blob: 3a1eac9e04b1738ced96e60592ec1dc9a841500f [file] [log] [blame]
//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Constant Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "CGObjCRuntime.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Target/TargetData.h"
using namespace clang;
using namespace CodeGen;
namespace {
class VISIBILITY_HIDDEN ConstStructBuilder {
CodeGenModule &CGM;
CodeGenFunction *CGF;
bool Packed;
unsigned NextFieldOffsetInBytes;
std::vector<llvm::Constant *> Elements;
ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF)
: CGM(CGM), CGF(CGF), Packed(false), NextFieldOffsetInBytes(0) { }
bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
const Expr *InitExpr) {
uint64_t FieldOffsetInBytes = FieldOffset / 8;
assert(NextFieldOffsetInBytes <= FieldOffsetInBytes
&& "Field offset mismatch!");
// Emit the field.
llvm::Constant *C = CGM.EmitConstantExpr(InitExpr, Field->getType(), CGF);
if (!C)
return false;
unsigned FieldAlignment = getAlignment(C);
// Round up the field offset to the alignment of the field type.
uint64_t AlignedNextFieldOffsetInBytes =
llvm::RoundUpToAlignment(NextFieldOffsetInBytes, FieldAlignment);
if (AlignedNextFieldOffsetInBytes > FieldOffsetInBytes) {
std::vector<llvm::Constant *> PackedElements;
assert(!Packed && "Alignment is wrong even with a packed struct!");
// Convert the struct to a packed struct.
uint64_t ElementOffsetInBytes = 0;
for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
llvm::Constant *C = Elements[i];
unsigned ElementAlign =
CGM.getTargetData().getABITypeAlignment(C->getType());
uint64_t AlignedElementOffsetInBytes =
llvm::RoundUpToAlignment(ElementOffsetInBytes, ElementAlign);
if (AlignedElementOffsetInBytes > ElementOffsetInBytes) {
// We need some padding.
uint64_t NumBytes =
AlignedElementOffsetInBytes - ElementOffsetInBytes;
const llvm::Type *Ty = llvm::Type::Int8Ty;
if (NumBytes > 1)
Ty = llvm::ArrayType::get(Ty, NumBytes);
llvm::Constant *Padding = llvm::Constant::getNullValue(Ty);
PackedElements.push_back(Padding);
ElementOffsetInBytes += getSizeInBytes(Padding);
}
PackedElements.push_back(C);
ElementOffsetInBytes += getSizeInBytes(C);
}
assert(ElementOffsetInBytes == NextFieldOffsetInBytes &&
"Packing the struct changed its size!");
Elements = PackedElements;
Packed = true;
AlignedNextFieldOffsetInBytes = NextFieldOffsetInBytes;
}
if (AlignedNextFieldOffsetInBytes < FieldOffsetInBytes) {
// We need to append padding.
AppendPadding(FieldOffsetInBytes - NextFieldOffsetInBytes);
assert(NextFieldOffsetInBytes == FieldOffsetInBytes &&
"Did not add enough padding!");
AlignedNextFieldOffsetInBytes = NextFieldOffsetInBytes;
}
// Add the field.
Elements.push_back(C);
NextFieldOffsetInBytes = AlignedNextFieldOffsetInBytes + getSizeInBytes(C);
return true;
}
bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
const Expr *InitExpr) {
llvm::ConstantInt *CI =
cast_or_null<llvm::ConstantInt>(CGM.EmitConstantExpr(InitExpr,
Field->getType(),
CGF));
// FIXME: Can this ever happen?
if (!CI)
return false;
if (FieldOffset > NextFieldOffsetInBytes * 8) {
// We need to add padding.
uint64_t NumBytes =
llvm::RoundUpToAlignment(FieldOffset -
NextFieldOffsetInBytes * 8, 8) / 8;
AppendPadding(NumBytes);
}
uint64_t FieldSize =
Field->getBitWidth()->EvaluateAsInt(CGM.getContext()).getZExtValue();
llvm::APInt FieldValue = CI->getValue();
// Promote the size of FieldValue if necessary
// FIXME: This should never occur, but currently it can because initializer
// constants are cast to bool, and because clang is not enforcing bitfield
// width limits.
if (FieldSize > FieldValue.getBitWidth())
FieldValue.zext(FieldSize);
// Truncate the size of FieldValue to the bit field size.
if (FieldSize < FieldValue.getBitWidth())
FieldValue.trunc(FieldSize);
if (FieldOffset < NextFieldOffsetInBytes * 8) {
// Either part of the field or the entire field can go into the previous
// byte.
assert(!Elements.empty() && "Elements can't be empty!");
unsigned BitsInPreviousByte =
NextFieldOffsetInBytes * 8 - FieldOffset;
bool FitsCompletelyInPreviousByte =
BitsInPreviousByte >= FieldValue.getBitWidth();
llvm::APInt Tmp = FieldValue;
if (!FitsCompletelyInPreviousByte) {
unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
if (CGM.getTargetData().isBigEndian()) {
Tmp = Tmp.lshr(NewFieldWidth);
Tmp.trunc(BitsInPreviousByte);
// We want the remaining high bits.
FieldValue.trunc(NewFieldWidth);
} else {
Tmp.trunc(BitsInPreviousByte);
// We want the remaining low bits.
FieldValue = FieldValue.lshr(BitsInPreviousByte);
FieldValue.trunc(NewFieldWidth);
}
}
Tmp.zext(8);
if (CGM.getTargetData().isBigEndian()) {
if (FitsCompletelyInPreviousByte)
Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
} else {
Tmp = Tmp.shl(8 - BitsInPreviousByte);
}
// Or in the bits that go into the previous byte.
Tmp |= cast<llvm::ConstantInt>(Elements.back())->getValue();
Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
if (FitsCompletelyInPreviousByte)
return true;
}
while (FieldValue.getBitWidth() > 8) {
llvm::APInt Tmp;
if (CGM.getTargetData().isBigEndian()) {
// We want the high bits.
Tmp = FieldValue;
Tmp = Tmp.lshr(Tmp.getBitWidth() - 8);
Tmp.trunc(8);
} else {
// We want the low bits.
Tmp = FieldValue;
Tmp.trunc(8);
FieldValue = FieldValue.lshr(8);
}
Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
NextFieldOffsetInBytes++;
FieldValue.trunc(FieldValue.getBitWidth() - 8);
}
assert(FieldValue.getBitWidth() > 0 &&
"Should have at least one bit left!");
assert(FieldValue.getBitWidth() <= 8 &&
"Should not have more than a byte left!");
if (FieldValue.getBitWidth() < 8) {
if (CGM.getTargetData().isBigEndian()) {
unsigned BitWidth = FieldValue.getBitWidth();
FieldValue.zext(8);
FieldValue = FieldValue << (8 - BitWidth);
} else
FieldValue.zext(8);
}
// Append the last element.
Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
FieldValue));
NextFieldOffsetInBytes++;
return true;
}
void AppendPadding(uint64_t NumBytes) {
if (!NumBytes)
return;
const llvm::Type *Ty = llvm::Type::Int8Ty;
if (NumBytes > 1)
Ty = llvm::ArrayType::get(Ty, NumBytes);
llvm::Constant *C = llvm::Constant::getNullValue(Ty);
Elements.push_back(C);
assert(getAlignment(C) == 1 && "Padding must have 1 byte alignment!");
NextFieldOffsetInBytes += getSizeInBytes(C);
}
void AppendTailPadding(uint64_t RecordSize) {
assert(RecordSize % 8 == 0 && "Invalid record size!");
uint64_t RecordSizeInBytes = RecordSize / 8;
assert(NextFieldOffsetInBytes <= RecordSizeInBytes && "Size mismatch!");
unsigned NumPadBytes = RecordSizeInBytes - NextFieldOffsetInBytes;
AppendPadding(NumPadBytes);
}
bool Build(InitListExpr *ILE) {
RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
unsigned FieldNo = 0;
unsigned ElementNo = 0;
for (RecordDecl::field_iterator Field = RD->field_begin(),
FieldEnd = RD->field_end();
ElementNo < ILE->getNumInits() && Field != FieldEnd;
++Field, ++FieldNo) {
if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
continue;
if (Field->isBitField()) {
if (!Field->getIdentifier())
continue;
if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo),
ILE->getInit(ElementNo)))
return false;
} else {
if (!AppendField(*Field, Layout.getFieldOffset(FieldNo),
ILE->getInit(ElementNo)))
return false;
}
ElementNo++;
}
uint64_t LayoutSizeInBytes = Layout.getSize() / 8;
if (NextFieldOffsetInBytes > LayoutSizeInBytes) {
// If the struct is bigger than the size of the record type,
// we must have a flexible array member at the end.
assert(RD->hasFlexibleArrayMember() &&
"Must have flexible array member if struct is bigger than type!");
// No tail padding is necessary.
return true;
}
// Append tail padding if necessary.
AppendTailPadding(Layout.getSize());
assert(Layout.getSize() / 8 == NextFieldOffsetInBytes &&
"Tail padding mismatch!");
return true;
}
unsigned getAlignment(const llvm::Constant *C) const {
if (Packed)
return 1;
return CGM.getTargetData().getABITypeAlignment(C->getType());
}
uint64_t getSizeInBytes(const llvm::Constant *C) const {
return CGM.getTargetData().getTypeAllocSize(C->getType());
}
public:
static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
InitListExpr *ILE) {
ConstStructBuilder Builder(CGM, CGF);
if (!Builder.Build(ILE))
return 0;
llvm::Constant *Result =
llvm::ConstantStruct::get(Builder.Elements, Builder.Packed);
assert(llvm::RoundUpToAlignment(Builder.NextFieldOffsetInBytes,
Builder.getAlignment(Result)) ==
Builder.getSizeInBytes(Result) && "Size mismatch!");
return Result;
}
};
class VISIBILITY_HIDDEN ConstExprEmitter :
public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
CodeGenModule &CGM;
CodeGenFunction *CGF;
llvm::LLVMContext &VMContext;
public:
ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf)
: CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) {
}
//===--------------------------------------------------------------------===//
// Visitor Methods
//===--------------------------------------------------------------------===//
llvm::Constant *VisitStmt(Stmt *S) {
return 0;
}
llvm::Constant *VisitParenExpr(ParenExpr *PE) {
return Visit(PE->getSubExpr());
}
llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
return Visit(E->getInitializer());
}
llvm::Constant *VisitCastExpr(CastExpr* E) {
// GCC cast to union extension
if (E->getType()->isUnionType()) {
const llvm::Type *Ty = ConvertType(E->getType());
Expr *SubExpr = E->getSubExpr();
llvm::Constant *C =
CGM.EmitConstantExpr(SubExpr, SubExpr->getType(), CGF);
if (!C)
return 0;
// Build a struct with the union sub-element as the first member,
// and padded to the appropriate size
std::vector<llvm::Constant*> Elts;
std::vector<const llvm::Type*> Types;
Elts.push_back(C);
Types.push_back(C->getType());
unsigned CurSize = CGM.getTargetData().getTypeAllocSize(C->getType());
unsigned TotalSize = CGM.getTargetData().getTypeAllocSize(Ty);
assert(CurSize <= TotalSize && "Union size mismatch!");
if (unsigned NumPadBytes = TotalSize - CurSize) {
const llvm::Type *Ty = llvm::Type::Int8Ty;
if (NumPadBytes > 1)
Ty = llvm::ArrayType::get(Ty, NumPadBytes);
Elts.push_back(llvm::Constant::getNullValue(Ty));
Types.push_back(Ty);
}
llvm::StructType* STy = llvm::StructType::get(Types, false);
return llvm::ConstantStruct::get(STy, Elts);
}
// Explicit and implicit no-op casts
QualType Ty = E->getType(), SubTy = E->getSubExpr()->getType();
if (CGM.getContext().hasSameUnqualifiedType(Ty, SubTy)) {
return Visit(E->getSubExpr());
}
return 0;
}
llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
return Visit(DAE->getExpr());
}
llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) {
std::vector<llvm::Constant*> Elts;
const llvm::ArrayType *AType =
cast<llvm::ArrayType>(ConvertType(ILE->getType()));
unsigned NumInitElements = ILE->getNumInits();
// FIXME: Check for wide strings
// FIXME: Check for NumInitElements exactly equal to 1??
if (NumInitElements > 0 &&
(isa<StringLiteral>(ILE->getInit(0)) ||
isa<ObjCEncodeExpr>(ILE->getInit(0))) &&
ILE->getType()->getArrayElementTypeNoTypeQual()->isCharType())
return Visit(ILE->getInit(0));
const llvm::Type *ElemTy = AType->getElementType();
unsigned NumElements = AType->getNumElements();
// Initialising an array requires us to automatically
// initialise any elements that have not been initialised explicitly
unsigned NumInitableElts = std::min(NumInitElements, NumElements);
// Copy initializer elements.
unsigned i = 0;
bool RewriteType = false;
for (; i < NumInitableElts; ++i) {
Expr *Init = ILE->getInit(i);
llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF);
if (!C)
return 0;
RewriteType |= (C->getType() != ElemTy);
Elts.push_back(C);
}
// Initialize remaining array elements.
// FIXME: This doesn't handle member pointers correctly!
for (; i < NumElements; ++i)
Elts.push_back(llvm::Constant::getNullValue(ElemTy));
if (RewriteType) {
// FIXME: Try to avoid packing the array
std::vector<const llvm::Type*> Types;
for (unsigned i = 0; i < Elts.size(); ++i)
Types.push_back(Elts[i]->getType());
const llvm::StructType *SType = llvm::StructType::get(Types, true);
return llvm::ConstantStruct::get(SType, Elts);
}
return llvm::ConstantArray::get(AType, Elts);
}
llvm::Constant *EmitStructInitialization(InitListExpr *ILE) {
return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
}
llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) {
return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
}
llvm::Constant *EmitVectorInitialization(InitListExpr *ILE) {
const llvm::VectorType *VType =
cast<llvm::VectorType>(ConvertType(ILE->getType()));
const llvm::Type *ElemTy = VType->getElementType();
std::vector<llvm::Constant*> Elts;
unsigned NumElements = VType->getNumElements();
unsigned NumInitElements = ILE->getNumInits();
unsigned NumInitableElts = std::min(NumInitElements, NumElements);
// Copy initializer elements.
unsigned i = 0;
for (; i < NumInitableElts; ++i) {
Expr *Init = ILE->getInit(i);
llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF);
if (!C)
return 0;
Elts.push_back(C);
}
for (; i < NumElements; ++i)
Elts.push_back(llvm::Constant::getNullValue(ElemTy));
return llvm::ConstantVector::get(VType, Elts);
}
llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) {
return CGM.EmitNullConstant(E->getType());
}
llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
if (ILE->getType()->isScalarType()) {
// We have a scalar in braces. Just use the first element.
if (ILE->getNumInits() > 0) {
Expr *Init = ILE->getInit(0);
return CGM.EmitConstantExpr(Init, Init->getType(), CGF);
}
return CGM.EmitNullConstant(ILE->getType());
}
if (ILE->getType()->isArrayType())
return EmitArrayInitialization(ILE);
if (ILE->getType()->isStructureType())
return EmitStructInitialization(ILE);
if (ILE->getType()->isUnionType())
return EmitUnionInitialization(ILE);
if (ILE->getType()->isVectorType())
return EmitVectorInitialization(ILE);
assert(0 && "Unable to handle InitListExpr");
// Get rid of control reaches end of void function warning.
// Not reached.
return 0;
}
llvm::Constant *VisitStringLiteral(StringLiteral *E) {
assert(!E->getType()->isPointerType() && "Strings are always arrays");
// This must be a string initializing an array in a static initializer.
// Don't emit it as the address of the string, emit the string data itself
// as an inline array.
return llvm::ConstantArray::get(CGM.GetStringForStringLiteral(E), false);
}
llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
// This must be an @encode initializing an array in a static initializer.
// Don't emit it as the address of the string, emit the string data itself
// as an inline array.
std::string Str;
CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType());
// Resize the string to the right size, adding zeros at the end, or
// truncating as needed.
Str.resize(CAT->getSize().getZExtValue(), '\0');
return llvm::ConstantArray::get(Str, false);
}
llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) {
return Visit(E->getSubExpr());
}
// Utility methods
const llvm::Type *ConvertType(QualType T) {
return CGM.getTypes().ConvertType(T);
}
public:
llvm::Constant *EmitLValue(Expr *E) {
switch (E->getStmtClass()) {
default: break;
case Expr::CompoundLiteralExprClass: {
// Note that due to the nature of compound literals, this is guaranteed
// to be the only use of the variable, so we just generate it here.
CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
llvm::Constant* C = Visit(CLE->getInitializer());
// FIXME: "Leaked" on failure.
if (C)
C = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
E->getType().isConstQualified(),
llvm::GlobalValue::InternalLinkage,
C, ".compoundliteral");
return C;
}
case Expr::DeclRefExprClass:
case Expr::QualifiedDeclRefExprClass: {
NamedDecl *Decl = cast<DeclRefExpr>(E)->getDecl();
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
return CGM.GetAddrOfFunction(GlobalDecl(FD));
if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) {
// We can never refer to a variable with local storage.
if (!VD->hasLocalStorage()) {
if (VD->isFileVarDecl() || VD->hasExternalStorage())
return CGM.GetAddrOfGlobalVar(VD);
else if (VD->isBlockVarDecl()) {
assert(CGF && "Can't access static local vars without CGF");
return CGF->GetAddrOfStaticLocalVar(VD);
}
}
}
break;
}
case Expr::StringLiteralClass:
return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E));
case Expr::ObjCEncodeExprClass:
return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E));
case Expr::ObjCStringLiteralClass: {
ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E);
llvm::Constant *C = CGM.getObjCRuntime().GenerateConstantString(SL);
return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
}
case Expr::PredefinedExprClass: {
// __func__/__FUNCTION__ -> "". __PRETTY_FUNCTION__ -> "top level".
std::string Str;
if (cast<PredefinedExpr>(E)->getIdentType() ==
PredefinedExpr::PrettyFunction)
Str = "top level";
return CGM.GetAddrOfConstantCString(Str, ".tmp");
}
case Expr::AddrLabelExprClass: {
assert(CGF && "Invalid address of label expression outside function.");
unsigned id = CGF->GetIDForAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel());
llvm::Constant *C = llvm::ConstantInt::get(llvm::Type::Int32Ty, id);
return llvm::ConstantExpr::getIntToPtr(C, ConvertType(E->getType()));
}
case Expr::CallExprClass: {
CallExpr* CE = cast<CallExpr>(E);
if (CE->isBuiltinCall(CGM.getContext()) !=
Builtin::BI__builtin___CFStringMakeConstantString)
break;
const Expr *Arg = CE->getArg(0)->IgnoreParenCasts();
const StringLiteral *Literal = cast<StringLiteral>(Arg);
// FIXME: need to deal with UCN conversion issues.
return CGM.GetAddrOfConstantCFString(Literal);
}
case Expr::BlockExprClass: {
std::string FunctionName;
if (CGF)
FunctionName = CGF->CurFn->getName();
else
FunctionName = "global";
return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str());
}
}
return 0;
}
};
} // end anonymous namespace.
llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E,
QualType DestType,
CodeGenFunction *CGF) {
Expr::EvalResult Result;
bool Success = false;
if (DestType->isReferenceType())
Success = E->EvaluateAsLValue(Result, Context);
else
Success = E->Evaluate(Result, Context);
if (Success) {
assert(!Result.HasSideEffects &&
"Constant expr should not have any side effects!");
switch (Result.Val.getKind()) {
case APValue::Uninitialized:
assert(0 && "Constant expressions should be initialized.");
return 0;
case APValue::LValue: {
const llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType);
llvm::Constant *Offset =
llvm::ConstantInt::get(llvm::Type::Int64Ty,
Result.Val.getLValueOffset());
llvm::Constant *C;
if (const Expr *LVBase = Result.Val.getLValueBase()) {
C = ConstExprEmitter(*this, CGF).EmitLValue(const_cast<Expr*>(LVBase));
// Apply offset if necessary.
if (!Offset->isNullValue()) {
const llvm::Type *Type =
llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Type);
Casted = llvm::ConstantExpr::getGetElementPtr(Casted, &Offset, 1);
C = llvm::ConstantExpr::getBitCast(Casted, C->getType());
}
// Convert to the appropriate type; this could be an lvalue for
// an integer.
if (isa<llvm::PointerType>(DestTy))
return llvm::ConstantExpr::getBitCast(C, DestTy);
return llvm::ConstantExpr::getPtrToInt(C, DestTy);
} else {
C = Offset;
// Convert to the appropriate type; this could be an lvalue for
// an integer.
if (isa<llvm::PointerType>(DestTy))
return llvm::ConstantExpr::getIntToPtr(C, DestTy);
// If the types don't match this should only be a truncate.
if (C->getType() != DestTy)
return llvm::ConstantExpr::getTrunc(C, DestTy);
return C;
}
}
case APValue::Int: {
llvm::Constant *C = llvm::ConstantInt::get(VMContext,
Result.Val.getInt());
if (C->getType() == llvm::Type::Int1Ty) {
const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
C = llvm::ConstantExpr::getZExt(C, BoolTy);
}
return C;
}
case APValue::ComplexInt: {
llvm::Constant *Complex[2];
Complex[0] = llvm::ConstantInt::get(VMContext,
Result.Val.getComplexIntReal());
Complex[1] = llvm::ConstantInt::get(VMContext,
Result.Val.getComplexIntImag());
return llvm::ConstantStruct::get(Complex, 2);
}
case APValue::Float:
return llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
case APValue::ComplexFloat: {
llvm::Constant *Complex[2];
Complex[0] = llvm::ConstantFP::get(VMContext,
Result.Val.getComplexFloatReal());
Complex[1] = llvm::ConstantFP::get(VMContext,
Result.Val.getComplexFloatImag());
return llvm::ConstantStruct::get(Complex, 2);
}
case APValue::Vector: {
llvm::SmallVector<llvm::Constant *, 4> Inits;
unsigned NumElts = Result.Val.getVectorLength();
for (unsigned i = 0; i != NumElts; ++i) {
APValue &Elt = Result.Val.getVectorElt(i);
if (Elt.isInt())
Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt()));
else
Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat()));
}
return llvm::ConstantVector::get(&Inits[0], Inits.size());
}
}
}
llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
if (C && C->getType() == llvm::Type::Int1Ty) {
const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
C = llvm::ConstantExpr::getZExt(C, BoolTy);
}
return C;
}
llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
// Always return an LLVM null constant for now; this will change when we
// get support for IRGen of member pointers.
return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
}