blob: 7b198bcf624dcacf8f4d1c8151f4a09a9960fe0c [file] [log] [blame]
//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Aggregate Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "CGObjCRuntime.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/StmtVisitor.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Intrinsics.h"
using namespace clang;
using namespace CodeGen;
//===----------------------------------------------------------------------===//
// Aggregate Expression Emitter
//===----------------------------------------------------------------------===//
namespace {
class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
CodeGenFunction &CGF;
CGBuilderTy &Builder;
llvm::Value *DestPtr;
bool VolatileDest;
bool IgnoreResult;
bool IsInitializer;
bool RequiresGCollection;
ReturnValueSlot getReturnValueSlot() const {
// If the destination slot requires garbage collection, we can't
// use the real return value slot, because we have to use the GC
// API.
if (RequiresGCollection) return ReturnValueSlot();
return ReturnValueSlot(DestPtr, VolatileDest);
}
public:
AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v,
bool ignore, bool isinit, bool requiresGCollection)
: CGF(cgf), Builder(CGF.Builder),
DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore),
IsInitializer(isinit), RequiresGCollection(requiresGCollection) {
}
//===--------------------------------------------------------------------===//
// Utilities
//===--------------------------------------------------------------------===//
/// EmitAggLoadOfLValue - Given an expression with aggregate type that
/// represents a value lvalue, this method emits the address of the lvalue,
/// then loads the result into DestPtr.
void EmitAggLoadOfLValue(const Expr *E);
/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
void EmitGCMove(const Expr *E, RValue Src);
bool TypeRequiresGCollection(QualType T);
//===--------------------------------------------------------------------===//
// Visitor Methods
//===--------------------------------------------------------------------===//
void VisitStmt(Stmt *S) {
CGF.ErrorUnsupported(S, "aggregate expression");
}
void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
// l-values.
void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
EmitAggLoadOfLValue(E);
}
void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
EmitAggLoadOfLValue(E);
}
void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
EmitAggLoadOfLValue(E);
}
void VisitPredefinedExpr(const PredefinedExpr *E) {
EmitAggLoadOfLValue(E);
}
// Operators.
void VisitCastExpr(CastExpr *E);
void VisitCallExpr(const CallExpr *E);
void VisitStmtExpr(const StmtExpr *E);
void VisitBinaryOperator(const BinaryOperator *BO);
void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
void VisitBinAssign(const BinaryOperator *E);
void VisitBinComma(const BinaryOperator *E);
void VisitUnaryAddrOf(const UnaryOperator *E);
void VisitObjCMessageExpr(ObjCMessageExpr *E);
void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
EmitAggLoadOfLValue(E);
}
void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E);
void VisitConditionalOperator(const ConditionalOperator *CO);
void VisitChooseExpr(const ChooseExpr *CE);
void VisitInitListExpr(InitListExpr *E);
void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
Visit(DAE->getExpr());
}
void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
void VisitCXXConstructExpr(const CXXConstructExpr *E);
void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E);
void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
void VisitVAArgExpr(VAArgExpr *E);
void EmitInitializationToLValue(Expr *E, LValue Address, QualType T);
void EmitNullInitializationToLValue(LValue Address, QualType T);
// case Expr::ChooseExprClass:
void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
/// EmitAggLoadOfLValue - Given an expression with aggregate type that
/// represents a value lvalue, this method emits the address of the lvalue,
/// then loads the result into DestPtr.
void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
LValue LV = CGF.EmitLValue(E);
EmitFinalDestCopy(E, LV);
}
/// \brief True if the given aggregate type requires special GC API calls.
bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
// Only record types have members that might require garbage collection.
const RecordType *RecordTy = T->getAs<RecordType>();
if (!RecordTy) return false;
// Don't mess with non-trivial C++ types.
RecordDecl *Record = RecordTy->getDecl();
if (isa<CXXRecordDecl>(Record) &&
(!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
!cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
return false;
// Check whether the type has an object member.
return Record->hasObjectMember();
}
/// \brief Perform the final move to DestPtr if RequiresGCollection is set.
///
/// The idea is that you do something like this:
/// RValue Result = EmitSomething(..., getReturnValueSlot());
/// EmitGCMove(E, Result);
/// If GC doesn't interfere, this will cause the result to be emitted
/// directly into the return value slot. If GC does interfere, a final
/// move will be performed.
void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
if (RequiresGCollection) {
std::pair<uint64_t, unsigned> TypeInfo =
CGF.getContext().getTypeInfo(E->getType());
unsigned long size = TypeInfo.first/8;
const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, DestPtr,
Src.getAggregateAddr(),
SizeVal);
}
}
/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
assert(Src.isAggregate() && "value must be aggregate value!");
// If the result is ignored, don't copy from the value.
if (DestPtr == 0) {
if (!Src.isVolatileQualified() || (IgnoreResult && Ignore))
return;
// If the source is volatile, we must read from it; to do that, we need
// some place to put it.
DestPtr = CGF.CreateMemTemp(E->getType(), "agg.tmp");
}
if (RequiresGCollection) {
std::pair<uint64_t, unsigned> TypeInfo =
CGF.getContext().getTypeInfo(E->getType());
unsigned long size = TypeInfo.first/8;
const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
DestPtr, Src.getAggregateAddr(),
SizeVal);
return;
}
// If the result of the assignment is used, copy the LHS there also.
// FIXME: Pass VolatileDest as well. I think we also need to merge volatile
// from the source as well, as we can't eliminate it if either operand
// is volatile, unless copy has volatile for both source and destination..
CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(),
VolatileDest|Src.isVolatileQualified());
}
/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
Src.isVolatileQualified()),
Ignore);
}
//===----------------------------------------------------------------------===//
// Visitor Methods
//===----------------------------------------------------------------------===//
void AggExprEmitter::VisitCastExpr(CastExpr *E) {
if (!DestPtr && E->getCastKind() != CastExpr::CK_Dynamic) {
Visit(E->getSubExpr());
return;
}
switch (E->getCastKind()) {
default: assert(0 && "Unhandled cast kind!");
case CastExpr::CK_Dynamic: {
assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
// FIXME: Do we also need to handle property references here?
if (LV.isSimple())
CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
else
CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
if (DestPtr)
CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
break;
}
case CastExpr::CK_ToUnion: {
// GCC union extension
QualType Ty = E->getSubExpr()->getType();
QualType PtrTy = CGF.getContext().getPointerType(Ty);
llvm::Value *CastPtr = Builder.CreateBitCast(DestPtr,
CGF.ConvertType(PtrTy));
EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty),
Ty);
break;
}
case CastExpr::CK_DerivedToBase:
case CastExpr::CK_BaseToDerived:
case CastExpr::CK_UncheckedDerivedToBase: {
assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
"should have been unpacked before we got here");
break;
}
// FIXME: Remove the CK_Unknown check here.
case CastExpr::CK_Unknown:
case CastExpr::CK_NoOp:
case CastExpr::CK_UserDefinedConversion:
case CastExpr::CK_ConstructorConversion:
assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
E->getType()) &&
"Implicit cast types must be compatible");
Visit(E->getSubExpr());
break;
case CastExpr::CK_NullToMemberPointer: {
// If the subexpression's type is the C++0x nullptr_t, emit the
// subexpression, which may have side effects.
if (E->getSubExpr()->getType()->isNullPtrType())
Visit(E->getSubExpr());
const llvm::Type *PtrDiffTy =
CGF.ConvertType(CGF.getContext().getPointerDiffType());
llvm::Value *NullValue = llvm::Constant::getNullValue(PtrDiffTy);
llvm::Value *Ptr = Builder.CreateStructGEP(DestPtr, 0, "ptr");
Builder.CreateStore(NullValue, Ptr, VolatileDest);
llvm::Value *Adj = Builder.CreateStructGEP(DestPtr, 1, "adj");
Builder.CreateStore(NullValue, Adj, VolatileDest);
break;
}
case CastExpr::CK_LValueBitCast:
llvm_unreachable("there are no lvalue bit-casts on aggregates");
break;
case CastExpr::CK_BitCast: {
// This must be a member function pointer cast.
Visit(E->getSubExpr());
break;
}
case CastExpr::CK_DerivedToBaseMemberPointer:
case CastExpr::CK_BaseToDerivedMemberPointer: {
QualType SrcType = E->getSubExpr()->getType();
llvm::Value *Src = CGF.CreateMemTemp(SrcType, "tmp");
CGF.EmitAggExpr(E->getSubExpr(), Src, SrcType.isVolatileQualified());
// Note that the AST doesn't distinguish between checked and
// unchecked member pointer conversions, so we always have to
// implement checked conversions here. This is inefficient for
// ABIs where an actual null check is thus required; fortunately,
// the Itanium and ARM ABIs ignore the adjustment value when
// considering null-ness.
CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, E, Src,
DestPtr, VolatileDest);
break;
}
}
}
void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
if (E->getCallReturnType()->isReferenceType()) {
EmitAggLoadOfLValue(E);
return;
}
RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
EmitGCMove(E, RV);
}
void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
EmitGCMove(E, RV);
}
void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot());
EmitGCMove(E, RV);
}
void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr(
ObjCImplicitSetterGetterRefExpr *E) {
RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot());
EmitGCMove(E, RV);
}
void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
CGF.EmitAnyExpr(E->getLHS(), 0, false, true);
CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest,
/*IgnoreResult=*/false, IsInitializer);
}
void AggExprEmitter::VisitUnaryAddrOf(const UnaryOperator *E) {
// We have a member function pointer.
const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
(void) MPT;
assert(MPT->getPointeeType()->isFunctionProtoType() &&
"Unexpected member pointer type!");
// The creation of member function pointers has no side effects; if
// there is no destination pointer, we have nothing to do.
if (!DestPtr)
return;
const DeclRefExpr *DRE = cast<DeclRefExpr>(E->getSubExpr());
const CXXMethodDecl *MD =
cast<CXXMethodDecl>(DRE->getDecl())->getCanonicalDecl();
const llvm::Type *PtrDiffTy =
CGF.ConvertType(CGF.getContext().getPointerDiffType());
llvm::Value *DstPtr = Builder.CreateStructGEP(DestPtr, 0, "dst.ptr");
llvm::Value *FuncPtr = CGF.CGM.GetCXXMemberFunctionPointerValue(MD);
Builder.CreateStore(FuncPtr, DstPtr, VolatileDest);
llvm::Value *AdjPtr = Builder.CreateStructGEP(DestPtr, 1, "dst.adj");
// The adjustment will always be 0.
Builder.CreateStore(llvm::ConstantInt::get(PtrDiffTy, 0), AdjPtr,
VolatileDest);
}
void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
}
void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
if (E->getOpcode() == BinaryOperator::PtrMemD ||
E->getOpcode() == BinaryOperator::PtrMemI)
VisitPointerToDataMemberBinaryOperator(E);
else
CGF.ErrorUnsupported(E, "aggregate binary expression");
}
void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
const BinaryOperator *E) {
LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
EmitFinalDestCopy(E, LV);
}
void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
// For an assignment to work, the value on the right has
// to be compatible with the value on the left.
assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
E->getRHS()->getType())
&& "Invalid assignment");
LValue LHS = CGF.EmitLValue(E->getLHS());
// We have to special case property setters, otherwise we must have
// a simple lvalue (no aggregates inside vectors, bitfields).
if (LHS.isPropertyRef()) {
llvm::Value *AggLoc = DestPtr;
if (!AggLoc)
AggLoc = CGF.CreateMemTemp(E->getRHS()->getType());
CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
RValue::getAggregate(AggLoc, VolatileDest));
} else if (LHS.isKVCRef()) {
llvm::Value *AggLoc = DestPtr;
if (!AggLoc)
AggLoc = CGF.CreateMemTemp(E->getRHS()->getType());
CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
RValue::getAggregate(AggLoc, VolatileDest));
} else {
bool RequiresGCollection = false;
if (CGF.getContext().getLangOptions().getGCMode())
RequiresGCollection = TypeRequiresGCollection(E->getLHS()->getType());
// Codegen the RHS so that it stores directly into the LHS.
CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified(),
false, false, RequiresGCollection);
EmitFinalDestCopy(E, LHS, true);
}
}
void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
if (!E->getLHS()) {
CGF.ErrorUnsupported(E, "conditional operator with missing LHS");
return;
}
llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
CGF.BeginConditionalBranch();
CGF.EmitBlock(LHSBlock);
// Handle the GNU extension for missing LHS.
assert(E->getLHS() && "Must have LHS for aggregate value");
Visit(E->getLHS());
CGF.EndConditionalBranch();
CGF.EmitBranch(ContBlock);
CGF.BeginConditionalBranch();
CGF.EmitBlock(RHSBlock);
Visit(E->getRHS());
CGF.EndConditionalBranch();
CGF.EmitBranch(ContBlock);
CGF.EmitBlock(ContBlock);
}
void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
Visit(CE->getChosenSubExpr(CGF.getContext()));
}
void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
if (!ArgPtr) {
CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
return;
}
EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
}
void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
llvm::Value *Val = DestPtr;
if (!Val) {
// Create a temporary variable.
Val = CGF.CreateMemTemp(E->getType(), "tmp");
// FIXME: volatile
CGF.EmitAggExpr(E->getSubExpr(), Val, false);
} else
Visit(E->getSubExpr());
// Don't make this a live temporary if we're emitting an initializer expr.
if (!IsInitializer)
CGF.EmitCXXTemporary(E->getTemporary(), Val);
}
void
AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
llvm::Value *Val = DestPtr;
if (!Val) // Create a temporary variable.
Val = CGF.CreateMemTemp(E->getType(), "tmp");
if (E->requiresZeroInitialization())
EmitNullInitializationToLValue(CGF.MakeAddrLValue(Val, E->getType()),
E->getType());
CGF.EmitCXXConstructExpr(Val, E);
}
void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
llvm::Value *Val = DestPtr;
CGF.EmitCXXExprWithTemporaries(E, Val, VolatileDest, IsInitializer);
}
void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
llvm::Value *Val = DestPtr;
if (!Val) {
// Create a temporary variable.
Val = CGF.CreateMemTemp(E->getType(), "tmp");
}
EmitNullInitializationToLValue(CGF.MakeAddrLValue(Val, E->getType()),
E->getType());
}
void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
llvm::Value *Val = DestPtr;
if (!Val) {
// Create a temporary variable.
Val = CGF.CreateMemTemp(E->getType(), "tmp");
}
EmitNullInitializationToLValue(CGF.MakeAddrLValue(Val, E->getType()),
E->getType());
}
void
AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) {
// FIXME: Ignore result?
// FIXME: Are initializers affected by volatile?
if (isa<ImplicitValueInitExpr>(E)) {
EmitNullInitializationToLValue(LV, T);
} else if (T->isReferenceType()) {
RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
CGF.EmitStoreThroughLValue(RV, LV, T);
} else if (T->isAnyComplexType()) {
CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
} else if (CGF.hasAggregateLLVMType(T)) {
CGF.EmitAnyExpr(E, LV.getAddress(), false);
} else {
CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, T);
}
}
void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
if (!CGF.hasAggregateLLVMType(T)) {
// For non-aggregates, we can store zero
llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
} else {
// There's a potential optimization opportunity in combining
// memsets; that would be easy for arrays, but relatively
// difficult for structures with the current code.
CGF.EmitNullInitialization(LV.getAddress(), T);
}
}
void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
#if 0
// FIXME: Assess perf here? Figure out what cases are worth optimizing here
// (Length of globals? Chunks of zeroed-out space?).
//
// If we can, prefer a copy from a global; this is a lot less code for long
// globals, and it's easier for the current optimizers to analyze.
if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
llvm::GlobalVariable* GV =
new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
llvm::GlobalValue::InternalLinkage, C, "");
EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
return;
}
#endif
if (E->hadArrayRangeDesignator()) {
CGF.ErrorUnsupported(E, "GNU array range designator extension");
}
// Handle initialization of an array.
if (E->getType()->isArrayType()) {
const llvm::PointerType *APType =
cast<llvm::PointerType>(DestPtr->getType());
const llvm::ArrayType *AType =
cast<llvm::ArrayType>(APType->getElementType());
uint64_t NumInitElements = E->getNumInits();
if (E->getNumInits() > 0) {
QualType T1 = E->getType();
QualType T2 = E->getInit(0)->getType();
if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
EmitAggLoadOfLValue(E->getInit(0));
return;
}
}
uint64_t NumArrayElements = AType->getNumElements();
QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
// FIXME: were we intentionally ignoring address spaces and GC attributes?
for (uint64_t i = 0; i != NumArrayElements; ++i) {
llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
if (i < NumInitElements)
EmitInitializationToLValue(E->getInit(i), LV, ElementType);
else
EmitNullInitializationToLValue(LV, ElementType);
}
return;
}
assert(E->getType()->isRecordType() && "Only support structs/unions here!");
// Do struct initialization; this code just sets each individual member
// to the approprate value. This makes bitfield support automatic;
// the disadvantage is that the generated code is more difficult for
// the optimizer, especially with bitfields.
unsigned NumInitElements = E->getNumInits();
RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
unsigned CurInitVal = 0;
if (E->getType()->isUnionType()) {
// Only initialize one field of a union. The field itself is
// specified by the initializer list.
if (!E->getInitializedFieldInUnion()) {
// Empty union; we have nothing to do.
#ifndef NDEBUG
// Make sure that it's really an empty and not a failure of
// semantic analysis.
for (RecordDecl::field_iterator Field = SD->field_begin(),
FieldEnd = SD->field_end();
Field != FieldEnd; ++Field)
assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
#endif
return;
}
// FIXME: volatility
FieldDecl *Field = E->getInitializedFieldInUnion();
LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
if (NumInitElements) {
// Store the initializer into the field
EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType());
} else {
// Default-initialize to null
EmitNullInitializationToLValue(FieldLoc, Field->getType());
}
return;
}
// If we're initializing the whole aggregate, just do it in place.
// FIXME: This is a hack around an AST bug (PR6537).
if (NumInitElements == 1 && E->getType() == E->getInit(0)->getType()) {
EmitInitializationToLValue(E->getInit(0),
CGF.MakeAddrLValue(DestPtr, E->getType()),
E->getType());
return;
}
// Here we iterate over the fields; this makes it simpler to both
// default-initialize fields and skip over unnamed fields.
for (RecordDecl::field_iterator Field = SD->field_begin(),
FieldEnd = SD->field_end();
Field != FieldEnd; ++Field) {
// We're done once we hit the flexible array member
if (Field->getType()->isIncompleteArrayType())
break;
if (Field->isUnnamedBitfield())
continue;
// FIXME: volatility
LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
// We never generate write-barries for initialized fields.
FieldLoc.setNonGC(true);
if (CurInitVal < NumInitElements) {
// Store the initializer into the field.
EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc,
Field->getType());
} else {
// We're out of initalizers; default-initialize to null
EmitNullInitializationToLValue(FieldLoc, Field->getType());
}
}
}
//===----------------------------------------------------------------------===//
// Entry Points into this File
//===----------------------------------------------------------------------===//
/// EmitAggExpr - Emit the computation of the specified expression of aggregate
/// type. The result is computed into DestPtr. Note that if DestPtr is null,
/// the value of the aggregate expression is not needed. If VolatileDest is
/// true, DestPtr cannot be 0.
//
// FIXME: Take Qualifiers object.
void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
bool VolatileDest, bool IgnoreResult,
bool IsInitializer,
bool RequiresGCollection) {
assert(E && hasAggregateLLVMType(E->getType()) &&
"Invalid aggregate expression to emit");
assert ((DestPtr != 0 || VolatileDest == false)
&& "volatile aggregate can't be 0");
AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult, IsInitializer,
RequiresGCollection)
.Visit(const_cast<Expr*>(E));
}
LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
llvm::Value *Temp = CreateMemTemp(E->getType());
LValue LV = MakeAddrLValue(Temp, E->getType());
EmitAggExpr(E, Temp, LV.isVolatileQualified());
return LV;
}
void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
llvm::Value *SrcPtr, QualType Ty,
bool isVolatile) {
assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
if (getContext().getLangOptions().CPlusPlus) {
if (const RecordType *RT = Ty->getAs<RecordType>()) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
assert((Record->hasTrivialCopyConstructor() ||
Record->hasTrivialCopyAssignment()) &&
"Trying to aggregate-copy a type without a trivial copy "
"constructor or assignment operator");
// Ignore empty classes in C++.
if (Record->isEmpty())
return;
}
}
// Aggregate assignment turns into llvm.memcpy. This is almost valid per
// C99 6.5.16.1p3, which states "If the value being stored in an object is
// read from another object that overlaps in anyway the storage of the first
// object, then the overlap shall be exact and the two objects shall have
// qualified or unqualified versions of a compatible type."
//
// memcpy is not defined if the source and destination pointers are exactly
// equal, but other compilers do this optimization, and almost every memcpy
// implementation handles this case safely. If there is a libc that does not
// safely handle this, we can add a target hook.
// Get size and alignment info for this aggregate.
std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
// FIXME: Handle variable sized types.
// FIXME: If we have a volatile struct, the optimizer can remove what might
// appear to be `extra' memory ops:
//
// volatile struct { int i; } a, b;
//
// int main() {
// a = b;
// a = b;
// }
//
// we need to use a different call here. We use isVolatile to indicate when
// either the source or the destination is volatile.
const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
const llvm::Type *DBP =
llvm::Type::getInt8PtrTy(VMContext, DPT->getAddressSpace());
DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
const llvm::Type *SBP =
llvm::Type::getInt8PtrTy(VMContext, SPT->getAddressSpace());
SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
RecordDecl *Record = RecordTy->getDecl();
if (Record->hasObjectMember()) {
unsigned long size = TypeInfo.first/8;
const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
SizeVal);
return;
}
} else if (getContext().getAsArrayType(Ty)) {
QualType BaseType = getContext().getBaseElementType(Ty);
if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
if (RecordTy->getDecl()->hasObjectMember()) {
unsigned long size = TypeInfo.first/8;
const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
SizeVal);
return;
}
}
}
Builder.CreateCall5(CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(),
IntPtrTy),
DestPtr, SrcPtr,
// TypeInfo.first describes size in bits.
llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8),
Builder.getInt32(TypeInfo.second/8),
Builder.getInt1(isVolatile));
}