| //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Constant Expr nodes as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "CGObjCRuntime.h" |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Basic/Builtins.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Target/TargetData.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| namespace { |
| |
| class VISIBILITY_HIDDEN ConstStructBuilder { |
| CodeGenModule &CGM; |
| CodeGenFunction *CGF; |
| |
| bool Packed; |
| |
| unsigned NextFieldOffsetInBytes; |
| |
| std::vector<llvm::Constant *> Elements; |
| |
| ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF) |
| : CGM(CGM), CGF(CGF), Packed(false), NextFieldOffsetInBytes(0) { } |
| |
| bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, |
| const Expr *InitExpr) { |
| uint64_t FieldOffsetInBytes = FieldOffset / 8; |
| |
| assert(NextFieldOffsetInBytes <= FieldOffsetInBytes |
| && "Field offset mismatch!"); |
| |
| // Emit the field. |
| llvm::Constant *C = CGM.EmitConstantExpr(InitExpr, Field->getType(), CGF); |
| if (!C) |
| return false; |
| |
| unsigned FieldAlignment = getAlignment(C); |
| |
| // Round up the field offset to the alignment of the field type. |
| uint64_t AlignedNextFieldOffsetInBytes = |
| llvm::RoundUpToAlignment(NextFieldOffsetInBytes, FieldAlignment); |
| |
| if (AlignedNextFieldOffsetInBytes > FieldOffsetInBytes) { |
| std::vector<llvm::Constant *> PackedElements; |
| |
| assert(!Packed && "Alignment is wrong even with a packed struct!"); |
| |
| // Convert the struct to a packed struct. |
| uint64_t ElementOffsetInBytes = 0; |
| |
| for (unsigned i = 0, e = Elements.size(); i != e; ++i) { |
| llvm::Constant *C = Elements[i]; |
| |
| unsigned ElementAlign = |
| CGM.getTargetData().getABITypeAlignment(C->getType()); |
| uint64_t AlignedElementOffsetInBytes = |
| llvm::RoundUpToAlignment(ElementOffsetInBytes, ElementAlign); |
| |
| if (AlignedElementOffsetInBytes > ElementOffsetInBytes) { |
| // We need some padding. |
| uint64_t NumBytes = |
| AlignedElementOffsetInBytes - ElementOffsetInBytes; |
| |
| const llvm::Type *Ty = llvm::Type::Int8Ty; |
| if (NumBytes > 1) |
| Ty = llvm::ArrayType::get(Ty, NumBytes); |
| |
| llvm::Constant *Padding = llvm::Constant::getNullValue(Ty); |
| PackedElements.push_back(Padding); |
| ElementOffsetInBytes += getSizeInBytes(Padding); |
| } |
| |
| PackedElements.push_back(C); |
| ElementOffsetInBytes += getSizeInBytes(C); |
| } |
| |
| assert(ElementOffsetInBytes == NextFieldOffsetInBytes && |
| "Packing the struct changed its size!"); |
| |
| Elements = PackedElements; |
| Packed = true; |
| AlignedNextFieldOffsetInBytes = NextFieldOffsetInBytes; |
| } |
| |
| if (AlignedNextFieldOffsetInBytes < FieldOffsetInBytes) { |
| // We need to append padding. |
| AppendPadding(FieldOffsetInBytes - NextFieldOffsetInBytes); |
| |
| assert(NextFieldOffsetInBytes == FieldOffsetInBytes && |
| "Did not add enough padding!"); |
| |
| AlignedNextFieldOffsetInBytes = NextFieldOffsetInBytes; |
| } |
| |
| // Add the field. |
| Elements.push_back(C); |
| NextFieldOffsetInBytes = AlignedNextFieldOffsetInBytes + getSizeInBytes(C); |
| |
| return true; |
| } |
| |
| bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, |
| const Expr *InitExpr) { |
| llvm::ConstantInt *CI = |
| cast_or_null<llvm::ConstantInt>(CGM.EmitConstantExpr(InitExpr, |
| Field->getType(), |
| CGF)); |
| // FIXME: Can this ever happen? |
| if (!CI) |
| return false; |
| |
| if (FieldOffset > NextFieldOffsetInBytes * 8) { |
| // We need to add padding. |
| uint64_t NumBytes = |
| llvm::RoundUpToAlignment(FieldOffset - |
| NextFieldOffsetInBytes * 8, 8) / 8; |
| |
| AppendPadding(NumBytes); |
| } |
| |
| uint64_t FieldSize = |
| Field->getBitWidth()->EvaluateAsInt(CGM.getContext()).getZExtValue(); |
| |
| llvm::APInt FieldValue = CI->getValue(); |
| |
| // Promote the size of FieldValue if necessary |
| // FIXME: This should never occur, but currently it can because initializer |
| // constants are cast to bool, and because clang is not enforcing bitfield |
| // width limits. |
| if (FieldSize > FieldValue.getBitWidth()) |
| FieldValue.zext(FieldSize); |
| |
| // Truncate the size of FieldValue to the bit field size. |
| if (FieldSize < FieldValue.getBitWidth()) |
| FieldValue.trunc(FieldSize); |
| |
| if (FieldOffset < NextFieldOffsetInBytes * 8) { |
| // Either part of the field or the entire field can go into the previous |
| // byte. |
| assert(!Elements.empty() && "Elements can't be empty!"); |
| |
| unsigned BitsInPreviousByte = |
| NextFieldOffsetInBytes * 8 - FieldOffset; |
| |
| bool FitsCompletelyInPreviousByte = |
| BitsInPreviousByte >= FieldValue.getBitWidth(); |
| |
| llvm::APInt Tmp = FieldValue; |
| |
| if (!FitsCompletelyInPreviousByte) { |
| unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; |
| |
| if (CGM.getTargetData().isBigEndian()) { |
| Tmp = Tmp.lshr(NewFieldWidth); |
| Tmp.trunc(BitsInPreviousByte); |
| |
| // We want the remaining high bits. |
| FieldValue.trunc(NewFieldWidth); |
| } else { |
| Tmp.trunc(BitsInPreviousByte); |
| |
| // We want the remaining low bits. |
| FieldValue = FieldValue.lshr(BitsInPreviousByte); |
| FieldValue.trunc(NewFieldWidth); |
| } |
| } |
| |
| Tmp.zext(8); |
| if (CGM.getTargetData().isBigEndian()) { |
| if (FitsCompletelyInPreviousByte) |
| Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); |
| } else { |
| Tmp = Tmp.shl(8 - BitsInPreviousByte); |
| } |
| |
| // Or in the bits that go into the previous byte. |
| Tmp |= cast<llvm::ConstantInt>(Elements.back())->getValue(); |
| Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); |
| |
| if (FitsCompletelyInPreviousByte) |
| return true; |
| } |
| |
| while (FieldValue.getBitWidth() > 8) { |
| llvm::APInt Tmp; |
| |
| if (CGM.getTargetData().isBigEndian()) { |
| // We want the high bits. |
| Tmp = FieldValue; |
| Tmp = Tmp.lshr(Tmp.getBitWidth() - 8); |
| Tmp.trunc(8); |
| } else { |
| // We want the low bits. |
| Tmp = FieldValue; |
| Tmp.trunc(8); |
| |
| FieldValue = FieldValue.lshr(8); |
| } |
| |
| Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); |
| NextFieldOffsetInBytes++; |
| |
| FieldValue.trunc(FieldValue.getBitWidth() - 8); |
| } |
| |
| assert(FieldValue.getBitWidth() > 0 && |
| "Should have at least one bit left!"); |
| assert(FieldValue.getBitWidth() <= 8 && |
| "Should not have more than a byte left!"); |
| |
| if (FieldValue.getBitWidth() < 8) { |
| if (CGM.getTargetData().isBigEndian()) { |
| unsigned BitWidth = FieldValue.getBitWidth(); |
| |
| FieldValue.zext(8); |
| FieldValue = FieldValue << (8 - BitWidth); |
| } else |
| FieldValue.zext(8); |
| } |
| |
| // Append the last element. |
| Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), |
| FieldValue)); |
| NextFieldOffsetInBytes++; |
| return true; |
| } |
| |
| void AppendPadding(uint64_t NumBytes) { |
| if (!NumBytes) |
| return; |
| |
| const llvm::Type *Ty = llvm::Type::Int8Ty; |
| if (NumBytes > 1) |
| Ty = llvm::ArrayType::get(Ty, NumBytes); |
| |
| llvm::Constant *C = llvm::Constant::getNullValue(Ty); |
| Elements.push_back(C); |
| assert(getAlignment(C) == 1 && "Padding must have 1 byte alignment!"); |
| |
| NextFieldOffsetInBytes += getSizeInBytes(C); |
| } |
| |
| void AppendTailPadding(uint64_t RecordSize) { |
| assert(RecordSize % 8 == 0 && "Invalid record size!"); |
| |
| uint64_t RecordSizeInBytes = RecordSize / 8; |
| assert(NextFieldOffsetInBytes <= RecordSizeInBytes && "Size mismatch!"); |
| |
| unsigned NumPadBytes = RecordSizeInBytes - NextFieldOffsetInBytes; |
| AppendPadding(NumPadBytes); |
| } |
| |
| bool Build(InitListExpr *ILE) { |
| RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); |
| const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); |
| |
| unsigned FieldNo = 0; |
| unsigned ElementNo = 0; |
| for (RecordDecl::field_iterator Field = RD->field_begin(), |
| FieldEnd = RD->field_end(); |
| ElementNo < ILE->getNumInits() && Field != FieldEnd; |
| ++Field, ++FieldNo) { |
| if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) |
| continue; |
| |
| if (Field->isBitField()) { |
| if (!Field->getIdentifier()) |
| continue; |
| |
| if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo), |
| ILE->getInit(ElementNo))) |
| return false; |
| } else { |
| if (!AppendField(*Field, Layout.getFieldOffset(FieldNo), |
| ILE->getInit(ElementNo))) |
| return false; |
| } |
| |
| ElementNo++; |
| } |
| |
| uint64_t LayoutSizeInBytes = Layout.getSize() / 8; |
| |
| if (NextFieldOffsetInBytes > LayoutSizeInBytes) { |
| // If the struct is bigger than the size of the record type, |
| // we must have a flexible array member at the end. |
| assert(RD->hasFlexibleArrayMember() && |
| "Must have flexible array member if struct is bigger than type!"); |
| |
| // No tail padding is necessary. |
| return true; |
| } |
| |
| // Append tail padding if necessary. |
| AppendTailPadding(Layout.getSize()); |
| |
| assert(Layout.getSize() / 8 == NextFieldOffsetInBytes && |
| "Tail padding mismatch!"); |
| |
| return true; |
| } |
| |
| unsigned getAlignment(const llvm::Constant *C) const { |
| if (Packed) |
| return 1; |
| |
| return CGM.getTargetData().getABITypeAlignment(C->getType()); |
| } |
| |
| uint64_t getSizeInBytes(const llvm::Constant *C) const { |
| return CGM.getTargetData().getTypeAllocSize(C->getType()); |
| } |
| |
| public: |
| static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, |
| InitListExpr *ILE) { |
| ConstStructBuilder Builder(CGM, CGF); |
| |
| if (!Builder.Build(ILE)) |
| return 0; |
| |
| llvm::Constant *Result = |
| llvm::ConstantStruct::get(Builder.Elements, Builder.Packed); |
| |
| assert(llvm::RoundUpToAlignment(Builder.NextFieldOffsetInBytes, |
| Builder.getAlignment(Result)) == |
| Builder.getSizeInBytes(Result) && "Size mismatch!"); |
| |
| return Result; |
| } |
| }; |
| |
| class VISIBILITY_HIDDEN ConstExprEmitter : |
| public StmtVisitor<ConstExprEmitter, llvm::Constant*> { |
| CodeGenModule &CGM; |
| CodeGenFunction *CGF; |
| llvm::LLVMContext &VMContext; |
| public: |
| ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf) |
| : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) { |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| llvm::Constant *VisitStmt(Stmt *S) { |
| return 0; |
| } |
| |
| llvm::Constant *VisitParenExpr(ParenExpr *PE) { |
| return Visit(PE->getSubExpr()); |
| } |
| |
| llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { |
| return Visit(E->getInitializer()); |
| } |
| |
| llvm::Constant *VisitCastExpr(CastExpr* E) { |
| // GCC cast to union extension |
| if (E->getType()->isUnionType()) { |
| const llvm::Type *Ty = ConvertType(E->getType()); |
| Expr *SubExpr = E->getSubExpr(); |
| |
| llvm::Constant *C = |
| CGM.EmitConstantExpr(SubExpr, SubExpr->getType(), CGF); |
| if (!C) |
| return 0; |
| |
| // Build a struct with the union sub-element as the first member, |
| // and padded to the appropriate size |
| std::vector<llvm::Constant*> Elts; |
| std::vector<const llvm::Type*> Types; |
| Elts.push_back(C); |
| Types.push_back(C->getType()); |
| unsigned CurSize = CGM.getTargetData().getTypeAllocSize(C->getType()); |
| unsigned TotalSize = CGM.getTargetData().getTypeAllocSize(Ty); |
| |
| assert(CurSize <= TotalSize && "Union size mismatch!"); |
| if (unsigned NumPadBytes = TotalSize - CurSize) { |
| const llvm::Type *Ty = llvm::Type::Int8Ty; |
| if (NumPadBytes > 1) |
| Ty = llvm::ArrayType::get(Ty, NumPadBytes); |
| |
| Elts.push_back(llvm::Constant::getNullValue(Ty)); |
| Types.push_back(Ty); |
| } |
| |
| llvm::StructType* STy = llvm::StructType::get(Types, false); |
| return llvm::ConstantStruct::get(STy, Elts); |
| } |
| |
| // Explicit and implicit no-op casts |
| QualType Ty = E->getType(), SubTy = E->getSubExpr()->getType(); |
| if (CGM.getContext().hasSameUnqualifiedType(Ty, SubTy)) { |
| return Visit(E->getSubExpr()); |
| } |
| return 0; |
| } |
| |
| llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { |
| return Visit(DAE->getExpr()); |
| } |
| |
| llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) { |
| std::vector<llvm::Constant*> Elts; |
| const llvm::ArrayType *AType = |
| cast<llvm::ArrayType>(ConvertType(ILE->getType())); |
| unsigned NumInitElements = ILE->getNumInits(); |
| // FIXME: Check for wide strings |
| // FIXME: Check for NumInitElements exactly equal to 1?? |
| if (NumInitElements > 0 && |
| (isa<StringLiteral>(ILE->getInit(0)) || |
| isa<ObjCEncodeExpr>(ILE->getInit(0))) && |
| ILE->getType()->getArrayElementTypeNoTypeQual()->isCharType()) |
| return Visit(ILE->getInit(0)); |
| const llvm::Type *ElemTy = AType->getElementType(); |
| unsigned NumElements = AType->getNumElements(); |
| |
| // Initialising an array requires us to automatically |
| // initialise any elements that have not been initialised explicitly |
| unsigned NumInitableElts = std::min(NumInitElements, NumElements); |
| |
| // Copy initializer elements. |
| unsigned i = 0; |
| bool RewriteType = false; |
| for (; i < NumInitableElts; ++i) { |
| Expr *Init = ILE->getInit(i); |
| llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); |
| if (!C) |
| return 0; |
| RewriteType |= (C->getType() != ElemTy); |
| Elts.push_back(C); |
| } |
| |
| // Initialize remaining array elements. |
| // FIXME: This doesn't handle member pointers correctly! |
| for (; i < NumElements; ++i) |
| Elts.push_back(llvm::Constant::getNullValue(ElemTy)); |
| |
| if (RewriteType) { |
| // FIXME: Try to avoid packing the array |
| std::vector<const llvm::Type*> Types; |
| for (unsigned i = 0; i < Elts.size(); ++i) |
| Types.push_back(Elts[i]->getType()); |
| const llvm::StructType *SType = llvm::StructType::get(Types, true); |
| return llvm::ConstantStruct::get(SType, Elts); |
| } |
| |
| return llvm::ConstantArray::get(AType, Elts); |
| } |
| |
| llvm::Constant *EmitStructInitialization(InitListExpr *ILE) { |
| return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); |
| } |
| |
| llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) { |
| return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); |
| } |
| |
| llvm::Constant *EmitVectorInitialization(InitListExpr *ILE) { |
| const llvm::VectorType *VType = |
| cast<llvm::VectorType>(ConvertType(ILE->getType())); |
| const llvm::Type *ElemTy = VType->getElementType(); |
| std::vector<llvm::Constant*> Elts; |
| unsigned NumElements = VType->getNumElements(); |
| unsigned NumInitElements = ILE->getNumInits(); |
| |
| unsigned NumInitableElts = std::min(NumInitElements, NumElements); |
| |
| // Copy initializer elements. |
| unsigned i = 0; |
| for (; i < NumInitableElts; ++i) { |
| Expr *Init = ILE->getInit(i); |
| llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); |
| if (!C) |
| return 0; |
| Elts.push_back(C); |
| } |
| |
| for (; i < NumElements; ++i) |
| Elts.push_back(llvm::Constant::getNullValue(ElemTy)); |
| |
| return llvm::ConstantVector::get(VType, Elts); |
| } |
| |
| llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) { |
| return CGM.EmitNullConstant(E->getType()); |
| } |
| |
| llvm::Constant *VisitInitListExpr(InitListExpr *ILE) { |
| if (ILE->getType()->isScalarType()) { |
| // We have a scalar in braces. Just use the first element. |
| if (ILE->getNumInits() > 0) { |
| Expr *Init = ILE->getInit(0); |
| return CGM.EmitConstantExpr(Init, Init->getType(), CGF); |
| } |
| return CGM.EmitNullConstant(ILE->getType()); |
| } |
| |
| if (ILE->getType()->isArrayType()) |
| return EmitArrayInitialization(ILE); |
| |
| if (ILE->getType()->isStructureType()) |
| return EmitStructInitialization(ILE); |
| |
| if (ILE->getType()->isUnionType()) |
| return EmitUnionInitialization(ILE); |
| |
| if (ILE->getType()->isVectorType()) |
| return EmitVectorInitialization(ILE); |
| |
| assert(0 && "Unable to handle InitListExpr"); |
| // Get rid of control reaches end of void function warning. |
| // Not reached. |
| return 0; |
| } |
| |
| llvm::Constant *VisitStringLiteral(StringLiteral *E) { |
| assert(!E->getType()->isPointerType() && "Strings are always arrays"); |
| |
| // This must be a string initializing an array in a static initializer. |
| // Don't emit it as the address of the string, emit the string data itself |
| // as an inline array. |
| return llvm::ConstantArray::get(CGM.GetStringForStringLiteral(E), false); |
| } |
| |
| llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) { |
| // This must be an @encode initializing an array in a static initializer. |
| // Don't emit it as the address of the string, emit the string data itself |
| // as an inline array. |
| std::string Str; |
| CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); |
| const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType()); |
| |
| // Resize the string to the right size, adding zeros at the end, or |
| // truncating as needed. |
| Str.resize(CAT->getSize().getZExtValue(), '\0'); |
| return llvm::ConstantArray::get(Str, false); |
| } |
| |
| llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) { |
| return Visit(E->getSubExpr()); |
| } |
| |
| // Utility methods |
| const llvm::Type *ConvertType(QualType T) { |
| return CGM.getTypes().ConvertType(T); |
| } |
| |
| public: |
| llvm::Constant *EmitLValue(Expr *E) { |
| switch (E->getStmtClass()) { |
| default: break; |
| case Expr::CompoundLiteralExprClass: { |
| // Note that due to the nature of compound literals, this is guaranteed |
| // to be the only use of the variable, so we just generate it here. |
| CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); |
| llvm::Constant* C = Visit(CLE->getInitializer()); |
| // FIXME: "Leaked" on failure. |
| if (C) |
| C = new llvm::GlobalVariable(CGM.getModule(), C->getType(), |
| E->getType().isConstQualified(), |
| llvm::GlobalValue::InternalLinkage, |
| C, ".compoundliteral"); |
| return C; |
| } |
| case Expr::DeclRefExprClass: |
| case Expr::QualifiedDeclRefExprClass: { |
| NamedDecl *Decl = cast<DeclRefExpr>(E)->getDecl(); |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl)) |
| return CGM.GetAddrOfFunction(GlobalDecl(FD)); |
| if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) { |
| // We can never refer to a variable with local storage. |
| if (!VD->hasLocalStorage()) { |
| if (VD->isFileVarDecl() || VD->hasExternalStorage()) |
| return CGM.GetAddrOfGlobalVar(VD); |
| else if (VD->isBlockVarDecl()) { |
| assert(CGF && "Can't access static local vars without CGF"); |
| return CGF->GetAddrOfStaticLocalVar(VD); |
| } |
| } |
| } |
| break; |
| } |
| case Expr::StringLiteralClass: |
| return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E)); |
| case Expr::ObjCEncodeExprClass: |
| return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E)); |
| case Expr::ObjCStringLiteralClass: { |
| ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E); |
| llvm::Constant *C = CGM.getObjCRuntime().GenerateConstantString(SL); |
| return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); |
| } |
| case Expr::PredefinedExprClass: { |
| // __func__/__FUNCTION__ -> "". __PRETTY_FUNCTION__ -> "top level". |
| std::string Str; |
| if (cast<PredefinedExpr>(E)->getIdentType() == |
| PredefinedExpr::PrettyFunction) |
| Str = "top level"; |
| |
| return CGM.GetAddrOfConstantCString(Str, ".tmp"); |
| } |
| case Expr::AddrLabelExprClass: { |
| assert(CGF && "Invalid address of label expression outside function."); |
| unsigned id = CGF->GetIDForAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel()); |
| llvm::Constant *C = llvm::ConstantInt::get(llvm::Type::Int32Ty, id); |
| return llvm::ConstantExpr::getIntToPtr(C, ConvertType(E->getType())); |
| } |
| case Expr::CallExprClass: { |
| CallExpr* CE = cast<CallExpr>(E); |
| if (CE->isBuiltinCall(CGM.getContext()) != |
| Builtin::BI__builtin___CFStringMakeConstantString) |
| break; |
| const Expr *Arg = CE->getArg(0)->IgnoreParenCasts(); |
| const StringLiteral *Literal = cast<StringLiteral>(Arg); |
| // FIXME: need to deal with UCN conversion issues. |
| return CGM.GetAddrOfConstantCFString(Literal); |
| } |
| case Expr::BlockExprClass: { |
| std::string FunctionName; |
| if (CGF) |
| FunctionName = CGF->CurFn->getName(); |
| else |
| FunctionName = "global"; |
| |
| return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str()); |
| } |
| } |
| |
| return 0; |
| } |
| }; |
| |
| } // end anonymous namespace. |
| |
| llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E, |
| QualType DestType, |
| CodeGenFunction *CGF) { |
| Expr::EvalResult Result; |
| |
| bool Success = false; |
| |
| if (DestType->isReferenceType()) |
| Success = E->EvaluateAsLValue(Result, Context); |
| else |
| Success = E->Evaluate(Result, Context); |
| |
| if (Success) { |
| assert(!Result.HasSideEffects && |
| "Constant expr should not have any side effects!"); |
| switch (Result.Val.getKind()) { |
| case APValue::Uninitialized: |
| assert(0 && "Constant expressions should be initialized."); |
| return 0; |
| case APValue::LValue: { |
| const llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType); |
| llvm::Constant *Offset = |
| llvm::ConstantInt::get(llvm::Type::Int64Ty, |
| Result.Val.getLValueOffset()); |
| |
| llvm::Constant *C; |
| if (const Expr *LVBase = Result.Val.getLValueBase()) { |
| C = ConstExprEmitter(*this, CGF).EmitLValue(const_cast<Expr*>(LVBase)); |
| |
| // Apply offset if necessary. |
| if (!Offset->isNullValue()) { |
| const llvm::Type *Type = |
| llvm::PointerType::getUnqual(llvm::Type::Int8Ty); |
| llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Type); |
| Casted = llvm::ConstantExpr::getGetElementPtr(Casted, &Offset, 1); |
| C = llvm::ConstantExpr::getBitCast(Casted, C->getType()); |
| } |
| |
| // Convert to the appropriate type; this could be an lvalue for |
| // an integer. |
| if (isa<llvm::PointerType>(DestTy)) |
| return llvm::ConstantExpr::getBitCast(C, DestTy); |
| |
| return llvm::ConstantExpr::getPtrToInt(C, DestTy); |
| } else { |
| C = Offset; |
| |
| // Convert to the appropriate type; this could be an lvalue for |
| // an integer. |
| if (isa<llvm::PointerType>(DestTy)) |
| return llvm::ConstantExpr::getIntToPtr(C, DestTy); |
| |
| // If the types don't match this should only be a truncate. |
| if (C->getType() != DestTy) |
| return llvm::ConstantExpr::getTrunc(C, DestTy); |
| |
| return C; |
| } |
| } |
| case APValue::Int: { |
| llvm::Constant *C = llvm::ConstantInt::get(VMContext, |
| Result.Val.getInt()); |
| |
| if (C->getType() == llvm::Type::Int1Ty) { |
| const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); |
| C = llvm::ConstantExpr::getZExt(C, BoolTy); |
| } |
| return C; |
| } |
| case APValue::ComplexInt: { |
| llvm::Constant *Complex[2]; |
| |
| Complex[0] = llvm::ConstantInt::get(VMContext, |
| Result.Val.getComplexIntReal()); |
| Complex[1] = llvm::ConstantInt::get(VMContext, |
| Result.Val.getComplexIntImag()); |
| |
| return llvm::ConstantStruct::get(Complex, 2); |
| } |
| case APValue::Float: |
| return llvm::ConstantFP::get(VMContext, Result.Val.getFloat()); |
| case APValue::ComplexFloat: { |
| llvm::Constant *Complex[2]; |
| |
| Complex[0] = llvm::ConstantFP::get(VMContext, |
| Result.Val.getComplexFloatReal()); |
| Complex[1] = llvm::ConstantFP::get(VMContext, |
| Result.Val.getComplexFloatImag()); |
| |
| return llvm::ConstantStruct::get(Complex, 2); |
| } |
| case APValue::Vector: { |
| llvm::SmallVector<llvm::Constant *, 4> Inits; |
| unsigned NumElts = Result.Val.getVectorLength(); |
| |
| for (unsigned i = 0; i != NumElts; ++i) { |
| APValue &Elt = Result.Val.getVectorElt(i); |
| if (Elt.isInt()) |
| Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt())); |
| else |
| Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat())); |
| } |
| return llvm::ConstantVector::get(&Inits[0], Inits.size()); |
| } |
| } |
| } |
| |
| llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E)); |
| if (C && C->getType() == llvm::Type::Int1Ty) { |
| const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); |
| C = llvm::ConstantExpr::getZExt(C, BoolTy); |
| } |
| return C; |
| } |
| |
| llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { |
| // Always return an LLVM null constant for now; this will change when we |
| // get support for IRGen of member pointers. |
| return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); |
| } |