. |
| } |
| |
| /// \brief Determine whether we allow overloading of the function |
| /// PrevDecl with another declaration. |
| /// |
| /// This routine determines whether overloading is possible, not |
| /// whether some new function is actually an overload. It will return |
| /// true in C++ (where we can always provide overloads) or, as an |
| /// extension, in C when the previous function is already an |
| /// overloaded function declaration or has the "overloadable" |
| /// attribute. |
| static bool AllowOverloadingOfFunction(LookupResult &Previous, |
| ASTContext &Context) { |
| if (Context.getLangOptions().CPlusPlus) |
| return true; |
| |
| if (Previous.getResultKind() == LookupResult::FoundOverloaded) |
| return true; |
| |
| return (Previous.getResultKind() == LookupResult::Found |
| && Previous.getFoundDecl()->hasAttr<OverloadableAttr>()); |
| } |
| |
| /// Add this decl to the scope shadowed decl chains. |
| void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { |
| // Move up the scope chain until we find the nearest enclosing |
| // non-transparent context. The declaration will be introduced into this |
| // scope. |
| while (S->getEntity() && |
| ((DeclContext *)S->getEntity())->isTransparentContext()) |
| S = S->getParent(); |
| |
| // Add scoped declarations into their context, so that they can be |
| // found later. Declarations without a context won't be inserted |
| // into any context. |
| if (AddToContext) |
| CurContext->addDecl(D); |
| |
| // Out-of-line definitions shouldn't be pushed into scope in C++. |
| // Out-of-line variable and function definitions shouldn't even in C. |
| if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) && |
| D->isOutOfLine()) |
| return; |
| |
| // Template instantiations should also not be pushed into scope. |
| if (isa<FunctionDecl>(D) && |
| cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) |
| return; |
| |
| // If this replaces anything in the current scope, |
| IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), |
| IEnd = IdResolver.end(); |
| for (; I != IEnd; ++I) { |
| if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { |
| S->RemoveDecl(*I); |
| IdResolver.RemoveDecl(*I); |
| |
| // Should only need to replace one decl. |
| break; |
| } |
| } |
| |
| S->AddDecl(D); |
| IdResolver.AddDecl(D); |
| } |
| |
| bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) { |
| return IdResolver.isDeclInScope(D, Ctx, Context, S); |
| } |
| |
| Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { |
| DeclContext *TargetDC = DC->getPrimaryContext(); |
| do { |
| if (DeclContext *ScopeDC = (DeclContext*) S->getEntity()) |
| if (ScopeDC->getPrimaryContext() == TargetDC) |
| return S; |
| } while ((S = S->getParent())); |
| |
| return 0; |
| } |
| |
| static bool isOutOfScopePreviousDeclaration(NamedDecl *, |
| DeclContext*, |
| ASTContext&); |
| |
| /// Filters out lookup results that don't fall within the given scope |
| /// as determined by isDeclInScope. |
| static void FilterLookupForScope(Sema &SemaRef, LookupResult &R, |
| DeclContext *Ctx, Scope *S, |
| bool ConsiderLinkage) { |
| LookupResult::Filter F = R.makeFilter(); |
| while (F.hasNext()) { |
| NamedDecl *D = F.next(); |
| |
| if (SemaRef.isDeclInScope(D, Ctx, S)) |
| continue; |
| |
| if (ConsiderLinkage && |
| isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context)) |
| continue; |
| |
| F.erase(); |
| } |
| |
| F.done(); |
| } |
| |
| static bool isUsingDecl(NamedDecl *D) { |
| return isa<UsingShadowDecl>(D) || |
| isa<UnresolvedUsingTypenameDecl>(D) || |
| isa<UnresolvedUsingValueDecl>(D); |
| } |
| |
| /// Removes using shadow declarations from the lookup results. |
| static void RemoveUsingDecls(LookupResult &R) { |
| LookupResult::Filter F = R.makeFilter(); |
| while (F.hasNext()) |
| if (isUsingDecl(F.next())) |
| F.erase(); |
| |
| F.done(); |
| } |
| |
| /// \brief Check for this common pattern: |
| /// @code |
| /// class S { |
| /// S(const S&); // DO NOT IMPLEMENT |
| /// void operator=(const S&); // DO NOT IMPLEMENT |
| /// }; |
| /// @endcode |
| static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { |
| // FIXME: Should check for private access too but access is set after we get |
| // the decl here. |
| if (D->isThisDeclarationADefinition()) |
| return false; |
| |
| if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) |
| return CD->isCopyConstructor(); |
| if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) |
| return Method->isCopyAssignmentOperator(); |
| return false; |
| } |
| |
| bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { |
| assert(D); |
| |
| if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) |
| return false; |
| |
| // Ignore class templates. |
| if (D->getDeclContext()->isDependentContext() || |
| D->getLexicalDeclContext()->isDependentContext()) |
| return false; |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| return false; |
| |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) |
| return false; |
| } else { |
| // 'static inline' functions are used in headers; don't warn. |
| if (FD->getStorageClass() == SC_Static && |
| FD->isInlineSpecified()) |
| return false; |
| } |
| |
| if (FD->isThisDeclarationADefinition() && |
| Context.DeclMustBeEmitted(FD)) |
| return false; |
| |
| } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| if (!VD->isFileVarDecl() || |
| VD->getType().isConstant(Context) || |
| Context.DeclMustBeEmitted(VD)) |
| return false; |
| |
| if (VD->isStaticDataMember() && |
| VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| return false; |
| |
| } else { |
| return false; |
| } |
| |
| // Only warn for unused decls internal to the translation unit. |
| if (D->getLinkage() == ExternalLinkage) |
| return false; |
| |
| return true; |
| } |
| |
| void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { |
| if (!D) |
| return; |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| const FunctionDecl *First = FD->getFirstDeclaration(); |
| if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) |
| return; // First should already be in the vector. |
| } |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| const VarDecl *First = VD->getFirstDeclaration(); |
| if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) |
| return; // First should already be in the vector. |
| } |
| |
| if (ShouldWarnIfUnusedFileScopedDecl(D)) |
| UnusedFileScopedDecls.push_back(D); |
| } |
| |
| static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { |
| if (D->isInvalidDecl()) |
| return false; |
| |
| if (D->isUsed() || D->hasAttr<UnusedAttr>()) |
| return false; |
| |
| // White-list anything that isn't a local variable. |
| if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) || |
| !D->getDeclContext()->isFunctionOrMethod()) |
| return false; |
| |
| // Types of valid local variables should be complete, so this should succeed. |
| if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) { |
| |
| // White-list anything with an __attribute__((unused)) type. |
| QualType Ty = VD->getType(); |
| |
| // Only look at the outermost level of typedef. |
| if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) { |
| if (TT->getDecl()->hasAttr<UnusedAttr>()) |
| return false; |
| } |
| |
| // If we failed to complete the type for some reason, or if the type is |
| // dependent, don't diagnose the variable. |
| if (Ty->isIncompleteType() || Ty->isDependentType()) |
| return false; |
| |
| if (const TagType *TT = Ty->getAs<TagType>()) { |
| const TagDecl *Tag = TT->getDecl(); |
| if (Tag->hasAttr<UnusedAttr>()) |
| return false; |
| |
| if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { |
| // FIXME: Checking for the presence of a user-declared constructor |
| // isn't completely accurate; we'd prefer to check that the initializer |
| // has no side effects. |
| if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor()) |
| return false; |
| } |
| } |
| |
| // TODO: __attribute__((unused)) templates? |
| } |
| |
| return true; |
| } |
| |
| void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { |
| if (!ShouldDiagnoseUnusedDecl(D)) |
| return; |
| |
| if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) |
| Diag(D->getLocation(), diag::warn_unused_exception_param) |
| << D->getDeclName(); |
| else |
| Diag(D->getLocation(), diag::warn_unused_variable) |
| << D->getDeclName(); |
| } |
| |
| void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { |
| if (S->decl_empty()) return; |
| assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && |
| "Scope shouldn't contain decls!"); |
| |
| for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end(); |
| I != E; ++I) { |
| Decl *TmpD = (*I); |
| assert(TmpD && "This decl didn't get pushed??"); |
| |
| assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); |
| NamedDecl *D = cast<NamedDecl>(TmpD); |
| |
| if (!D->getDeclName()) continue; |
| |
| // Diagnose unused variables in this scope. |
| if (!S->hasErrorOccurred()) |
| DiagnoseUnusedDecl(D); |
| |
| // Remove this name from our lexical scope. |
| IdResolver.RemoveDecl(D); |
| } |
| } |
| |
| /// \brief Look for an Objective-C class in the translation unit. |
| /// |
| /// \param Id The name of the Objective-C class we're looking for. If |
| /// typo-correction fixes this name, the Id will be updated |
| /// to the fixed name. |
| /// |
| /// \param IdLoc The location of the name in the translation unit. |
| /// |
| /// \param TypoCorrection If true, this routine will attempt typo correction |
| /// if there is no class with the given name. |
| /// |
| /// \returns The declaration of the named Objective-C class, or NULL if the |
| /// class could not be found. |
| ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, |
| SourceLocation IdLoc, |
| bool TypoCorrection) { |
| // The third "scope" argument is 0 since we aren't enabling lazy built-in |
| // creation from this context. |
| NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); |
| |
| if (!IDecl && TypoCorrection) { |
| // Perform typo correction at the given location, but only if we |
| // find an Objective-C class name. |
| LookupResult R(*this, Id, IdLoc, LookupOrdinaryName); |
| if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) && |
| (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) { |
| Diag(IdLoc, diag::err_undef_interface_suggest) |
| << Id << IDecl->getDeclName() |
| << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString()); |
| Diag(IDecl->getLocation(), diag::note_previous_decl) |
| << IDecl->getDeclName(); |
| |
| Id = IDecl->getIdentifier(); |
| } |
| } |
| |
| return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); |
| } |
| |
| /// getNonFieldDeclScope - Retrieves the innermost scope, starting |
| /// from S, where a non-field would be declared. This routine copes |
| /// with the difference between C and C++ scoping rules in structs and |
| /// unions. For example, the following code is well-formed in C but |
| /// ill-formed in C++: |
| /// @code |
| /// struct S6 { |
| /// enum { BAR } e; |
| /// }; |
| /// |
| /// void test_S6() { |
| /// struct S6 a; |
| /// a.e = BAR; |
| /// } |
| /// @endcode |
| /// For the declaration of BAR, this routine will return a different |
| /// scope. The scope S will be the scope of the unnamed enumeration |
| /// within S6. In C++, this routine will return the scope associated |
| /// with S6, because the enumeration's scope is a transparent |
| /// context but structures can contain non-field names. In C, this |
| /// routine will return the translation unit scope, since the |
| /// enumeration's scope is a transparent context and structures cannot |
| /// contain non-field names. |
| Scope *Sema::getNonFieldDeclScope(Scope *S) { |
| while (((S->getFlags() & Scope::DeclScope) == 0) || |
| (S->getEntity() && |
| ((DeclContext *)S->getEntity())->isTransparentContext()) || |
| (S->isClassScope() && !getLangOptions().CPlusPlus)) |
| S = S->getParent(); |
| return S; |
| } |
| |
| /// LazilyCreateBuiltin - The specified Builtin-ID was first used at |
| /// file scope. lazily create a decl for it. ForRedeclaration is true |
| /// if we're creating this built-in in anticipation of redeclaring the |
| /// built-in. |
| NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid, |
| Scope *S, bool ForRedeclaration, |
| SourceLocation Loc) { |
| Builtin::ID BID = (Builtin::ID)bid; |
| |
| ASTContext::GetBuiltinTypeError Error; |
| QualType R = Context.GetBuiltinType(BID, Error); |
| switch (Error) { |
| case ASTContext::GE_None: |
| // Okay |
| break; |
| |
| case ASTContext::GE_Missing_stdio: |
| if (ForRedeclaration) |
| Diag(Loc, diag::warn_implicit_decl_requires_stdio) |
| << Context.BuiltinInfo.GetName(BID); |
| return 0; |
| |
| case ASTContext::GE_Missing_setjmp: |
| if (ForRedeclaration) |
| Diag(Loc, diag::warn_implicit_decl_requires_setjmp) |
| << Context.BuiltinInfo.GetName(BID); |
| return 0; |
| } |
| |
| if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) { |
| Diag(Loc, diag::ext_implicit_lib_function_decl) |
| << Context.BuiltinInfo.GetName(BID) |
| << R; |
| if (Context.BuiltinInfo.getHeaderName(BID) && |
| Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc) |
| != Diagnostic::Ignored) |
| Diag(Loc, diag::note_please_include_header) |
| << Context.BuiltinInfo.getHeaderName(BID) |
| << Context.BuiltinInfo.GetName(BID); |
| } |
| |
| FunctionDecl *New = FunctionDecl::Create(Context, |
| Context.getTranslationUnitDecl(), |
| Loc, II, R, /*TInfo=*/0, |
| SC_Extern, |
| SC_None, false, |
| /*hasPrototype=*/true); |
| New->setImplicit(); |
| |
| // Create Decl objects for each parameter, adding them to the |
| // FunctionDecl. |
| if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) { |
| llvm::SmallVector<ParmVarDecl*, 16> Params; |
| for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) |
| Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0, |
| FT->getArgType(i), /*TInfo=*/0, |
| SC_None, SC_None, 0)); |
| New->setParams(Params.data(), Params.size()); |
| } |
| |
| AddKnownFunctionAttributes(New); |
| |
| // TUScope is the translation-unit scope to insert this function into. |
| // FIXME: This is hideous. We need to teach PushOnScopeChains to |
| // relate Scopes to DeclContexts, and probably eliminate CurContext |
| // entirely, but we're not there yet. |
| DeclContext *SavedContext = CurContext; |
| CurContext = Context.getTranslationUnitDecl(); |
| PushOnScopeChains(New, TUScope); |
| CurContext = SavedContext; |
| return New; |
| } |
| |
| /// MergeTypeDefDecl - We just parsed a typedef 'New' which has the |
| /// same name and scope as a previous declaration 'Old'. Figure out |
| /// how to resolve this situation, merging decls or emitting |
| /// diagnostics as appropriate. If there was an error, set New to be invalid. |
| /// |
| void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) { |
| // If the new decl is known invalid already, don't bother doing any |
| // merging checks. |
| if (New->isInvalidDecl()) return; |
| |
| // Allow multiple definitions for ObjC built-in typedefs. |
| // FIXME: Verify the underlying types are equivalent! |
| if (getLangOptions().ObjC1) { |
| const IdentifierInfo *TypeID = New->getIdentifier(); |
| switch (TypeID->getLength()) { |
| default: break; |
| case 2: |
| if (!TypeID->isStr("id")) |
| break; |
| Context.ObjCIdRedefinitionType = New->getUnderlyingType(); |
| // Install the built-in type for 'id', ignoring the current definition. |
| New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); |
| return; |
| case 5: |
| if (!TypeID->isStr("Class")) |
| break; |
| Context.ObjCClassRedefinitionType = New->getUnderlyingType(); |
| // Install the built-in type for 'Class', ignoring the current definition. |
| New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); |
| return; |
| case 3: |
| if (!TypeID->isStr("SEL")) |
| break; |
| Context.ObjCSelRedefinitionType = New->getUnderlyingType(); |
| // Install the built-in type for 'SEL', ignoring the current definition. |
| New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); |
| return; |
| case 8: |
| if (!TypeID->isStr("Protocol")) |
| break; |
| Context.setObjCProtoType(New->getUnderlyingType()); |
| return; |
| } |
| // Fall through - the typedef name was not a builtin type. |
| } |
| |
| // Verify the old decl was also a type. |
| TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind) |
| << New->getDeclName(); |
| |
| NamedDecl *OldD = OldDecls.getRepresentativeDecl(); |
| if (OldD->getLocation().isValid()) |
| Diag(OldD->getLocation(), diag::note_previous_definition); |
| |
| return New->setInvalidDecl(); |
| } |
| |
| // If the old declaration is invalid, just give up here. |
| if (Old->isInvalidDecl()) |
| return New->setInvalidDecl(); |
| |
| // Determine the "old" type we'll use for checking and diagnostics. |
| QualType OldType; |
| if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old)) |
| OldType = OldTypedef->getUnderlyingType(); |
| else |
| OldType = Context.getTypeDeclType(Old); |
| |
| // If the typedef types are not identical, reject them in all languages and |
| // with any extensions enabled. |
| |
| if (OldType != New->getUnderlyingType() && |
| Context.getCanonicalType(OldType) != |
| Context.getCanonicalType(New->getUnderlyingType())) { |
| Diag(New->getLocation(), diag::err_redefinition_different_typedef) |
| << New->getUnderlyingType() << OldType; |
| if (Old->getLocation().isValid()) |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| return New->setInvalidDecl(); |
| } |
| |
| // The types match. Link up the redeclaration chain if the old |
| // declaration was a typedef. |
| // FIXME: this is a potential source of wierdness if the type |
| // spellings don't match exactly. |
| if (isa<TypedefDecl>(Old)) |
| New->setPreviousDeclaration(cast<TypedefDecl>(Old)); |
| |
| if (getLangOptions().Microsoft) |
| return; |
| |
| if (getLangOptions().CPlusPlus) { |
| // C++ [dcl.typedef]p2: |
| // In a given non-class scope, a typedef specifier can be used to |
| // redefine the name of any type declared in that scope to refer |
| // to the type to which it already refers. |
| if (!isa<CXXRecordDecl>(CurContext)) |
| return; |
| |
| // C++0x [dcl.typedef]p4: |
| // In a given class scope, a typedef specifier can be used to redefine |
| // any class-name declared in that scope that is not also a typedef-name |
| // to refer to the type to which it already refers. |
| // |
| // This wording came in via DR424, which was a correction to the |
| // wording in DR56, which accidentally banned code like: |
| // |
| // struct S { |
| // typedef struct A { } A; |
| // }; |
| // |
| // in the C++03 standard. We implement the C++0x semantics, which |
| // allow the above but disallow |
| // |
| // struct S { |
| // typedef int I; |
| // typedef int I; |
| // }; |
| // |
| // since that was the intent of DR56. |
| if (!isa<TypedefDecl >(Old)) |
| return; |
| |
| Diag(New->getLocation(), diag::err_redefinition) |
| << New->getDeclName(); |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| return New->setInvalidDecl(); |
| } |
| |
| // If we have a redefinition of a typedef in C, emit a warning. This warning |
| // is normally mapped to an error, but can be controlled with |
| // -Wtypedef-redefinition. If either the original or the redefinition is |
| // in a system header, don't emit this for compatibility with GCC. |
| if (getDiagnostics().getSuppressSystemWarnings() && |
| (Context.getSourceManager().isInSystemHeader(Old->getLocation()) || |
| Context.getSourceManager().isInSystemHeader(New->getLocation()))) |
| return; |
| |
| Diag(New->getLocation(), diag::warn_redefinition_of_typedef) |
| << New->getDeclName(); |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| return; |
| } |
| |
| /// DeclhasAttr - returns true if decl Declaration already has the target |
| /// attribute. |
| static bool |
| DeclHasAttr(const Decl *D, const Attr *A) { |
| const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); |
| for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i) |
| if ((*i)->getKind() == A->getKind()) { |
| // FIXME: Don't hardcode this check |
| if (OA && isa<OwnershipAttr>(*i)) |
| return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// MergeDeclAttributes - append attributes from the Old decl to the New one. |
| static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) { |
| if (!Old->hasAttrs()) |
| return; |
| // Ensure that any moving of objects within the allocated map is done before |
| // we process them. |
| if (!New->hasAttrs()) |
| New->setAttrs(AttrVec()); |
| for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e; |
| ++i) { |
| // FIXME: Make this more general than just checking for Overloadable. |
| if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) { |
| Attr *NewAttr = (*i)->clone(C); |
| NewAttr->setInherited(true); |
| New->addAttr(NewAttr); |
| } |
| } |
| } |
| |
| namespace { |
| |
| /// Used in MergeFunctionDecl to keep track of function parameters in |
| /// C. |
| struct GNUCompatibleParamWarning { |
| ParmVarDecl *OldParm; |
| ParmVarDecl *NewParm; |
| QualType PromotedType; |
| }; |
| |
| } |
| |
| /// getSpecialMember - get the special member enum for a method. |
| Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) { |
| if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { |
| if (Ctor->isCopyConstructor()) |
| return Sema::CXXCopyConstructor; |
| |
| return Sema::CXXConstructor; |
| } |
| |
| if (isa<CXXDestructorDecl>(MD)) |
| return Sema::CXXDestructor; |
| |
| assert(MD->isCopyAssignmentOperator() && |
| "Must have copy assignment operator"); |
| return Sema::CXXCopyAssignment; |
| } |
| |
| /// canRedefineFunction - checks if a function can be redefined. Currently, |
| /// only extern inline functions can be redefined, and even then only in |
| /// GNU89 mode. |
| static bool canRedefineFunction(const FunctionDecl *FD, |
| const LangOptions& LangOpts) { |
| return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus && |
| FD->isInlineSpecified() && |
| FD->getStorageClass() == SC_Extern); |
| } |
| |
| /// MergeFunctionDecl - We just parsed a function 'New' from |
| /// declarator D which has the same name and scope as a previous |
| /// declaration 'Old'. Figure out how to resolve this situation, |
| /// merging decls or emitting diagnostics as appropriate. |
| /// |
| /// In C++, New and Old must be declarations that are not |
| /// overloaded. Use IsOverload to determine whether New and Old are |
| /// overloaded, and to select the Old declaration that New should be |
| /// merged with. |
| /// |
| /// Returns true if there was an error, false otherwise. |
| bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) { |
| // Verify the old decl was also a function. |
| FunctionDecl *Old = 0; |
| if (FunctionTemplateDecl *OldFunctionTemplate |
| = dyn_cast<FunctionTemplateDecl>(OldD)) |
| Old = OldFunctionTemplate->getTemplatedDecl(); |
| else |
| Old = dyn_cast<FunctionDecl>(OldD); |
| if (!Old) { |
| if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { |
| Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); |
| Diag(Shadow->getTargetDecl()->getLocation(), |
| diag::note_using_decl_target); |
| Diag(Shadow->getUsingDecl()->getLocation(), |
| diag::note_using_decl) << 0; |
| return true; |
| } |
| |
| Diag(New->getLocation(), diag::err_redefinition_different_kind) |
| << New->getDeclName(); |
| Diag(OldD->getLocation(), diag::note_previous_definition); |
| return true; |
| } |
| |
| // Determine whether the previous declaration was a definition, |
| // implicit declaration, or a declaration. |
| diag::kind PrevDiag; |
| if (Old->isThisDeclarationADefinition()) |
| PrevDiag = diag::note_previous_definition; |
| else if (Old->isImplicit()) |
| PrevDiag = diag::note_previous_implicit_declaration; |
| else |
| PrevDiag = diag::note_previous_declaration; |
| |
| QualType OldQType = Context.getCanonicalType(Old->getType()); |
| QualType NewQType = Context.getCanonicalType(New->getType()); |
| |
| // Don't complain about this if we're in GNU89 mode and the old function |
| // is an extern inline function. |
| if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && |
| New->getStorageClass() == SC_Static && |
| Old->getStorageClass() != SC_Static && |
| !canRedefineFunction(Old, getLangOptions())) { |
| Diag(New->getLocation(), diag::err_static_non_static) |
| << New; |
| Diag(Old->getLocation(), PrevDiag); |
| return true; |
| } |
| |
| // If a function is first declared with a calling convention, but is |
| // later declared or defined without one, the second decl assumes the |
| // calling convention of the first. |
| // |
| // For the new decl, we have to look at the NON-canonical type to tell the |
| // difference between a function that really doesn't have a calling |
| // convention and one that is declared cdecl. That's because in |
| // canonicalization (see ASTContext.cpp), cdecl is canonicalized away |
| // because it is the default calling convention. |
| // |
| // Note also that we DO NOT return at this point, because we still have |
| // other tests to run. |
| const FunctionType *OldType = cast<FunctionType>(OldQType); |
| const FunctionType *NewType = New->getType()->getAs<FunctionType>(); |
| FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); |
| FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); |
| bool RequiresAdjustment = false; |
| if (OldTypeInfo.getCC() != CC_Default && |
| NewTypeInfo.getCC() == CC_Default) { |
| NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); |
| RequiresAdjustment = true; |
| } else if (!Context.isSameCallConv(OldTypeInfo.getCC(), |
| NewTypeInfo.getCC())) { |
| // Calling conventions really aren't compatible, so complain. |
| Diag(New->getLocation(), diag::err_cconv_change) |
| << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) |
| << (OldTypeInfo.getCC() == CC_Default) |
| << (OldTypeInfo.getCC() == CC_Default ? "" : |
| FunctionType::getNameForCallConv(OldTypeInfo.getCC())); |
| Diag(Old->getLocation(), diag::note_previous_declaration); |
| return true; |
| } |
| |
| // FIXME: diagnose the other way around? |
| if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { |
| NewTypeInfo = NewTypeInfo.withNoReturn(true); |
| RequiresAdjustment = true; |
| } |
| |
| // Merge regparm attribute. |
| if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { |
| if (NewTypeInfo.getRegParm()) { |
| Diag(New->getLocation(), diag::err_regparm_mismatch) |
| << NewType->getRegParmType() |
| << OldType->getRegParmType(); |
| Diag(Old->getLocation(), diag::note_previous_declaration); |
| return true; |
| } |
| |
| NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); |
| RequiresAdjustment = true; |
| } |
| |
| if (RequiresAdjustment) { |
| NewType = Context.adjustFunctionType(NewType, NewTypeInfo); |
| New->setType(QualType(NewType, 0)); |
| NewQType = Context.getCanonicalType(New->getType()); |
| } |
| |
| if (getLangOptions().CPlusPlus) { |
| // (C++98 13.1p2): |
| // Certain function declarations cannot be overloaded: |
| // -- Function declarations that differ only in the return type |
| // cannot be overloaded. |
| QualType OldReturnType = OldType->getResultType(); |
| QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType(); |
| QualType ResQT; |
| if (OldReturnType != NewReturnType) { |
| if (NewReturnType->isObjCObjectPointerType() |
| && OldReturnType->isObjCObjectPointerType()) |
| ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); |
| if (ResQT.isNull()) { |
| Diag(New->getLocation(), diag::err_ovl_diff_return_type); |
| Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); |
| return true; |
| } |
| else |
| NewQType = ResQT; |
| } |
| |
| const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); |
| CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); |
| if (OldMethod && NewMethod) { |
| // Preserve triviality. |
| NewMethod->setTrivial(OldMethod->isTrivial()); |
| |
| bool isFriend = NewMethod->getFriendObjectKind(); |
| |
| if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) { |
| // -- Member function declarations with the same name and the |
| // same parameter types cannot be overloaded if any of them |
| // is a static member function declaration. |
| if (OldMethod->isStatic() || NewMethod->isStatic()) { |
| Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); |
| Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); |
| return true; |
| } |
| |
| // C++ [class.mem]p1: |
| // [...] A member shall not be declared twice in the |
| // member-specification, except that a nested class or member |
| // class template can be declared and then later defined. |
| unsigned NewDiag; |
| if (isa<CXXConstructorDecl>(OldMethod)) |
| NewDiag = diag::err_constructor_redeclared; |
| else if (isa<CXXDestructorDecl>(NewMethod)) |
| NewDiag = diag::err_destructor_redeclared; |
| else if (isa<CXXConversionDecl>(NewMethod)) |
| NewDiag = diag::err_conv_function_redeclared; |
| else |
| NewDiag = diag::err_member_redeclared; |
| |
| Diag(New->getLocation(), NewDiag); |
| Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); |
| |
| // Complain if this is an explicit declaration of a special |
| // member that was initially declared implicitly. |
| // |
| // As an exception, it's okay to befriend such methods in order |
| // to permit the implicit constructor/destructor/operator calls. |
| } else if (OldMethod->isImplicit()) { |
| if (isFriend) { |
| NewMethod->setImplicit(); |
| } else { |
| Diag(NewMethod->getLocation(), |
| diag::err_definition_of_implicitly_declared_member) |
| << New << getSpecialMember(OldMethod); |
| return true; |
| } |
| } |
| } |
| |
| // (C++98 8.3.5p3): |
| // All declarations for a function shall agree exactly in both the |
| // return type and the parameter-type-list. |
| // We also want to respect all the extended bits except noreturn. |
| |
| // noreturn should now match unless the old type info didn't have it. |
| QualType OldQTypeForComparison = OldQType; |
| if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { |
| assert(OldQType == QualType(OldType, 0)); |
| const FunctionType *OldTypeForComparison |
| = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); |
| OldQTypeForComparison = QualType(OldTypeForComparison, 0); |
| assert(OldQTypeForComparison.isCanonical()); |
| } |
| |
| if (OldQTypeForComparison == NewQType) |
| return MergeCompatibleFunctionDecls(New, Old); |
| |
| // Fall through for conflicting redeclarations and redefinitions. |
| } |
| |
| // C: Function types need to be compatible, not identical. This handles |
| // duplicate function decls like "void f(int); void f(enum X);" properly. |
| if (!getLangOptions().CPlusPlus && |
| Context.typesAreCompatible(OldQType, NewQType)) { |
| const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); |
| const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); |
| const FunctionProtoType *OldProto = 0; |
| if (isa<FunctionNoProtoType>(NewFuncType) && |
| (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { |
| // The old declaration provided a function prototype, but the |
| // new declaration does not. Merge in the prototype. |
| assert(!OldProto->hasExceptionSpec() && "Exception spec in C"); |
| llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(), |
| OldProto->arg_type_end()); |
| NewQType = Context.getFunctionType(NewFuncType->getResultType(), |
| ParamTypes.data(), ParamTypes.size(), |
| OldProto->getExtProtoInfo()); |
| New->setType(NewQType); |
| New->setHasInheritedPrototype(); |
| |
| // Synthesize a parameter for each argument type. |
| llvm::SmallVector<ParmVarDecl*, 16> Params; |
| for (FunctionProtoType::arg_type_iterator |
| ParamType = OldProto->arg_type_begin(), |
| ParamEnd = OldProto->arg_type_end(); |
| ParamType != ParamEnd; ++ParamType) { |
| ParmVarDecl *Param = ParmVarDecl::Create(Context, New, |
| SourceLocation(), 0, |
| *ParamType, /*TInfo=*/0, |
| SC_None, SC_None, |
| 0); |
| Param->setImplicit(); |
| Params.push_back(Param); |
| } |
| |
| New->setParams(Params.data(), Params.size()); |
| } |
| |
| return MergeCompatibleFunctionDecls(New, Old); |
| } |
| |
| // GNU C permits a K&R definition to follow a prototype declaration |
| // if the declared types of the parameters in the K&R definition |
| // match the types in the prototype declaration, even when the |
| // promoted types of the parameters from the K&R definition differ |
| // from the types in the prototype. GCC then keeps the types from |
| // the prototype. |
| // |
| // If a variadic prototype is followed by a non-variadic K&R definition, |
| // the K&R definition becomes variadic. This is sort of an edge case, but |
| // it's legal per the standard depending on how you read C99 6.7.5.3p15 and |
| // C99 6.9.1p8. |
| if (!getLangOptions().CPlusPlus && |
| Old->hasPrototype() && !New->hasPrototype() && |
| New->getType()->getAs<FunctionProtoType>() && |
| Old->getNumParams() == New->getNumParams()) { |
| llvm::SmallVector<QualType, 16> ArgTypes; |
| llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings; |
| const FunctionProtoType *OldProto |
| = Old->getType()->getAs<FunctionProtoType>(); |
| const FunctionProtoType *NewProto |
| = New->getType()->getAs<FunctionProtoType>(); |
| |
| // Determine whether this is the GNU C extension. |
| QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(), |
| NewProto->getResultType()); |
| bool LooseCompatible = !MergedReturn.isNull(); |
| for (unsigned Idx = 0, End = Old->getNumParams(); |
| LooseCompatible && Idx != End; ++Idx) { |
| ParmVarDecl *OldParm = Old->getParamDecl(Idx); |
| ParmVarDecl *NewParm = New->getParamDecl(Idx); |
| if (Context.typesAreCompatible(OldParm->getType(), |
| NewProto->getArgType(Idx))) { |
| ArgTypes.push_back(NewParm->getType()); |
| } else if (Context.typesAreCompatible(OldParm->getType(), |
| NewParm->getType(), |
| /*CompareUnqualified=*/true)) { |
| GNUCompatibleParamWarning Warn |
| = { OldParm, NewParm, NewProto->getArgType(Idx) }; |
| Warnings.push_back(Warn); |
| ArgTypes.push_back(NewParm->getType()); |
| } else |
| LooseCompatible = false; |
| } |
| |
| if (LooseCompatible) { |
| for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { |
| Diag(Warnings[Warn].NewParm->getLocation(), |
| diag::ext_param_promoted_not_compatible_with_prototype) |
| << Warnings[Warn].PromotedType |
| << Warnings[Warn].OldParm->getType(); |
| if (Warnings[Warn].OldParm->getLocation().isValid()) |
| Diag(Warnings[Warn].OldParm->getLocation(), |
| diag::note_previous_declaration); |
| } |
| |
| New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0], |
| ArgTypes.size(), |
| OldProto->getExtProtoInfo())); |
| return MergeCompatibleFunctionDecls(New, Old); |
| } |
| |
| // Fall through to diagnose conflicting types. |
| } |
| |
| // A function that has already been declared has been redeclared or defined |
| // with a different type- show appropriate diagnostic |
| if (unsigned BuiltinID = Old->getBuiltinID()) { |
| // The user has declared a builtin function with an incompatible |
| // signature. |
| if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { |
| // The function the user is redeclaring is a library-defined |
| // function like 'malloc' or 'printf'. Warn about the |
| // redeclaration, then pretend that we don't know about this |
| // library built-in. |
| Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; |
| Diag(Old->getLocation(), diag::note_previous_builtin_declaration) |
| << Old << Old->getType(); |
| New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin); |
| Old->setInvalidDecl(); |
| return false; |
| } |
| |
| PrevDiag = diag::note_previous_builtin_declaration; |
| } |
| |
| Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); |
| Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); |
| return true; |
| } |
| |
| /// \brief Completes the merge of two function declarations that are |
| /// known to be compatible. |
| /// |
| /// This routine handles the merging of attributes and other |
| /// properties of function declarations form the old declaration to |
| /// the new declaration, once we know that New is in fact a |
| /// redeclaration of Old. |
| /// |
| /// \returns false |
| bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) { |
| // Merge the attributes |
| MergeDeclAttributes(New, Old, Context); |
| |
| // Merge the storage class. |
| if (Old->getStorageClass() != SC_Extern && |
| Old->getStorageClass() != SC_None) |
| New->setStorageClass(Old->getStorageClass()); |
| |
| // Merge "pure" flag. |
| if (Old->isPure()) |
| New->setPure(); |
| |
| // Merge the "deleted" flag. |
| if (Old->isDeleted()) |
| New->setDeleted(); |
| |
| if (getLangOptions().CPlusPlus) |
| return MergeCXXFunctionDecl(New, Old); |
| |
| return false; |
| } |
| |
| /// MergeVarDecl - We just parsed a variable 'New' which has the same name |
| /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
| /// situation, merging decls or emitting diagnostics as appropriate. |
| /// |
| /// Tentative definition rules (C99 6.9.2p2) are checked by |
| /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative |
| /// definitions here, since the initializer hasn't been attached. |
| /// |
| void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { |
| // If the new decl is already invalid, don't do any other checking. |
| if (New->isInvalidDecl()) |
| return; |
| |
| // Verify the old decl was also a variable. |
| VarDecl *Old = 0; |
| if (!Previous.isSingleResult() || |
| !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind) |
| << New->getDeclName(); |
| Diag(Previous.getRepresentativeDecl()->getLocation(), |
| diag::note_previous_definition); |
| return New->setInvalidDecl(); |
| } |
| |
| // C++ [class.mem]p1: |
| // A member shall not be declared twice in the member-specification [...] |
| // |
| // Here, we need only consider static data members. |
| if (Old->isStaticDataMember() && !New->isOutOfLine()) { |
| Diag(New->getLocation(), diag::err_duplicate_member) |
| << New->getIdentifier(); |
| Diag(Old->getLocation(), diag::note_previous_declaration); |
| New->setInvalidDecl(); |
| } |
| |
| MergeDeclAttributes(New, Old, Context); |
| |
| // Merge the types |
| QualType MergedT; |
| if (getLangOptions().CPlusPlus) { |
| if (Context.hasSameType(New->getType(), Old->getType())) |
| MergedT = New->getType(); |
| // C++ [basic.link]p10: |
| // [...] the types specified by all declarations referring to a given |
| // object or function shall be identical, except that declarations for an |
| // array object can specify array types that differ by the presence or |
| // absence of a major array bound (8.3.4). |
| else if (Old->getType()->isIncompleteArrayType() && |
| New->getType()->isArrayType()) { |
| CanQual<ArrayType> OldArray |
| = Context.getCanonicalType(Old->getType())->getAs<ArrayType>(); |
| CanQual<ArrayType> NewArray |
| = Context.getCanonicalType(New->getType())->getAs<ArrayType>(); |
| if (OldArray->getElementType() == NewArray->getElementType()) |
| MergedT = New->getType(); |
| } else if (Old->getType()->isArrayType() && |
| New->getType()->isIncompleteArrayType()) { |
| CanQual<ArrayType> OldArray |
| = Context.getCanonicalType(Old->getType())->getAs<ArrayType>(); |
| CanQual<ArrayType> NewArray |
| = Context.getCanonicalType(New->getType())->getAs<ArrayType>(); |
| if (OldArray->getElementType() == NewArray->getElementType()) |
| MergedT = Old->getType(); |
| } else if (New->getType()->isObjCObjectPointerType() |
| && Old->getType()->isObjCObjectPointerType()) { |
| MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType()); |
| } |
| } else { |
| MergedT = Context.mergeTypes(New->getType(), Old->getType()); |
| } |
| if (MergedT.isNull()) { |
| Diag(New->getLocation(), diag::err_redefinition_different_type) |
| << New->getDeclName(); |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| return New->setInvalidDecl(); |
| } |
| New->setType(MergedT); |
| |
| // C99 6.2.2p4: Check if we have a static decl followed by a non-static. |
| if (New->getStorageClass() == SC_Static && |
| (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) { |
| Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName(); |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| return New->setInvalidDecl(); |
| } |
| // C99 6.2.2p4: |
| // For an identifier declared with the storage-class specifier |
| // extern in a scope in which a prior declaration of that |
| // identifier is visible,23) if the prior declaration specifies |
| // internal or external linkage, the linkage of the identifier at |
| // the later declaration is the same as the linkage specified at |
| // the prior declaration. If no prior declaration is visible, or |
| // if the prior declaration specifies no linkage, then the |
| // identifier has external linkage. |
| if (New->hasExternalStorage() && Old->hasLinkage()) |
| /* Okay */; |
| else if (New->getStorageClass() != SC_Static && |
| Old->getStorageClass() == SC_Static) { |
| Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| return New->setInvalidDecl(); |
| } |
| |
| // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. |
| |
| // FIXME: The test for external storage here seems wrong? We still |
| // need to check for mismatches. |
| if (!New->hasExternalStorage() && !New->isFileVarDecl() && |
| // Don't complain about out-of-line definitions of static members. |
| !(Old->getLexicalDeclContext()->isRecord() && |
| !New->getLexicalDeclContext()->isRecord())) { |
| Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| return New->setInvalidDecl(); |
| } |
| |
| if (New->isThreadSpecified() && !Old->isThreadSpecified()) { |
| Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) { |
| Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| } |
| |
| // C++ doesn't have tentative definitions, so go right ahead and check here. |
| const VarDecl *Def; |
| if (getLangOptions().CPlusPlus && |
| New->isThisDeclarationADefinition() == VarDecl::Definition && |
| (Def = Old->getDefinition())) { |
| Diag(New->getLocation(), diag::err_redefinition) |
| << New->getDeclName(); |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| New->setInvalidDecl(); |
| return; |
| } |
| // c99 6.2.2 P4. |
| // For an identifier declared with the storage-class specifier extern in a |
| // scope in which a prior declaration of that identifier is visible, if |
| // the prior declaration specifies internal or external linkage, the linkage |
| // of the identifier at the later declaration is the same as the linkage |
| // specified at the prior declaration. |
| // FIXME. revisit this code. |
| if (New->hasExternalStorage() && |
| Old->getLinkage() == InternalLinkage && |
| New->getDeclContext() == Old->getDeclContext()) |
| New->setStorageClass(Old->getStorageClass()); |
| |
| // Keep a chain of previous declarations. |
| New->setPreviousDeclaration(Old); |
| |
| // Inherit access appropriately. |
| New->setAccess(Old->getAccess()); |
| } |
| |
| /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with |
| /// no declarator (e.g. "struct foo;") is parsed. |
| Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, |
| DeclSpec &DS) { |
| // FIXME: Error on inline/virtual/explicit |
| // FIXME: Warn on useless __thread |
| // FIXME: Warn on useless const/volatile |
| // FIXME: Warn on useless static/extern/typedef/private_extern/mutable |
| // FIXME: Warn on useless attributes |
| Decl *TagD = 0; |
| TagDecl *Tag = 0; |
| if (DS.getTypeSpecType() == DeclSpec::TST_class || |
| DS.getTypeSpecType() == DeclSpec::TST_struct || |
| DS.getTypeSpecType() == DeclSpec::TST_union || |
| DS.getTypeSpecType() == DeclSpec::TST_enum) { |
| TagD = DS.getRepAsDecl(); |
| |
| if (!TagD) // We probably had an error |
| return 0; |
| |
| // Note that the above type specs guarantee that the |
| // type rep is a Decl, whereas in many of the others |
| // it's a Type. |
| Tag = dyn_cast<TagDecl>(TagD); |
| } |
| |
| if (unsigned TypeQuals = DS.getTypeQualifiers()) { |
| // Enforce C99 6.7.3p2: "Types other than pointer types derived from object |
| // or incomplete types shall not be restrict-qualified." |
| if (TypeQuals & DeclSpec::TQ_restrict) |
| Diag(DS.getRestrictSpecLoc(), |
| diag::err_typecheck_invalid_restrict_not_pointer_noarg) |
| << DS.getSourceRange(); |
| } |
| |
| if (DS.isFriendSpecified()) { |
| // If we're dealing with a decl but not a TagDecl, assume that |
| // whatever routines created it handled the friendship aspect. |
| if (TagD && !Tag) |
| return 0; |
| return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0)); |
| } |
| |
| if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { |
| ProcessDeclAttributeList(S, Record, DS.getAttributes().getList()); |
| |
| if (!Record->getDeclName() && Record->isDefinition() && |
| DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { |
| if (getLangOptions().CPlusPlus || |
| Record->getDeclContext()->isRecord()) |
| return BuildAnonymousStructOrUnion(S, DS, AS, Record); |
| |
| Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators) |
| << DS.getSourceRange(); |
| } |
| } |
| |
| // Check for Microsoft C extension: anonymous struct. |
| if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus && |
| CurContext->isRecord() && |
| DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { |
| // Handle 2 kinds of anonymous struct: |
| // struct STRUCT; |
| // and |
| // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. |
| RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag); |
| if ((Record && Record->getDeclName() && !Record->isDefinition()) || |
| (DS.getTypeSpecType() == DeclSpec::TST_typename && |
| DS.getRepAsType().get()->isStructureType())) { |
| Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct) |
| << DS.getSourceRange(); |
| return BuildMicrosoftCAnonymousStruct(S, DS, Record); |
| } |
| } |
| |
| if (getLangOptions().CPlusPlus && |
| DS.getStorageClassSpec() != DeclSpec::SCS_typedef) |
| if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) |
| if (Enum->enumerator_begin() == Enum->enumerator_end() && |
| !Enum->getIdentifier() && !Enum->isInvalidDecl()) |
| Diag(Enum->getLocation(), diag::ext_no_declarators) |
| << DS.getSourceRange(); |
| |
| if (!DS.isMissingDeclaratorOk() && |
| DS.getTypeSpecType() != DeclSpec::TST_error) { |
| // Warn about typedefs of enums without names, since this is an |
| // extension in both Microsoft and GNU. |
| if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef && |
| Tag && isa<EnumDecl>(Tag)) { |
| Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name) |
| << DS.getSourceRange(); |
| return Tag; |
| } |
| |
| Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators) |
| << DS.getSourceRange(); |
| } |
| |
| return TagD; |
| } |
| |
| /// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec. |
| /// builds a statement for it and returns it so it is evaluated. |
| StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) { |
| StmtResult R; |
| if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) { |
| Expr *Exp = DS.getRepAsExpr(); |
| QualType Ty = Exp->getType(); |
| if (Ty->isPointerType()) { |
| do |
| Ty = Ty->getAs<PointerType>()->getPointeeType(); |
| while (Ty->isPointerType()); |
| } |
| if (Ty->isVariableArrayType()) { |
| R = ActOnExprStmt(MakeFullExpr(Exp)); |
| } |
| } |
| return R; |
| } |
| |
| /// We are trying to inject an anonymous member into the given scope; |
| /// check if there's an existing declaration that can't be overloaded. |
| /// |
| /// \return true if this is a forbidden redeclaration |
| static bool CheckAnonMemberRedeclaration(Sema &SemaRef, |
| Scope *S, |
| DeclContext *Owner, |
| DeclarationName Name, |
| SourceLocation NameLoc, |
| unsigned diagnostic) { |
| LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, |
| Sema::ForRedeclaration); |
| if (!SemaRef.LookupName(R, S)) return false; |
| |
| if (R.getAsSingle<TagDecl>()) |
| return false; |
| |
| // Pick a representative declaration. |
| NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); |
| assert(PrevDecl && "Expected a non-null Decl"); |
| |
| if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) |
| return false; |
| |
| SemaRef.Diag(NameLoc, diagnostic) << Name; |
| SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
| |
| return true; |
| } |
| |
| /// InjectAnonymousStructOrUnionMembers - Inject the members of the |
| /// anonymous struct or union AnonRecord into the owning context Owner |
| /// and scope S. This routine will be invoked just after we realize |
| /// that an unnamed union or struct is actually an anonymous union or |
| /// struct, e.g., |
| /// |
| /// @code |
| /// union { |
| /// int i; |
| /// float f; |
| /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and |
| /// // f into the surrounding scope.x |
| /// @endcode |
| /// |
| /// This routine is recursive, injecting the names of nested anonymous |
| /// structs/unions into the owning context and scope as well. |
| static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, |
| DeclContext *Owner, |
| RecordDecl *AnonRecord, |
| AccessSpecifier AS, |
| llvm::SmallVector<NamedDecl*, 2> &Chaining, |
| bool MSAnonStruct) { |
| unsigned diagKind |
| = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl |
| : diag::err_anonymous_struct_member_redecl; |
| |
| bool Invalid = false; |
| |
| // Look every FieldDecl and IndirectFieldDecl with a name. |
| for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(), |
| DEnd = AnonRecord->decls_end(); |
| D != DEnd; ++D) { |
| if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) && |
| cast<NamedDecl>(*D)->getDeclName()) { |
| ValueDecl *VD = cast<ValueDecl>(*D); |
| if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), |
| VD->getLocation(), diagKind)) { |
| // C++ [class.union]p2: |
| // The names of the members of an anonymous union shall be |
| // distinct from the names of any other entity in the |
| // scope in which the anonymous union is declared. |
| Invalid = true; |
| } else { |
| // C++ [class.union]p2: |
| // For the purpose of name lookup, after the anonymous union |
| // definition, the members of the anonymous union are |
| // considered to have been defined in the scope in which the |
| // anonymous union is declared. |
| unsigned OldChainingSize = Chaining.size(); |
| if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) |
| for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(), |
| PE = IF->chain_end(); PI != PE; ++PI) |
| Chaining.push_back(*PI); |
| else |
| Chaining.push_back(VD); |
| |
| assert(Chaining.size() >= 2); |
| NamedDecl **NamedChain = |
| new (SemaRef.Context)NamedDecl*[Chaining.size()]; |
| for (unsigned i = 0; i < Chaining.size(); i++) |
| NamedChain[i] = Chaining[i]; |
| |
| IndirectFieldDecl* IndirectField = |
| IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(), |
| VD->getIdentifier(), VD->getType(), |
| NamedChain, Chaining.size()); |
| |
| IndirectField->setAccess(AS); |
| IndirectField->setImplicit(); |
| SemaRef.PushOnScopeChains(IndirectField, S); |
| |
| // That includes picking up the appropriate access specifier. |
| if (AS != AS_none) IndirectField->setAccess(AS); |
| |
| Chaining.resize(OldChainingSize); |
| } |
| } |
| } |
| |
| return Invalid; |
| } |
| |
| /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to |
| /// a VarDecl::StorageClass. Any error reporting is up to the caller: |
| /// illegal input values are mapped to SC_None. |
| static StorageClass |
| StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) { |
| switch (StorageClassSpec) { |
| case DeclSpec::SCS_unspecified: return SC_None; |
| case DeclSpec::SCS_extern: return SC_Extern; |
| case DeclSpec::SCS_static: return SC_Static; |
| case DeclSpec::SCS_auto: return SC_Auto; |
| case DeclSpec::SCS_register: return SC_Register; |
| case DeclSpec::SCS_private_extern: return SC_PrivateExtern; |
| // Illegal SCSs map to None: error reporting is up to the caller. |
| case DeclSpec::SCS_mutable: // Fall through. |
| case DeclSpec::SCS_typedef: return SC_None; |
| } |
| llvm_unreachable("unknown storage class specifier"); |
| } |
| |
| /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to |
| /// a StorageClass. Any error reporting is up to the caller: |
| /// illegal input values are mapped to SC_None. |
| static StorageClass |
| StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) { |
| switch (StorageClassSpec) { |
| case DeclSpec::SCS_unspecified: return SC_None; |
| case DeclSpec::SCS_extern: return SC_Extern; |
| case DeclSpec::SCS_static: return SC_Static; |
| case DeclSpec::SCS_private_extern: return SC_PrivateExtern; |
| // Illegal SCSs map to None: error reporting is up to the caller. |
| case DeclSpec::SCS_auto: // Fall through. |
| case DeclSpec::SCS_mutable: // Fall through. |
| case DeclSpec::SCS_register: // Fall through. |
| case DeclSpec::SCS_typedef: return SC_None; |
| } |
| llvm_unreachable("unknown storage class specifier"); |
| } |
| |
| /// BuildAnonymousStructOrUnion - Handle the declaration of an |
| /// anonymous structure or union. Anonymous unions are a C++ feature |
| /// (C++ [class.union]) and a GNU C extension; anonymous structures |
| /// are a GNU C and GNU C++ extension. |
| Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, |
| AccessSpecifier AS, |
| RecordDecl *Record) { |
| DeclContext *Owner = Record->getDeclContext(); |
| |
| // Diagnose whether this anonymous struct/union is an extension. |
| if (Record->isUnion() && !getLangOptions().CPlusPlus) |
| Diag(Record->getLocation(), diag::ext_anonymous_union); |
| else if (!Record->isUnion()) |
| Diag(Record->getLocation(), diag::ext_anonymous_struct); |
| |
| // C and C++ require different kinds of checks for anonymous |
| // structs/unions. |
| bool Invalid = false; |
| if (getLangOptions().CPlusPlus) { |
| const char* PrevSpec = 0; |
| unsigned DiagID; |
| // C++ [class.union]p3: |
| // Anonymous unions declared in a named namespace or in the |
| // global namespace shall be declared static. |
| if (DS.getStorageClassSpec() != DeclSpec::SCS_static && |
| (isa<TranslationUnitDecl>(Owner) || |
| (isa<NamespaceDecl>(Owner) && |
| cast<NamespaceDecl>(Owner)->getDeclName()))) { |
| Diag(Record->getLocation(), diag::err_anonymous_union_not_static); |
| Invalid = true; |
| |
| // Recover by adding 'static'. |
| DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), |
| PrevSpec, DiagID); |
| } |
| // C++ [class.union]p3: |
| // A storage class is not allowed in a declaration of an |
| // anonymous union in a class scope. |
| else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && |
| isa<RecordDecl>(Owner)) { |
| Diag(DS.getStorageClassSpecLoc(), |
| diag::err_anonymous_union_with_storage_spec); |
| Invalid = true; |
| |
| // Recover by removing the storage specifier. |
| DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(), |
| PrevSpec, DiagID); |
| } |
| |
| // C++ [class.union]p2: |
| // The member-specification of an anonymous union shall only |
| // define non-static data members. [Note: nested types and |
| // functions cannot be declared within an anonymous union. ] |
| for (DeclContext::decl_iterator Mem = Record->decls_begin(), |
| MemEnd = Record->decls_end(); |
| Mem != MemEnd; ++Mem) { |
| if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) { |
| // C++ [class.union]p3: |
| // An anonymous union shall not have private or protected |
| // members (clause 11). |
| assert(FD->getAccess() != AS_none); |
| if (FD->getAccess() != AS_public) { |
| Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) |
| << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected); |
| Invalid = true; |
| } |
| |
| if (CheckNontrivialField(FD)) |
| Invalid = true; |
| } else if ((*Mem)->isImplicit()) { |
| // Any implicit members are fine. |
| } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) { |
| // This is a type that showed up in an |
| // elaborated-type-specifier inside the anonymous struct or |
| // union, but which actually declares a type outside of the |
| // anonymous struct or union. It's okay. |
| } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) { |
| if (!MemRecord->isAnonymousStructOrUnion() && |
| MemRecord->getDeclName()) { |
| // Visual C++ allows type definition in anonymous struct or union. |
| if (getLangOptions().Microsoft) |
| Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) |
| << (int)Record->isUnion(); |
| else { |
| // This is a nested type declaration. |
| Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) |
| << (int)Record->isUnion(); |
| Invalid = true; |
| } |
| } |
| } else if (isa<AccessSpecDecl>(*Mem)) { |
| // Any access specifier is fine. |
| } else { |
| // We have something that isn't a non-static data |
| // member. Complain about it. |
| unsigned DK = diag::err_anonymous_record_bad_member; |
| if (isa<TypeDecl>(*Mem)) |
| DK = diag::err_anonymous_record_with_type; |
| else if (isa<FunctionDecl>(*Mem)) |
| DK = diag::err_anonymous_record_with_function; |
| else if (isa<VarDecl>(*Mem)) |
| DK = diag::err_anonymous_record_with_static; |
| |
| // Visual C++ allows type definition in anonymous struct or union. |
| if (getLangOptions().Microsoft && |
| DK == diag::err_anonymous_record_with_type) |
| Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type) |
| << (int)Record->isUnion(); |
| else { |
| Diag((*Mem)->getLocation(), DK) |
| << (int)Record->isUnion(); |
| Invalid = true; |
| } |
| } |
| } |
| } |
| |
| if (!Record->isUnion() && !Owner->isRecord()) { |
| Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) |
| << (int)getLangOptions().CPlusPlus; |
| Invalid = true; |
| } |
| |
| // Mock up a declarator. |
| Declarator Dc(DS, Declarator::TypeNameContext); |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); |
| assert(TInfo && "couldn't build declarator info for anonymous struct/union"); |
| |
| // Create a declaration for this anonymous struct/union. |
| NamedDecl *Anon = 0; |
| if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { |
| Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(), |
| /*IdentifierInfo=*/0, |
| Context.getTypeDeclType(Record), |
| TInfo, |
| /*BitWidth=*/0, /*Mutable=*/false); |
| Anon->setAccess(AS); |
| if (getLangOptions().CPlusPlus) |
| FieldCollector->Add(cast<FieldDecl>(Anon)); |
| } else { |
| DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); |
| assert(SCSpec != DeclSpec::SCS_typedef && |
| "Parser allowed 'typedef' as storage class VarDecl."); |
| VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec); |
| if (SCSpec == DeclSpec::SCS_mutable) { |
| // mutable can only appear on non-static class members, so it's always |
| // an error here |
| Diag(Record->getLocation(), diag::err_mutable_nonmember); |
| Invalid = true; |
| SC = SC_None; |
| } |
| SCSpec = DS.getStorageClassSpecAsWritten(); |
| VarDecl::StorageClass SCAsWritten |
| = StorageClassSpecToVarDeclStorageClass(SCSpec); |
| |
| Anon = VarDecl::Create(Context, Owner, Record->getLocation(), |
| /*IdentifierInfo=*/0, |
| Context.getTypeDeclType(Record), |
| TInfo, SC, SCAsWritten); |
| } |
| Anon->setImplicit(); |
| |
| // Add the anonymous struct/union object to the current |
| // context. We'll be referencing this object when we refer to one of |
| // its members. |
| Owner->addDecl(Anon); |
| |
| // Inject the members of the anonymous struct/union into the owning |
| // context and into the identifier resolver chain for name lookup |
| // purposes. |
| llvm::SmallVector<NamedDecl*, 2> Chain; |
| Chain.push_back(Anon); |
| |
| if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, |
| Chain, false)) |
| Invalid = true; |
| |
| // Mark this as an anonymous struct/union type. Note that we do not |
| // do this until after we have already checked and injected the |
| // members of this anonymous struct/union type, because otherwise |
| // the members could be injected twice: once by DeclContext when it |
| // builds its lookup table, and once by |
| // InjectAnonymousStructOrUnionMembers. |
| Record->setAnonymousStructOrUnion(true); |
| |
| if (Invalid) |
| Anon->setInvalidDecl(); |
| |
| return Anon; |
| } |
| |
| /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an |
| /// Microsoft C anonymous structure. |
| /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx |
| /// Example: |
| /// |
| /// struct A { int a; }; |
| /// struct B { struct A; int b; }; |
| /// |
| /// void foo() { |
| /// B var; |
| /// var.a = 3; |
| /// } |
| /// |
| Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, |
| RecordDecl *Record) { |
| |
| // If there is no Record, get the record via the typedef. |
| if (!Record) |
| Record = DS.getRepAsType().get()->getAsStructureType()->getDecl(); |
| |
| // Mock up a declarator. |
| Declarator Dc(DS, Declarator::TypeNameContext); |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); |
| assert(TInfo && "couldn't build declarator info for anonymous struct"); |
| |
| // Create a declaration for this anonymous struct. |
| NamedDecl* Anon = FieldDecl::Create(Context, |
| cast<RecordDecl>(CurContext), |
| DS.getSourceRange().getBegin(), |
| /*IdentifierInfo=*/0, |
| Context.getTypeDeclType(Record), |
| TInfo, |
| /*BitWidth=*/0, /*Mutable=*/false); |
| Anon->setImplicit(); |
| |
| // Add the anonymous struct object to the current context. |
| CurContext->addDecl(Anon); |
| |
| // Inject the members of the anonymous struct into the current |
| // context and into the identifier resolver chain for name lookup |
| // purposes. |
| llvm::SmallVector<NamedDecl*, 2> Chain; |
| Chain.push_back(Anon); |
| |
| if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext, |
| Record->getDefinition(), |
| AS_none, Chain, true)) |
| Anon->setInvalidDecl(); |
| |
| return Anon; |
| } |
| |
| /// GetNameForDeclarator - Determine the full declaration name for the |
| /// given Declarator. |
| DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { |
| return GetNameFromUnqualifiedId(D.getName()); |
| } |
| |
| /// \brief Retrieves the declaration name from a parsed unqualified-id. |
| DeclarationNameInfo |
| Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { |
| DeclarationNameInfo NameInfo; |
| NameInfo.setLoc(Name.StartLocation); |
| |
| switch (Name.getKind()) { |
| |
| case UnqualifiedId::IK_Identifier: |
| NameInfo.setName(Name.Identifier); |
| NameInfo.setLoc(Name.StartLocation); |
| return NameInfo; |
| |
| case UnqualifiedId::IK_OperatorFunctionId: |
| NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( |
| Name.OperatorFunctionId.Operator)); |
| NameInfo.setLoc(Name.StartLocation); |
| NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc |
| = Name.OperatorFunctionId.SymbolLocations[0]; |
| NameInfo.getInfo().CXXOperatorName.EndOpNameLoc |
| = Name.EndLocation.getRawEncoding(); |
| return NameInfo; |
| |
| case UnqualifiedId::IK_LiteralOperatorId: |
| NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( |
| Name.Identifier)); |
| NameInfo.setLoc(Name.StartLocation); |
| NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); |
| return NameInfo; |
| |
| case UnqualifiedId::IK_ConversionFunctionId: { |
| TypeSourceInfo *TInfo; |
| QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); |
| if (Ty.isNull()) |
| return DeclarationNameInfo(); |
| NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( |
| Context.getCanonicalType(Ty))); |
| NameInfo.setLoc(Name.StartLocation); |
| NameInfo.setNamedTypeInfo(TInfo); |
| return NameInfo; |
| } |
| |
| case UnqualifiedId::IK_ConstructorName: { |
| TypeSourceInfo *TInfo; |
| QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); |
| if (Ty.isNull()) |
| return DeclarationNameInfo(); |
| NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( |
| Context.getCanonicalType(Ty))); |
| NameInfo.setLoc(Name.StartLocation); |
| NameInfo.setNamedTypeInfo(TInfo); |
| return NameInfo; |
| } |
| |
| case UnqualifiedId::IK_ConstructorTemplateId: { |
| // In well-formed code, we can only have a constructor |
| // template-id that refers to the current context, so go there |
| // to find the actual type being constructed. |
| CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); |
| if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) |
| return DeclarationNameInfo(); |
| |
| // Determine the type of the class being constructed. |
| QualType CurClassType = Context.getTypeDeclType(CurClass); |
| |
| // FIXME: Check two things: that the template-id names the same type as |
| // CurClassType, and that the template-id does not occur when the name |
| // was qualified. |
| |
| NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( |
| Context.getCanonicalType(CurClassType))); |
| NameInfo.setLoc(Name.StartLocation); |
| // FIXME: should we retrieve TypeSourceInfo? |
| NameInfo.setNamedTypeInfo(0); |
| return NameInfo; |
| } |
| |
| case UnqualifiedId::IK_DestructorName: { |
| TypeSourceInfo *TInfo; |
| QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); |
| if (Ty.isNull()) |
| return DeclarationNameInfo(); |
| NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( |
| Context.getCanonicalType(Ty))); |
| NameInfo.setLoc(Name.StartLocation); |
| NameInfo.setNamedTypeInfo(TInfo); |
| return NameInfo; |
| } |
| |
| case UnqualifiedId::IK_TemplateId: { |
| TemplateName TName = Name.TemplateId->Template.get(); |
| SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; |
| return Context.getNameForTemplate(TName, TNameLoc); |
| } |
| |
| } // switch (Name.getKind()) |
| |
| assert(false && "Unknown name kind"); |
| return DeclarationNameInfo(); |
| } |
| |
| /// isNearlyMatchingFunction - Determine whether the C++ functions |
| /// Declaration and Definition are "nearly" matching. This heuristic |
| /// is used to improve diagnostics in the case where an out-of-line |
| /// function definition doesn't match any declaration within |
| /// the class or namespace. |
| static bool isNearlyMatchingFunction(ASTContext &Context, |
| FunctionDecl *Declaration, |
| FunctionDecl *Definition) { |
| if (Declaration->param_size() != Definition->param_size()) |
| return false; |
| for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { |
| QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); |
| QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); |
| |
| if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(), |
| DefParamTy.getNonReferenceType())) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// NeedsRebuildingInCurrentInstantiation - Checks whether the given |
| /// declarator needs to be rebuilt in the current instantiation. |
| /// Any bits of declarator which appear before the name are valid for |
| /// consideration here. That's specifically the type in the decl spec |
| /// and the base type in any member-pointer chunks. |
| static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, |
| DeclarationName Name) { |
| // The types we specifically need to rebuild are: |
| // - typenames, typeofs, and decltypes |
| // - types which will become injected class names |
| // Of course, we also need to rebuild any type referencing such a |
| // type. It's safest to just say "dependent", but we call out a |
| // few cases here. |
| |
| DeclSpec &DS = D.getMutableDeclSpec(); |
| switch (DS.getTypeSpecType()) { |
| case DeclSpec::TST_typename: |
| case DeclSpec::TST_typeofType: |
| case DeclSpec::TST_decltype: { |
| // Grab the type from the parser. |
| TypeSourceInfo *TSI = 0; |
| QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); |
| if (T.isNull() || !T->isDependentType()) break; |
| |
| // Make sure there's a type source info. This isn't really much |
| // of a waste; most dependent types should have type source info |
| // attached already. |
| if (!TSI) |
| TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); |
| |
| // Rebuild the type in the current instantiation. |
| TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); |
| if (!TSI) return true; |
| |
| // Store the new type back in the decl spec. |
| ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); |
| DS.UpdateTypeRep(LocType); |
| break; |
| } |
| |
| case DeclSpec::TST_typeofExpr: { |
| Expr *E = DS.getRepAsExpr(); |
| ExprResult Result = S.RebuildExprInCurrentInstantiation(E); |
| if (Result.isInvalid()) return true; |
| DS.UpdateExprRep(Result.get()); |
| break; |
| } |
| |
| default: |
| // Nothing to do for these decl specs. |
| break; |
| } |
| |
| // It doesn't matter what order we do this in. |
| for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { |
| DeclaratorChunk &Chunk = D.getTypeObject(I); |
| |
| // The only type information in the declarator which can come |
| // before the declaration name is the base type of a member |
| // pointer. |
| if (Chunk.Kind != DeclaratorChunk::MemberPointer) |
| continue; |
| |
| // Rebuild the scope specifier in-place. |
| CXXScopeSpec &SS = Chunk.Mem.Scope(); |
| if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { |
| return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false); |
| } |
| |
| Decl *Sema::HandleDeclarator(Scope *S, Declarator &D, |
| MultiTemplateParamsArg TemplateParamLists, |
| bool IsFunctionDefinition) { |
| // TODO: consider using NameInfo for diagnostic. |
| DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
| DeclarationName Name = NameInfo.getName(); |
| |
| // All of these full declarators require an identifier. If it doesn't have |
| // one, the ParsedFreeStandingDeclSpec action should be used. |
| if (!Name) { |
| if (!D.isInvalidType()) // Reject this if we think it is valid. |
| Diag(D.getDeclSpec().getSourceRange().getBegin(), |
| diag::err_declarator_need_ident) |
| << D.getDeclSpec().getSourceRange() << D.getSourceRange(); |
| return 0; |
| } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType)) |
| return 0; |
| |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| while ((S->getFlags() & Scope::DeclScope) == 0 || |
| (S->getFlags() & Scope::TemplateParamScope) != 0) |
| S = S->getParent(); |
| |
| DeclContext *DC = CurContext; |
| if (D.getCXXScopeSpec().isInvalid()) |
| D.setInvalidType(); |
| else if (D.getCXXScopeSpec().isSet()) { |
| if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), |
| UPPC_DeclarationQualifier)) |
| return 0; |
| |
| bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); |
| DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); |
| if (!DC) { |
| // If we could not compute the declaration context, it's because the |
| // declaration context is dependent but does not refer to a class, |
| // class template, or class template partial specialization. Complain |
| // and return early, to avoid the coming semantic disaster. |
| Diag(D.getIdentifierLoc(), |
| diag::err_template_qualified_declarator_no_match) |
| << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep() |
| << D.getCXXScopeSpec().getRange(); |
| return 0; |
| } |
| |
| bool IsDependentContext = DC->isDependentContext(); |
| |
| if (!IsDependentContext && |
| RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) |
| return 0; |
| |
| if (isa<CXXRecordDecl>(DC)) { |
| if (!cast<CXXRecordDecl>(DC)->hasDefinition()) { |
| Diag(D.getIdentifierLoc(), |
| diag::err_member_def_undefined_record) |
| << Name << DC << D.getCXXScopeSpec().getRange(); |
| D.setInvalidType(); |
| } else if (isa<CXXRecordDecl>(CurContext) && |
| !D.getDeclSpec().isFriendSpecified()) { |
| // The user provided a superfluous scope specifier inside a class |
| // definition: |
| // |
| // class X { |
| // void X::f(); |
| // }; |
| if (CurContext->Equals(DC)) |
| Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification) |
| << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange()); |
| else |
| Diag(D.getIdentifierLoc(), diag::err_member_qualification) |
| << Name << D.getCXXScopeSpec().getRange(); |
| |
| // Pretend that this qualifier was not here. |
| D.getCXXScopeSpec().clear(); |
| } |
| } |
| |
| // Check whether we need to rebuild the type of the given |
| // declaration in the current instantiation. |
| if (EnteringContext && IsDependentContext && |
| TemplateParamLists.size() != 0) { |
| ContextRAII SavedContext(*this, DC); |
| if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) |
| D.setInvalidType(); |
| } |
| } |
| |
| // C++ [class.mem]p13: |
| // If T is the name of a class, then each of the following shall have a |
| // name different from T: |
| // - every static data member of class T; |
| // - every member function of class T |
| // - every member of class T that is itself a type; |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) |
| if (Record->getIdentifier() && Record->getDeclName() == Name) { |
| Diag(D.getIdentifierLoc(), diag::err_member_name_of_class) |
| << Name; |
| |
| // If this is a typedef, we'll end up spewing multiple diagnostics. |
| // Just return early; it's safer. |
| if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) |
| return 0; |
| } |
| |
| NamedDecl *New; |
| |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
| QualType R = TInfo->getType(); |
| |
| if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, |
| UPPC_DeclarationType)) |
| D.setInvalidType(); |
| |
| LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
| ForRedeclaration); |
| |
| // See if this is a redefinition of a variable in the same scope. |
| if (!D.getCXXScopeSpec().isSet()) { |
| bool IsLinkageLookup = false; |
| |
| // If the declaration we're planning to build will be a function |
| // or object with linkage, then look for another declaration with |
| // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). |
| if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) |
| /* Do nothing*/; |
| else if (R->isFunctionType()) { |
| if (CurContext->isFunctionOrMethod() || |
| D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) |
| IsLinkageLookup = true; |
| } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern) |
| IsLinkageLookup = true; |
| else if (CurContext->getRedeclContext()->isTranslationUnit() && |
| D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) |
| IsLinkageLookup = true; |
| |
| if (IsLinkageLookup) |
| Previous.clear(LookupRedeclarationWithLinkage); |
| |
| LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup); |
| } else { // Something like "int foo::x;" |
| LookupQualifiedName(Previous, DC); |
| |
| // Don't consider using declarations as previous declarations for |
| // out-of-line members. |
| RemoveUsingDecls(Previous); |
| |
| // C++ 7.3.1.2p2: |
| // Members (including explicit specializations of templates) of a named |
| // namespace can also be defined outside that namespace by explicit |
| // qualification of the name being defined, provided that the entity being |
| // defined was already declared in the namespace and the definition appears |
| // after the point of declaration in a namespace that encloses the |
| // declarations namespace. |
| // |
| // Note that we only check the context at this point. We don't yet |
| // have enough information to make sure that PrevDecl is actually |
| // the declaration we want to match. For example, given: |
| // |
| // class X { |
| // void f(); |
| // void f(float); |
| // }; |
| // |
| // void X::f(int) { } // ill-formed |
| // |
| // In this case, PrevDecl will point to the overload set |
| // containing the two f's declared in X, but neither of them |
| // matches. |
| |
| // First check whether we named the global scope. |
| if (isa<TranslationUnitDecl>(DC)) { |
| Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope) |
| << Name << D.getCXXScopeSpec().getRange(); |
| } else { |
| DeclContext *Cur = CurContext; |
| while (isa<LinkageSpecDecl>(Cur)) |
| Cur = Cur->getParent(); |
| if (!Cur->Encloses(DC)) { |
| // The qualifying scope doesn't enclose the original declaration. |
| // Emit diagnostic based on current scope. |
| SourceLocation L = D.getIdentifierLoc(); |
| SourceRange R = D.getCXXScopeSpec().getRange(); |
| if (isa<FunctionDecl>(Cur)) |
| Diag(L, diag::err_invalid_declarator_in_function) << Name << R; |
| else |
| Diag(L, diag::err_invalid_declarator_scope) |
| << Name << cast<NamedDecl>(DC) << R; |
| D.setInvalidType(); |
| } |
| } |
| } |
| |
| if (Previous.isSingleResult() && |
| Previous.getFoundDecl()->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| if (!D.isInvalidType()) |
| if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), |
| Previous.getFoundDecl())) |
| D.setInvalidType(); |
| |
| // Just pretend that we didn't see the previous declaration. |
| Previous.clear(); |
| } |
| |
| // In C++, the previous declaration we find might be a tag type |
| // (class or enum). In this case, the new declaration will hide the |
| // tag type. Note that this does does not apply if we're declaring a |
| // typedef (C++ [dcl.typedef]p4). |
| if (Previous.isSingleTagDecl() && |
| D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef) |
| Previous.clear(); |
| |
| bool Redeclaration = false; |
| if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { |
| if (TemplateParamLists.size()) { |
| Diag(D.getIdentifierLoc(), diag::err_template_typedef); |
| return 0; |
| } |
| |
| New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration); |
| } else if (R->isFunctionType()) { |
| New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous, |
| move(TemplateParamLists), |
| IsFunctionDefinition, Redeclaration); |
| } else { |
| New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous, |
| move(TemplateParamLists), |
| Redeclaration); |
| } |
| |
| if (New == 0) |
| return 0; |
| |
| // If this has an identifier and is not an invalid redeclaration or |
| // function template specialization, add it to the scope stack. |
| if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl())) |
| PushOnScopeChains(New, S); |
| |
| return New; |
| } |
| |
| /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array |
| /// types into constant array types in certain situations which would otherwise |
| /// be errors (for GCC compatibility). |
| static QualType TryToFixInvalidVariablyModifiedType(QualType T, |
| ASTContext &Context, |
| bool &SizeIsNegative, |
| llvm::APSInt &Oversized) { |
| // This method tries to turn a variable array into a constant |
| // array even when the size isn't an ICE. This is necessary |
| // for compatibility with code that depends on gcc's buggy |
| // constant expression folding, like struct {char x[(int)(char*)2];} |
| SizeIsNegative = false; |
| Oversized = 0; |
| |
| if (T->isDependentType()) |
| return QualType(); |
| |
| QualifierCollector Qs; |
| const Type *Ty = Qs.strip(T); |
| |
| if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { |
| QualType Pointee = PTy->getPointeeType(); |
| QualType FixedType = |
| TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, |
| Oversized); |
| if (FixedType.isNull()) return FixedType; |
| FixedType = Context.getPointerType(FixedType); |
| return Qs.apply(Context, FixedType); |
| } |
| if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) { |
| QualType Inner = PTy->getInnerType(); |
| QualType FixedType = |
| TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative, |
| Oversized); |
| if (FixedType.isNull()) return FixedType; |
| FixedType = Context.getParenType(FixedType); |
| return Qs.apply(Context, FixedType); |
| } |
| |
| const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); |
| if (!VLATy) |
| return QualType(); |
| // FIXME: We should probably handle this case |
| if (VLATy->getElementType()->isVariablyModifiedType()) |
| return QualType(); |
| |
| Expr::EvalResult EvalResult; |
| if (!VLATy->getSizeExpr() || |
| !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) || |
| !EvalResult.Val.isInt()) |
| return QualType(); |
| |
| // Check whether the array size is negative. |
| llvm::APSInt &Res = EvalResult.Val.getInt(); |
| if (Res.isSigned() && Res.isNegative()) { |
| SizeIsNegative = true; |
| return QualType(); |
| } |
| |
| // Check whether the array is too large to be addressed. |
| unsigned ActiveSizeBits |
| = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(), |
| Res); |
| if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { |
| Oversized = Res; |
| return QualType(); |
| } |
| |
| return Context.getConstantArrayType(VLATy->getElementType(), |
| Res, ArrayType::Normal, 0); |
| } |
| |
| /// \brief Register the given locally-scoped external C declaration so |
| /// that it can be found later for redeclarations |
| void |
| Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, |
| const LookupResult &Previous, |
| Scope *S) { |
| assert(ND->getLexicalDeclContext()->isFunctionOrMethod() && |
| "Decl is not a locally-scoped decl!"); |
| // Note that we have a locally-scoped external with this name. |
| LocallyScopedExternalDecls[ND->getDeclName()] = ND; |
| |
| if (!Previous.isSingleResult()) |
| return; |
| |
| NamedDecl *PrevDecl = Previous.getFoundDecl(); |
| |
| // If there was a previous declaration of this variable, it may be |
| // in our identifier chain. Update the identifier chain with the new |
| // declaration. |
| if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) { |
| // The previous declaration was found on the identifer resolver |
| // chain, so remove it from its scope. |
| while (S && !S->isDeclScope(PrevDecl)) |
| S = S->getParent(); |
| |
| if (S) |
| S->RemoveDecl(PrevDecl); |
| } |
| } |
| |
| /// \brief Diagnose function specifiers on a declaration of an identifier that |
| /// does not identify a function. |
| void Sema::DiagnoseFunctionSpecifiers(Declarator& D) { |
| // FIXME: We should probably indicate the identifier in question to avoid |
| // confusion for constructs like "inline int a(), b;" |
| if (D.getDeclSpec().isInlineSpecified()) |
| Diag(D.getDeclSpec().getInlineSpecLoc(), |
| diag::err_inline_non_function); |
| |
| if (D.getDeclSpec().isVirtualSpecified()) |
| Diag(D.getDeclSpec().getVirtualSpecLoc(), |
| diag::err_virtual_non_function); |
| |
| if (D.getDeclSpec().isExplicitSpecified()) |
| Diag(D.getDeclSpec().getExplicitSpecLoc(), |
| diag::err_explicit_non_function); |
| } |
| |
| NamedDecl* |
| Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, |
| QualType R, TypeSourceInfo *TInfo, |
| LookupResult &Previous, bool &Redeclaration) { |
| // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). |
| if (D.getCXXScopeSpec().isSet()) { |
| Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) |
| << D.getCXXScopeSpec().getRange(); |
| D.setInvalidType(); |
| // Pretend we didn't see the scope specifier. |
| DC = CurContext; |
| Previous.clear(); |
| } |
| |
| if (getLangOptions().CPlusPlus) { |
| // Check that there are no default arguments (C++ only). |
| CheckExtraCXXDefaultArguments(D); |
| } |
| |
| DiagnoseFunctionSpecifiers(D); |
| |
| if (D.getDeclSpec().isThreadSpecified()) |
| Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); |
| |
| if (D.getName().Kind != UnqualifiedId::IK_Identifier) { |
| Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) |
| << D.getName().getSourceRange(); |
| return 0; |
| } |
| |
| TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo); |
| if (!NewTD) return 0; |
| |
| // Handle attributes prior to checking for duplicates in MergeVarDecl |
| ProcessDeclAttributes(S, NewTD, D); |
| |
| // C99 6.7.7p2: If a typedef name specifies a variably modified type |
| // then it shall have block scope. |
| // Note that variably modified types must be fixed before merging the decl so |
| // that redeclarations will match. |
| QualType T = NewTD->getUnderlyingType(); |
| if (T->isVariablyModifiedType()) { |
| getCurFunction()->setHasBranchProtectedScope(); |
| |
| if (S->getFnParent() == 0) { |
| bool SizeIsNegative; |
| llvm::APSInt Oversized; |
| QualType FixedTy = |
| TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, |
| Oversized); |
| if (!FixedTy.isNull()) { |
| Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size); |
| NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy)); |
| } else { |
| if (SizeIsNegative) |
| Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size); |
| else if (T->isVariableArrayType()) |
| Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope); |
| else if (Oversized.getBoolValue()) |
| Diag(D.getIdentifierLoc(), diag::err_array_too_large) |
| << Oversized.toString(10); |
| else |
| Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope); |
| NewTD->setInvalidDecl(); |
| } |
| } |
| } |
| |
| // Merge the decl with the existing one if appropriate. If the decl is |
| // in an outer scope, it isn't the same thing. |
| FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false); |
| if (!Previous.empty()) { |
| Redeclaration = true; |
| MergeTypeDefDecl(NewTD, Previous); |
| } |
| |
| // If this is the C FILE type, notify the AST context. |
| if (IdentifierInfo *II = NewTD->getIdentifier()) |
| if (!NewTD->isInvalidDecl() && |
| NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { |
| if (II->isStr("FILE")) |
| Context.setFILEDecl(NewTD); |
| else if (II->isStr("jmp_buf")) |
| Context.setjmp_bufDecl(NewTD); |
| else if (II->isStr("sigjmp_buf")) |
| Context.setsigjmp_bufDecl(NewTD); |
| else if (II->isStr("__builtin_va_list")) |
| Context.setBuiltinVaListType(Context.getTypedefType(NewTD)); |
| } |
| |
| return NewTD; |
| } |
| |
| /// \brief Determines whether the given declaration is an out-of-scope |
| /// previous declaration. |
| /// |
| /// This routine should be invoked when name lookup has found a |
| /// previous declaration (PrevDecl) that is not in the scope where a |
| /// new declaration by the same name is being introduced. If the new |
| /// declaration occurs in a local scope, previous declarations with |
| /// linkage may still be considered previous declarations (C99 |
| /// 6.2.2p4-5, C++ [basic.link]p6). |
| /// |
| /// \param PrevDecl the previous declaration found by name |
| /// lookup |
| /// |
| /// \param DC the context in which the new declaration is being |
| /// declared. |
| /// |
| /// \returns true if PrevDecl is an out-of-scope previous declaration |
| /// for a new delcaration with the same name. |
| static bool |
| isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, |
| ASTContext &Context) { |
| if (!PrevDecl) |
| return false; |
| |
| if (!PrevDecl->hasLinkage()) |
| return false; |
| |
| if (Context.getLangOptions().CPlusPlus) { |
| // C++ [basic.link]p6: |
| // If there is a visible declaration of an entity with linkage |
| // having the same name and type, ignoring entities declared |
| // outside the innermost enclosing namespace scope, the block |
| // scope declaration declares that same entity and receives the |
| // linkage of the previous declaration. |
| DeclContext *OuterContext = DC->getRedeclContext(); |
| if (!OuterContext->isFunctionOrMethod()) |
| // This rule only applies to block-scope declarations. |
| return false; |
| |
| DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); |
| if (PrevOuterContext->isRecord()) |
| // We found a member function: ignore it. |
| return false; |
| |
| // Find the innermost enclosing namespace for the new and |
| // previous declarations. |
| OuterContext = OuterContext->getEnclosingNamespaceContext(); |
| PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); |
| |
| // The previous declaration is in a different namespace, so it |
| // isn't the same function. |
| if (!OuterContext->Equals(PrevOuterContext)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) { |
| CXXScopeSpec &SS = D.getCXXScopeSpec(); |
| if (!SS.isSet()) return; |
| DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), |
| SS.getRange()); |
| } |
| |
| NamedDecl* |
| Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC, |
| QualType R, TypeSourceInfo *TInfo, |
| LookupResult &Previous, |
| MultiTemplateParamsArg TemplateParamLists, |
| bool &Redeclaration) { |
| DeclarationName Name = GetNameForDeclarator(D).getName(); |
| |
| // Check that there are no default arguments (C++ only). |
| if (getLangOptions().CPlusPlus) |
| CheckExtraCXXDefaultArguments(D); |
| |
| DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); |
| assert(SCSpec != DeclSpec::SCS_typedef && |
| "Parser allowed 'typedef' as storage class VarDecl."); |
| VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec); |
| if (SCSpec == DeclSpec::SCS_mutable) { |
| // mutable can only appear on non-static class members, so it's always |
| // an error here |
| Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); |
| D.setInvalidType(); |
| SC = SC_None; |
| } |
| SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten(); |
| VarDecl::StorageClass SCAsWritten |
| = StorageClassSpecToVarDeclStorageClass(SCSpec); |
| |
| IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| if (!II) { |
| Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) |
| << Name.getAsString(); |
| return 0; |
| } |
| |
| DiagnoseFunctionSpecifiers(D); |
| |
| if (!DC->isRecord() && S->getFnParent() == 0) { |
| // C99 6.9p2: The storage-class specifiers auto and register shall not |
| // appear in the declaration specifiers in an external declaration. |
| if (SC == SC_Auto || SC == SC_Register) { |
| |
| // If this is a register variable with an asm label specified, then this |
| // is a GNU extension. |
| if (SC == SC_Register && D.getAsmLabel()) |
| Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register); |
| else |
| Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); |
| D.setInvalidType(); |
| } |
| } |
| |
| bool isExplicitSpecialization; |
| VarDecl *NewVD; |
| if (!getLangOptions().CPlusPlus) { |
| NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(), |
| II, R, TInfo, SC, SCAsWritten); |
| |
| if (D.isInvalidType()) |
| NewVD->setInvalidDecl(); |
| } else { |
| if (DC->isRecord() && !CurContext->isRecord()) { |
| // This is an out-of-line definition of a static data member. |
| if (SC == SC_Static) { |
| Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| diag::err_static_out_of_line) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
| } else if (SC == SC_None) |
| SC = SC_Static; |
| } |
| if (SC == SC_Static) { |
| if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { |
| if (RD->isLocalClass()) |
| Diag(D.getIdentifierLoc(), |
| diag::err_static_data_member_not_allowed_in_local_class) |
| << Name << RD->getDeclName(); |
| |
| // C++ [class.union]p1: If a union contains a static data member, |
| // the program is ill-formed. |
| // |
| // We also disallow static data members in anonymous structs. |
| if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName())) |
| Diag(D.getIdentifierLoc(), |
| diag::err_static_data_member_not_allowed_in_union_or_anon_struct) |
| << Name << RD->isUnion(); |
| } |
| } |
| |
| // Match up the template parameter lists with the scope specifier, then |
| // determine whether we have a template or a template specialization. |
| isExplicitSpecialization = false; |
| unsigned NumMatchedTemplateParamLists = TemplateParamLists.size(); |
| bool Invalid = false; |
| if (TemplateParameterList *TemplateParams |
| = MatchTemplateParametersToScopeSpecifier( |
| D.getDeclSpec().getSourceRange().getBegin(), |
| D.getCXXScopeSpec(), |
| TemplateParamLists.get(), |
| TemplateParamLists.size(), |
| /*never a friend*/ false, |
| isExplicitSpecialization, |
| Invalid)) { |
| // All but one template parameter lists have been matching. |
| --NumMatchedTemplateParamLists; |
| |
| if (TemplateParams->size() > 0) { |
| // There is no such thing as a variable template. |
| Diag(D.getIdentifierLoc(), diag::err_template_variable) |
| << II |
| << SourceRange(TemplateParams->getTemplateLoc(), |
| TemplateParams->getRAngleLoc()); |
| return 0; |
| } else { |
| // There is an extraneous 'template<>' for this variable. Complain |
| // about it, but allow the declaration of the variable. |
| Diag(TemplateParams->getTemplateLoc(), |
| diag::err_template_variable_noparams) |
| << II |
| << SourceRange(TemplateParams->getTemplateLoc(), |
| TemplateParams->getRAngleLoc()); |
| |
| isExplicitSpecialization = true; |
| } |
| } |
| |
| NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(), |
| II, R, TInfo, SC, SCAsWritten); |
| |
| if (D.isInvalidType() || Invalid) |
| NewVD->setInvalidDecl(); |
| |
| SetNestedNameSpecifier(NewVD, D); |
| |
| if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) { |
| NewVD->setTemplateParameterListsInfo(Context, |
| NumMatchedTemplateParamLists, |
| TemplateParamLists.release()); |
| } |
| } |
| |
| if (D.getDeclSpec().isThreadSpecified()) { |
| if (NewVD->hasLocalStorage()) |
| Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global); |
| else if (!Context.Target.isTLSSupported()) |
| Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported); |
| else |
| NewVD->setThreadSpecified(true); |
| } |
| |
| // Set the lexical context. If the declarator has a C++ scope specifier, the |
| // lexical context will be different from the semantic context. |
| NewVD->setLexicalDeclContext(CurContext); |
| |
| // Handle attributes prior to checking for duplicates in MergeVarDecl |
| ProcessDeclAttributes(S, NewVD, D); |
| |
| // Handle GNU asm-label extension (encoded as an attribute). |
| if (Expr *E = (Expr*)D.getAsmLabel()) { |
| // The parser guarantees this is a string. |
| StringLiteral *SE = cast<StringLiteral>(E); |
| llvm::StringRef Label = SE->getString(); |
| if (S->getFnParent() != 0) { |
| switch (SC) { |
| case SC_None: |
| case SC_Auto: |
| Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; |
| break; |
| case SC_Register: |
| if (!Context.Target.isValidGCCRegisterName(Label)) |
| Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; |
| break; |
| case SC_Static: |
| case SC_Extern: |
| case SC_PrivateExtern: |
| break; |
| } |
| } |
| |
| NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), |
| Context, Label)); |
| } |
| |
| // Diagnose shadowed variables before filtering for scope. |
| if (!D.getCXXScopeSpec().isSet()) |
| CheckShadow(S, NewVD, Previous); |
| |
| // Don't consider existing declarations that are in a different |
| // scope and are out-of-semantic-context declarations (if the new |
| // declaration has linkage). |
| FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage()); |
| |
| if (!getLangOptions().CPlusPlus) |
| CheckVariableDeclaration(NewVD, Previous, Redeclaration); |
| else { |
| // Merge the decl with the existing one if appropriate. |
| if (!Previous.empty()) { |
| if (Previous.isSingleResult() && |
| isa<FieldDecl>(Previous.getFoundDecl()) && |
| D.getCXXScopeSpec().isSet()) { |
| // The user tried to define a non-static data member |
| // out-of-line (C++ [dcl.meaning]p1). |
| Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) |
| << D.getCXXScopeSpec().getRange(); |
| Previous.clear(); |
| NewVD->setInvalidDecl(); |
| } |
| } else if (D.getCXXScopeSpec().isSet()) { |
| // No previous declaration in the qualifying scope. |
| Diag(D.getIdentifierLoc(), diag::err_no_member) |
| << Name << computeDeclContext(D.getCXXScopeSpec(), true) |
| << D.getCXXScopeSpec().getRange(); |
| NewVD->setInvalidDecl(); |
| } |
| |
| CheckVariableDeclaration(NewVD, Previous, Redeclaration); |
| |
| // This is an explicit specialization of a static data member. Check it. |
| if (isExplicitSpecialization && !NewVD->isInvalidDecl() && |
| CheckMemberSpecialization(NewVD, Previous)) |
| NewVD->setInvalidDecl(); |
| } |
| |
| // attributes declared post-definition are currently ignored |
| // FIXME: This should be handled in attribute merging, not |
| // here. |
| if (Previous.isSingleResult()) { |
| VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl()); |
| if (Def && (Def = Def->getDefinition()) && |
| Def != NewVD && D.hasAttributes()) { |
| Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition); |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| } |
| } |
| |
| // If this is a locally-scoped extern C variable, update the map of |
| // such variables. |
| if (CurContext->isFunctionOrMethod() && NewVD->isExternC() && |
| !NewVD->isInvalidDecl()) |
| RegisterLocallyScopedExternCDecl(NewVD, Previous, S); |
| |
| // If there's a #pragma GCC visibility in scope, and this isn't a class |
| // member, set the visibility of this variable. |
| if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord()) |
| AddPushedVisibilityAttribute(NewVD); |
| |
| MarkUnusedFileScopedDecl(NewVD); |
| |
| return NewVD; |
| } |
| |
| /// \brief Diagnose variable or built-in function shadowing. Implements |
| /// -Wshadow. |
| /// |
| /// This method is called whenever a VarDecl is added to a "useful" |
| /// scope. |
| /// |
| /// \param S the scope in which the shadowing name is being declared |
| /// \param R the lookup of the name |
| /// |
| void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) { |
| // Return if warning is ignored. |
| if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) == |
| Diagnostic::Ignored) |
| return; |
| |
| // Don't diagnose declarations at file scope. The scope might not |
| // have a DeclContext if (e.g.) we're parsing a function prototype. |
| DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity()); |
| if (NewDC && NewDC->isFileContext()) |
| return; |
| |
| // Only diagnose if we're shadowing an unambiguous field or variable. |
| if (R.getResultKind() != LookupResult::Found) |
| return; |
| |
| NamedDecl* ShadowedDecl = R.getFoundDecl(); |
| if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl)) |
| return; |
| |
| DeclContext *OldDC = ShadowedDecl->getDeclContext(); |
| |
| // Only warn about certain kinds of shadowing for class members. |
| if (NewDC && NewDC->isRecord()) { |
| // In particular, don't warn about shadowing non-class members. |
| if (!OldDC->isRecord()) |
| return; |
| |
| // TODO: should we warn about static data members shadowing |
| // static data members from base classes? |
| |
| // TODO: don't diagnose for inaccessible shadowed members. |
| // This is hard to do perfectly because we might friend the |
| // shadowing context, but that's just a false negative. |
| } |
| |
| // Determine what kind of declaration we're shadowing. |
| unsigned Kind; |
| if (isa<RecordDecl>(OldDC)) { |
| if (isa<FieldDecl>(ShadowedDecl)) |
| Kind = 3; // field |
| else |
| Kind = 2; // static data member |
| } else if (OldDC->isFileContext()) |
| Kind = 1; // global |
| else |
| Kind = 0; // local |
| |
| DeclarationName Name = R.getLookupName(); |
| |
| // Emit warning and note. |
| Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC; |
| Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); |
| } |
| |
| /// \brief Check -Wshadow without the advantage of a previous lookup. |
| void Sema::CheckShadow(Scope *S, VarDecl *D) { |
| if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) == |
| Diagnostic::Ignored) |
| return; |
| |
| LookupResult R(*this, D->getDeclName(), D->getLocation(), |
| Sema::LookupOrdinaryName, Sema::ForRedeclaration); |
| LookupName(R, S); |
| CheckShadow(S, D, R); |
| } |
| |
| /// \brief Perform semantic checking on a newly-created variable |
| /// declaration. |
| /// |
| /// This routine performs all of the type-checking required for a |
| /// variable declaration once it has been built. It is used both to |
| /// check variables after they have been parsed and their declarators |
| /// have been translated into a declaration, and to check variables |
| /// that have been instantiated from a template. |
| /// |
| /// Sets NewVD->isInvalidDecl() if an error was encountered. |
| void Sema::CheckVariableDeclaration(VarDecl *NewVD, |
| LookupResult &Previous, |
| bool &Redeclaration) { |
| // If the decl is already known invalid, don't check it. |
| if (NewVD->isInvalidDecl()) |
| return; |
| |
| QualType T = NewVD->getType(); |
| |
| if (T->isObjCObjectType()) { |
| Diag(NewVD->getLocation(), diag::err_statically_allocated_object); |
| return NewVD->setInvalidDecl(); |
| } |
| |
| // Emit an error if an address space was applied to decl with local storage. |
| // This includes arrays of objects with address space qualifiers, but not |
| // automatic variables that point to other address spaces. |
| // ISO/IEC TR 18037 S5.1.2 |
| if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) { |
| Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl); |
| return NewVD->setInvalidDecl(); |
| } |
| |
| if (NewVD->hasLocalStorage() && T.isObjCGCWeak() |
| && !NewVD->hasAttr<BlocksAttr>()) |
| Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); |
| |
| bool isVM = T->isVariablyModifiedType(); |
| if (isVM || NewVD->hasAttr<CleanupAttr>() || |
| NewVD->hasAttr<BlocksAttr>()) |
| getCurFunction()->setHasBranchProtectedScope(); |
| |
| if ((isVM && NewVD->hasLinkage()) || |
| (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { |
| bool SizeIsNegative; |
| llvm::APSInt Oversized; |
| QualType FixedTy = |
| TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, |
| Oversized); |
| |
| if (FixedTy.isNull() && T->isVariableArrayType()) { |
| const VariableArrayType *VAT = Context.getAsVariableArrayType(T); |
| // FIXME: This won't give the correct result for |
| // int a[10][n]; |
| SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); |
| |
| if (NewVD->isFileVarDecl()) |
| Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) |
| << SizeRange; |
| else if (NewVD->getStorageClass() == SC_Static) |
| Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) |
| << SizeRange; |
| else |
| Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) |
| << SizeRange; |
| return NewVD->setInvalidDecl(); |
| } |
| |
| if (FixedTy.isNull()) { |
| if (NewVD->isFileVarDecl()) |
| Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); |
| else |
| Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); |
| return NewVD->setInvalidDecl(); |
| } |
| |
| Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size); |
| NewVD->setType(FixedTy); |
| } |
| |
| if (Previous.empty() && NewVD->isExternC()) { |
| // Since we did not find anything by this name and we're declaring |
| // an extern "C" variable, look for a non-visible extern "C" |
| // declaration with the same name. |
| llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos |
| = LocallyScopedExternalDecls.find(NewVD->getDeclName()); |
| if (Pos != LocallyScopedExternalDecls.end()) |
| Previous.addDecl(Pos->second); |
| } |
| |
| if (T->isVoidType() && !NewVD->hasExternalStorage()) { |
| Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) |
| << T; |
| return NewVD->setInvalidDecl(); |
| } |
| |
| if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { |
| Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); |
| return NewVD->setInvalidDecl(); |
| } |
| |
| if (isVM && NewVD->hasAttr<BlocksAttr>()) { |
| Diag(NewVD->getLocation(), diag::err_block_on_vm); |
| return NewVD->setInvalidDecl(); |
| } |
| |
| // Function pointers and references cannot have qualified function type, only |
| // function pointer-to-members can do that. |
| QualType Pointee; |
| unsigned PtrOrRef = 0; |
| if (const PointerType *Ptr = T->getAs<PointerType>()) |
| Pointee = Ptr->getPointeeType(); |
| else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) { |
| Pointee = Ref->getPointeeType(); |
| PtrOrRef = 1; |
| } |
| if (!Pointee.isNull() && Pointee->isFunctionProtoType() && |
| Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) { |
| Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer) |
| << PtrOrRef; |
| return NewVD->setInvalidDecl(); |
| } |
| |
| if (!Previous.empty()) { |
| Redeclaration = true; |
| MergeVarDecl(NewVD, Previous); |
| } |
| } |
| |
| /// \brief Data used with FindOverriddenMethod |
| struct FindOverriddenMethodData { |
| Sema *S; |
| CXXMethodDecl *Method; |
| }; |
| |
| /// \brief Member lookup function that determines whether a given C++ |
| /// method overrides a method in a base class, to be used with |
| /// CXXRecordDecl::lookupInBases(). |
| static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier, |
| CXXBasePath &Path, |
| void *UserData) { |
| RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); |
| |
| FindOverriddenMethodData *Data |
| = reinterpret_cast<FindOverriddenMethodData*>(UserData); |
| |
| DeclarationName Name = Data->Method->getDeclName(); |
| |
| // FIXME: Do we care about other names here too? |
| if (Name.getNameKind() == DeclarationName::CXXDestructorName) { |
| // We really want to find the base class destructor here. |
| QualType T = Data->S->Context.getTypeDeclType(BaseRecord); |
| CanQualType CT = Data->S->Context.getCanonicalType(T); |
| |
| Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT); |
| } |
| |
| for (Path.Decls = BaseRecord->lookup(Name); |
| Path.Decls.first != Path.Decls.second; |
| ++Path.Decls.first) { |
| NamedDecl *D = *Path.Decls.first; |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { |
| if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// AddOverriddenMethods - See if a method overrides any in the base classes, |
| /// and if so, check that it's a valid override and remember it. |
| bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { |
| // Look for virtual methods in base classes that this method might override. |
| CXXBasePaths Paths; |
| FindOverriddenMethodData Data; |
| Data.Method = MD; |
| Data.S = this; |
| bool AddedAny = false; |
| if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) { |
| for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(), |
| E = Paths.found_decls_end(); I != E; ++I) { |
| if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) { |
| if (!CheckOverridingFunctionReturnType(MD, OldMD) && |
| !CheckOverridingFunctionExceptionSpec(MD, OldMD) && |
| !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) { |
| MD->addOverriddenMethod(OldMD->getCanonicalDecl()); |
| AddedAny = true; |
| } |
| } |
| } |
| } |
| |
| return AddedAny; |
| } |
| |
| static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) { |
| LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(), |
| Sema::LookupOrdinaryName, Sema::ForRedeclaration); |
| S.LookupQualifiedName(Prev, NewFD->getDeclContext()); |
| assert(!Prev.isAmbiguous() && |
| "Cannot have an ambiguity in previous-declaration lookup"); |
| for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); |
| Func != FuncEnd; ++Func) { |
| if (isa<FunctionDecl>(*Func) && |
| isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD)) |
| S.Diag((*Func)->getLocation(), diag::note_member_def_close_match); |
| } |
| } |
| |
| /// CheckClassMemberNameAttributes - Check for class member name checking |
| /// attributes according to [dcl.attr.override] |
| static void |
| CheckClassMemberNameAttributes(Sema& SemaRef, const FunctionDecl *FD) { |
| const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); |
| if (!MD || !MD->isVirtual()) |
| return; |
| |
| bool HasOverrideAttr = MD->hasAttr<OverrideAttr>(); |
| bool HasOverriddenMethods = |
| MD->begin_overridden_methods() != MD->end_overridden_methods(); |
| |
| /// C++ [dcl.attr.override]p2: |
| /// If a virtual member function f is marked override and does not override |
| /// a member function of a base class the program is ill-formed. |
| if (HasOverrideAttr && !HasOverriddenMethods) { |
| SemaRef.Diag(MD->getLocation(), |
| diag::err_function_marked_override_not_overriding) |
| << MD->getDeclName(); |
| return; |
| } |
| |
| if (!MD->getParent()->hasAttr<BaseCheckAttr>()) |
| return; |
| |
| /// C++ [dcl.attr.override]p6: |
| /// In a class definition marked base_check, if a virtual member function |
| /// that is neither implicitly-declared nor a destructor overrides a |
| /// member function of a base class and it is not marked override, the |
| /// program is ill-formed. |
| if (HasOverriddenMethods && !HasOverrideAttr && !MD->isImplicit() && |
| !isa<CXXDestructorDecl>(MD)) { |
| llvm::SmallVector<const CXXMethodDecl*, 4> |
| OverriddenMethods(MD->begin_overridden_methods(), |
| MD->end_overridden_methods()); |
| |
| SemaRef.Diag(MD->getLocation(), |
| diag::err_function_overriding_without_override) |
| << MD->getDeclName() << (unsigned)OverriddenMethods.size(); |
| |
| for (unsigned I = 0; I != OverriddenMethods.size(); ++I) |
| SemaRef.Diag(OverriddenMethods[I]->getLocation(), |
| diag::note_overridden_virtual_function); |
| } |
| } |
| |
| NamedDecl* |
| Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC, |
| QualType R, TypeSourceInfo *TInfo, |
| LookupResult &Previous, |
| MultiTemplateParamsArg TemplateParamLists, |
| bool IsFunctionDefinition, bool &Redeclaration) { |
| assert(R.getTypePtr()->isFunctionType()); |
| |
| // TODO: consider using NameInfo for diagnostic. |
| DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
| DeclarationName Name = NameInfo.getName(); |
| FunctionDecl::StorageClass SC = SC_None; |
| switch (D.getDeclSpec().getStorageClassSpec()) { |
| default: assert(0 && "Unknown storage class!"); |
| case DeclSpec::SCS_auto: |
| case DeclSpec::SCS_register: |
| case DeclSpec::SCS_mutable: |
| Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| diag::err_typecheck_sclass_func); |
| D.setInvalidType(); |
| break; |
| case DeclSpec::SCS_unspecified: SC = SC_None; break; |
| case DeclSpec::SCS_extern: SC = SC_Extern; break; |
| case DeclSpec::SCS_static: { |
| if (CurContext->getRedeclContext()->isFunctionOrMethod()) { |
| // C99 6.7.1p5: |
| // The declaration of an identifier for a function that has |
| // block scope shall have no explicit storage-class specifier |
| // other than extern |
| // See also (C++ [dcl.stc]p4). |
| Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| diag::err_static_block_func); |
| SC = SC_None; |
| } else |
| SC = SC_Static; |
| break; |
| } |
| case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break; |
| } |
| |
| if (D.getDeclSpec().isThreadSpecified()) |
| Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); |
| |
| // Do not allow returning a objc interface by-value. |
| if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) { |
| Diag(D.getIdentifierLoc(), |
| diag::err_object_cannot_be_passed_returned_by_value) << 0 |
| << R->getAs<FunctionType>()->getResultType(); |
| D.setInvalidType(); |
| } |
| |
| FunctionDecl *NewFD; |
| bool isInline = D.getDeclSpec().isInlineSpecified(); |
| bool isFriend = false; |
| DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten(); |
| FunctionDecl::StorageClass SCAsWritten |
| = StorageClassSpecToFunctionDeclStorageClass(SCSpec); |
| FunctionTemplateDecl *FunctionTemplate = 0; |
| bool isExplicitSpecialization = false; |
| bool isFunctionTemplateSpecialization = false; |
| unsigned NumMatchedTemplateParamLists = 0; |
| |
| if (!getLangOptions().CPlusPlus) { |
| // Determine whether the function was written with a |
| // prototype. This true when: |
| // - there is a prototype in the declarator, or |
| // - the type R of the function is some kind of typedef or other reference |
| // to a type name (which eventually refers to a function type). |
| bool HasPrototype = |
| (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || |
| (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType()); |
| |
| NewFD = FunctionDecl::Create(Context, DC, |
| NameInfo, R, TInfo, SC, SCAsWritten, isInline, |
| HasPrototype); |
| if (D.isInvalidType()) |
| NewFD->setInvalidDecl(); |
| |
| // Set the lexical context. |
| NewFD->setLexicalDeclContext(CurContext); |
| // Filter out previous declarations that don't match the scope. |
| FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage()); |
| } else { |
| isFriend = D.getDeclSpec().isFriendSpecified(); |
| bool isVirtual = D.getDeclSpec().isVirtualSpecified(); |
| bool isExplicit = D.getDeclSpec().isExplicitSpecified(); |
| bool isVirtualOkay = false; |
| |
| // Check that the return type is not an abstract class type. |
| // For record types, this is done by the AbstractClassUsageDiagnoser once |
| // the class has been completely parsed. |
| if (!DC->isRecord() && |
| RequireNonAbstractType(D.getIdentifierLoc(), |
| R->getAs<FunctionType>()->getResultType(), |
| diag::err_abstract_type_in_decl, |
| AbstractReturnType)) |
| D.setInvalidType(); |
| |
| |
| if (isFriend) { |
| // C++ [class.friend]p5 |
| // A function can be defined in a friend declaration of a |
| // class . . . . Such a function is implicitly inline. |
| isInline |= IsFunctionDefinition; |
| } |
| |
| if (Name.getNameKind() == DeclarationName::CXXConstructorName) { |
| // This is a C++ constructor declaration. |
| assert(DC->isRecord() && |
| "Constructors can only be declared in a member context"); |
| |
| R = CheckConstructorDeclarator(D, R, SC); |
| |
| // Create the new declaration |
| NewFD = CXXConstructorDecl::Create(Context, |
| cast<CXXRecordDecl>(DC), |
| NameInfo, R, TInfo, |
| isExplicit, isInline, |
| /*isImplicitlyDeclared=*/false); |
| } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { |
| // This is a C++ destructor declaration. |
| if (DC->isRecord()) { |
| R = CheckDestructorDeclarator(D, R, SC); |
| |
| NewFD = CXXDestructorDecl::Create(Context, |
| cast<CXXRecordDecl>(DC), |
| NameInfo, R, TInfo, |
| isInline, |
| /*isImplicitlyDeclared=*/false); |
| isVirtualOkay = true; |
| } else { |
| Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); |
| |
| // Create a FunctionDecl to satisfy the function definition parsing |
| // code path. |
| NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(), |
| Name, R, TInfo, SC, SCAsWritten, isInline, |
| /*hasPrototype=*/true); |
| D.setInvalidType(); |
| } |
| } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { |
| if (!DC->isRecord()) { |
| Diag(D.getIdentifierLoc(), |
| diag::err_conv_function_not_member); |
| return 0; |
| } |
| |
| CheckConversionDeclarator(D, R, SC); |
| NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC), |
| NameInfo, R, TInfo, |
| isInline, isExplicit); |
| |
| isVirtualOkay = true; |
| } else if (DC->isRecord()) { |
| // If the of the function is the same as the name of the record, then this |
| // must be an invalid constructor that has a return type. |
| // (The parser checks for a return type and makes the declarator a |
| // constructor if it has no return type). |
| // must have an invalid constructor that has a return type |
| if (Name.getAsIdentifierInfo() && |
| Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ |
| Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) |
| << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| return 0; |
| } |
| |
| bool isStatic = SC == SC_Static; |
| |
| // [class.free]p1: |
| // Any allocation function for a class T is a static member |
| // (even if not explicitly declared static). |
| if (Name.getCXXOverloadedOperator() == OO_New || |
| Name.getCXXOverloadedOperator() == OO_Array_New) |
| isStatic = true; |
| |
| // [class.free]p6 Any deallocation function for a class X is a static member |
| // (even if not explicitly declared static). |
| if (Name.getCXXOverloadedOperator() == OO_Delete || |
| Name.getCXXOverloadedOperator() == OO_Array_Delete) |
| isStatic = true; |
| |
| // This is a C++ method declaration. |
| NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC), |
| NameInfo, R, TInfo, |
| isStatic, SCAsWritten, isInline); |
| |
| isVirtualOkay = !isStatic; |
| } else { |
| // Determine whether the function was written with a |
| // prototype. This true when: |
| // - we're in C++ (where every function has a prototype), |
| NewFD = FunctionDecl::Create(Context, DC, |
| NameInfo, R, TInfo, SC, SCAsWritten, isInline, |
| true/*HasPrototype*/); |
| } |
| SetNestedNameSpecifier(NewFD, D); |
| isExplicitSpecialization = false; |
| isFunctionTemplateSpecialization = false; |
| NumMatchedTemplateParamLists = TemplateParamLists.size(); |
| if (D.isInvalidType()) |
| NewFD->setInvalidDecl(); |
| |
| // Set the lexical context. If the declarator has a C++ |
| // scope specifier, or is the object of a friend declaration, the |
| // lexical context will be different from the semantic context. |
| NewFD->setLexicalDeclContext(CurContext); |
| |
| // Match up the template parameter lists with the scope specifier, then |
| // determine whether we have a template or a template specialization. |
| bool Invalid = false; |
| if (TemplateParameterList *TemplateParams |
| = MatchTemplateParametersToScopeSpecifier( |
| D.getDeclSpec().getSourceRange().getBegin(), |
| D.getCXXScopeSpec(), |
| TemplateParamLists.get(), |
| TemplateParamLists.size(), |
| isFriend, |
| isExplicitSpecialization, |
| Invalid)) { |
| // All but one template parameter lists have been matching. |
| --NumMatchedTemplateParamLists; |
| |
| if (TemplateParams->size() > 0) { |
| // This is a function template |
| |
| // Check that we can declare a template here. |
| if (CheckTemplateDeclScope(S, TemplateParams)) |
| return 0; |
| |
| FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, |
| NewFD->getLocation(), |
| Name, TemplateParams, |
| NewFD); |
| FunctionTemplate->setLexicalDeclContext(CurContext); |
| NewFD->setDescribedFunctionTemplate(FunctionTemplate); |
| } else { |
| // This is a function template specialization. |
| isFunctionTemplateSpecialization = true; |
| |
| // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". |
| if (isFriend && isFunctionTemplateSpecialization) { |
| // We want to remove the "template<>", found here. |
| SourceRange RemoveRange = TemplateParams->getSourceRange(); |
| |
| // If we remove the template<> and the name is not a |
| // template-id, we're actually silently creating a problem: |
| // the friend declaration will refer to an untemplated decl, |
| // and clearly the user wants a template specialization. So |
| // we need to insert '<>' after the name. |
| SourceLocation InsertLoc; |
| if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) { |
| InsertLoc = D.getName().getSourceRange().getEnd(); |
| InsertLoc = PP.getLocForEndOfToken(InsertLoc); |
| } |
| |
| Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) |
| << Name << RemoveRange |
| << FixItHint::CreateRemoval(RemoveRange) |
| << FixItHint::CreateInsertion(InsertLoc, "<>"); |
| } |
| } |
| } |
| |
| if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) { |
| NewFD->setTemplateParameterListsInfo(Context, |
| NumMatchedTemplateParamLists, |
| TemplateParamLists.release()); |
| } |
| |
| if (Invalid) { |
| NewFD->setInvalidDecl(); |
| if (FunctionTemplate) |
| FunctionTemplate->setInvalidDecl(); |
| } |
| |
| // C++ [dcl.fct.spec]p5: |
| // The virtual specifier shall only be used in declarations of |
| // nonstatic class member functions that appear within a |
| // member-specification of a class declaration; see 10.3. |
| // |
| if (isVirtual && !NewFD->isInvalidDecl()) { |
| if (!isVirtualOkay) { |
| Diag(D.getDeclSpec().getVirtualSpecLoc(), |
| diag::err_virtual_non_function); |
| } else if (!CurContext->isRecord()) { |
| // 'virtual' was specified outside of the class. |
| Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); |
| } else { |
| // Okay: Add virtual to the method. |
| NewFD->setVirtualAsWritten(true); |
| } |
| } |
| |
| // C++ [dcl.fct.spec]p3: |
| // The inline specifier shall not appear on a block scope function declaration. |
| if (isInline && !NewFD->isInvalidDecl()) { |
| if (CurContext->isFunctionOrMethod()) { |
| // 'inline' is not allowed on block scope function declaration. |
| Diag(D.getDeclSpec().getInlineSpecLoc(), |
| diag::err_inline_declaration_block_scope) << Name |
| << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); |
| } |
| } |
| |
| // C++ [dcl.fct.spec]p6: |
| // The explicit specifier shall be used only in the declaration of a |
| // constructor or conversion function within its class definition; see 12.3.1 |
| // and 12.3.2. |
| if (isExplicit && !NewFD->isInvalidDecl()) { |
| if (!CurContext->isRecord()) { |
| // 'explicit' was specified outside of the class. |
| Diag(D.getDeclSpec().getExplicitSpecLoc(), |
| diag::err_explicit_out_of_class) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc()); |
| } else if (!isa<CXXConstructorDecl>(NewFD) && |
| !isa<CXXConversionDecl>(NewFD)) { |
| // 'explicit' was specified on a function that wasn't a constructor |
| // or conversion function. |
| Diag(D.getDeclSpec().getExplicitSpecLoc(), |
| diag::err_explicit_non_ctor_or_conv_function) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc()); |
| } |
| } |
| |
| // Filter out previous declarations that don't match the scope. |
| FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage()); |
| |
| if (isFriend) { |
| // For now, claim that the objects have no previous declaration. |
| if (FunctionTemplate) { |
| FunctionTemplate->setObjectOfFriendDecl(false); |
| FunctionTemplate->setAccess(AS_public); |
| } |
| NewFD->setObjectOfFriendDecl(false); |
| NewFD->setAccess(AS_public); |
| } |
| |
| if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) { |
| // A method is implicitly inline if it's defined in its class |
| // definition. |
| NewFD->setImplicitlyInline(); |
| } |
| |
| if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && |
| !CurContext->isRecord()) { |
| // C++ [class.static]p1: |
| // A data or function member of a class may be declared static |
| // in a class definition, in which case it is a static member of |
| // the class. |
| |
| // Complain about the 'static' specifier if it's on an out-of-line |
| // member function definition. |
| Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| diag::err_static_out_of_line) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
| } |
| } |
| |
| // Handle GNU asm-label extension (encoded as an attribute). |
| if (Expr *E = (Expr*) D.getAsmLabel()) { |
| // The parser guarantees this is a string. |
| StringLiteral *SE = cast<StringLiteral>(E); |
| NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context, |
| SE->getString())); |
| } |
| |
| // Copy the parameter declarations from the declarator D to the function |
| // declaration NewFD, if they are available. First scavenge them into Params. |
| llvm::SmallVector<ParmVarDecl*, 16> Params; |
| if (D.isFunctionDeclarator()) { |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
| |
| // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs |
| // function that takes no arguments, not a function that takes a |
| // single void argument. |
| // We let through "const void" here because Sema::GetTypeForDeclarator |
| // already checks for that case. |
| if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && |
| FTI.ArgInfo[0].Param && |
| cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) { |
| // Empty arg list, don't push any params. |
| ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param); |
| |
| // In C++, the empty parameter-type-list must be spelled "void"; a |
| // typedef of void is not permitted. |
| if (getLangOptions().CPlusPlus && |
| Param->getType().getUnqualifiedType() != Context.VoidTy) |
| Diag(Param->getLocation(), diag::err_param_typedef_of_void); |
| } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) { |
| for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) { |
| ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param); |
| assert(Param->getDeclContext() != NewFD && "Was set before ?"); |
| Param->setDeclContext(NewFD); |
| Params.push_back(Param); |
| |
| if (Param->isInvalidDecl()) |
| NewFD->setInvalidDecl(); |
| } |
| } |
| |
| } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { |
| // When we're declaring a function with a typedef, typeof, etc as in the |
| // following example, we'll need to synthesize (unnamed) |
| // parameters for use in the declaration. |
| // |
| // @code |
| // typedef void fn(int); |
| // fn f; |
| // @endcode |
| |
| // Synthesize a parameter for each argument type. |
| for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(), |
| AE = FT->arg_type_end(); AI != AE; ++AI) { |
| ParmVarDecl *Param = |
| BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI); |
| Params.push_back(Param); |
| } |
| } else { |
| assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && |
| "Should not need args for typedef of non-prototype fn"); |
| } |
| // Finally, we know we have the right number of parameters, install them. |
| NewFD->setParams(Params.data(), Params.size()); |
| |
| bool OverloadableAttrRequired=false; // FIXME: HACK! |
| if (!getLangOptions().CPlusPlus) { |
| // Perform semantic checking on the function declaration. |
| bool isExplctSpecialization=false; |
| CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization, |
| Redeclaration, |
| /*FIXME:*/OverloadableAttrRequired); |
| assert((NewFD->isInvalidDecl() || !Redeclaration || |
| Previous.getResultKind() != LookupResult::FoundOverloaded) && |
| "previous declaration set still overloaded"); |
| } else { |
| // If the declarator is a template-id, translate the parser's template |
| // argument list into our AST format. |
| bool HasExplicitTemplateArgs = false; |
| TemplateArgumentListInfo TemplateArgs; |
| if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { |
| TemplateIdAnnotation *TemplateId = D.getName().TemplateId; |
| TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); |
| TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); |
| ASTTemplateArgsPtr TemplateArgsPtr(*this, |
| TemplateId->getTemplateArgs(), |
| TemplateId->NumArgs); |
| translateTemplateArguments(TemplateArgsPtr, |
| TemplateArgs); |
| TemplateArgsPtr.release(); |
| |
| HasExplicitTemplateArgs = true; |
| |
| if (FunctionTemplate) { |
| // FIXME: Diagnose function template with explicit template |
| // arguments. |
| HasExplicitTemplateArgs = false; |
| } else if (!isFunctionTemplateSpecialization && |
| !D.getDeclSpec().isFriendSpecified()) { |
| // We have encountered something that the user meant to be a |
| // specialization (because it has explicitly-specified template |
| // arguments) but that was not introduced with a "template<>" (or had |
| // too few of them). |
| Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header) |
| << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc) |
| << FixItHint::CreateInsertion( |
| D.getDeclSpec().getSourceRange().getBegin(), |
| "template<> "); |
| isFunctionTemplateSpecialization = true; |
| } else { |
| // "friend void foo<>(int);" is an implicit specialization decl. |
| isFunctionTemplateSpecialization = true; |
| } |
| } else if (isFriend && isFunctionTemplateSpecialization) { |
| // This combination is only possible in a recovery case; the user |
| // wrote something like: |
| // template <> friend void foo(int); |
| // which we're recovering from as if the user had written: |
| // friend void foo<>(int); |
| // Go ahead and fake up a template id. |
| HasExplicitTemplateArgs = true; |
| TemplateArgs.setLAngleLoc(D.getIdentifierLoc()); |
| TemplateArgs.setRAngleLoc(D.getIdentifierLoc()); |
| } |
| |
| // If it's a friend (and only if it's a friend), it's possible |
| // that either the specialized function type or the specialized |
| // template is dependent, and therefore matching will fail. In |
| // this case, don't check the specialization yet. |
| if (isFunctionTemplateSpecialization && isFriend && |
| (NewFD->getType()->isDependentType() || DC->isDependentContext())) { |
| assert(HasExplicitTemplateArgs && |
| "friend function specialization without template args"); |
| if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs, |
| Previous)) |
| NewFD->setInvalidDecl(); |
| } else if (isFunctionTemplateSpecialization) { |
| if (CheckFunctionTemplateSpecialization(NewFD, |
| (HasExplicitTemplateArgs ? &TemplateArgs : 0), |
| Previous)) |
| NewFD->setInvalidDecl(); |
| } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) { |
| if (CheckMemberSpecialization(NewFD, Previous)) |
| NewFD->setInvalidDecl(); |
| } |
| |
| // Perform semantic checking on the function declaration. |
| bool flag_c_overloaded=false; // unused for c++ |
| CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization, |
| Redeclaration, /*FIXME:*/flag_c_overloaded); |
| |
| assert((NewFD->isInvalidDecl() || !Redeclaration || |
| Previous.getResultKind() != LookupResult::FoundOverloaded) && |
| "previous declaration set still overloaded"); |
| |
| NamedDecl *PrincipalDecl = (FunctionTemplate |
| ? cast<NamedDecl>(FunctionTemplate) |
| : NewFD); |
| |
| if (isFriend && Redeclaration) { |
| AccessSpecifier Access = AS_public; |
| if (!NewFD->isInvalidDecl()) |
| Access = NewFD->getPreviousDeclaration()->getAccess(); |
| |
| NewFD->setAccess(Access); |
| if (FunctionTemplate) FunctionTemplate->setAccess(Access); |
| |
| PrincipalDecl->setObjectOfFriendDecl(true); |
| } |
| |
| if (NewFD->isOverloadedOperator() && !DC->isRecord() && |
| PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) |
| PrincipalDecl->setNonMemberOperator(); |
| |
| // If we have a function template, check the template parameter |
| // list. This will check and merge default template arguments. |
| if (FunctionTemplate) { |
| FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration(); |
| CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), |
| PrevTemplate? PrevTemplate->getTemplateParameters() : 0, |
| D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate |
| : TPC_FunctionTemplate); |
| } |
| |
| if (NewFD->isInvalidDecl()) { |
| // Ignore all the rest of this. |
| } else if (!Redeclaration) { |
| // Fake up an access specifier if it's supposed to be a class member. |
| if (isa<CXXRecordDecl>(NewFD->getDeclContext())) |
| NewFD->setAccess(AS_public); |
| |
| // Qualified decls generally require a previous declaration. |
| if (D.getCXXScopeSpec().isSet()) { |
| // ...with the major exception of templated-scope or |
| // dependent-scope friend declarations. |
| |
| // TODO: we currently also suppress this check in dependent |
| // contexts because (1) the parameter depth will be off when |
| // matching friend templates and (2) we might actually be |
| // selecting a friend based on a dependent factor. But there |
| // are situations where these conditions don't apply and we |
| // can actually do this check immediately. |
| if (isFriend && |
| (NumMatchedTemplateParamLists || |
| D.getCXXScopeSpec().getScopeRep()->isDependent() || |
| CurContext->isDependentContext())) { |
| // ignore these |
| } else { |
| // The user tried to provide an out-of-line definition for a |
| // function that is a member of a class or namespace, but there |
| // was no such member function declared (C++ [class.mfct]p2, |
| // C++ [namespace.memdef]p2). For example: |
| // |
| // class X { |
| // void f() const; |
| // }; |
| // |
| // void X::f() { } // ill-formed |
| // |
| // Complain about this problem, and attempt to suggest close |
| // matches (e.g., those that differ only in cv-qualifiers and |
| // whether the parameter types are references). |
| Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match) |
| << Name << DC << D.getCXXScopeSpec().getRange(); |
| NewFD->setInvalidDecl(); |
| |
| DiagnoseInvalidRedeclaration(*this, NewFD); |
| } |
| |
| // Unqualified local friend declarations are required to resolve |
| // to something. |
| } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { |
| Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend); |
| NewFD->setInvalidDecl(); |
| DiagnoseInvalidRedeclaration(*this, NewFD); |
| } |
| |
| } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && |
| !isFriend && !isFunctionTemplateSpecialization && |
| !isExplicitSpecialization) { |
| // An out-of-line member function declaration must also be a |
| // definition (C++ [dcl.meaning]p1). |
| // Note that this is not the case for explicit specializations of |
| // function templates or member functions of class templates, per |
| // C++ [temp.expl.spec]p2. We also allow these declarations as an extension |
| // for compatibility with old SWIG code which likes to generate them. |
| Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) |
| << D.getCXXScopeSpec().getRange(); |
| } |
| } |
| |
| |
| // Handle attributes. We need to have merged decls when handling attributes |
| // (for example to check for conflicts, etc). |
| // FIXME: This needs to happen before we merge declarations. Then, |
| // let attribute merging cope with attribute conflicts. |
| ProcessDeclAttributes(S, NewFD, D); |
| |
| // attributes declared post-definition are currently ignored |
| // FIXME: This should happen during attribute merging |
| if (Redeclaration && Previous.isSingleResult()) { |
| const FunctionDecl *Def; |
| FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl()); |
| if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) { |
| Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition); |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| } |
| } |
| |
| AddKnownFunctionAttributes(NewFD); |
| |
| if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) { |
| // If a function name is overloadable in C, then every function |
| // with that name must be marked "overloadable". |
| Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing) |
| << Redeclaration << NewFD; |
| if (!Previous.empty()) |
| Diag(Previous.getRepresentativeDecl()->getLocation(), |
| diag::note_attribute_overloadable_prev_overload); |
| NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context)); |
| } |
| |
| if (NewFD->hasAttr<OverloadableAttr>() && |
| !NewFD->getType()->getAs<FunctionProtoType>()) { |
| Diag(NewFD->getLocation(), |
| diag::err_attribute_overloadable_no_prototype) |
| << NewFD; |
| |
| // Turn this into a variadic function with no parameters. |
| const FunctionType *FT = NewFD->getType()->getAs<FunctionType>(); |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.Variadic = true; |
| EPI.ExtInfo = FT->getExtInfo(); |
| |
| QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI); |
| NewFD->setType(R); |
| } |
| |
| // If there's a #pragma GCC visibility in scope, and this isn't a class |
| // member, set the visibility of this function. |
| if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord()) |
| AddPushedVisibilityAttribute(NewFD); |
| |
| // If this is a locally-scoped extern C function, update the |
| // map of such names. |
| if (CurContext->isFunctionOrMethod() && NewFD->isExternC() |
| && !NewFD->isInvalidDecl()) |
| RegisterLocallyScopedExternCDecl(NewFD, Previous, S); |
| |
| // Set this FunctionDecl's range up to the right paren. |
| NewFD->setLocEnd(D.getSourceRange().getEnd()); |
| |
| if (getLangOptions().CPlusPlus) { |
| if (FunctionTemplate) { |
| if (NewFD->isInvalidDecl()) |
| FunctionTemplate->setInvalidDecl(); |
| return FunctionTemplate; |
| } |
| CheckClassMemberNameAttributes(*this, NewFD); |
| } |
| |
| MarkUnusedFileScopedDecl(NewFD); |
| return NewFD; |
| } |
| |
| /// \brief Perform semantic checking of a new function declaration. |
| /// |
| /// Performs semantic analysis of the new function declaration |
| /// NewFD. This routine performs all semantic checking that does not |
| /// require the actual declarator involved in the declaration, and is |
| /// used both for the declaration of functions as they are parsed |
| /// (called via ActOnDeclarator) and for the declaration of functions |
| /// that have been instantiated via C++ template instantiation (called |
| /// via InstantiateDecl). |
| /// |
| /// \param IsExplicitSpecialiation whether this new function declaration is |
| /// an explicit specialization of the previous declaration. |
| /// |
| /// This sets NewFD->isInvalidDecl() to true if there was an error. |
| void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, |
| LookupResult &Previous, |
| bool IsExplicitSpecialization, |
| bool &Redeclaration, |
| bool &OverloadableAttrRequired) { |
| // If NewFD is already known erroneous, don't do any of this checking. |
| if (NewFD->isInvalidDecl()) { |
| // If this is a class member, mark the class invalid immediately. |
| // This avoids some consistency errors later. |
| if (isa<CXXMethodDecl>(NewFD)) |
| cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl(); |
| |
| return; |
| } |
| |
| if (NewFD->getResultType()->isVariablyModifiedType()) { |
| // Functions returning a variably modified type violate C99 6.7.5.2p2 |
| // because all functions have linkage. |
| Diag(NewFD->getLocation(), diag::err_vm_func_decl); |
| return NewFD->setInvalidDecl(); |
| } |
| |
| if (NewFD->isMain()) |
| CheckMain(NewFD); |
| |
| // Check for a previous declaration of this name. |
| if (Previous.empty() && NewFD->isExternC()) { |
| // Since we did not find anything by this name and we're declaring |
| // an extern "C" function, look for a non-visible extern "C" |
| // declaration with the same name. |
| llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos |
| = LocallyScopedExternalDecls.find(NewFD->getDeclName()); |
| if (Pos != LocallyScopedExternalDecls.end()) |
| Previous.addDecl(Pos->second); |
| } |
| |
| // Merge or overload the declaration with an existing declaration of |
| // the same name, if appropriate. |
| if (!Previous.empty()) { |
| // Determine whether NewFD is an overload of PrevDecl or |
| // a declaration that requires merging. If it's an overload, |
| // there's no more work to do here; we'll just add the new |
| // function to the scope. |
| |
| NamedDecl *OldDecl = 0; |
| if (!AllowOverloadingOfFunction(Previous, Context)) { |
| Redeclaration = true; |
| OldDecl = Previous.getFoundDecl(); |
| } else { |
| if (!getLangOptions().CPlusPlus) |
| OverloadableAttrRequired = true; |
| |
| switch (CheckOverload(S, NewFD, Previous, OldDecl, |
| /*NewIsUsingDecl*/ false)) { |
| case Ovl_Match: |
| Redeclaration = true; |
| break; |
| |
| case Ovl_NonFunction: |
| Redeclaration = true; |
| break; |
| |
| case Ovl_Overload: |
| Redeclaration = false; |
| break; |
| } |
| } |
| |
| if (Redeclaration) { |
| // NewFD and OldDecl represent declarations that need to be |
| // merged. |
| if (MergeFunctionDecl(NewFD, OldDecl)) |
| return NewFD->setInvalidDecl(); |
| |
| Previous.clear(); |
| Previous.addDecl(OldDecl); |
| |
| if (FunctionTemplateDecl *OldTemplateDecl |
| = dyn_cast<FunctionTemplateDecl>(OldDecl)) { |
| NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl()); |
| FunctionTemplateDecl *NewTemplateDecl |
| = NewFD->getDescribedFunctionTemplate(); |
| assert(NewTemplateDecl && "Template/non-template mismatch"); |
| if (CXXMethodDecl *Method |
| = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) { |
| Method->setAccess(OldTemplateDecl->getAccess()); |
| NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); |
| } |
| |
| // If this is an explicit specialization of a member that is a function |
| // template, mark it as a member specialization. |
| if (IsExplicitSpecialization && |
| NewTemplateDecl->getInstantiatedFromMemberTemplate()) { |
| NewTemplateDecl->setMemberSpecialization(); |
| assert(OldTemplateDecl->isMemberSpecialization()); |
| } |
| } else { |
| if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions |
| NewFD->setAccess(OldDecl->getAccess()); |
| NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl)); |
| } |
| } |
| } |
| |
| // Semantic checking for this function declaration (in isolation). |
| if (getLangOptions().CPlusPlus) { |
| // C++-specific checks. |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { |
| CheckConstructor(Constructor); |
| } else if (CXXDestructorDecl *Destructor = |
| dyn_cast<CXXDestructorDecl>(NewFD)) { |
| CXXRecordDecl *Record = Destructor->getParent(); |
| QualType ClassType = Context.getTypeDeclType(Record); |
| |
| // FIXME: Shouldn't we be able to perform this check even when the class |
| // type is dependent? Both gcc and edg can handle that. |
| if (!ClassType->isDependentType()) { |
| DeclarationName Name |
| = Context.DeclarationNames.getCXXDestructorName( |
| Context.getCanonicalType(ClassType)); |
| if (NewFD->getDeclName() != Name) { |
| Diag(NewFD->getLocation(), diag::err_destructor_name); |
| return NewFD->setInvalidDecl(); |
| } |
| } |
| } else if (CXXConversionDecl *Conversion |
| = dyn_cast<CXXConversionDecl>(NewFD)) { |
| ActOnConversionDeclarator(Conversion); |
| } |
| |
| // Find any virtual functions that this function overrides. |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { |
| if (!Method->isFunctionTemplateSpecialization() && |
| !Method->getDescribedFunctionTemplate()) { |
| if (AddOverriddenMethods(Method->getParent(), Method)) { |
| // If the function was marked as "static", we have a problem. |
| if (NewFD->getStorageClass() == SC_Static) { |
| Diag(NewFD->getLocation(), diag::err_static_overrides_virtual) |
| << NewFD->getDeclName(); |
| for (CXXMethodDecl::method_iterator |
| Overridden = Method->begin_overridden_methods(), |
| OverriddenEnd = Method->end_overridden_methods(); |
| Overridden != OverriddenEnd; |
| ++Overridden) { |
| Diag((*Overridden)->getLocation(), |
| diag::note_overridden_virtual_function); |
| } |
| } |
| } |
| } |
| } |
| |
| // Extra checking for C++ overloaded operators (C++ [over.oper]). |
| if (NewFD->isOverloadedOperator() && |
| CheckOverloadedOperatorDeclaration(NewFD)) |
| return NewFD->setInvalidDecl(); |
| |
| // Extra checking for C++0x literal operators (C++0x [over.literal]). |
| if (NewFD->getLiteralIdentifier() && |
| CheckLiteralOperatorDeclaration(NewFD)) |
| return NewFD->setInvalidDecl(); |
| |
| // In C++, check default arguments now that we have merged decls. Unless |
| // the lexical context is the class, because in this case this is done |
| // during delayed parsing anyway. |
| if (!CurContext->isRecord()) |
| CheckCXXDefaultArguments(NewFD); |
| |
| // If this function declares a builtin function, check the type of this |
| // declaration against the expected type for the builtin. |
| if (unsigned BuiltinID = NewFD->getBuiltinID()) { |
| ASTContext::GetBuiltinTypeError Error; |
| QualType T = Context.GetBuiltinType(BuiltinID, Error); |
| if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) { |
| // The type of this function differs from the type of the builtin, |
| // so forget about the builtin entirely. |
| Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents); |
| } |
| } |
| } |
| } |
| |
| void Sema::CheckMain(FunctionDecl* FD) { |
| // C++ [basic.start.main]p3: A program that declares main to be inline |
| // or static is ill-formed. |
| // C99 6.7.4p4: In a hosted environment, the inline function specifier |
| // shall not appear in a declaration of main. |
| // static main is not an error under C99, but we should warn about it. |
| bool isInline = FD->isInlineSpecified(); |
| bool isStatic = FD->getStorageClass() == SC_Static; |
| if (isInline || isStatic) { |
| unsigned diagID = diag::warn_unusual_main_decl; |
| if (isInline || getLangOptions().CPlusPlus) |
| diagID = diag::err_unusual_main_decl; |
| |
| int which = isStatic + (isInline << 1) - 1; |
| Diag(FD->getLocation(), diagID) << which; |
| } |
| |
| QualType T = FD->getType(); |
| assert(T->isFunctionType() && "function decl is not of function type"); |
| const FunctionType* FT = T->getAs<FunctionType>(); |
| |
| if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) { |
| TypeSourceInfo *TSI = FD->getTypeSourceInfo(); |
| TypeLoc TL = TSI->getTypeLoc().IgnoreParens(); |
| const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(), |
| diag::err_main_returns_nonint); |
| if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) { |
| D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(), |
| "int"); |
| } |
| FD->setInvalidDecl(true); |
| } |
| |
| // Treat protoless main() as nullary. |
| if (isa<FunctionNoProtoType>(FT)) return; |
| |
| const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); |
| unsigned nparams = FTP->getNumArgs(); |
| assert(FD->getNumParams() == nparams); |
| |
| bool HasExtraParameters = (nparams > 3); |
| |
| // Darwin passes an undocumented fourth argument of type char**. If |
| // other platforms start sprouting these, the logic below will start |
| // getting shifty. |
| if (nparams == 4 && |
| Context.Target.getTriple().getOS() == llvm::Triple::Darwin) |
| HasExtraParameters = false; |
| |
| if (HasExtraParameters) { |
| Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; |
| FD->setInvalidDecl(true); |
| nparams = 3; |
| } |
| |
| // FIXME: a lot of the following diagnostics would be improved |
| // if we had some location information about types. |
| |
| QualType CharPP = |
| Context.getPointerType(Context.getPointerType(Context.CharTy)); |
| QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; |
| |
| for (unsigned i = 0; i < nparams; ++i) { |
| QualType AT = FTP->getArgType(i); |
| |
| bool mismatch = true; |
| |
| if (Context.hasSameUnqualifiedType(AT, Expected[i])) |
| mismatch = false; |
| else if (Expected[i] == CharPP) { |
| // As an extension, the following forms are okay: |
| // char const ** |
| // char const * const * |
| // char * const * |
| |
| QualifierCollector qs; |
| const PointerType* PT; |
| if ((PT = qs.strip(AT)->getAs<PointerType>()) && |
| (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && |
| (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) { |
| qs.removeConst(); |
| mismatch = !qs.empty(); |
| } |
| } |
| |
| if (mismatch) { |
| Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; |
| // TODO: suggest replacing given type with expected type |
| FD->setInvalidDecl(true); |
| } |
| } |
| |
| if (nparams == 1 && !FD->isInvalidDecl()) { |
| Diag(FD->getLocation(), diag::warn_main_one_arg); |
| } |
| |
| if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { |
| Diag(FD->getLocation(), diag::err_main_template_decl); |
| FD->setInvalidDecl(); |
| } |
| } |
| |
| bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { |
| // FIXME: Need strict checking. In C89, we need to check for |
| // any assignment, increment, decrement, function-calls, or |
| // commas outside of a sizeof. In C99, it's the same list, |
| // except that the aforementioned are allowed in unevaluated |
| // expressions. Everything else falls under the |
| // "may accept other forms of constant expressions" exception. |
| // (We never end up here for C++, so the constant expression |
| // rules there don't matter.) |
| if (Init->isConstantInitializer(Context, false)) |
| return false; |
| Diag(Init->getExprLoc(), diag::err_init_element_not_constant) |
| << Init->getSourceRange(); |
| return true; |
| } |
| |
| void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) { |
| AddInitializerToDecl(dcl, init, /*DirectInit=*/false); |
| } |
| |
| /// AddInitializerToDecl - Adds the initializer Init to the |
| /// declaration dcl. If DirectInit is true, this is C++ direct |
| /// initialization rather than copy initialization. |
| void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) { |
| // If there is no declaration, there was an error parsing it. Just ignore |
| // the initializer. |
| if (RealDecl == 0) |
| return; |
| |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { |
| // With declarators parsed the way they are, the parser cannot |
| // distinguish between a normal initializer and a pure-specifier. |
| // Thus this grotesque test. |
| IntegerLiteral *IL; |
| if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 && |
| Context.getCanonicalType(IL->getType()) == Context.IntTy) |
| CheckPureMethod(Method, Init->getSourceRange()); |
| else { |
| Diag(Method->getLocation(), diag::err_member_function_initialization) |
| << Method->getDeclName() << Init->getSourceRange(); |
| Method->setInvalidDecl(); |
| } |
| return; |
| } |
| |
| VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); |
| if (!VDecl) { |
| if (getLangOptions().CPlusPlus && |
| RealDecl->getLexicalDeclContext()->isRecord() && |
| isa<NamedDecl>(RealDecl)) |
| Diag(RealDecl->getLocation(), diag::err_member_initialization); |
| else |
| Diag(RealDecl->getLocation(), diag::err_illegal_initializer); |
| RealDecl->setInvalidDecl(); |
| return; |
| } |
| |
| |
| |
| // A definition must end up with a complete type, which means it must be |
| // complete with the restriction that an array type might be completed by the |
| // initializer; note that later code assumes this restriction. |
| QualType BaseDeclType = VDecl->getType(); |
| if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) |
| BaseDeclType = Array->getElementType(); |
| if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, |
| diag::err_typecheck_decl_incomplete_type)) { |
| RealDecl->setInvalidDecl(); |
| return; |
| } |
| |
| // The variable can not have an abstract class type. |
| if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), |
| diag::err_abstract_type_in_decl, |
| AbstractVariableType)) |
| VDecl->setInvalidDecl(); |
| |
| const VarDecl *Def; |
| if ((Def = VDecl->getDefinition()) && Def != VDecl) { |
| Diag(VDecl->getLocation(), diag::err_redefinition) |
| << VDecl->getDeclName(); |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| const VarDecl* PrevInit = 0; |
| if (getLangOptions().CPlusPlus) { |
| // C++ [class.static.data]p4 |
| // If a static data member is of const integral or const |
| // enumeration type, its declaration in the class definition can |
| // specify a constant-initializer which shall be an integral |
| // constant expression (5.19). In that case, the member can appear |
| // in integral constant expressions. The member shall still be |
| // defined in a namespace scope if it is used in the program and the |
| // namespace scope definition shall not contain an initializer. |
| // |
| // We already performed a redefinition check above, but for static |
| // data members we also need to check whether there was an in-class |
| // declaration with an initializer. |
| if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) { |
| Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName(); |
| Diag(PrevInit->getLocation(), diag::note_previous_definition); |
| return; |
| } |
| |
| if (VDecl->hasLocalStorage()) |
| getCurFunction()->setHasBranchProtectedScope(); |
| |
| if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) { |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| } |
| |
| // Capture the variable that is being initialized and the style of |
| // initialization. |
| InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); |
| |
| // FIXME: Poor source location information. |
| InitializationKind Kind |
| = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(), |
| Init->getLocStart(), |
| Init->getLocEnd()) |
| : InitializationKind::CreateCopy(VDecl->getLocation(), |
| Init->getLocStart()); |
| |
| // Get the decls type and save a reference for later, since |
| // CheckInitializerTypes may change it. |
| QualType DclT = VDecl->getType(), SavT = DclT; |
| if (VDecl->isLocalVarDecl()) { |
| if (VDecl->hasExternalStorage()) { // C99 6.7.8p5 |
| Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); |
| VDecl->setInvalidDecl(); |
| } else if (!VDecl->isInvalidDecl()) { |
| InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1); |
| ExprResult Result = InitSeq.Perform(*this, Entity, Kind, |
| MultiExprArg(*this, &Init, 1), |
| &DclT); |
| if (Result.isInvalid()) { |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| Init = Result.takeAs<Expr>(); |
| |
| // C++ 3.6.2p2, allow dynamic initialization of static initializers. |
| // Don't check invalid declarations to avoid emitting useless diagnostics. |
| if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) { |
| if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4. |
| CheckForConstantInitializer(Init, DclT); |
| } |
| } |
| } else if (VDecl->isStaticDataMember() && |
| VDecl->getLexicalDeclContext()->isRecord()) { |
| // This is an in-class initialization for a static data member, e.g., |
| // |
| // struct S { |
| // static const int value = 17; |
| // }; |
| |
| // Try to perform the initialization regardless. |
| if (!VDecl->isInvalidDecl()) { |
| InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1); |
| ExprResult Result = InitSeq.Perform(*this, Entity, Kind, |
| MultiExprArg(*this, &Init, 1), |
| &DclT); |
| if (Result.isInvalid()) { |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| Init = Result.takeAs<Expr>(); |
| } |
| |
| // C++ [class.mem]p4: |
| // A member-declarator can contain a constant-initializer only |
| // if it declares a static member (9.4) of const integral or |
| // const enumeration type, see 9.4.2. |
| QualType T = VDecl->getType(); |
| |
| // Do nothing on dependent types. |
| if (T->isDependentType()) { |
| |
| // Require constness. |
| } else if (!T.isConstQualified()) { |
| Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) |
| << Init->getSourceRange(); |
| VDecl->setInvalidDecl(); |
| |
| // We allow integer constant expressions in all cases. |
| } else if (T->isIntegralOrEnumerationType()) { |
| if (!Init->isValueDependent()) { |
| // Check whether the expression is a constant expression. |
| llvm::APSInt Value; |
| SourceLocation Loc; |
| if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) { |
| Diag(Loc, diag::err_in_class_initializer_non_constant) |
| << Init->getSourceRange(); |
| VDecl->setInvalidDecl(); |
| } |
| } |
| |
| // We allow floating-point constants as an extension in C++03, and |
| // C++0x has far more complicated rules that we don't really |
| // implement fully. |
| } else { |
| bool Allowed = false; |
| if (getLangOptions().CPlusPlus0x) { |
| Allowed = T->isLiteralType(); |
| } else if (T->isFloatingType()) { // also permits complex, which is ok |
| Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) |
| << T << Init->getSourceRange(); |
| Allowed = true; |
| } |
| |
| if (!Allowed) { |
| Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) |
| << T << Init->getSourceRange(); |
| VDecl->setInvalidDecl(); |
| |
| // TODO: there are probably expressions that pass here that shouldn't. |
| } else if (!Init->isValueDependent() && |
| !Init->isConstantInitializer(Context, false)) { |
| Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) |
| << Init->getSourceRange(); |
| VDecl->setInvalidDecl(); |
| } |
| } |
| } else if (VDecl->isFileVarDecl()) { |
| if (VDecl->getStorageClassAsWritten() == SC_Extern && |
| (!getLangOptions().CPlusPlus || |
| !Context.getBaseElementType(VDecl->getType()).isConstQualified())) |
| Diag(VDecl->getLocation(), diag::warn_extern_init); |
| if (!VDecl->isInvalidDecl()) { |
| InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1); |
| ExprResult Result = InitSeq.Perform(*this, Entity, Kind, |
| MultiExprArg(*this, &Init, 1), |
| &DclT); |
| if (Result.isInvalid()) { |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| Init = Result.takeAs<Expr>(); |
| } |
| |
| // C++ 3.6.2p2, allow dynamic initialization of static initializers. |
| // Don't check invalid declarations to avoid emitting useless diagnostics. |
| if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) { |
| // C99 6.7.8p4. All file scoped initializers need to be constant. |
| CheckForConstantInitializer(Init, DclT); |
| } |
| } |
| // If the type changed, it means we had an incomplete type that was |
| // completed by the initializer. For example: |
| // int ary[] = { 1, 3, 5 }; |
| // "ary" transitions from a VariableArrayType to a ConstantArrayType. |
| if (!VDecl->isInvalidDecl() && (DclT != SavT)) { |
| VDecl->setType(DclT); |
| Init->setType(DclT); |
| } |
| |
| |
| // If this variable is a local declaration with record type, make sure it |
| // doesn't have a flexible member initialization. We only support this as a |
| // global/static definition. |
| if (VDecl->hasLocalStorage()) |
| if (const RecordType *RT = VDecl->getType()->getAs<RecordType>()) |
| if (RT->getDecl()->hasFlexibleArrayMember()) { |
| // Check whether the initializer tries to initialize the flexible |
| // array member itself to anything other than an empty initializer list. |
| if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { |
| unsigned Index = std::distance(RT->getDecl()->field_begin(), |
| RT->getDecl()->field_end()) - 1; |
| if (Index < ILE->getNumInits() && |
| !(isa<InitListExpr>(ILE->getInit(Index)) && |
| cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) { |
| Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable); |
| VDecl->setInvalidDecl(); |
| } |
| } |
| } |
| |
| // Check any implicit conversions within the expression. |
| CheckImplicitConversions(Init, VDecl->getLocation()); |
| |
| Init = MaybeCreateExprWithCleanups(Init); |
| // Attach the initializer to the decl. |
| VDecl->setInit(Init); |
| |
| CheckCompleteVariableDeclaration(VDecl); |
| } |
| |
| /// ActOnInitializerError - Given that there was an error parsing an |
| /// initializer for the given declaration, try to return to some form |
| /// of sanity. |
| void Sema::ActOnInitializerError(Decl *D) { |
| // Our main concern here is re-establishing invariants like "a |
| // variable's type is either dependent or complete". |
| if (!D || D->isInvalidDecl()) return; |
| |
| VarDecl *VD = dyn_cast<VarDecl>(D); |
| if (!VD) return; |
| |
| QualType Ty = VD->getType(); |
| if (Ty->isDependentType()) return; |
| |
| // Require a complete type. |
| if (RequireCompleteType(VD->getLocation(), |
| Context.getBaseElementType(Ty), |
| diag::err_typecheck_decl_incomplete_type)) { |
| VD->setInvalidDecl(); |
| return; |
| } |
| |
| // Require an abstract type. |
| if (RequireNonAbstractType(VD->getLocation(), Ty, |
| diag::err_abstract_type_in_decl, |
| AbstractVariableType)) { |
| VD->setInvalidDecl(); |
| return; |
| } |
| |
| // Don't bother complaining about constructors or destructors, |
| // though. |
| } |
| |
| void Sema::ActOnUninitializedDecl(Decl *RealDecl, |
| bool TypeContainsUndeducedAuto) { |
| // If there is no declaration, there was an error parsing it. Just ignore it. |
| if (RealDecl == 0) |
| return; |
| |
| if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { |
| QualType Type = Var->getType(); |
| |
| // C++0x [dcl.spec.auto]p3 |
| if (TypeContainsUndeducedAuto) { |
| Diag(Var->getLocation(), diag::err_auto_var_requires_init) |
| << Var->getDeclName() << Type; |
| Var->setInvalidDecl(); |
| return; |
| } |
| |
| switch (Var->isThisDeclarationADefinition()) { |
| case VarDecl::Definition: |
| if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) |
| break; |
| |
| // We have an out-of-line definition of a static data member |
| // that has an in-class initializer, so we type-check this like |
| // a declaration. |
| // |
| // Fall through |
| |
| case VarDecl::DeclarationOnly: |
| // It's only a declaration. |
| |
| // Block scope. C99 6.7p7: If an identifier for an object is |
| // declared with no linkage (C99 6.2.2p6), the type for the |
| // object shall be complete. |
| if (!Type->isDependentType() && Var->isLocalVarDecl() && |
| !Var->getLinkage() && !Var->isInvalidDecl() && |
| RequireCompleteType(Var->getLocation(), Type, |
| diag::err_typecheck_decl_incomplete_type)) |
| Var->setInvalidDecl(); |
| |
| // Make sure that the type is not abstract. |
| if (!Type->isDependentType() && !Var->isInvalidDecl() && |
| RequireNonAbstractType(Var->getLocation(), Type, |
| diag::err_abstract_type_in_decl, |
| AbstractVariableType)) |
| Var->setInvalidDecl(); |
| return; |
| |
| case VarDecl::TentativeDefinition: |
| // File scope. C99 6.9.2p2: A declaration of an identifier for an |
| // object that has file scope without an initializer, and without a |
| // storage-class specifier or with the storage-class specifier "static", |
| // constitutes a tentative definition. Note: A tentative definition with |
| // external linkage is valid (C99 6.2.2p5). |
| if (!Var->isInvalidDecl()) { |
| if (const IncompleteArrayType *ArrayT |
| = Context.getAsIncompleteArrayType(Type)) { |
| if (RequireCompleteType(Var->getLocation(), |
| ArrayT->getElementType(), |
| diag::err_illegal_decl_array_incomplete_type)) |
| Var->setInvalidDecl(); |
| } else if (Var->getStorageClass() == SC_Static) { |
| // C99 6.9.2p3: If the declaration of an identifier for an object is |
| // a tentative definition and has internal linkage (C99 6.2.2p3), the |
| // declared type shall not be an incomplete type. |
| // NOTE: code such as the following |
| // static struct s; |
| // struct s { int a; }; |
| // is accepted by gcc. Hence here we issue a warning instead of |
| // an error and we do not invalidate the static declaration. |
| // NOTE: to avoid multiple warnings, only check the first declaration. |
| if (Var->getPreviousDeclaration() == 0) |
| RequireCompleteType(Var->getLocation(), Type, |
| diag::ext_typecheck_decl_incomplete_type); |
| } |
| } |
| |
| // Record the tentative definition; we're done. |
| if (!Var->isInvalidDecl()) |
| TentativeDefinitions.push_back(Var); |
| return; |
| } |
| |
| // Provide a specific diagnostic for uninitialized variable |
| // definitions with incomplete array type. |
| if (Type->isIncompleteArrayType()) { |
| Diag(Var->getLocation(), |
| diag::err_typecheck_incomplete_array_needs_initializer); |
| Var->setInvalidDecl(); |
| return; |
| } |
| |
| // Provide a specific diagnostic for uninitialized variable |
| // definitions with reference type. |
| if (Type->isReferenceType()) { |
| Diag(Var->getLocation(), diag::err_reference_var_requires_init) |
| << Var->getDeclName() |
| << SourceRange(Var->getLocation(), Var->getLocation()); |
| Var->setInvalidDecl(); |
| return; |
| } |
| |
| // Do not attempt to type-check the default initializer for a |
| // variable with dependent type. |
| if (Type->isDependentType()) |
| return; |
| |
| if (Var->isInvalidDecl()) |
| return; |
| |
| if (RequireCompleteType(Var->getLocation(), |
| Context.getBaseElementType(Type), |
| diag::err_typecheck_decl_incomplete_type)) { |
| Var->setInvalidDecl(); |
| return; |
| } |
| |
| // The variable can not have an abstract class type. |
| if (RequireNonAbstractType(Var->getLocation(), Type, |
| diag::err_abstract_type_in_decl, |
| AbstractVariableType)) { |
| Var->setInvalidDecl(); |
| return; |
| } |
| |
| const RecordType *Record |
| = Context.getBaseElementType(Type)->getAs<RecordType>(); |
| if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x && |
| cast<CXXRecordDecl>(Record->getDecl())->isPOD()) { |
| // C++03 [dcl.init]p9: |
| // If no initializer is specified for an object, and the |
| // object is of (possibly cv-qualified) non-POD class type (or |
| // array thereof), the object shall be default-initialized; if |
| // the object is of const-qualified type, the underlying class |
| // type shall have a user-declared default |
| // constructor. Otherwise, if no initializer is specified for |
| // a non- static object, the object and its subobjects, if |
| // any, have an indeterminate initial value); if the object |
| // or any of its subobjects are of const-qualified type, the |
| // program is ill-formed. |
| // FIXME: DPG thinks it is very fishy that C++0x disables this. |
| } else { |
| // Check for jumps past the implicit initializer. C++0x |
| // clarifies that this applies to a "variable with automatic |
| // storage duration", not a "local variable". |
| if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) |
| getCurFunction()->setHasBranchProtectedScope(); |
| |
| InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); |
| InitializationKind Kind |
| = InitializationKind::CreateDefault(Var->getLocation()); |
| |
| InitializationSequence InitSeq(*this, Entity, Kind, 0, 0); |
| ExprResult Init = InitSeq.Perform(*this, Entity, Kind, |
| MultiExprArg(*this, 0, 0)); |
| if (Init.isInvalid()) |
| Var->setInvalidDecl(); |
| else if (Init.get()) |
| Var->setInit(MaybeCreateExprWithCleanups(Init.get())); |
| } |
| |
| CheckCompleteVariableDeclaration(Var); |
| } |
| } |
| |
| void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { |
| if (var->isInvalidDecl()) return; |
| |
| // All the following checks are C++ only. |
| if (!getLangOptions().CPlusPlus) return; |
| |
| QualType baseType = Context.getBaseElementType(var->getType()); |
| if (baseType->isDependentType()) return; |
| |
| // __block variables might require us to capture a copy-initializer. |
| if (var->hasAttr<BlocksAttr>()) { |
| // It's currently invalid to ever have a __block variable with an |
| // array type; should we diagnose that here? |
| |
| // Regardless, we don't want to ignore array nesting when |
| // constructing this copy. |
| QualType type = var->getType(); |
| |
| if (type->isStructureOrClassType()) { |
| SourceLocation poi = var->getLocation(); |
| Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi); |
| ExprResult result = |
| PerformCopyInitialization( |
| InitializedEntity::InitializeBlock(poi, type, false), |
| poi, Owned(varRef)); |
| if (!result.isInvalid()) { |
| result = MaybeCreateExprWithCleanups(result); |
| Expr *init = result.takeAs<Expr>(); |
| Context.setBlockVarCopyInits(var, init); |
| } |
| } |
| } |
| |
| // Check for global constructors. |
| if (!var->getDeclContext()->isDependentContext() && |
| var->hasGlobalStorage() && |
| !var->isStaticLocal() && |
| var->getInit() && |
| !var->getInit()->isConstantInitializer(Context, |
| baseType->isReferenceType())) |
| Diag(var->getLocation(), diag::warn_global_constructor) |
| << var->getInit()->getSourceRange(); |
| |
| // Require the destructor. |
| if (const RecordType *recordType = baseType->getAs<RecordType>()) |
| FinalizeVarWithDestructor(var, recordType); |
| } |
| |
| Sema::DeclGroupPtrTy |
| Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, |
| Decl **Group, unsigned NumDecls) { |
| llvm::SmallVector<Decl*, 8> Decls; |
| |
| if (DS.isTypeSpecOwned()) |
| Decls.push_back(DS.getRepAsDecl()); |
| |
| for (unsigned i = 0; i != NumDecls; ++i) |
| if (Decl *D = Group[i]) |
| Decls.push_back(D); |
| |
| return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, |
| Decls.data(), Decls.size())); |
| } |
| |
| |
| /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() |
| /// to introduce parameters into function prototype scope. |
| Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { |
| const DeclSpec &DS = D.getDeclSpec(); |
| |
| // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. |
| VarDecl::StorageClass StorageClass = SC_None; |
| VarDecl::StorageClass StorageClassAsWritten = SC_None; |
| if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { |
| StorageClass = SC_Register; |
| StorageClassAsWritten = SC_Register; |
| } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { |
| Diag(DS.getStorageClassSpecLoc(), |
| diag::err_invalid_storage_class_in_func_decl); |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| } |
| |
| if (D.getDeclSpec().isThreadSpecified()) |
| Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); |
| |
| DiagnoseFunctionSpecifiers(D); |
| |
| TagDecl *OwnedDecl = 0; |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl); |
| QualType parmDeclType = TInfo->getType(); |
| |
| if (getLangOptions().CPlusPlus) { |
| // Check that there are no default arguments inside the type of this |
| // parameter. |
| CheckExtraCXXDefaultArguments(D); |
| |
| if (OwnedDecl && OwnedDecl->isDefinition()) { |
| // C++ [dcl.fct]p6: |
| // Types shall not be defined in return or parameter types. |
| Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type) |
| << Context.getTypeDeclType(OwnedDecl); |
| } |
| |
| // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). |
| if (D.getCXXScopeSpec().isSet()) { |
| Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) |
| << D.getCXXScopeSpec().getRange(); |
| D.getCXXScopeSpec().clear(); |
| } |
| } |
| |
| // Ensure we have a valid name |
| IdentifierInfo *II = 0; |
| if (D.hasName()) { |
| II = D.getIdentifier(); |
| if (!II) { |
| Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) |
| << GetNameForDeclarator(D).getName().getAsString(); |
| D.setInvalidType(true); |
| } |
| } |
| |
| // Check for redeclaration of parameters, e.g. int foo(int x, int x); |
| if (II) { |
| LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, |
| ForRedeclaration); |
| LookupName(R, S); |
| if (R.isSingleResult()) { |
| NamedDecl *PrevDecl = R.getFoundDecl(); |
| if (PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
| // Just pretend that we didn't see the previous declaration. |
| PrevDecl = 0; |
| } else if (S->isDeclScope(PrevDecl)) { |
| Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; |
| Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
| |
| // Recover by removing the name |
| II = 0; |
| D.SetIdentifier(0, D.getIdentifierLoc()); |
| D.setInvalidType(true); |
| } |
| } |
| } |
| |
| // Temporarily put parameter variables in the translation unit, not |
| // the enclosing context. This prevents them from accidentally |
| // looking like class members in C++. |
| ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(), |
| TInfo, parmDeclType, II, |
| D.getIdentifierLoc(), |
| StorageClass, StorageClassAsWritten); |
| |
| if (D.isInvalidType()) |
| New->setInvalidDecl(); |
| |
| // Add the parameter declaration into this scope. |
| S->AddDecl(New); |
| if (II) |
| IdResolver.AddDecl(New); |
| |
| ProcessDeclAttributes(S, New, D); |
| |
| if (New->hasAttr<BlocksAttr>()) { |
| Diag(New->getLocation(), diag::err_block_on_nonlocal); |
| } |
| return New; |
| } |
| |
| /// \brief Synthesizes a variable for a parameter arising from a |
| /// typedef. |
| ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, |
| SourceLocation Loc, |
| QualType T) { |
| ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0, |
| T, Context.getTrivialTypeSourceInfo(T, Loc), |
| SC_None, SC_None, 0); |
| Param->setImplicit(); |
| return Param; |
| } |
| |
| void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param, |
| ParmVarDecl * const *ParamEnd) { |
| // Don't diagnose unused-parameter errors in template instantiations; we |
| // will already have done so in the template itself. |
| if (!ActiveTemplateInstantiations.empty()) |
| return; |
| |
| for (; Param != ParamEnd; ++Param) { |
| if (!(*Param)->isUsed() && (*Param)->getDeclName() && |
| !(*Param)->hasAttr<UnusedAttr>()) { |
| Diag((*Param)->getLocation(), diag::warn_unused_parameter) |
| << (*Param)->getDeclName(); |
| } |
| } |
| } |
| |
| void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param, |
| ParmVarDecl * const *ParamEnd, |
| QualType ReturnTy, |
| NamedDecl *D) { |
| if (LangOpts.NumLargeByValueCopy == 0) // No check. |
| return; |
| |
| // Warn if the return value is pass-by-value and larger than the specified |
| // threshold. |
| if (ReturnTy->isPODType()) { |
| unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity(); |
| if (Size > LangOpts.NumLargeByValueCopy) |
| Diag(D->getLocation(), diag::warn_return_value_size) |
| << D->getDeclName() << Size; |
| } |
| |
| // Warn if any parameter is pass-by-value and larger than the specified |
| // threshold. |
| for (; Param != ParamEnd; ++Param) { |
| QualType T = (*Param)->getType(); |
| if (!T->isPODType()) |
| continue; |
| unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); |
| if (Size > LangOpts.NumLargeByValueCopy) |
| Diag((*Param)->getLocation(), diag::warn_parameter_size) |
| << (*Param)->getDeclName() << Size; |
| } |
| } |
| |
| ParmVarDecl *Sema::CheckParameter(DeclContext *DC, |
| TypeSourceInfo *TSInfo, QualType T, |
| IdentifierInfo *Name, |
| SourceLocation NameLoc, |
| VarDecl::StorageClass StorageClass, |
| VarDecl::StorageClass StorageClassAsWritten) { |
| ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name, |
| adjustParameterType(T), TSInfo, |
| StorageClass, StorageClassAsWritten, |
| 0); |
| |
| // Parameters can not be abstract class types. |
| // For record types, this is done by the AbstractClassUsageDiagnoser once |
| // the class has been completely parsed. |
| if (!CurContext->isRecord() && |
| RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl, |
| AbstractParamType)) |
| New->setInvalidDecl(); |
| |
| // Parameter declarators cannot be interface types. All ObjC objects are |
| // passed by reference. |
| if (T->isObjCObjectType()) { |
| Diag(NameLoc, |
| diag::err_object_cannot_be_passed_returned_by_value) << 1 << T; |
| New->setInvalidDecl(); |
| } |
| |
| // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage |
| // duration shall not be qualified by an address-space qualifier." |
| // Since all parameters have automatic store duration, they can not have |
| // an address space. |
| if (T.getAddressSpace() != 0) { |
| Diag(NameLoc, diag::err_arg_with_address_space); |
| New->setInvalidDecl(); |
| } |
| |
| return New; |
| } |
| |
| void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, |
| SourceLocation LocAfterDecls) { |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
| |
| // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' |
| // for a K&R function. |
| if (!FTI.hasPrototype) { |
| for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) { |
| --i; |
| if (FTI.ArgInfo[i].Param == 0) { |
| llvm::SmallString<256> Code; |
| llvm::raw_svector_ostream(Code) << " int " |
| << FTI.ArgInfo[i].Ident->getName() |
| << ";\n"; |
| Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared) |
| << FTI.ArgInfo[i].Ident |
| << FixItHint::CreateInsertion(LocAfterDecls, Code.str()); |
| |
| // Implicitly declare the argument as type 'int' for lack of a better |
| // type. |
| DeclSpec DS; |
| const char* PrevSpec; // unused |
| unsigned DiagID; // unused |
| DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc, |
| PrevSpec, DiagID); |
| Declarator ParamD(DS, Declarator::KNRTypeListContext); |
| ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc); |
| FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD); |
| } |
| } |
| } |
| } |
| |
| Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, |
| Declarator &D) { |
| assert(getCurFunctionDecl() == 0 && "Function parsing confused"); |
| assert(D.isFunctionDeclarator() && "Not a function declarator!"); |
| Scope *ParentScope = FnBodyScope->getParent(); |
| |
| Decl *DP = HandleDeclarator(ParentScope, D, |
| MultiTemplateParamsArg(*this), |
| /*IsFunctionDefinition=*/true); |
| return ActOnStartOfFunctionDef(FnBodyScope, DP); |
| } |
| |
| static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) { |
| // Don't warn about invalid declarations. |
| if (FD->isInvalidDecl()) |
| return false; |
| |
| // Or declarations that aren't global. |
| if (!FD->isGlobal()) |
| return false; |
| |
| // Don't warn about C++ member functions. |
| if (isa<CXXMethodDecl>(FD)) |
| return false; |
| |
| // Don't warn about 'main'. |
| if (FD->isMain()) |
| return false; |
| |
| // Don't warn about inline functions. |
| if (FD->isInlineSpecified()) |
| return false; |
| |
| // Don't warn about function templates. |
| if (FD->getDescribedFunctionTemplate()) |
| return false; |
| |
| // Don't warn about function template specializations. |
| if (FD->isFunctionTemplateSpecialization()) |
| return false; |
| |
| bool MissingPrototype = true; |
| for (const FunctionDecl *Prev = FD->getPreviousDeclaration(); |
| Prev; Prev = Prev->getPreviousDeclaration()) { |
| // Ignore any declarations that occur in function or method |
| // scope, because they aren't visible from the header. |
| if (Prev->getDeclContext()->isFunctionOrMethod()) |
| continue; |
| |
| MissingPrototype = !Prev->getType()->isFunctionProtoType(); |
| break; |
| } |
| |
| return MissingPrototype; |
| } |
| |
| Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) { |
| // Clear the last template instantiation error context. |
| LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation(); |
| |
| if (!D) |
| return D; |
| FunctionDecl *FD = 0; |
| |
| if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) |
| FD = FunTmpl->getTemplatedDecl(); |
| else |
| FD = cast<FunctionDecl>(D); |
| |
| // Enter a new function scope |
| PushFunctionScope(); |
| |
| // See if this is a redefinition. |
| // But don't complain if we're in GNU89 mode and the previous definition |
| // was an extern inline function. |
| const FunctionDecl *Definition; |
| if (FD->hasBody(Definition) && |
| !canRedefineFunction(Definition, getLangOptions())) { |
| if (getLangOptions().GNUMode && Definition->isInlineSpecified() && |
| Definition->getStorageClass() == SC_Extern) |
| Diag(FD->getLocation(), diag::err_redefinition_extern_inline) |
| << FD->getDeclName() << getLangOptions().CPlusPlus; |
| else |
| Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName(); |
| Diag(Definition->getLocation(), diag::note_previous_definition); |
| } |
| |
| // Builtin functions cannot be defined. |
| if (unsigned BuiltinID = FD->getBuiltinID()) { |
| if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { |
| Diag(FD->getLocation(), diag::err_builtin_definition) << FD; |
| FD->setInvalidDecl(); |
| } |
| } |
| |
| // The return type of a function definition must be complete |
| // (C99 6.9.1p3, C++ [dcl.fct]p6). |
| QualType ResultType = FD->getResultType(); |
| if (!ResultType->isDependentType() && !ResultType->isVoidType() && |
| !FD->isInvalidDecl() && |
| RequireCompleteType(FD->getLocation(), ResultType, |
| diag::err_func_def_incomplete_result)) |
| FD->setInvalidDecl(); |
| |
| // GNU warning -Wmissing-prototypes: |
| // Warn if a global function is defined without a previous |
| // prototype declaration. This warning is issued even if the |
| // definition itself provides a prototype. The aim is to detect |
| // global functions that fail to be declared in header files. |
| if (ShouldWarnAboutMissingPrototype(FD)) |
| Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; |
| |
| if (FnBodyScope) |
| PushDeclContext(FnBodyScope, FD); |
| |
| // Check the validity of our function parameters |
| CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(), |
| /*CheckParameterNames=*/true); |
| |
| // Introduce our parameters into the function scope |
| for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) { |
| ParmVarDecl *Param = FD->getParamDecl(p); |
| Param->setOwningFunction(FD); |
| |
| // If this has an identifier, add it to the scope stack. |
| if (Param->getIdentifier() && FnBodyScope) { |
| CheckShadow(FnBodyScope, Param); |
| |
| PushOnScopeChains(Param, FnBodyScope); |
| } |
| } |
| |
| // Checking attributes of current function definition |
| // dllimport attribute. |
| DLLImportAttr *DA = FD->getAttr<DLLImportAttr>(); |
| if (DA && (!FD->getAttr<DLLExportAttr>())) { |
| // dllimport attribute cannot be directly applied to definition. |
| if (!DA->isInherited()) { |
| Diag(FD->getLocation(), |
| diag::err_attribute_can_be_applied_only_to_symbol_declaration) |
| << "dllimport"; |
| FD->setInvalidDecl(); |
| return FD; |
| } |
| |
| // Visual C++ appears to not think this is an issue, so only issue |
| // a warning when Microsoft extensions are disabled. |
| if (!LangOpts.Microsoft) { |
| // If a symbol previously declared dllimport is later defined, the |
| // attribute is ignored in subsequent references, and a warning is |
| // emitted. |
| Diag(FD->getLocation(), |
| diag::warn_redeclaration_without_attribute_prev_attribute_ignored) |
| << FD->getName() << "dllimport"; |
| } |
| } |
| return FD; |
| } |
| |
| /// \brief Given the set of return statements within a function body, |
| /// compute the variables that are subject to the named return value |
| /// optimization. |
| /// |
| /// Each of the variables that is subject to the named return value |
| /// optimization will be marked as NRVO variables in the AST, and any |
| /// return statement that has a marked NRVO variable as its NRVO candidate can |
| /// use the named return value optimization. |
| /// |
| /// This function applies a very simplistic algorithm for NRVO: if every return |
| /// statement in the function has the same NRVO candidate, that candidate is |
| /// the NRVO variable. |
| /// |
| /// FIXME: Employ a smarter algorithm that accounts for multiple return |
| /// statements and the lifetimes of the NRVO candidates. We should be able to |
| /// find a maximal set of NRVO variables. |
| static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { |
| ReturnStmt **Returns = Scope->Returns.data(); |
| |
| const VarDecl *NRVOCandidate = 0; |
| for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { |
| if (!Returns[I]->getNRVOCandidate()) |
| return; |
| |
| if (!NRVOCandidate) |
| NRVOCandidate = Returns[I]->getNRVOCandidate(); |
| else if (NRVOCandidate != Returns[I]->getNRVOCandidate()) |
| return; |
| } |
| |
| if (NRVOCandidate) |
| const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true); |
| } |
| |
| Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { |
| return ActOnFinishFunctionBody(D, move(BodyArg), false); |
| } |
| |
| Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, |
| bool IsInstantiation) { |
| FunctionDecl *FD = 0; |
| FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl); |
| if (FunTmpl) |
| FD = FunTmpl->getTemplatedDecl(); |
| else |
| FD = dyn_cast_or_null<FunctionDecl>(dcl); |
| |
| sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); |
| |
| if (FD) { |
| FD->setBody(Body); |
| if (FD->isMain()) { |
| // C and C++ allow for main to automagically return 0. |
| // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3. |
| FD->setHasImplicitReturnZero(true); |
| WP.disableCheckFallThrough(); |
| } |
| |
| if (!FD->isInvalidDecl()) { |
| DiagnoseUnusedParameters(FD->param_begin(), FD->param_end()); |
| DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(), |
| FD->getResultType(), FD); |
| |
| // If this is a constructor, we need a vtable. |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) |
| MarkVTableUsed(FD->getLocation(), Constructor->getParent()); |
| |
| ComputeNRVO(Body, getCurFunction()); |
| } |
| |
| assert(FD == getCurFunctionDecl() && "Function parsing confused"); |
| } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { |
| assert(MD == getCurMethodDecl() && "Method parsing confused"); |
| MD->setBody(Body); |
| if (Body) |
| MD->setEndLoc(Body->getLocEnd()); |
| if (!MD->isInvalidDecl()) { |
| DiagnoseUnusedParameters(MD->param_begin(), MD->param_end()); |
| DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(), |
| MD->getResultType(), MD); |
| } |
| } else { |
| return 0; |
| } |
| |
| // Verify and clean out per-function state. |
| |
| // Check goto/label use. |
| FunctionScopeInfo *CurFn = getCurFunction(); |
| for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator |
| I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) { |
| LabelStmt *L = I->second; |
| |
| // Verify that we have no forward references left. If so, there was a goto |
| // or address of a label taken, but no definition of it. Label fwd |
| // definitions are indicated with a null substmt. |
| if (L->getSubStmt() != 0) { |
| if (!L->isUsed()) |
| Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName(); |
| continue; |
| } |
| |
| // Emit error. |
| Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName(); |
| |
| // At this point, we have gotos that use the bogus label. Stitch it into |
| // the function body so that they aren't leaked and that the AST is well |
| // formed. |
| if (Body == 0) { |
| // The whole function wasn't parsed correctly. |
| continue; |
| } |
| |
| // Otherwise, the body is valid: we want to stitch the label decl into the |
| // function somewhere so that it is properly owned and so that the goto |
| // has a valid target. Do this by creating a new compound stmt with the |
| // label in it. |
| |
| // Give the label a sub-statement. |
| L->setSubStmt(new (Context) NullStmt(L->getIdentLoc())); |
| |
| CompoundStmt *Compound = isa<CXXTryStmt>(Body) ? |
| cast<CXXTryStmt>(Body)->getTryBlock() : |
| cast<CompoundStmt>(Body); |
| llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(), |
| Compound->body_end()); |
| Elements.push_back(L); |
| Compound->setStmts(Context, Elements.data(), Elements.size()); |
| } |
| |
| if (Body) { |
| // C++ constructors that have function-try-blocks can't have return |
| // statements in the handlers of that block. (C++ [except.handle]p14) |
| // Verify this. |
| if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) |
| DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); |
| |
| // Verify that that gotos and switch cases don't jump into scopes illegally. |
| // Verify that that gotos and switch cases don't jump into scopes illegally. |
| if (getCurFunction()->NeedsScopeChecking() && |
| !dcl->isInvalidDecl() && |
| !hasAnyErrorsInThisFunction()) |
| DiagnoseInvalidJumps(Body); |
| |
| if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { |
| if (!Destructor->getParent()->isDependentType()) |
| CheckDestructor(Destructor); |
| |
| MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), |
| Destructor->getParent()); |
| } |
| |
| // If any errors have occurred, clear out any temporaries that may have |
| // been leftover. This ensures that these temporaries won't be picked up for |
| // deletion in some later function. |
| if (PP.getDiagnostics().hasErrorOccurred()) |
| ExprTemporaries.clear(); |
| else if (!isa<FunctionTemplateDecl>(dcl)) { |
| // Since the body is valid, issue any analysis-based warnings that are |
| // enabled. |
| QualType ResultType; |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) { |
| AnalysisWarnings.IssueWarnings(WP, FD); |
| } else { |
| ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl); |
| AnalysisWarnings.IssueWarnings(WP, MD); |
| } |
| } |
| |
| assert(ExprTemporaries.empty() && "Leftover temporaries in function"); |
| } |
| |
| if (!IsInstantiation) |
| PopDeclContext(); |
| |
| PopFunctionOrBlockScope(); |
| |
| // If any errors have occurred, clear out any temporaries that may have |
| // been leftover. This ensures that these temporaries won't be picked up for |
| // deletion in some later function. |
| if (getDiagnostics().hasErrorOccurred()) |
| ExprTemporaries.clear(); |
| |
| return dcl; |
| } |
| |
| /// ImplicitlyDefineFunction - An undeclared identifier was used in a function |
| /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). |
| NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, |
| IdentifierInfo &II, Scope *S) { |
| // Before we produce a declaration for an implicitly defined |
| // function, see whether there was a locally-scoped declaration of |
| // this name as a function or variable. If so, use that |
| // (non-visible) declaration, and complain about it. |
| llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos |
| = LocallyScopedExternalDecls.find(&II); |
| if (Pos != LocallyScopedExternalDecls.end()) { |
| Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second; |
| Diag(Pos->second->getLocation(), diag::note_previous_declaration); |
| return Pos->second; |
| } |
| |
| // Extension in C99. Legal in C90, but warn about it. |
| if (II.getName().startswith("__builtin_")) |
| Diag(Loc, diag::warn_builtin_unknown) << &II; |
| else if (getLangOptions().C99) |
| Diag(Loc, diag::ext_implicit_function_decl) << &II; |
| else |
| Diag(Loc, diag::warn_implicit_function_decl) << &II; |
| |
| // Set a Declarator for the implicit definition: int foo(); |
| const char *Dummy; |
| DeclSpec DS; |
| unsigned DiagID; |
| bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID); |
| (void)Error; // Silence warning. |
| assert(!Error && "Error setting up implicit decl!"); |
| Declarator D(DS, Declarator::BlockContext); |
| D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(), |
| false, false, SourceLocation(), 0, |
| 0, 0, false, SourceLocation(), |
| false, 0,0,0, Loc, Loc, D), |
| SourceLocation()); |
| D.SetIdentifier(&II, Loc); |
| |
| // Insert this function into translation-unit scope. |
| |
| DeclContext *PrevDC = CurContext; |
| CurContext = Context.getTranslationUnitDecl(); |
| |
| FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D)); |
| FD->setImplicit(); |
| |
| CurContext = PrevDC; |
| |
| AddKnownFunctionAttributes(FD); |
| |
| return FD; |
| } |
| |
| /// \brief Adds any function attributes that we know a priori based on |
| /// the declaration of this function. |
| /// |
| /// These attributes can apply both to implicitly-declared builtins |
| /// (like __builtin___printf_chk) or to library-declared functions |
| /// like NSLog or printf. |
| void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { |
| if (FD->isInvalidDecl()) |
| return; |
| |
| // If this is a built-in function, map its builtin attributes to |
| // actual attributes. |
| if (unsigned BuiltinID = FD->getBuiltinID()) { |
| // Handle printf-formatting attributes. |
| unsigned FormatIdx; |
| bool HasVAListArg; |
| if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { |
| if (!FD->getAttr<FormatAttr>()) |
| FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context, |
| "printf", FormatIdx+1, |
| HasVAListArg ? 0 : FormatIdx+2)); |
| } |
| if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, |
| HasVAListArg)) { |
| if (!FD->getAttr<FormatAttr>()) |
| FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context, |
| "scanf", FormatIdx+1, |
| HasVAListArg ? 0 : FormatIdx+2)); |
| } |
| |
| // Mark const if we don't care about errno and that is the only |
| // thing preventing the function from being const. This allows |
| // IRgen to use LLVM intrinsics for such functions. |
| if (!getLangOptions().MathErrno && |
| Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) { |
| if (!FD->getAttr<ConstAttr>()) |
| FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context)); |
| } |
| |
| if (Context.BuiltinInfo.isNoThrow(BuiltinID)) |
| FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context)); |
| if (Context.BuiltinInfo.isConst(BuiltinID)) |
| FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context)); |
| } |
| |
| IdentifierInfo *Name = FD->getIdentifier(); |
| if (!Name) |
| return; |
| if ((!getLangOptions().CPlusPlus && |
| FD->getDeclContext()->isTranslationUnit()) || |
| (isa<LinkageSpecDecl>(FD->getDeclContext()) && |
| cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == |
| LinkageSpecDecl::lang_c)) { |
| // Okay: this could be a libc/libm/Objective-C function we know |
| // about. |
| } else |
| return; |
| |
| if (Name->isStr("NSLog") || Name->isStr("NSLogv")) { |
| // FIXME: NSLog and NSLogv should be target specific |
| if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) { |
| // FIXME: We known better than our headers. |
| const_cast<FormatAttr *>(Format)->setType(Context, "printf"); |
| } else |
| FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context, |
| "printf", 1, |
| Name->isStr("NSLogv") ? 0 : 2)); |
| } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { |
| // FIXME: asprintf and vasprintf aren't C99 functions. Should they be |
| // target-specific builtins, perhaps? |
| if (!FD->getAttr<FormatAttr>()) |
| FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context, |
| "printf", 2, |
| Name->isStr("vasprintf") ? 0 : 3)); |
| } |
| } |
| |
| TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, |
| TypeSourceInfo *TInfo) { |
| assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); |
| assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); |
| |
| if (!TInfo) { |
| assert(D.isInvalidType() && "no declarator info for valid type"); |
| TInfo = Context.getTrivialTypeSourceInfo(T); |
| } |
| |
| // Scope manipulation handled by caller. |
| TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext, |
| D.getIdentifierLoc(), |
| D.getIdentifier(), |
| TInfo); |
| |
| if (const TagType *TT = T->getAs<TagType>()) { |
| TagDecl *TD = TT->getDecl(); |
| |
| // If the TagDecl that the TypedefDecl points to is an anonymous decl |
| // keep track of the TypedefDecl. |
| if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl()) |
| TD->setTypedefForAnonDecl(NewTD); |
| } |
| |
| if (D.isInvalidType()) |
| NewTD->setInvalidDecl(); |
| return NewTD; |
| } |
| |
| |
| /// \brief Determine whether a tag with a given kind is acceptable |
| /// as a redeclaration of the given tag declaration. |
| /// |
| /// \returns true if the new tag kind is acceptable, false otherwise. |
| bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, |
| TagTypeKind NewTag, |
| SourceLocation NewTagLoc, |
| const IdentifierInfo &Name) { |
| // C++ [dcl.type.elab]p3: |
| // The class-key or enum keyword present in the |
| // elaborated-type-specifier shall agree in kind with the |
| // declaration to which the name in the elaborated-type-specifier |
| // refers. This rule also applies to the form of |
| // elaborated-type-specifier that declares a class-name or |
| // friend class since it can be construed as referring to the |
| // definition of the class. Thus, in any |
| // elaborated-type-specifier, the enum keyword shall be used to |
| // refer to an enumeration (7.2), the union class-key shall be |
| // used to refer to a union (clause 9), and either the class or |
| // struct class-key shall be used to refer to a class (clause 9) |
| // declared using the class or struct class-key. |
| TagTypeKind OldTag = Previous->getTagKind(); |
| if (OldTag == NewTag) |
| return true; |
| |
| if ((OldTag == TTK_Struct || OldTag == TTK_Class) && |
| (NewTag == TTK_Struct || NewTag == TTK_Class)) { |
| // Warn about the struct/class tag mismatch. |
| bool isTemplate = false; |
| if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) |
| isTemplate = Record->getDescribedClassTemplate(); |
| |
| Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) |
| << (NewTag == TTK_Class) |
| << isTemplate << &Name |
| << FixItHint::CreateReplacement(SourceRange(NewTagLoc), |
| OldTag == TTK_Class? "class" : "struct"); |
| Diag(Previous->getLocation(), diag::note_previous_use); |
| return true; |
| } |
| return false; |
| } |
| |
| /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the |
| /// former case, Name will be non-null. In the later case, Name will be null. |
| /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a |
| /// reference/declaration/definition of a tag. |
| Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, |
| SourceLocation KWLoc, CXXScopeSpec &SS, |
| IdentifierInfo *Name, SourceLocation NameLoc, |
| AttributeList *Attr, AccessSpecifier AS, |
| MultiTemplateParamsArg TemplateParameterLists, |
| bool &OwnedDecl, bool &IsDependent, |
| bool ScopedEnum, bool ScopedEnumUsesClassTag, |
| TypeResult UnderlyingType) { |
| // If this is not a definition, it must have a name. |
| assert((Name != 0 || TUK == TUK_Definition) && |
| "Nameless record must be a definition!"); |
| assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference); |
| |
| OwnedDecl = false; |
| TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); |
| |
| // FIXME: Check explicit specializations more carefully. |
| bool isExplicitSpecialization = false; |
| unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size(); |
| bool Invalid = false; |
| |
| // We only need to do this matching if we have template parameters |
| // or a scope specifier, which also conveniently avoids this work |
| // for non-C++ cases. |
| if (NumMatchedTemplateParamLists || |
| (SS.isNotEmpty() && TUK != TUK_Reference)) { |
| if (TemplateParameterList *TemplateParams |
| = MatchTemplateParametersToScopeSpecifier(KWLoc, SS, |
| TemplateParameterLists.get(), |
| TemplateParameterLists.size(), |
| TUK == TUK_Friend, |
| isExplicitSpecialization, |
| Invalid)) { |
| // All but one template parameter lists have been matching. |
| --NumMatchedTemplateParamLists; |
| |
| if (TemplateParams->size() > 0) { |
| // This is a declaration or definition of a class template (which may |
| // be a member of another template). |
| if (Invalid) |
| return 0; |
| |
| OwnedDecl = false; |
| DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc, |
| SS, Name, NameLoc, Attr, |
| TemplateParams, |
| AS); |
| TemplateParameterLists.release(); |
| return Result.get(); |
| } else { |
| // The "template<>" header is extraneous. |
| Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) |
| << TypeWithKeyword::getTagTypeKindName(Kind) << Name; |
| isExplicitSpecialization = true; |
| } |
| } |
| } |
| |
| // Figure out the underlying type if this a enum declaration. We need to do |
| // this early, because it's needed to detect if this is an incompatible |
| // redeclaration. |
| llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; |
| |
| if (Kind == TTK_Enum) { |
| if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) |
| // No underlying type explicitly specified, or we failed to parse the |
| // type, default to int. |
| EnumUnderlying = Context.IntTy.getTypePtr(); |
| else if (UnderlyingType.get()) { |
| // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an |
| // integral type; any cv-qualification is ignored. |
| TypeSourceInfo *TI = 0; |
| QualType T = GetTypeFromParser(UnderlyingType.get(), &TI); |
| EnumUnderlying = TI; |
| |
| SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); |
| |
| if (!T->isDependentType() && !T->isIntegralType(Context)) { |
| Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) |
| << T; |
| // Recover by falling back to int. |
| EnumUnderlying = Context.IntTy.getTypePtr(); |
| } |
| |
| if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI, |
| UPPC_FixedUnderlyingType)) |
| EnumUnderlying = Context.IntTy.getTypePtr(); |
| |
| } else if (getLangOptions().Microsoft) |
| // Microsoft enums are always of int type. |
| EnumUnderlying = Context.IntTy.getTypePtr(); |
| } |
| |
| DeclContext *SearchDC = CurContext; |
| DeclContext *DC = CurContext; |
| bool isStdBadAlloc = false; |
| |
| RedeclarationKind Redecl = ForRedeclaration; |
| if (TUK == TUK_Friend || TUK == TUK_Reference) |
| Redecl = NotForRedeclaration; |
| |
| LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); |
| |
| if (Name && SS.isNotEmpty()) { |
| // We have a nested-name tag ('struct foo::bar'). |
| |
| // Check for invalid 'foo::'. |
| if (SS.isInvalid()) { |
| Name = 0; |
| goto CreateNewDecl; |
| } |
| |
| // If this is a friend or a reference to a class in a dependent |
| // context, don't try to make a decl for it. |
| if (TUK == TUK_Friend || TUK == TUK_Reference) { |
| DC = computeDeclContext(SS, false); |
| if (!DC) { |
| IsDependent = true; |
| return 0; |
| } |
| } else { |
| DC = computeDeclContext(SS, true); |
| if (!DC) { |
| Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) |
| << SS.getRange(); |
| return 0; |
| } |
| } |
| |
| if (RequireCompleteDeclContext(SS, DC)) |
| return 0; |
| |
| SearchDC = DC; |
| // Look-up name inside 'foo::'. |
| LookupQualifiedName(Previous, DC); |
| |
| if (Previous.isAmbiguous()) |
| return 0; |
| |
| if (Previous.empty()) { |
| // Name lookup did not find anything. However, if the |
| // nested-name-specifier refers to the current instantiation, |
| // and that current instantiation has any dependent base |
| // classes, we might find something at instantiation time: treat |
| // this as a dependent elaborated-type-specifier. |
| // But this only makes any sense for reference-like lookups. |
| if (Previous.wasNotFoundInCurrentInstantiation() && |
| (TUK == TUK_Reference || TUK == TUK_Friend)) { |
| IsDependent = true; |
| return 0; |
| } |
| |
| // A tag 'foo::bar' must already exist. |
| Diag(NameLoc, diag::err_not_tag_in_scope) |
| << Kind << Name << DC << SS.getRange(); |
| Name = 0; |
| Invalid = true; |
| goto CreateNewDecl; |
| } |
| } else if (Name) { |
| // If this is a named struct, check to see if there was a previous forward |
| // declaration or definition. |
| // FIXME: We're looking into outer scopes here, even when we |
| // shouldn't be. Doing so can result in ambiguities that we |
| // shouldn't be diagnosing. |
| LookupName(Previous, S); |
| |
| // Note: there used to be some attempt at recovery here. |
| if (Previous.isAmbiguous()) |
| return 0; |
| |
| if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) { |
| // FIXME: This makes sure that we ignore the contexts associated |
| // with C structs, unions, and enums when looking for a matching |
| // tag declaration or definition. See the similar lookup tweak |
| // in Sema::LookupName; is there a better way to deal with this? |
| while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) |
| SearchDC = SearchDC->getParent(); |
| } |
| } else if (S->isFunctionPrototypeScope()) { |
| // If this is an enum declaration in function prototype scope, set its |
| // initial context to the translation unit. |
| SearchDC = Context.getTranslationUnitDecl(); |
| } |
| |
| if (Previous.isSingleResult() && |
| Previous.getFoundDecl()->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); |
| // Just pretend that we didn't see the previous declaration. |
| Previous.clear(); |
| } |
| |
| if (getLangOptions().CPlusPlus && Name && DC && StdNamespace && |
| DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) { |
| // This is a declaration of or a reference to "std::bad_alloc". |
| isStdBadAlloc = true; |
| |
| if (Previous.empty() && StdBadAlloc) { |
| // std::bad_alloc has been implicitly declared (but made invisible to |
| // name lookup). Fill in this implicit declaration as the previous |
| // declaration, so that the declarations get chained appropriately. |
| Previous.addDecl(getStdBadAlloc()); |
| } |
| } |
| |
| // If we didn't find a previous declaration, and this is a reference |
| // (or friend reference), move to the correct scope. In C++, we |
| // also need to do a redeclaration lookup there, just in case |
| // there's a shadow friend decl. |
| if (Name && Previous.empty() && |
| (TUK == TUK_Reference || TUK == TUK_Friend)) { |
| if (Invalid) goto CreateNewDecl; |
| assert(SS.isEmpty()); |
| |
| if (TUK == TUK_Reference) { |
| // C++ [basic.scope.pdecl]p5: |
| // -- for an elaborated-type-specifier of the form |
| // |
| // class-key identifier |
| // |
| // if the elaborated-type-specifier is used in the |
| // decl-specifier-seq or parameter-declaration-clause of a |
| // function defined in namespace scope, the identifier is |
| // declared as a class-name in the namespace that contains |
| // the declaration; otherwise, except as a friend |
| // declaration, the identifier is declared in the smallest |
| // non-class, non-function-prototype scope that contains the |
| // declaration. |
| // |
| // C99 6.7.2.3p8 has a similar (but not identical!) provision for |
| // C structs and unions. |
| // |
| // It is an error in C++ to declare (rather than define) an enum |
| // type, including via an elaborated type specifier. We'll |
| // diagnose that later; for now, declare the enum in the same |
| // scope as we would have picked for any other tag type. |
| // |
| // GNU C also supports this behavior as part of its incomplete |
| // enum types extension, while GNU C++ does not. |
| // |
| // Find the context where we'll be declaring the tag. |
| // FIXME: We would like to maintain the current DeclContext as the |
| // lexical context, |
| while (SearchDC->isRecord() || SearchDC->isTransparentContext()) |
| SearchDC = SearchDC->getParent(); |
| |
| // Find the scope where we'll be declaring the tag. |
| while (S->isClassScope() || |
| (getLangOptions().CPlusPlus && |
| S->isFunctionPrototypeScope()) || |
| ((S->getFlags() & Scope::DeclScope) == 0) || |
| (S->getEntity() && |
| ((DeclContext *)S->getEntity())->isTransparentContext())) |
| S = S->getParent(); |
| } else { |
| assert(TUK == TUK_Friend); |
| // C++ [namespace.memdef]p3: |
| // If a friend declaration in a non-local class first declares a |
| // class or function, the friend class or function is a member of |
| // the innermost enclosing namespace. |
| SearchDC = SearchDC->getEnclosingNamespaceContext(); |
| } |
| |
| // In C++, we need to do a redeclaration lookup to properly |
| // diagnose some problems. |
| if (getLangOptions().CPlusPlus) { |
| Previous.setRedeclarationKind(ForRedeclaration); |
| LookupQualifiedName(Previous, SearchDC); |
| } |
| } |
| |
| if (!Previous.empty()) { |
| NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl(); |
| |
| // It's okay to have a tag decl in the same scope as a typedef |
| // which hides a tag decl in the same scope. Finding this |
| // insanity with a redeclaration lookup can only actually happen |
| // in C++. |
| // |
| // This is also okay for elaborated-type-specifiers, which is |
| // technically forbidden by the current standard but which is |
| // okay according to the likely resolution of an open issue; |
| // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 |
| if (getLangOptions().CPlusPlus) { |
| if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) { |
| if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { |
| TagDecl *Tag = TT->getDecl(); |
| if (Tag->getDeclName() == Name && |
| Tag->getDeclContext()->getRedeclContext() |
| ->Equals(TD->getDeclContext()->getRedeclContext())) { |
| PrevDecl = Tag; |
| Previous.clear(); |
| Previous.addDecl(Tag); |
| Previous.resolveKind(); |
| } |
| } |
| } |
| } |
| |
| if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { |
| // If this is a use of a previous tag, or if the tag is already declared |
| // in the same scope (so that the definition/declaration completes or |
| // rementions the tag), reuse the decl. |
| if (TUK == TUK_Reference || TUK == TUK_Friend || |
| isDeclInScope(PrevDecl, SearchDC, S)) { |
| // Make sure that this wasn't declared as an enum and now used as a |
| // struct or something similar. |
| if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) { |
| bool SafeToContinue |
| = (PrevTagDecl->getTagKind() != TTK_Enum && |
| Kind != TTK_Enum); |
| if (SafeToContinue) |
| Diag(KWLoc, diag::err_use_with_wrong_tag) |
| << Name |
| << FixItHint::CreateReplacement(SourceRange(KWLoc), |
| PrevTagDecl->getKindName()); |
| else |
| Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; |
| Diag(PrevTagDecl->getLocation(), diag::note_previous_use); |
| |
| if (SafeToContinue) |
| Kind = PrevTagDecl->getTagKind(); |
| else { |
| // Recover by making this an anonymous redefinition. |
| Name = 0; |
| Previous.clear(); |
| Invalid = true; |
| } |
| } |
| |
| if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { |
| const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); |
| |
| // All conflicts with previous declarations are recovered by |
| // returning the previous declaration. |
| if (ScopedEnum != PrevEnum->isScoped()) { |
| Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch) |
| << PrevEnum->isScoped(); |
| Diag(PrevTagDecl->getLocation(), diag::note_previous_use); |
| return PrevTagDecl; |
| } |
| else if (EnumUnderlying && PrevEnum->isFixed()) { |
| QualType T; |
| if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) |
| T = TI->getType(); |
| else |
| T = QualType(EnumUnderlying.get<const Type*>(), 0); |
| |
| if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) { |
| Diag(NameLoc.isValid() ? NameLoc : KWLoc, |
| diag::err_enum_redeclare_type_mismatch) |
| << T |
| << PrevEnum->getIntegerType(); |
| Diag(PrevTagDecl->getLocation(), diag::note_previous_use); |
| return PrevTagDecl; |
| } |
| } |
| else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) { |
| Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch) |
| << PrevEnum->isFixed(); |
| Diag(PrevTagDecl->getLocation(), diag::note_previous_use); |
| return PrevTagDecl; |
| } |
| } |
| |
| if (!Invalid) { |
| // If this is a use, just return the declaration we found. |
| |
| // FIXME: In the future, return a variant or some other clue |
| // for the consumer of this Decl to know it doesn't own it. |
| // For our current ASTs this shouldn't be a problem, but will |
| // need to be changed with DeclGroups. |
| if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) || |
| TUK == TUK_Friend) |
| return PrevTagDecl; |
| |
| // Diagnose attempts to redefine a tag. |
| if (TUK == TUK_Definition) { |
| if (TagDecl *Def = PrevTagDecl->getDefinition()) { |
| // If we're defining a specialization and the previous definition |
| // is from an implicit instantiation, don't emit an error |
| // here; we'll catch this in the general case below. |
| if (!isExplicitSpecialization || |
| !isa<CXXRecordDecl>(Def) || |
| cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind() |
| == TSK_ExplicitSpecialization) { |
| Diag(NameLoc, diag::err_redefinition) << Name; |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| // If this is a redefinition, recover by making this |
| // struct be anonymous, which will make any later |
| // references get the previous definition. |
| Name = 0; |
| Previous.clear(); |
| Invalid = true; |
| } |
| } else { |
| // If the type is currently being defined, complain |
| // about a nested redefinition. |
| const TagType *Tag |
| = cast<TagType>(Context.getTagDeclType(PrevTagDecl)); |
| if (Tag->isBeingDefined()) { |
| Diag(NameLoc, diag::err_nested_redefinition) << Name; |
| Diag(PrevTagDecl->getLocation(), |
| diag::note_previous_definition); |
| Name = 0; |
| Previous.clear(); |
| Invalid = true; |
| } |
| } |
| |
| // Okay, this is definition of a previously declared or referenced |
| // tag PrevDecl. We're going to create a new Decl for it. |
| } |
| } |
| // If we get here we have (another) forward declaration or we |
| // have a definition. Just create a new decl. |
| |
| } else { |
| // If we get here, this is a definition of a new tag type in a nested |
| // scope, e.g. "struct foo; void bar() { struct foo; }", just create a |
| // new decl/type. We set PrevDecl to NULL so that the entities |
| // have distinct types. |
| Previous.clear(); |
| } |
| // If we get here, we're going to create a new Decl. If PrevDecl |
| // is non-NULL, it's a definition of the tag declared by |
| // PrevDecl. If it's NULL, we have a new definition. |
| |
| |
| // Otherwise, PrevDecl is not a tag, but was found with tag |
| // lookup. This is only actually possible in C++, where a few |
| // things like templates still live in the tag namespace. |
| } else { |
| assert(getLangOptions().CPlusPlus); |
| |
| // Use a better diagnostic if an elaborated-type-specifier |
| // found the wrong kind of type on the first |
| // (non-redeclaration) lookup. |
| if ((TUK == TUK_Reference || TUK == TUK_Friend) && |
| !Previous.isForRedeclaration()) { |
| unsigned Kind = 0; |
| if (isa<TypedefDecl>(PrevDecl)) Kind = 1; |
| else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2; |
| Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind; |
| Diag(PrevDecl->getLocation(), diag::note_declared_at); |
| Invalid = true; |
| |
| // Otherwise, only diagnose if the declaration is in scope. |
| } else if (!isDeclInScope(PrevDecl, SearchDC, S)) { |
| // do nothing |
| |
| // Diagnose implicit declarations introduced by elaborated types. |
| } else if (TUK == TUK_Reference || TUK == TUK_Friend) { |
| unsigned Kind = 0; |
| if (isa<TypedefDecl>(PrevDecl)) Kind = 1; |
| else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2; |
| Diag(NameLoc, diag::err_tag_reference_conflict) << Kind; |
| Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; |
| Invalid = true; |
| |
| // Otherwise it's a declaration. Call out a particularly common |
| // case here. |
| } else if (isa<TypedefDecl>(PrevDecl)) { |
| Diag(NameLoc, diag::err_tag_definition_of_typedef) |
| << Name |
| << cast<TypedefDecl>(PrevDecl)->getUnderlyingType(); |
| Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; |
| Invalid = true; |
| |
| // Otherwise, diagnose. |
| } else { |
| // The tag name clashes with something else in the target scope, |
| // issue an error and recover by making this tag be anonymous. |
| Diag(NameLoc, diag::err_redefinition_different_kind) << Name; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| Name = 0; |
| Invalid = true; |
| } |
| |
| // The existing declaration isn't relevant to us; we're in a |
| // new scope, so clear out the previous declaration. |
| Previous.clear(); |
| } |
| } |
| |
| CreateNewDecl: |
| |
| TagDecl *PrevDecl = 0; |
| if (Previous.isSingleResult()) |
| PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); |
| |
| // If there is an identifier, use the location of the identifier as the |
| // location of the decl, otherwise use the location of the struct/union |
| // keyword. |
| SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; |
| |
| // Otherwise, create a new declaration. If there is a previous |
| // declaration of the same entity, the two will be linked via |
| // PrevDecl. |
| TagDecl *New; |
| |
| bool IsForwardReference = false; |
| if (Kind == TTK_Enum) { |
| // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
| // enum X { A, B, C } D; D should chain to X. |
| New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc, |
| cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, |
| ScopedEnumUsesClassTag, !EnumUnderlying.isNull()); |
| // If this is an undefined enum, warn. |
| if (TUK != TUK_Definition && !Invalid) { |
| TagDecl *Def; |
| if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) { |
| // C++0x: 7.2p2: opaque-enum-declaration. |
| // Conflicts are diagnosed above. Do nothing. |
| } |
| else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { |
| Diag(Loc, diag::ext_forward_ref_enum_def) |
| << New; |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| } else { |
| unsigned DiagID = diag::ext_forward_ref_enum; |
| if (getLangOptions().Microsoft) |
| DiagID = diag::ext_ms_forward_ref_enum; |
| else if (getLangOptions().CPlusPlus) |
| DiagID = diag::err_forward_ref_enum; |
| Diag(Loc, DiagID); |
| |
| // If this is a forward-declared reference to an enumeration, make a |
| // note of it; we won't actually be introducing the declaration into |
| // the declaration context. |
| if (TUK == TUK_Reference) |
| IsForwardReference = true; |
| } |
| } |
| |
| if (EnumUnderlying) { |
| EnumDecl *ED = cast<EnumDecl>(New); |
| if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) |
| ED->setIntegerTypeSourceInfo(TI); |
| else |
| ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0)); |
| ED->setPromotionType(ED->getIntegerType()); |
| } |
| |
| } else { |
| // struct/union/class |
| |
| // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
| // struct X { int A; } D; D should chain to X. |
| if (getLangOptions().CPlusPlus) { |
| // FIXME: Look for a way to use RecordDecl for simple structs. |
| New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc, |
| cast_or_null<CXXRecordDecl>(PrevDecl)); |
| |
| if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) |
| StdBadAlloc = cast<CXXRecordDecl>(New); |
| } else |
| New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc, |
| cast_or_null<RecordDecl>(PrevDecl)); |
| } |
| |
| // Maybe add qualifier info. |
| if (SS.isNotEmpty()) { |
| if (SS.isSet()) { |
| NestedNameSpecifier *NNS |
| = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); |
| New->setQualifierInfo(NNS, SS.getRange()); |
| if (NumMatchedTemplateParamLists > 0) { |
| New->setTemplateParameterListsInfo(Context, |
| NumMatchedTemplateParamLists, |
| (TemplateParameterList**) TemplateParameterLists.release()); |
| } |
| } |
| else |
| Invalid = true; |
| } |
| |
| if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { |
| // Add alignment attributes if necessary; these attributes are checked when |
| // the ASTContext lays out the structure. |
| // |
| // It is important for implementing the correct semantics that this |
| // happen here (in act on tag decl). The #pragma pack stack is |
| // maintained as a result of parser callbacks which can occur at |
| // many points during the parsing of a struct declaration (because |
| // the #pragma tokens are effectively skipped over during the |
| // parsing of the struct). |
| AddAlignmentAttributesForRecord(RD); |
| } |
| |
| // If this is a specialization of a member class (of a class template), |
| // check the specialization. |
| if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous)) |
| Invalid = true; |
| |
| if (Invalid) |
| New->setInvalidDecl(); |
| |
| if (Attr) |
| ProcessDeclAttributeList(S, New, Attr); |
| |
| // If we're declaring or defining a tag in function prototype scope |
| // in C, note that this type can only be used within the function. |
| if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus) |
| Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); |
| |
| // Set the lexical context. If the tag has a C++ scope specifier, the |
| // lexical context will be different from the semantic context. |
| New->setLexicalDeclContext(CurContext); |
| |
| // Mark this as a friend decl if applicable. |
| if (TUK == TUK_Friend) |
| New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty()); |
| |
| // Set the access specifier. |
| if (!Invalid && SearchDC->isRecord()) |
| SetMemberAccessSpecifier(New, PrevDecl, AS); |
| |
| if (TUK == TUK_Definition) |
| New->startDefinition(); |
| |
| // If this has an identifier, add it to the scope stack. |
| if (TUK == TUK_Friend) { |
| // We might be replacing an existing declaration in the lookup tables; |
| // if so, borrow its access specifier. |
| if (PrevDecl) |
| New->setAccess(PrevDecl->getAccess()); |
| |
| DeclContext *DC = New->getDeclContext()->getRedeclContext(); |
| DC->makeDeclVisibleInContext(New, /* Recoverable = */ false); |
| if (Name) // can be null along some error paths |
| if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) |
| PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); |
| } else if (Name) { |
| S = getNonFieldDeclScope(S); |
| PushOnScopeChains(New, S, !IsForwardReference); |
| if (IsForwardReference) |
| SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false); |
| |
| } else { |
| CurContext->addDecl(New); |
| } |
| |
| // If this is the C FILE type, notify the AST context. |
| if (IdentifierInfo *II = New->getIdentifier()) |
| if (!New->isInvalidDecl() && |
| New->getDeclContext()->getRedeclContext()->isTranslationUnit() && |
| II->isStr("FILE")) |
| Context.setFILEDecl(New); |
| |
| OwnedDecl = true; |
| return New; |
| } |
| |
| void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { |
| AdjustDeclIfTemplate(TagD); |
| TagDecl *Tag = cast<TagDecl>(TagD); |
| |
| // Enter the tag context. |
| PushDeclContext(S, Tag); |
| } |
| |
| void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, |
| SourceLocation LBraceLoc) { |
| AdjustDeclIfTemplate(TagD); |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); |
| |
| FieldCollector->StartClass(); |
| |
| if (!Record->getIdentifier()) |
| return; |
| |
| // C++ [class]p2: |
| // [...] The class-name is also inserted into the scope of the |
| // class itself; this is known as the injected-class-name. For |
| // purposes of access checking, the injected-class-name is treated |
| // as if it were a public member name. |
| CXXRecordDecl *InjectedClassName |
| = CXXRecordDecl::Create(Context, Record->getTagKind(), |
| CurContext, Record->getLocation(), |
| Record->getIdentifier(), |
| Record->getTagKeywordLoc(), |
| /*PrevDecl=*/0, |
| /*DelayTypeCreation=*/true); |
| Context.getTypeDeclType(InjectedClassName, Record); |
| InjectedClassName->setImplicit(); |
| InjectedClassName->setAccess(AS_public); |
| if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) |
| InjectedClassName->setDescribedClassTemplate(Template); |
| PushOnScopeChains(InjectedClassName, S); |
| assert(InjectedClassName->isInjectedClassName() && |
| "Broken injected-class-name"); |
| } |
| |
| void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, |
| SourceLocation RBraceLoc) { |
| AdjustDeclIfTemplate(TagD); |
| TagDecl *Tag = cast<TagDecl>(TagD); |
| Tag->setRBraceLoc(RBraceLoc); |
| |
| if (isa<CXXRecordDecl>(Tag)) |
| FieldCollector->FinishClass(); |
| |
| // Exit this scope of this tag's definition. |
| PopDeclContext(); |
| |
| // Notify the consumer that we've defined a tag. |
| Consumer.HandleTagDeclDefinition(Tag); |
| } |
| |
| void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { |
| AdjustDeclIfTemplate(TagD); |
| TagDecl *Tag = cast<TagDecl>(TagD); |
| Tag->setInvalidDecl(); |
| |
| // We're undoing ActOnTagStartDefinition here, not |
| // ActOnStartCXXMemberDeclarations, so we don't have to mess with |
| // the FieldCollector. |
| |
| PopDeclContext(); |
| } |
| |
| // Note that FieldName may be null for anonymous bitfields. |
| bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName, |
| QualType FieldTy, const Expr *BitWidth, |
| bool *ZeroWidth) { |
| // Default to true; that shouldn't confuse checks for emptiness |
| if (ZeroWidth) |
| *ZeroWidth = true; |
| |
| // C99 6.7.2.1p4 - verify the field type. |
| // C++ 9.6p3: A bit-field shall have integral or enumeration type. |
| if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { |
| // Handle incomplete types with specific error. |
| if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete)) |
| return true; |
| if (FieldName) |
| return Diag(FieldLoc, diag::err_not_integral_type_bitfield) |
| << FieldName << FieldTy << BitWidth->getSourceRange(); |
| return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) |
| << FieldTy << BitWidth->getSourceRange(); |
| } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth), |
| UPPC_BitFieldWidth)) |
| return true; |
| |
| // If the bit-width is type- or value-dependent, don't try to check |
| // it now. |
| if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) |
| return false; |
| |
| llvm::APSInt Value; |
| if (VerifyIntegerConstantExpression(BitWidth, &Value)) |
| return true; |
| |
| if (Value != 0 && ZeroWidth) |
| *ZeroWidth = false; |
| |
| // Zero-width bitfield is ok for anonymous field. |
| if (Value == 0 && FieldName) |
| return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; |
| |
| if (Value.isSigned() && Value.isNegative()) { |
| if (FieldName) |
| return Diag(FieldLoc, diag::err_bitfield_has_negative_width) |
| << FieldName << Value.toString(10); |
| return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) |
| << Value.toString(10); |
| } |
| |
| if (!FieldTy->isDependentType()) { |
| uint64_t TypeSize = Context.getTypeSize(FieldTy); |
| if (Value.getZExtValue() > TypeSize) { |
| if (!getLangOptions().CPlusPlus) { |
| if (FieldName) |
| return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size) |
| << FieldName << (unsigned)Value.getZExtValue() |
| << (unsigned)TypeSize; |
| |
| return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size) |
| << (unsigned)Value.getZExtValue() << (unsigned)TypeSize; |
| } |
| |
| if (FieldName) |
| Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size) |
| << FieldName << (unsigned)Value.getZExtValue() |
| << (unsigned)TypeSize; |
| else |
| Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size) |
| << (unsigned)Value.getZExtValue() << (unsigned)TypeSize; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// ActOnField - Each field of a struct/union/class is passed into this in order |
| /// to create a FieldDecl object for it. |
| Decl *Sema::ActOnField(Scope *S, Decl *TagD, |
| SourceLocation DeclStart, |
| Declarator &D, ExprTy *BitfieldWidth) { |
| FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD), |
| DeclStart, D, static_cast<Expr*>(BitfieldWidth), |
| AS_public); |
| return Res; |
| } |
| |
| /// HandleField - Analyze a field of a C struct or a C++ data member. |
| /// |
| FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, |
| SourceLocation DeclStart, |
| Declarator &D, Expr *BitWidth, |
| AccessSpecifier AS) { |
| IdentifierInfo *II = D.getIdentifier(); |
| SourceLocation Loc = DeclStart; |
| if (II) Loc = D.getIdentifierLoc(); |
| |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
| QualType T = TInfo->getType(); |
| if (getLangOptions().CPlusPlus) { |
| CheckExtraCXXDefaultArguments(D); |
| |
| if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, |
| UPPC_DataMemberType)) { |
| D.setInvalidType(); |
| T = Context.IntTy; |
| TInfo = Context.getTrivialTypeSourceInfo(T, Loc); |
| } |
| } |
| |
| DiagnoseFunctionSpecifiers(D); |
| |
| if (D.getDeclSpec().isThreadSpecified()) |
| Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); |
| |
| // Check to see if this name was declared as a member previously |
| LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration); |
| LookupName(Previous, S); |
| assert((Previous.empty() || Previous.isOverloadedResult() || |
| Previous.isSingleResult()) |
| && "Lookup of member name should be either overloaded, single or null"); |
| |
| // If the name is overloaded then get any declaration else get the single result |
| NamedDecl *PrevDecl = Previous.isOverloadedResult() ? |
| Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>(); |
| |
| if (PrevDecl && PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
| // Just pretend that we didn't see the previous declaration. |
| PrevDecl = 0; |
| } |
| |
| if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) |
| PrevDecl = 0; |
| |
| bool Mutable |
| = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); |
| SourceLocation TSSL = D.getSourceRange().getBegin(); |
| FieldDecl *NewFD |
| = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL, |
| AS, PrevDecl, &D); |
| |
| if (NewFD->isInvalidDecl()) |
| Record->setInvalidDecl(); |
| |
| if (NewFD->isInvalidDecl() && PrevDecl) { |
| // Don't introduce NewFD into scope; there's already something |
| // with the same name in the same scope. |
| } else if (II) { |
| PushOnScopeChains(NewFD, S); |
| } else |
| Record->addDecl(NewFD); |
| |
| return NewFD; |
| } |
| |
| /// \brief Build a new FieldDecl and check its well-formedness. |
| /// |
| /// This routine builds a new FieldDecl given the fields name, type, |
| /// record, etc. \p PrevDecl should refer to any previous declaration |
| /// with the same name and in the same scope as the field to be |
| /// created. |
| /// |
| /// \returns a new FieldDecl. |
| /// |
| /// \todo The Declarator argument is a hack. It will be removed once |
| FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, |
| TypeSourceInfo *TInfo, |
| RecordDecl *Record, SourceLocation Loc, |
| bool Mutable, Expr *BitWidth, |
| SourceLocation TSSL, |
| AccessSpecifier AS, NamedDecl *PrevDecl, |
| Declarator *D) { |
| IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| bool InvalidDecl = false; |
| if (D) InvalidDecl = D->isInvalidType(); |
| |
| // If we receive a broken type, recover by assuming 'int' and |
| // marking this declaration as invalid. |
| if (T.isNull()) { |
| InvalidDecl = true; |
| T = Context.IntTy; |
| } |
| |
| QualType EltTy = Context.getBaseElementType(T); |
| if (!EltTy->isDependentType() && |
| RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) { |
| // Fields of incomplete type force their record to be invalid. |
| Record->setInvalidDecl(); |
| InvalidDecl = true; |
| } |
| |
| // C99 6.7.2.1p8: A member of a structure or union may have any type other |
| // than a variably modified type. |
| if (!InvalidDecl && T->isVariablyModifiedType()) { |
| bool SizeIsNegative; |
| llvm::APSInt Oversized; |
| QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context, |
| SizeIsNegative, |
| Oversized); |
| if (!FixedTy.isNull()) { |
| Diag(Loc, diag::warn_illegal_constant_array_size); |
| T = FixedTy; |
| } else { |
| if (SizeIsNegative) |
| Diag(Loc, diag::err_typecheck_negative_array_size); |
| else if (Oversized.getBoolValue()) |
| Diag(Loc, diag::err_array_too_large) |
| << Oversized.toString(10); |
| else |
| Diag(Loc, diag::err_typecheck_field_variable_size); |
| InvalidDecl = true; |
| } |
| } |
| |
| // Fields can not have abstract class types |
| if (!InvalidDecl && RequireNonAbstractType(Loc, T, |
| diag::err_abstract_type_in_decl, |
| AbstractFieldType)) |
| InvalidDecl = true; |
| |
| bool ZeroWidth = false; |
| // If this is declared as a bit-field, check the bit-field. |
| if (!InvalidDecl && BitWidth && |
| VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) { |
| InvalidDecl = true; |
| BitWidth = 0; |
| ZeroWidth = false; |
| } |
| |
| // Check that 'mutable' is consistent with the type of the declaration. |
| if (!InvalidDecl && Mutable) { |
| unsigned DiagID = 0; |
| if (T->isReferenceType()) |
| DiagID = diag::err_mutable_reference; |
| else if (T.isConstQualified()) |
| DiagID = diag::err_mutable_const; |
| |
| if (DiagID) { |
| SourceLocation ErrLoc = Loc; |
| if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) |
| ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); |
| Diag(ErrLoc, DiagID); |
| Mutable = false; |
| InvalidDecl = true; |
| } |
| } |
| |
| FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo, |
| BitWidth, Mutable); |
| if (InvalidDecl) |
| NewFD->setInvalidDecl(); |
| |
| if (PrevDecl && !isa<TagDecl>(PrevDecl)) { |
| Diag(Loc, diag::err_duplicate_member) << II; |
| Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
| NewFD->setInvalidDecl(); |
| } |
| |
| if (!InvalidDecl && getLangOptions().CPlusPlus) { |
| if (Record->isUnion()) { |
| if (const RecordType *RT = EltTy->getAs<RecordType>()) { |
| CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); |
| if (RDecl->getDefinition()) { |
| // C++ [class.union]p1: An object of a class with a non-trivial |
| // constructor, a non-trivial copy constructor, a non-trivial |
| // destructor, or a non-trivial copy assignment operator |
| // cannot be a member of a union, nor can an array of such |
| // objects. |
| // TODO: C++0x alters this restriction significantly. |
| if (CheckNontrivialField(NewFD)) |
| NewFD->setInvalidDecl(); |
| } |
| } |
| |
| // C++ [class.union]p1: If a union contains a member of reference type, |
| // the program is ill-formed. |
| if (EltTy->isReferenceType()) { |
| Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type) |
| << NewFD->getDeclName() << EltTy; |
| NewFD->setInvalidDecl(); |
| } |
| } |
| } |
| |
| // FIXME: We need to pass in the attributes given an AST |
| // representation, not a parser representation. |
| if (D) |
| // FIXME: What to pass instead of TUScope? |
| ProcessDeclAttributes(TUScope, NewFD, *D); |
| |
| if (T.isObjCGCWeak()) |
| Diag(Loc, diag::warn_attribute_weak_on_field); |
| |
| NewFD->setAccess(AS); |
| return NewFD; |
| } |
| |
| bool Sema::CheckNontrivialField(FieldDecl *FD) { |
| assert(FD); |
| assert(getLangOptions().CPlusPlus && "valid check only for C++"); |
| |
| if (FD->isInvalidDecl()) |
| return true; |
| |
| QualType EltTy = Context.getBaseElementType(FD->getType()); |
| if (const RecordType *RT = EltTy->getAs<RecordType>()) { |
| CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); |
| if (RDecl->getDefinition()) { |
| // We check for copy constructors before constructors |
| // because otherwise we'll never get complaints about |
| // copy constructors. |
| |
| CXXSpecialMember member = CXXInvalid; |
| if (!RDecl->hasTrivialCopyConstructor()) |
| member = CXXCopyConstructor; |
| else if (!RDecl->hasTrivialConstructor()) |
| member = CXXConstructor; |
| else if (!RDecl->hasTrivialCopyAssignment()) |
| member = CXXCopyAssignment; |
| else if (!RDecl->hasTrivialDestructor()) |
| member = CXXDestructor; |
| |
| if (member != CXXInvalid) { |
| Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member) |
| << (int)FD->getParent()->isUnion() << FD->getDeclName() << member; |
| DiagnoseNontrivial(RT, member); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// DiagnoseNontrivial - Given that a class has a non-trivial |
| /// special member, figure out why. |
| void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) { |
| QualType QT(T, 0U); |
| CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl()); |
| |
| // Check whether the member was user-declared. |
| switch (member) { |
| case CXXInvalid: |
| break; |
| |
| case CXXConstructor: |
| if (RD->hasUserDeclaredConstructor()) { |
| typedef CXXRecordDecl::ctor_iterator ctor_iter; |
| for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){ |
| const FunctionDecl *body = 0; |
| ci->hasBody(body); |
| if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) { |
| SourceLocation CtorLoc = ci->getLocation(); |
| Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member; |
| return; |
| } |
| } |
| |
| assert(0 && "found no user-declared constructors"); |
| return; |
| } |
| break; |
| |
| case CXXCopyConstructor: |
| if (RD->hasUserDeclaredCopyConstructor()) { |
| SourceLocation CtorLoc = |
| RD->getCopyConstructor(Context, 0)->getLocation(); |
| Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member; |
| return; |
| } |
| break; |
| |
| case CXXCopyAssignment: |
| if (RD->hasUserDeclaredCopyAssignment()) { |
| // FIXME: this should use the location of the copy |
| // assignment, not the type. |
| SourceLocation TyLoc = RD->getSourceRange().getBegin(); |
| Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member; |
| return; |
| } |
| break; |
| |
| case CXXDestructor: |
| if (RD->hasUserDeclaredDestructor()) { |
| SourceLocation DtorLoc = LookupDestructor(RD)->getLocation(); |
| Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member; |
| return; |
| } |
| break; |
| } |
| |
| typedef CXXRecordDecl::base_class_iterator base_iter; |
| |
| // Virtual bases and members inhibit trivial copying/construction, |
| // but not trivial destruction. |
| if (member != CXXDestructor) { |
| // Check for virtual bases. vbases includes indirect virtual bases, |
| // so we just iterate through the direct bases. |
| for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) |
| if (bi->isVirtual()) { |
| SourceLocation BaseLoc = bi->getSourceRange().getBegin(); |
| Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1; |
| return; |
| } |
| |
| // Check for virtual methods. |
| typedef CXXRecordDecl::method_iterator meth_iter; |
| for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me; |
| ++mi) { |
| if (mi->isVirtual()) { |
| SourceLocation MLoc = mi->getSourceRange().getBegin(); |
| Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0; |
| return; |
| } |
| } |
| } |
| |
| bool (CXXRecordDecl::*hasTrivial)() const; |
| switch (member) { |
| case CXXConstructor: |
| hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break; |
| case CXXCopyConstructor: |
| hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break; |
| case CXXCopyAssignment: |
| hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break; |
| case CXXDestructor: |
| hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break; |
| default: |
| assert(0 && "unexpected special member"); return; |
| } |
| |
| // Check for nontrivial bases (and recurse). |
| for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) { |
| const RecordType *BaseRT = bi->getType()->getAs<RecordType>(); |
| assert(BaseRT && "Don't know how to handle dependent bases"); |
| CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl()); |
| if (!(BaseRecTy->*hasTrivial)()) { |
| SourceLocation BaseLoc = bi->getSourceRange().getBegin(); |
| Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member; |
| DiagnoseNontrivial(BaseRT, member); |
| return; |
| } |
| } |
| |
| // Check for nontrivial members (and recurse). |
| typedef RecordDecl::field_iterator field_iter; |
| for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe; |
| ++fi) { |
| QualType EltTy = Context.getBaseElementType((*fi)->getType()); |
| if (const RecordType *EltRT = EltTy->getAs<RecordType>()) { |
| CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl()); |
| |
| if (!(EltRD->*hasTrivial)()) { |
| SourceLocation FLoc = (*fi)->getLocation(); |
| Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member; |
| DiagnoseNontrivial(EltRT, member); |
| return; |
| } |
| } |
| } |
| |
| assert(0 && "found no explanation for non-trivial member"); |
| } |
| |
| /// TranslateIvarVisibility - Translate visibility from a token ID to an |
| /// AST enum value. |
| static ObjCIvarDecl::AccessControl |
| TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { |
| switch (ivarVisibility) { |
| default: assert(0 && "Unknown visitibility kind"); |
| case tok::objc_private: return ObjCIvarDecl::Private; |
| case tok::objc_public: return ObjCIvarDecl::Public; |
| case tok::objc_protected: return ObjCIvarDecl::Protected; |
| case tok::objc_package: return ObjCIvarDecl::Package; |
| } |
| } |
| |
| /// ActOnIvar - Each ivar field of an objective-c class is passed into this |
| /// in order to create an IvarDecl object for it. |
| Decl *Sema::ActOnIvar(Scope *S, |
| SourceLocation DeclStart, |
| Decl *IntfDecl, |
| Declarator &D, ExprTy *BitfieldWidth, |
| tok::ObjCKeywordKind Visibility) { |
| |
| IdentifierInfo *II = D.getIdentifier(); |
| Expr *BitWidth = (Expr*)BitfieldWidth; |
| SourceLocation Loc = DeclStart; |
| if (II) Loc = D.getIdentifierLoc(); |
| |
| // FIXME: Unnamed fields can be handled in various different ways, for |
| // example, unnamed unions inject all members into the struct namespace! |
| |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
| QualType T = TInfo->getType(); |
| |
| if (BitWidth) { |
| // 6.7.2.1p3, 6.7.2.1p4 |
| if (VerifyBitField(Loc, II, T, BitWidth)) { |
| D.setInvalidType(); |
| BitWidth = 0; |
| } |
| } else { |
| // Not a bitfield. |
| |
| // validate II. |
| |
| } |
| if (T->isReferenceType()) { |
| Diag(Loc, diag::err_ivar_reference_type); |
| D.setInvalidType(); |
| } |
| // C99 6.7.2.1p8: A member of a structure or union may have any type other |
| // than a variably modified type. |
| else if (T->isVariablyModifiedType()) { |
| Diag(Loc, diag::err_typecheck_ivar_variable_size); |
| D.setInvalidType(); |
| } |
| |
| // Get the visibility (access control) for this ivar. |
| ObjCIvarDecl::AccessControl ac = |
| Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) |
| : ObjCIvarDecl::None; |
| // Must set ivar's DeclContext to its enclosing interface. |
| ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl); |
| ObjCContainerDecl *EnclosingContext; |
| if (ObjCImplementationDecl *IMPDecl = |
| dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { |
| if (!LangOpts.ObjCNonFragileABI2) { |
| // Case of ivar declared in an implementation. Context is that of its class. |
| EnclosingContext = IMPDecl->getClassInterface(); |
| assert(EnclosingContext && "Implementation has no class interface!"); |
| } |
| else |
| EnclosingContext = EnclosingDecl; |
| } else { |
| if (ObjCCategoryDecl *CDecl = |
| dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { |
| if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) { |
| Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); |
| return 0; |
| } |
| } |
| EnclosingContext = EnclosingDecl; |
| } |
| |
| // Construct the decl. |
| ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, |
| EnclosingContext, Loc, II, T, |
| TInfo, ac, (Expr *)BitfieldWidth); |
| |
| if (II) { |
| NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, |
| ForRedeclaration); |
| if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) |
| && !isa<TagDecl>(PrevDecl)) { |
| Diag(Loc, diag::err_duplicate_member) << II; |
| Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
| NewID->setInvalidDecl(); |
| } |
| } |
| |
| // Process attributes attached to the ivar. |
| ProcessDeclAttributes(S, NewID, D); |
| |
| if (D.isInvalidType()) |
| NewID->setInvalidDecl(); |
| |
| if (II) { |
| // FIXME: When interfaces are DeclContexts, we'll need to add |
| // these to the interface. |
| S->AddDecl(NewID); |
| IdResolver.AddDecl(NewID); |
| } |
| |
| return NewID; |
| } |
| |
| /// ActOnLastBitfield - This routine handles synthesized bitfields rules for |
| /// class and class extensions. For every class @interface and class |
| /// extension @interface, if the last ivar is a bitfield of any type, |
| /// then add an implicit `char :0` ivar to the end of that interface. |
| void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl, |
| llvm::SmallVectorImpl<Decl *> &AllIvarDecls) { |
| if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty()) |
| return; |
| |
| Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; |
| ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); |
| |
| if (!Ivar->isBitField()) |
| return; |
| uint64_t BitFieldSize = |
| Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue(); |
| if (BitFieldSize == 0) |
| return; |
| ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl); |
| if (!ID) { |
| if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { |
| if (!CD->IsClassExtension()) |
| return; |
| } |
| // No need to add this to end of @implementation. |
| else |
| return; |
| } |
| // All conditions are met. Add a new bitfield to the tail end of ivars. |
| llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0); |
| Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc); |
| |
| Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl), |
| DeclLoc, 0, |
| Context.CharTy, |
| Context.CreateTypeSourceInfo(Context.CharTy), |
| ObjCIvarDecl::Private, BW, |
| true); |
| AllIvarDecls.push_back(Ivar); |
| } |
| |
| void Sema::ActOnFields(Scope* S, |
| SourceLocation RecLoc, Decl *EnclosingDecl, |
| Decl **Fields, unsigned NumFields, |
| SourceLocation LBrac, SourceLocation RBrac, |
| AttributeList *Attr) { |
| assert(EnclosingDecl && "missing record or interface decl"); |
| |
| // If the decl this is being inserted into is invalid, then it may be a |
| // redeclaration or some other bogus case. Don't try to add fields to it. |
| if (EnclosingDecl->isInvalidDecl()) { |
| // FIXME: Deallocate fields? |
| return; |
| } |
| |
| |
| // Verify that all the fields are okay. |
| unsigned NumNamedMembers = 0; |
| llvm::SmallVector<FieldDecl*, 32> RecFields; |
| |
| RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); |
| for (unsigned i = 0; i != NumFields; ++i) { |
| FieldDecl *FD = cast<FieldDecl>(Fields[i]); |
| |
| // Get the type for the field. |
| const Type *FDTy = FD->getType().getTypePtr(); |
| |
| if (!FD->isAnonymousStructOrUnion()) { |
| // Remember all fields written by the user. |
| RecFields.push_back(FD); |
| } |
| |
| // If the field is already invalid for some reason, don't emit more |
| // diagnostics about it. |
| if (FD->isInvalidDecl()) { |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| |
| // C99 6.7.2.1p2: |
| // A structure or union shall not contain a member with |
| // incomplete or function type (hence, a structure shall not |
| // contain an instance of itself, but may contain a pointer to |
| // an instance of itself), except that the last member of a |
| // structure with more than one named member may have incomplete |
| // array type; such a structure (and any union containing, |
| // possibly recursively, a member that is such a structure) |
| // shall not be a member of a structure or an element of an |
| // array. |
| if (FDTy->isFunctionType()) { |
| // Field declared as a function. |
| Diag(FD->getLocation(), diag::err_field_declared_as_function) |
| << FD->getDeclName(); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } else if (FDTy->isIncompleteArrayType() && Record && |
| ((i == NumFields - 1 && !Record->isUnion()) || |
| (getLangOptions().Microsoft && |
| (i == NumFields - 1 || Record->isUnion())))) { |
| // Flexible array member. |
| // Microsoft is more permissive regarding flexible array. |
| // It will accept flexible array in union and also |
| // as the sole element of a struct/class. |
| if (getLangOptions().Microsoft) { |
| if (Record->isUnion()) |
| Diag(FD->getLocation(), diag::ext_flexible_array_union) |
| << FD->getDeclName(); |
| else if (NumFields == 1) |
| Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate) |
| << FD->getDeclName() << Record->getTagKind(); |
| } else if (NumNamedMembers < 1) { |
| Diag(FD->getLocation(), diag::err_flexible_array_empty_struct) |
| << FD->getDeclName(); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| if (!FD->getType()->isDependentType() && |
| !Context.getBaseElementType(FD->getType())->isPODType()) { |
| Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type) |
| << FD->getDeclName() << FD->getType(); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // Okay, we have a legal flexible array member at the end of the struct. |
| if (Record) |
| Record->setHasFlexibleArrayMember(true); |
| } else if (!FDTy->isDependentType() && |
| RequireCompleteType(FD->getLocation(), FD->getType(), |
| diag::err_field_incomplete)) { |
| // Incomplete type |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { |
| if (FDTTy->getDecl()->hasFlexibleArrayMember()) { |
| // If this is a member of a union, then entire union becomes "flexible". |
| if (Record && Record->isUnion()) { |
| Record->setHasFlexibleArrayMember(true); |
| } else { |
| // If this is a struct/class and this is not the last element, reject |
| // it. Note that GCC supports variable sized arrays in the middle of |
| // structures. |
| if (i != NumFields-1) |
| Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) |
| << FD->getDeclName() << FD->getType(); |
| else { |
| // We support flexible arrays at the end of structs in |
| // other structs as an extension. |
| Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) |
| << FD->getDeclName(); |
| if (Record) |
| Record->setHasFlexibleArrayMember(true); |
| } |
| } |
| } |
| if (Record && FDTTy->getDecl()->hasObjectMember()) |
| Record->setHasObjectMember(true); |
| } else if (FDTy->isObjCObjectType()) { |
| /// A field cannot be an Objective-c object |
| Diag(FD->getLocation(), diag::err_statically_allocated_object); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } else if (getLangOptions().ObjC1 && |
| getLangOptions().getGCMode() != LangOptions::NonGC && |
| Record && |
| (FD->getType()->isObjCObjectPointerType() || |
| FD->getType().isObjCGCStrong())) |
| Record->setHasObjectMember(true); |
| else if (Context.getAsArrayType(FD->getType())) { |
| QualType BaseType = Context.getBaseElementType(FD->getType()); |
| if (Record && BaseType->isRecordType() && |
| BaseType->getAs<RecordType>()->getDecl()->hasObjectMember()) |
| Record->setHasObjectMember(true); |
| } |
| // Keep track of the number of named members. |
| if (FD->getIdentifier()) |
| ++NumNamedMembers; |
| } |
| |
| // Okay, we successfully defined 'Record'. |
| if (Record) { |
| bool Completed = false; |
| if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) { |
| if (!CXXRecord->isInvalidDecl()) { |
| // Set access bits correctly on the directly-declared conversions. |
| UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions(); |
| for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); |
| I != E; ++I) |
| Convs->setAccess(I, (*I)->getAccess()); |
| |
| if (!CXXRecord->isDependentType()) { |
| // Add any implicitly-declared members to this class. |
| AddImplicitlyDeclaredMembersToClass(CXXRecord); |
| |
| // If we have virtual base classes, we may end up finding multiple |
| // final overriders for a given virtual function. Check for this |
| // problem now. |
| if (CXXRecord->getNumVBases()) { |
| CXXFinalOverriderMap FinalOverriders; |
| CXXRecord->getFinalOverriders(FinalOverriders); |
| |
| for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), |
| MEnd = FinalOverriders.end(); |
| M != MEnd; ++M) { |
| for (OverridingMethods::iterator SO = M->second.begin(), |
| SOEnd = M->second.end(); |
| SO != SOEnd; ++SO) { |
| assert(SO->second.size() > 0 && |
| "Virtual function without overridding functions?"); |
| if (SO->second.size() == 1) |
| continue; |
| |
| // C++ [class.virtual]p2: |
| // In a derived class, if a virtual member function of a base |
| // class subobject has more than one final overrider the |
| // program is ill-formed. |
| Diag(Record->getLocation(), diag::err_multiple_final_overriders) |
| << (NamedDecl *)M->first << Record; |
| Diag(M->first->getLocation(), |
| diag::note_overridden_virtual_function); |
| for (OverridingMethods::overriding_iterator |
| OM = SO->second.begin(), |
| OMEnd = SO->second.end(); |
| OM != OMEnd; ++OM) |
| Diag(OM->Method->getLocation(), diag::note_final_overrider) |
| << (NamedDecl *)M->first << OM->Method->getParent(); |
| |
| Record->setInvalidDecl(); |
| } |
| } |
| CXXRecord->completeDefinition(&FinalOverriders); |
| Completed = true; |
| } |
| } |
| } |
| } |
| |
| if (!Completed) |
| Record->completeDefinition(); |
| } else { |
| ObjCIvarDecl **ClsFields = |
| reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); |
| if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { |
| ID->setLocEnd(RBrac); |
| // Add ivar's to class's DeclContext. |
| for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { |
| ClsFields[i]->setLexicalDeclContext(ID); |
| ID->addDecl(ClsFields[i]); |
| } |
| // Must enforce the rule that ivars in the base classes may not be |
| // duplicates. |
| if (ID->getSuperClass()) |
| DiagnoseDuplicateIvars(ID, ID->getSuperClass()); |
| } else if (ObjCImplementationDecl *IMPDecl = |
| dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { |
| assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); |
| for (unsigned I = 0, N = RecFields.size(); I != N; ++I) |
| // Ivar declared in @implementation never belongs to the implementation. |
| // Only it is in implementation's lexical context. |
| ClsFields[I]->setLexicalDeclContext(IMPDecl); |
| CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); |
| } else if (ObjCCategoryDecl *CDecl = |
| dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { |
| // case of ivars in class extension; all other cases have been |
| // reported as errors elsewhere. |
| // FIXME. Class extension does not have a LocEnd field. |
| // CDecl->setLocEnd(RBrac); |
| // Add ivar's to class extension's DeclContext. |
| for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { |
| ClsFields[i]->setLexicalDeclContext(CDecl); |
| CDecl->addDecl(ClsFields[i]); |
| } |
| } |
| } |
| |
| if (Attr) |
| ProcessDeclAttributeList(S, Record, Attr); |
| |
| // If there's a #pragma GCC visibility in scope, and this isn't a subclass, |
| // set the visibility of this record. |
| if (Record && !Record->getDeclContext()->isRecord()) |
| AddPushedVisibilityAttribute(Record); |
| } |
| |
| /// \brief Determine whether the given integral value is representable within |
| /// the given type T. |
| static bool isRepresentableIntegerValue(ASTContext &Context, |
| llvm::APSInt &Value, |
| QualType T) { |
| assert(T->isIntegralType(Context) && "Integral type required!"); |
| unsigned BitWidth = Context.getIntWidth(T); |
| |
| if (Value.isUnsigned() || Value.isNonNegative()) { |
| if (T->isSignedIntegerType()) |
| --BitWidth; |
| return Value.getActiveBits() <= BitWidth; |
| } |
| return Value.getMinSignedBits() <= BitWidth; |
| } |
| |
| // \brief Given an integral type, return the next larger integral type |
| // (or a NULL type of no such type exists). |
| static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { |
| // FIXME: Int128/UInt128 support, which also needs to be introduced into |
| // enum checking below. |
| assert(T->isIntegralType(Context) && "Integral type required!"); |
| const unsigned NumTypes = 4; |
| QualType SignedIntegralTypes[NumTypes] = { |
| Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy |
| }; |
| QualType UnsignedIntegralTypes[NumTypes] = { |
| Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, |
| Context.UnsignedLongLongTy |
| }; |
| |
| unsigned BitWidth = Context.getTypeSize(T); |
| QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes |
| : UnsignedIntegralTypes; |
| for (unsigned I = 0; I != NumTypes; ++I) |
| if (Context.getTypeSize(Types[I]) > BitWidth) |
| return Types[I]; |
| |
| return QualType(); |
| } |
| |
| EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, |
| EnumConstantDecl *LastEnumConst, |
| SourceLocation IdLoc, |
| IdentifierInfo *Id, |
| Expr *Val) { |
| unsigned IntWidth = Context.Target.getIntWidth(); |
| llvm::APSInt EnumVal(IntWidth); |
| QualType EltTy; |
| |
| if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue)) |
| Val = 0; |
| |
| if (Val) { |
| if (Enum->isDependentType() || Val->isTypeDependent()) |
| EltTy = Context.DependentTy; |
| else { |
| // C99 6.7.2.2p2: Make sure we have an integer constant expression. |
| SourceLocation ExpLoc; |
| if (!Val->isValueDependent() && |
| VerifyIntegerConstantExpression(Val, &EnumVal)) { |
| Val = 0; |
| } else { |
| if (!getLangOptions().CPlusPlus) { |
| // C99 6.7.2.2p2: |
| // The expression that defines the value of an enumeration constant |
| // shall be an integer constant expression that has a value |
| // representable as an int. |
| |
| // Complain if the value is not representable in an int. |
| if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) |
| Diag(IdLoc, diag::ext_enum_value_not_int) |
| << EnumVal.toString(10) << Val->getSourceRange() |
| << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); |
| else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { |
| // Force the type of the expression to 'int'. |
| ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast); |
| } |
| } |
| |
| if (Enum->isFixed()) { |
| EltTy = Enum->getIntegerType(); |
| |
| // C++0x [dcl.enum]p5: |
| // ... if the initializing value of an enumerator cannot be |
| // represented by the underlying type, the program is ill-formed. |
| if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { |
| if (getLangOptions().Microsoft) { |
| Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; |
| ImpCastExprToType(Val, EltTy, CK_IntegralCast); |
| } else |
| Diag(IdLoc, diag::err_enumerator_too_large) |
| << EltTy; |
| } else |
| ImpCastExprToType(Val, EltTy, CK_IntegralCast); |
| } |
| else { |
| // C++0x [dcl.enum]p5: |
| // If the underlying type is not fixed, the type of each enumerator |
| // is the type of its initializing value: |
| // - If an initializer is specified for an enumerator, the |
| // initializing value has the same type as the expression. |
| EltTy = Val->getType(); |
| } |
| } |
| } |
| } |
| |
| if (!Val) { |
| if (Enum->isDependentType()) |
| EltTy = Context.DependentTy; |
| else if (!LastEnumConst) { |
| // C++0x [dcl.enum]p5: |
| // If the underlying type is not fixed, the type of each enumerator |
| // is the type of its initializing value: |
| // - If no initializer is specified for the first enumerator, the |
| // initializing value has an unspecified integral type. |
| // |
| // GCC uses 'int' for its unspecified integral type, as does |
| // C99 6.7.2.2p3. |
| if (Enum->isFixed()) { |
| EltTy = Enum->getIntegerType(); |
| } |
| else { |
| EltTy = Context.IntTy; |
| } |
| } else { |
| // Assign the last value + 1. |
| EnumVal = LastEnumConst->getInitVal(); |
| ++EnumVal; |
| EltTy = LastEnumConst->getType(); |
| |
| // Check for overflow on increment. |
| if (EnumVal < LastEnumConst->getInitVal()) { |
| // C++0x [dcl.enum]p5: |
| // If the underlying type is not fixed, the type of each enumerator |
| // is the type of its initializing value: |
| // |
| // - Otherwise the type of the initializing value is the same as |
| // the type of the initializing value of the preceding enumerator |
| // unless the incremented value is not representable in that type, |
| // in which case the type is an unspecified integral type |
| // sufficient to contain the incremented value. If no such type |
| // exists, the program is ill-formed. |
| QualType T = getNextLargerIntegralType(Context, EltTy); |
| if (T.isNull() || Enum->isFixed()) { |
| // There is no integral type larger enough to represent this |
| // value. Complain, then allow the value to wrap around. |
| EnumVal = LastEnumConst->getInitVal(); |
| EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2); |
| ++EnumVal; |
| if (Enum->isFixed()) |
| // When the underlying type is fixed, this is ill-formed. |
| Diag(IdLoc, diag::err_enumerator_wrapped) |
| << EnumVal.toString(10) |
| << EltTy; |
| else |
| Diag(IdLoc, diag::warn_enumerator_too_large) |
| << EnumVal.toString(10); |
| } else { |
| EltTy = T; |
| } |
| |
| // Retrieve the last enumerator's value, extent that type to the |
| // type that is supposed to be large enough to represent the incremented |
| // value, then increment. |
| EnumVal = LastEnumConst->getInitVal(); |
| EnumVal.setIsSigned(EltTy->isSignedIntegerType()); |
| EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); |
| ++EnumVal; |
| |
| // If we're not in C++, diagnose the overflow of enumerator values, |
| // which in C99 means that the enumerator value is not representable in |
| // an int (C99 6.7.2.2p2). However, we support GCC's extension that |
| // permits enumerator values that are representable in some larger |
| // integral type. |
| if (!getLangOptions().CPlusPlus && !T.isNull()) |
| Diag(IdLoc, diag::warn_enum_value_overflow); |
| } else if (!getLangOptions().CPlusPlus && |
| !isRepresentableIntegerValue(Context, EnumVal, EltTy)) { |
| // Enforce C99 6.7.2.2p2 even when we compute the next value. |
| Diag(IdLoc, diag::ext_enum_value_not_int) |
| << EnumVal.toString(10) << 1; |
| } |
| } |
| } |
| |
| if (!EltTy->isDependentType()) { |
| // Make the enumerator value match the signedness and size of the |
| // enumerator's type. |
| EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); |
| EnumVal.setIsSigned(EltTy->isSignedIntegerType()); |
| } |
| |
| return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, |
| Val, EnumVal); |
| } |
| |
| |
| Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, |
| SourceLocation IdLoc, IdentifierInfo *Id, |
| AttributeList *Attr, |
| SourceLocation EqualLoc, ExprTy *val) { |
| EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); |
| EnumConstantDecl *LastEnumConst = |
| cast_or_null<EnumConstantDecl>(lastEnumConst); |
| Expr *Val = static_cast<Expr*>(val); |
| |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| S = getNonFieldDeclScope(S); |
| |
| // Verify that there isn't already something declared with this name in this |
| // scope. |
| NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName, |
| ForRedeclaration); |
| if (PrevDecl && PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); |
| // Just pretend that we didn't see the previous declaration. |
| PrevDecl = 0; |
| } |
| |
| if (PrevDecl) { |
| // When in C++, we may get a TagDecl with the same name; in this case the |
| // enum constant will 'hide' the tag. |
| assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) && |
| "Received TagDecl when not in C++!"); |
| if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { |
| if (isa<EnumConstantDecl>(PrevDecl)) |
| Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; |
| else |
| Diag(IdLoc, diag::err_redefinition) << Id; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| return 0; |
| } |
| } |
| |
| // C++ [class.mem]p13: |
| // If T is the name of a class, then each of the following shall have a |
| // name different from T: |
| // - every enumerator of every member of class T that is an enumerated |
| // type |
| if (CXXRecordDecl *Record |
| = dyn_cast<CXXRecordDecl>( |
| TheEnumDecl->getDeclContext()->getRedeclContext())) |
| if (Record->getIdentifier() && Record->getIdentifier() == Id) |
| Diag(IdLoc, diag::err_member_name_of_class) << Id; |
| |
| EnumConstantDecl *New = |
| CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val); |
| |
| if (New) { |
| // Process attributes. |
| if (Attr) ProcessDeclAttributeList(S, New, Attr); |
| |
| // Register this decl in the current scope stack. |
| New->setAccess(TheEnumDecl->getAccess()); |
| PushOnScopeChains(New, S); |
| } |
| |
| return New; |
| } |
| |
| void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc, |
| SourceLocation RBraceLoc, Decl *EnumDeclX, |
| Decl **Elements, unsigned NumElements, |
| Scope *S, AttributeList *Attr) { |
| EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); |
| QualType EnumType = Context.getTypeDeclType(Enum); |
| |
| if (Attr) |
| ProcessDeclAttributeList(S, Enum, Attr); |
| |
| if (Enum->isDependentType()) { |
| for (unsigned i = 0; i != NumElements; ++i) { |
| EnumConstantDecl *ECD = |
| cast_or_null<EnumConstantDecl>(Elements[i]); |
| if (!ECD) continue; |
| |
| ECD->setType(EnumType); |
| } |
| |
| Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); |
| return; |
| } |
| |
| // TODO: If the result value doesn't fit in an int, it must be a long or long |
| // long value. ISO C does not support this, but GCC does as an extension, |
| // emit a warning. |
| unsigned IntWidth = Context.Target.getIntWidth(); |
| unsigned CharWidth = Context.Target.getCharWidth(); |
| unsigned ShortWidth = Context.Target.getShortWidth(); |
| |
| // Verify that all the values are okay, compute the size of the values, and |
| // reverse the list. |
| unsigned NumNegativeBits = 0; |
| unsigned NumPositiveBits = 0; |
| |
| // Keep track of whether all elements have type int. |
| bool AllElementsInt = true; |
| |
| for (unsigned i = 0; i != NumElements; ++i) { |
| EnumConstantDecl *ECD = |
| cast_or_null<EnumConstantDecl>(Elements[i]); |
| if (!ECD) continue; // Already issued a diagnostic. |
| |
| const llvm::APSInt &InitVal = ECD->getInitVal(); |
| |
| // Keep track of the size of positive and negative values. |
| if (InitVal.isUnsigned() || InitVal.isNonNegative()) |
| NumPositiveBits = std::max(NumPositiveBits, |
| (unsigned)InitVal.getActiveBits()); |
| else |
| NumNegativeBits = std::max(NumNegativeBits, |
| (unsigned)InitVal.getMinSignedBits()); |
| |
| // Keep track of whether every enum element has type int (very commmon). |
| if (AllElementsInt) |
| AllElementsInt = ECD->getType() == Context.IntTy; |
| } |
| |
| // Figure out the type that should be used for this enum. |
| QualType BestType; |
| unsigned BestWidth; |
| |
| // C++0x N3000 [conv.prom]p3: |
| // An rvalue of an unscoped enumeration type whose underlying |
| // type is not fixed can be converted to an rvalue of the first |
| // of the following types that can represent all the values of |
| // the enumeration: int, unsigned int, long int, unsigned long |
| // int, long long int, or unsigned long long int. |
| // C99 6.4.4.3p2: |
| // An identifier declared as an enumeration constant has type int. |
| // The C99 rule is modified by a gcc extension |
| QualType BestPromotionType; |
| |
| bool Packed = Enum->getAttr<PackedAttr>() ? true : false; |
| // -fshort-enums is the equivalent to specifying the packed attribute on all |
| // enum definitions. |
| if (LangOpts.ShortEnums) |
| Packed = true; |
| |
| if (Enum->isFixed()) { |
| BestType = BestPromotionType = Enum->getIntegerType(); |
| // We don't need to set BestWidth, because BestType is going to be the type |
| // of the enumerators, but we do anyway because otherwise some compilers |
| // warn that it might be used uninitialized. |
| BestWidth = CharWidth; |
| } |
| else if (NumNegativeBits) { |
| // If there is a negative value, figure out the smallest integer type (of |
| // int/long/longlong) that fits. |
| // If it's packed, check also if it fits a char or a short. |
| if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { |
| BestType = Context.SignedCharTy; |
| BestWidth = CharWidth; |
| } else if (Packed && NumNegativeBits <= ShortWidth && |
| NumPositiveBits < ShortWidth) { |
| BestType = Context.ShortTy; |
| BestWidth = ShortWidth; |
| } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { |
| BestType = Context.IntTy; |
| BestWidth = IntWidth; |
| } else { |
| BestWidth = Context.Target.getLongWidth(); |
| |
| if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { |
| BestType = Context.LongTy; |
| } else { |
| BestWidth = Context.Target.getLongLongWidth(); |
| |
| if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) |
| Diag(Enum->getLocation(), diag::warn_enum_too_large); |
| BestType = Context.LongLongTy; |
| } |
| } |
| BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); |
| } else { |
| // If there is no negative value, figure out the smallest type that fits |
| // all of the enumerator values. |
| // If it's packed, check also if it fits a char or a short. |
| if (Packed && NumPositiveBits <= CharWidth) { |
| BestType = Context.UnsignedCharTy; |
| BestPromotionType = Context.IntTy; |
| BestWidth = CharWidth; |
| } else if (Packed && NumPositiveBits <= ShortWidth) { |
| BestType = Context.UnsignedShortTy; |
| BestPromotionType = Context.IntTy; |
| BestWidth = ShortWidth; |
| } else if (NumPositiveBits <= IntWidth) { |
| BestType = Context.UnsignedIntTy; |
| BestWidth = IntWidth; |
| BestPromotionType |
| = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus) |
| ? Context.UnsignedIntTy : Context.IntTy; |
| } else if (NumPositiveBits <= |
| (BestWidth = Context.Target.getLongWidth())) { |
| BestType = Context.UnsignedLongTy; |
| BestPromotionType |
| = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus) |
| ? Context.UnsignedLongTy : Context.LongTy; |
| } else { |
| BestWidth = Context.Target.getLongLongWidth(); |
| assert(NumPositiveBits <= BestWidth && |
| "How could an initializer get larger than ULL?"); |
| BestType = Context.UnsignedLongLongTy; |
| BestPromotionType |
| = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus) |
| ? Context.UnsignedLongLongTy : Context.LongLongTy; |
| } |
| } |
| |
| // Loop over all of the enumerator constants, changing their types to match |
| // the type of the enum if needed. |
| for (unsigned i = 0; i != NumElements; ++i) { |
| EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]); |
| if (!ECD) continue; // Already issued a diagnostic. |
| |
| // Standard C says the enumerators have int type, but we allow, as an |
| // extension, the enumerators to be larger than int size. If each |
| // enumerator value fits in an int, type it as an int, otherwise type it the |
| // same as the enumerator decl itself. This means that in "enum { X = 1U }" |
| // that X has type 'int', not 'unsigned'. |
| |
| // Determine whether the value fits into an int. |
| llvm::APSInt InitVal = ECD->getInitVal(); |
| |
| // If it fits into an integer type, force it. Otherwise force it to match |
| // the enum decl type. |
| QualType NewTy; |
| unsigned NewWidth; |
| bool NewSign; |
| if (!getLangOptions().CPlusPlus && |
| isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { |
| NewTy = Context.IntTy; |
| NewWidth = IntWidth; |
| NewSign = true; |
| } else if (ECD->getType() == BestType) { |
| // Already the right type! |
| if (getLangOptions().CPlusPlus) |
| // C++ [dcl.enum]p4: Following the closing brace of an |
| // enum-specifier, each enumerator has the type of its |
| // enumeration. |
| ECD->setType(EnumType); |
| continue; |
| } else { |
| NewTy = BestType; |
| NewWidth = BestWidth; |
| NewSign = BestType->isSignedIntegerType(); |
| } |
| |
| // Adjust the APSInt value. |
| InitVal = InitVal.extOrTrunc(NewWidth); |
| InitVal.setIsSigned(NewSign); |
| ECD->setInitVal(InitVal); |
| |
| // Adjust the Expr initializer and type. |
| if (ECD->getInitExpr() && |
| !Context.hasSameType(NewTy, ECD->getInitExpr()->getType())) |
| ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy, |
| CK_IntegralCast, |
| ECD->getInitExpr(), |
| /*base paths*/ 0, |
| VK_RValue)); |
| if (getLangOptions().CPlusPlus) |
| // C++ [dcl.enum]p4: Following the closing brace of an |
| // enum-specifier, each enumerator has the type of its |
| // enumeration. |
| ECD->setType(EnumType); |
| else |
| ECD->setType(NewTy); |
| } |
| |
| Enum->completeDefinition(BestType, BestPromotionType, |
| NumPositiveBits, NumNegativeBits); |
| } |
| |
| Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) { |
| StringLiteral *AsmString = cast<StringLiteral>(expr); |
| |
| FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, |
| Loc, AsmString); |
| CurContext->addDecl(New); |
| return New; |
| } |
| |
| void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, |
| SourceLocation PragmaLoc, |
| SourceLocation NameLoc) { |
| Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); |
| |
| if (PrevDecl) { |
| PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context)); |
| } else { |
| (void)WeakUndeclaredIdentifiers.insert( |
| std::pair<IdentifierInfo*,WeakInfo> |
| (Name, WeakInfo((IdentifierInfo*)0, NameLoc))); |
| } |
| } |
| |
| void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, |
| IdentifierInfo* AliasName, |
| SourceLocation PragmaLoc, |
| SourceLocation NameLoc, |
| SourceLocation AliasNameLoc) { |
| Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, |
| LookupOrdinaryName); |
| WeakInfo W = WeakInfo(Name, NameLoc); |
| |
| if (PrevDecl) { |
| if (!PrevDecl->hasAttr<AliasAttr>()) |
| if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) |
| DeclApplyPragmaWeak(TUScope, ND, W); |
| } else { |
| (void)WeakUndeclaredIdentifiers.insert( |
| std::pair<IdentifierInfo*,WeakInfo>(AliasName, W)); |
| } |
| } |