| //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for Objective C declarations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/ExternalSemaSource.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "llvm/ADT/DenseSet.h" |
| |
| using namespace clang; |
| |
| /// Check whether the given method, which must be in the 'init' |
| /// family, is a valid member of that family. |
| /// |
| /// \param receiverTypeIfCall - if null, check this as if declaring it; |
| /// if non-null, check this as if making a call to it with the given |
| /// receiver type |
| /// |
| /// \return true to indicate that there was an error and appropriate |
| /// actions were taken |
| bool Sema::checkInitMethod(ObjCMethodDecl *method, |
| QualType receiverTypeIfCall) { |
| if (method->isInvalidDecl()) return true; |
| |
| // This castAs is safe: methods that don't return an object |
| // pointer won't be inferred as inits and will reject an explicit |
| // objc_method_family(init). |
| |
| // We ignore protocols here. Should we? What about Class? |
| |
| const ObjCObjectType *result = method->getResultType() |
| ->castAs<ObjCObjectPointerType>()->getObjectType(); |
| |
| if (result->isObjCId()) { |
| return false; |
| } else if (result->isObjCClass()) { |
| // fall through: always an error |
| } else { |
| ObjCInterfaceDecl *resultClass = result->getInterface(); |
| assert(resultClass && "unexpected object type!"); |
| |
| // It's okay for the result type to still be a forward declaration |
| // if we're checking an interface declaration. |
| if (resultClass->isForwardDecl()) { |
| if (receiverTypeIfCall.isNull() && |
| !isa<ObjCImplementationDecl>(method->getDeclContext())) |
| return false; |
| |
| // Otherwise, we try to compare class types. |
| } else { |
| // If this method was declared in a protocol, we can't check |
| // anything unless we have a receiver type that's an interface. |
| const ObjCInterfaceDecl *receiverClass = 0; |
| if (isa<ObjCProtocolDecl>(method->getDeclContext())) { |
| if (receiverTypeIfCall.isNull()) |
| return false; |
| |
| receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() |
| ->getInterfaceDecl(); |
| |
| // This can be null for calls to e.g. id<Foo>. |
| if (!receiverClass) return false; |
| } else { |
| receiverClass = method->getClassInterface(); |
| assert(receiverClass && "method not associated with a class!"); |
| } |
| |
| // If either class is a subclass of the other, it's fine. |
| if (receiverClass->isSuperClassOf(resultClass) || |
| resultClass->isSuperClassOf(receiverClass)) |
| return false; |
| } |
| } |
| |
| SourceLocation loc = method->getLocation(); |
| |
| // If we're in a system header, and this is not a call, just make |
| // the method unusable. |
| if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { |
| method->addAttr(new (Context) UnavailableAttr(loc, Context, |
| "init method returns a type unrelated to its receiver type")); |
| return true; |
| } |
| |
| // Otherwise, it's an error. |
| Diag(loc, diag::err_arc_init_method_unrelated_result_type); |
| method->setInvalidDecl(); |
| return true; |
| } |
| |
| bool Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, |
| const ObjCMethodDecl *Overridden, |
| bool IsImplementation) { |
| if (Overridden->hasRelatedResultType() && |
| !NewMethod->hasRelatedResultType()) { |
| // This can only happen when the method follows a naming convention that |
| // implies a related result type, and the original (overridden) method has |
| // a suitable return type, but the new (overriding) method does not have |
| // a suitable return type. |
| QualType ResultType = NewMethod->getResultType(); |
| SourceRange ResultTypeRange; |
| if (const TypeSourceInfo *ResultTypeInfo |
| = NewMethod->getResultTypeSourceInfo()) |
| ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); |
| |
| // Figure out which class this method is part of, if any. |
| ObjCInterfaceDecl *CurrentClass |
| = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); |
| if (!CurrentClass) { |
| DeclContext *DC = NewMethod->getDeclContext(); |
| if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) |
| CurrentClass = Cat->getClassInterface(); |
| else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) |
| CurrentClass = Impl->getClassInterface(); |
| else if (ObjCCategoryImplDecl *CatImpl |
| = dyn_cast<ObjCCategoryImplDecl>(DC)) |
| CurrentClass = CatImpl->getClassInterface(); |
| } |
| |
| if (CurrentClass) { |
| Diag(NewMethod->getLocation(), |
| diag::warn_related_result_type_compatibility_class) |
| << Context.getObjCInterfaceType(CurrentClass) |
| << ResultType |
| << ResultTypeRange; |
| } else { |
| Diag(NewMethod->getLocation(), |
| diag::warn_related_result_type_compatibility_protocol) |
| << ResultType |
| << ResultTypeRange; |
| } |
| |
| Diag(Overridden->getLocation(), diag::note_related_result_type_overridden) |
| << Overridden->getMethodFamily(); |
| } |
| |
| return false; |
| } |
| |
| /// \brief Check for consistency between a given method declaration and the |
| /// methods it overrides within the class hierarchy. |
| /// |
| /// This method walks the inheritance hierarchy starting at the given |
| /// declaration context (\p DC), invoking Sema::CheckObjCMethodOverride() with |
| /// the given new method (\p NewMethod) and any method it directly overrides |
| /// in the hierarchy. Sema::CheckObjCMethodOverride() is responsible for |
| /// checking consistency, e.g., among return types for methods that return a |
| /// related result type. |
| static bool CheckObjCMethodOverrides(Sema &S, ObjCMethodDecl *NewMethod, |
| DeclContext *DC, |
| bool SkipCurrent = true) { |
| if (!DC) |
| return false; |
| |
| if (!SkipCurrent) { |
| // Look for this method. If we find it, we're done. |
| Selector Sel = NewMethod->getSelector(); |
| bool IsInstance = NewMethod->isInstanceMethod(); |
| DeclContext::lookup_const_iterator Meth, MethEnd; |
| for (llvm::tie(Meth, MethEnd) = DC->lookup(Sel); Meth != MethEnd; ++Meth) { |
| ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(*Meth); |
| if (MD && MD->isInstanceMethod() == IsInstance) |
| return S.CheckObjCMethodOverride(NewMethod, MD, false); |
| } |
| } |
| |
| if (ObjCInterfaceDecl *Class = llvm::dyn_cast<ObjCInterfaceDecl>(DC)) { |
| // Look through categories. |
| for (ObjCCategoryDecl *Category = Class->getCategoryList(); |
| Category; Category = Category->getNextClassCategory()) { |
| if (CheckObjCMethodOverrides(S, NewMethod, Category, false)) |
| return true; |
| } |
| |
| // Look through protocols. |
| for (ObjCList<ObjCProtocolDecl>::iterator I = Class->protocol_begin(), |
| IEnd = Class->protocol_end(); |
| I != IEnd; ++I) |
| if (CheckObjCMethodOverrides(S, NewMethod, *I, false)) |
| return true; |
| |
| // Look in our superclass. |
| return CheckObjCMethodOverrides(S, NewMethod, Class->getSuperClass(), |
| false); |
| } |
| |
| if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(DC)) { |
| // Look through protocols. |
| for (ObjCList<ObjCProtocolDecl>::iterator I = Category->protocol_begin(), |
| IEnd = Category->protocol_end(); |
| I != IEnd; ++I) |
| if (CheckObjCMethodOverrides(S, NewMethod, *I, false)) |
| return true; |
| |
| return false; |
| } |
| |
| if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(DC)) { |
| // Look through protocols. |
| for (ObjCList<ObjCProtocolDecl>::iterator I = Protocol->protocol_begin(), |
| IEnd = Protocol->protocol_end(); |
| I != IEnd; ++I) |
| if (CheckObjCMethodOverrides(S, NewMethod, *I, false)) |
| return true; |
| |
| return false; |
| } |
| |
| return false; |
| } |
| |
| bool Sema::CheckObjCMethodOverrides(ObjCMethodDecl *NewMethod, |
| DeclContext *DC) { |
| if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(DC)) |
| return ::CheckObjCMethodOverrides(*this, NewMethod, Class); |
| |
| if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(DC)) |
| return ::CheckObjCMethodOverrides(*this, NewMethod, Category); |
| |
| if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(DC)) |
| return ::CheckObjCMethodOverrides(*this, NewMethod, Protocol); |
| |
| if (ObjCImplementationDecl *Impl = dyn_cast<ObjCImplementationDecl>(DC)) |
| return ::CheckObjCMethodOverrides(*this, NewMethod, |
| Impl->getClassInterface()); |
| |
| if (ObjCCategoryImplDecl *CatImpl = dyn_cast<ObjCCategoryImplDecl>(DC)) |
| return ::CheckObjCMethodOverrides(*this, NewMethod, |
| CatImpl->getClassInterface()); |
| |
| return ::CheckObjCMethodOverrides(*this, NewMethod, CurContext); |
| } |
| |
| /// \brief Check a method declaration for compatibility with the Objective-C |
| /// ARC conventions. |
| static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) { |
| ObjCMethodFamily family = method->getMethodFamily(); |
| switch (family) { |
| case OMF_None: |
| case OMF_dealloc: |
| case OMF_retain: |
| case OMF_release: |
| case OMF_autorelease: |
| case OMF_retainCount: |
| case OMF_self: |
| return false; |
| |
| case OMF_init: |
| // If the method doesn't obey the init rules, don't bother annotating it. |
| if (S.checkInitMethod(method, QualType())) |
| return true; |
| |
| method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(), |
| S.Context)); |
| |
| // Don't add a second copy of this attribute, but otherwise don't |
| // let it be suppressed. |
| if (method->hasAttr<NSReturnsRetainedAttr>()) |
| return false; |
| break; |
| |
| case OMF_alloc: |
| case OMF_copy: |
| case OMF_mutableCopy: |
| case OMF_new: |
| if (method->hasAttr<NSReturnsRetainedAttr>() || |
| method->hasAttr<NSReturnsNotRetainedAttr>() || |
| method->hasAttr<NSReturnsAutoreleasedAttr>()) |
| return false; |
| break; |
| } |
| |
| method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(), |
| S.Context)); |
| return false; |
| } |
| |
| static void DiagnoseObjCImplementedDeprecations(Sema &S, |
| NamedDecl *ND, |
| SourceLocation ImplLoc, |
| int select) { |
| if (ND && ND->isDeprecated()) { |
| S.Diag(ImplLoc, diag::warn_deprecated_def) << select; |
| if (select == 0) |
| S.Diag(ND->getLocation(), diag::note_method_declared_at); |
| else |
| S.Diag(ND->getLocation(), diag::note_previous_decl) << "class"; |
| } |
| } |
| |
| /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible |
| /// and user declared, in the method definition's AST. |
| void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { |
| assert(getCurMethodDecl() == 0 && "Method parsing confused"); |
| ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); |
| |
| // If we don't have a valid method decl, simply return. |
| if (!MDecl) |
| return; |
| |
| // Allow the rest of sema to find private method decl implementations. |
| if (MDecl->isInstanceMethod()) |
| AddInstanceMethodToGlobalPool(MDecl, true); |
| else |
| AddFactoryMethodToGlobalPool(MDecl, true); |
| |
| // Allow all of Sema to see that we are entering a method definition. |
| PushDeclContext(FnBodyScope, MDecl); |
| PushFunctionScope(); |
| |
| // Create Decl objects for each parameter, entrring them in the scope for |
| // binding to their use. |
| |
| // Insert the invisible arguments, self and _cmd! |
| MDecl->createImplicitParams(Context, MDecl->getClassInterface()); |
| |
| PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); |
| PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); |
| |
| // Introduce all of the other parameters into this scope. |
| for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(), |
| E = MDecl->param_end(); PI != E; ++PI) { |
| ParmVarDecl *Param = (*PI); |
| if (!Param->isInvalidDecl() && |
| RequireCompleteType(Param->getLocation(), Param->getType(), |
| diag::err_typecheck_decl_incomplete_type)) |
| Param->setInvalidDecl(); |
| if ((*PI)->getIdentifier()) |
| PushOnScopeChains(*PI, FnBodyScope); |
| } |
| |
| // In ARC, disallow definition of retain/release/autorelease/retainCount |
| if (getLangOptions().ObjCAutoRefCount) { |
| switch (MDecl->getMethodFamily()) { |
| case OMF_retain: |
| case OMF_retainCount: |
| case OMF_release: |
| case OMF_autorelease: |
| Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) |
| << MDecl->getSelector(); |
| break; |
| |
| case OMF_None: |
| case OMF_dealloc: |
| case OMF_alloc: |
| case OMF_init: |
| case OMF_mutableCopy: |
| case OMF_copy: |
| case OMF_new: |
| case OMF_self: |
| break; |
| } |
| } |
| |
| // Warn on implementating deprecated methods under |
| // -Wdeprecated-implementations flag. |
| if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) |
| if (ObjCMethodDecl *IMD = |
| IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod())) |
| DiagnoseObjCImplementedDeprecations(*this, |
| dyn_cast<NamedDecl>(IMD), |
| MDecl->getLocation(), 0); |
| } |
| |
| Decl *Sema:: |
| ActOnStartClassInterface(SourceLocation AtInterfaceLoc, |
| IdentifierInfo *ClassName, SourceLocation ClassLoc, |
| IdentifierInfo *SuperName, SourceLocation SuperLoc, |
| Decl * const *ProtoRefs, unsigned NumProtoRefs, |
| const SourceLocation *ProtoLocs, |
| SourceLocation EndProtoLoc, AttributeList *AttrList) { |
| assert(ClassName && "Missing class identifier"); |
| |
| // Check for another declaration kind with the same name. |
| NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, |
| LookupOrdinaryName, ForRedeclaration); |
| |
| if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { |
| Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| } |
| |
| ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); |
| if (IDecl) { |
| // Class already seen. Is it a forward declaration? |
| if (!IDecl->isForwardDecl()) { |
| IDecl->setInvalidDecl(); |
| Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName(); |
| Diag(IDecl->getLocation(), diag::note_previous_definition); |
| |
| // Return the previous class interface. |
| // FIXME: don't leak the objects passed in! |
| return IDecl; |
| } else { |
| IDecl->setLocation(AtInterfaceLoc); |
| IDecl->setForwardDecl(false); |
| IDecl->setClassLoc(ClassLoc); |
| // If the forward decl was in a PCH, we need to write it again in a |
| // dependent AST file. |
| IDecl->setChangedSinceDeserialization(true); |
| |
| // Since this ObjCInterfaceDecl was created by a forward declaration, |
| // we now add it to the DeclContext since it wasn't added before |
| // (see ActOnForwardClassDeclaration). |
| IDecl->setLexicalDeclContext(CurContext); |
| CurContext->addDecl(IDecl); |
| |
| if (AttrList) |
| ProcessDeclAttributeList(TUScope, IDecl, AttrList); |
| } |
| } else { |
| IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, |
| ClassName, ClassLoc); |
| if (AttrList) |
| ProcessDeclAttributeList(TUScope, IDecl, AttrList); |
| |
| PushOnScopeChains(IDecl, TUScope); |
| } |
| |
| if (SuperName) { |
| // Check if a different kind of symbol declared in this scope. |
| PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, |
| LookupOrdinaryName); |
| |
| if (!PrevDecl) { |
| // Try to correct for a typo in the superclass name. |
| LookupResult R(*this, SuperName, SuperLoc, LookupOrdinaryName); |
| if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) && |
| (PrevDecl = R.getAsSingle<ObjCInterfaceDecl>())) { |
| Diag(SuperLoc, diag::err_undef_superclass_suggest) |
| << SuperName << ClassName << PrevDecl->getDeclName(); |
| Diag(PrevDecl->getLocation(), diag::note_previous_decl) |
| << PrevDecl->getDeclName(); |
| } |
| } |
| |
| if (PrevDecl == IDecl) { |
| Diag(SuperLoc, diag::err_recursive_superclass) |
| << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); |
| IDecl->setLocEnd(ClassLoc); |
| } else { |
| ObjCInterfaceDecl *SuperClassDecl = |
| dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); |
| |
| // Diagnose classes that inherit from deprecated classes. |
| if (SuperClassDecl) |
| (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); |
| |
| if (PrevDecl && SuperClassDecl == 0) { |
| // The previous declaration was not a class decl. Check if we have a |
| // typedef. If we do, get the underlying class type. |
| if (const TypedefNameDecl *TDecl = |
| dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { |
| QualType T = TDecl->getUnderlyingType(); |
| if (T->isObjCObjectType()) { |
| if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) |
| SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); |
| } |
| } |
| |
| // This handles the following case: |
| // |
| // typedef int SuperClass; |
| // @interface MyClass : SuperClass {} @end |
| // |
| if (!SuperClassDecl) { |
| Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| } |
| } |
| |
| if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { |
| if (!SuperClassDecl) |
| Diag(SuperLoc, diag::err_undef_superclass) |
| << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); |
| else if (SuperClassDecl->isForwardDecl()) { |
| Diag(SuperLoc, diag::err_forward_superclass) |
| << SuperClassDecl->getDeclName() << ClassName |
| << SourceRange(AtInterfaceLoc, ClassLoc); |
| Diag(SuperClassDecl->getLocation(), diag::note_forward_class); |
| SuperClassDecl = 0; |
| } |
| } |
| IDecl->setSuperClass(SuperClassDecl); |
| IDecl->setSuperClassLoc(SuperLoc); |
| IDecl->setLocEnd(SuperLoc); |
| } |
| } else { // we have a root class. |
| IDecl->setLocEnd(ClassLoc); |
| } |
| |
| // Check then save referenced protocols. |
| if (NumProtoRefs) { |
| IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, |
| ProtoLocs, Context); |
| IDecl->setLocEnd(EndProtoLoc); |
| } |
| |
| CheckObjCDeclScope(IDecl); |
| return IDecl; |
| } |
| |
| /// ActOnCompatiblityAlias - this action is called after complete parsing of |
| /// @compatibility_alias declaration. It sets up the alias relationships. |
| Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc, |
| IdentifierInfo *AliasName, |
| SourceLocation AliasLocation, |
| IdentifierInfo *ClassName, |
| SourceLocation ClassLocation) { |
| // Look for previous declaration of alias name |
| NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation, |
| LookupOrdinaryName, ForRedeclaration); |
| if (ADecl) { |
| if (isa<ObjCCompatibleAliasDecl>(ADecl)) |
| Diag(AliasLocation, diag::warn_previous_alias_decl); |
| else |
| Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; |
| Diag(ADecl->getLocation(), diag::note_previous_declaration); |
| return 0; |
| } |
| // Check for class declaration |
| NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, |
| LookupOrdinaryName, ForRedeclaration); |
| if (const TypedefNameDecl *TDecl = |
| dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { |
| QualType T = TDecl->getUnderlyingType(); |
| if (T->isObjCObjectType()) { |
| if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { |
| ClassName = IDecl->getIdentifier(); |
| CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, |
| LookupOrdinaryName, ForRedeclaration); |
| } |
| } |
| } |
| ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); |
| if (CDecl == 0) { |
| Diag(ClassLocation, diag::warn_undef_interface) << ClassName; |
| if (CDeclU) |
| Diag(CDeclU->getLocation(), diag::note_previous_declaration); |
| return 0; |
| } |
| |
| // Everything checked out, instantiate a new alias declaration AST. |
| ObjCCompatibleAliasDecl *AliasDecl = |
| ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); |
| |
| if (!CheckObjCDeclScope(AliasDecl)) |
| PushOnScopeChains(AliasDecl, TUScope); |
| |
| return AliasDecl; |
| } |
| |
| bool Sema::CheckForwardProtocolDeclarationForCircularDependency( |
| IdentifierInfo *PName, |
| SourceLocation &Ploc, SourceLocation PrevLoc, |
| const ObjCList<ObjCProtocolDecl> &PList) { |
| |
| bool res = false; |
| for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), |
| E = PList.end(); I != E; ++I) { |
| if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), |
| Ploc)) { |
| if (PDecl->getIdentifier() == PName) { |
| Diag(Ploc, diag::err_protocol_has_circular_dependency); |
| Diag(PrevLoc, diag::note_previous_definition); |
| res = true; |
| } |
| if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, |
| PDecl->getLocation(), PDecl->getReferencedProtocols())) |
| res = true; |
| } |
| } |
| return res; |
| } |
| |
| Decl * |
| Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, |
| IdentifierInfo *ProtocolName, |
| SourceLocation ProtocolLoc, |
| Decl * const *ProtoRefs, |
| unsigned NumProtoRefs, |
| const SourceLocation *ProtoLocs, |
| SourceLocation EndProtoLoc, |
| AttributeList *AttrList) { |
| bool err = false; |
| // FIXME: Deal with AttrList. |
| assert(ProtocolName && "Missing protocol identifier"); |
| ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc); |
| if (PDecl) { |
| // Protocol already seen. Better be a forward protocol declaration |
| if (!PDecl->isForwardDecl()) { |
| Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; |
| Diag(PDecl->getLocation(), diag::note_previous_definition); |
| // Just return the protocol we already had. |
| // FIXME: don't leak the objects passed in! |
| return PDecl; |
| } |
| ObjCList<ObjCProtocolDecl> PList; |
| PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); |
| err = CheckForwardProtocolDeclarationForCircularDependency( |
| ProtocolName, ProtocolLoc, PDecl->getLocation(), PList); |
| |
| // Make sure the cached decl gets a valid start location. |
| PDecl->setLocation(AtProtoInterfaceLoc); |
| PDecl->setForwardDecl(false); |
| CurContext->addDecl(PDecl); |
| // Repeat in dependent AST files. |
| PDecl->setChangedSinceDeserialization(true); |
| } else { |
| PDecl = ObjCProtocolDecl::Create(Context, CurContext, |
| AtProtoInterfaceLoc,ProtocolName); |
| PushOnScopeChains(PDecl, TUScope); |
| PDecl->setForwardDecl(false); |
| } |
| if (AttrList) |
| ProcessDeclAttributeList(TUScope, PDecl, AttrList); |
| if (!err && NumProtoRefs ) { |
| /// Check then save referenced protocols. |
| PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, |
| ProtoLocs, Context); |
| PDecl->setLocEnd(EndProtoLoc); |
| } |
| |
| CheckObjCDeclScope(PDecl); |
| return PDecl; |
| } |
| |
| /// FindProtocolDeclaration - This routine looks up protocols and |
| /// issues an error if they are not declared. It returns list of |
| /// protocol declarations in its 'Protocols' argument. |
| void |
| Sema::FindProtocolDeclaration(bool WarnOnDeclarations, |
| const IdentifierLocPair *ProtocolId, |
| unsigned NumProtocols, |
| llvm::SmallVectorImpl<Decl *> &Protocols) { |
| for (unsigned i = 0; i != NumProtocols; ++i) { |
| ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first, |
| ProtocolId[i].second); |
| if (!PDecl) { |
| LookupResult R(*this, ProtocolId[i].first, ProtocolId[i].second, |
| LookupObjCProtocolName); |
| if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) && |
| (PDecl = R.getAsSingle<ObjCProtocolDecl>())) { |
| Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest) |
| << ProtocolId[i].first << R.getLookupName(); |
| Diag(PDecl->getLocation(), diag::note_previous_decl) |
| << PDecl->getDeclName(); |
| } |
| } |
| |
| if (!PDecl) { |
| Diag(ProtocolId[i].second, diag::err_undeclared_protocol) |
| << ProtocolId[i].first; |
| continue; |
| } |
| |
| (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second); |
| |
| // If this is a forward declaration and we are supposed to warn in this |
| // case, do it. |
| if (WarnOnDeclarations && PDecl->isForwardDecl()) |
| Diag(ProtocolId[i].second, diag::warn_undef_protocolref) |
| << ProtocolId[i].first; |
| Protocols.push_back(PDecl); |
| } |
| } |
| |
| /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of |
| /// a class method in its extension. |
| /// |
| void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, |
| ObjCInterfaceDecl *ID) { |
| if (!ID) |
| return; // Possibly due to previous error |
| |
| llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; |
| for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(), |
| e = ID->meth_end(); i != e; ++i) { |
| ObjCMethodDecl *MD = *i; |
| MethodMap[MD->getSelector()] = MD; |
| } |
| |
| if (MethodMap.empty()) |
| return; |
| for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(), |
| e = CAT->meth_end(); i != e; ++i) { |
| ObjCMethodDecl *Method = *i; |
| const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; |
| if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) { |
| Diag(Method->getLocation(), diag::err_duplicate_method_decl) |
| << Method->getDeclName(); |
| Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
| } |
| } |
| } |
| |
| /// ActOnForwardProtocolDeclaration - Handle @protocol foo; |
| Decl * |
| Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, |
| const IdentifierLocPair *IdentList, |
| unsigned NumElts, |
| AttributeList *attrList) { |
| llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols; |
| llvm::SmallVector<SourceLocation, 8> ProtoLocs; |
| |
| for (unsigned i = 0; i != NumElts; ++i) { |
| IdentifierInfo *Ident = IdentList[i].first; |
| ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second); |
| bool isNew = false; |
| if (PDecl == 0) { // Not already seen? |
| PDecl = ObjCProtocolDecl::Create(Context, CurContext, |
| IdentList[i].second, Ident); |
| PushOnScopeChains(PDecl, TUScope, false); |
| isNew = true; |
| } |
| if (attrList) { |
| ProcessDeclAttributeList(TUScope, PDecl, attrList); |
| if (!isNew) |
| PDecl->setChangedSinceDeserialization(true); |
| } |
| Protocols.push_back(PDecl); |
| ProtoLocs.push_back(IdentList[i].second); |
| } |
| |
| ObjCForwardProtocolDecl *PDecl = |
| ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc, |
| Protocols.data(), Protocols.size(), |
| ProtoLocs.data()); |
| CurContext->addDecl(PDecl); |
| CheckObjCDeclScope(PDecl); |
| return PDecl; |
| } |
| |
| Decl *Sema:: |
| ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, |
| IdentifierInfo *ClassName, SourceLocation ClassLoc, |
| IdentifierInfo *CategoryName, |
| SourceLocation CategoryLoc, |
| Decl * const *ProtoRefs, |
| unsigned NumProtoRefs, |
| const SourceLocation *ProtoLocs, |
| SourceLocation EndProtoLoc) { |
| ObjCCategoryDecl *CDecl; |
| ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); |
| |
| /// Check that class of this category is already completely declared. |
| if (!IDecl || IDecl->isForwardDecl()) { |
| // Create an invalid ObjCCategoryDecl to serve as context for |
| // the enclosing method declarations. We mark the decl invalid |
| // to make it clear that this isn't a valid AST. |
| CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, |
| ClassLoc, CategoryLoc, CategoryName); |
| CDecl->setInvalidDecl(); |
| Diag(ClassLoc, diag::err_undef_interface) << ClassName; |
| return CDecl; |
| } |
| |
| if (!CategoryName && IDecl->getImplementation()) { |
| Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; |
| Diag(IDecl->getImplementation()->getLocation(), |
| diag::note_implementation_declared); |
| } |
| |
| CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, |
| ClassLoc, CategoryLoc, CategoryName); |
| // FIXME: PushOnScopeChains? |
| CurContext->addDecl(CDecl); |
| |
| CDecl->setClassInterface(IDecl); |
| // Insert class extension to the list of class's categories. |
| if (!CategoryName) |
| CDecl->insertNextClassCategory(); |
| |
| // If the interface is deprecated, warn about it. |
| (void)DiagnoseUseOfDecl(IDecl, ClassLoc); |
| |
| if (CategoryName) { |
| /// Check for duplicate interface declaration for this category |
| ObjCCategoryDecl *CDeclChain; |
| for (CDeclChain = IDecl->getCategoryList(); CDeclChain; |
| CDeclChain = CDeclChain->getNextClassCategory()) { |
| if (CDeclChain->getIdentifier() == CategoryName) { |
| // Class extensions can be declared multiple times. |
| Diag(CategoryLoc, diag::warn_dup_category_def) |
| << ClassName << CategoryName; |
| Diag(CDeclChain->getLocation(), diag::note_previous_definition); |
| break; |
| } |
| } |
| if (!CDeclChain) |
| CDecl->insertNextClassCategory(); |
| } |
| |
| if (NumProtoRefs) { |
| CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, |
| ProtoLocs, Context); |
| // Protocols in the class extension belong to the class. |
| if (CDecl->IsClassExtension()) |
| IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs, |
| NumProtoRefs, Context); |
| } |
| |
| CheckObjCDeclScope(CDecl); |
| return CDecl; |
| } |
| |
| /// ActOnStartCategoryImplementation - Perform semantic checks on the |
| /// category implementation declaration and build an ObjCCategoryImplDecl |
| /// object. |
| Decl *Sema::ActOnStartCategoryImplementation( |
| SourceLocation AtCatImplLoc, |
| IdentifierInfo *ClassName, SourceLocation ClassLoc, |
| IdentifierInfo *CatName, SourceLocation CatLoc) { |
| ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); |
| ObjCCategoryDecl *CatIDecl = 0; |
| if (IDecl) { |
| CatIDecl = IDecl->FindCategoryDeclaration(CatName); |
| if (!CatIDecl) { |
| // Category @implementation with no corresponding @interface. |
| // Create and install one. |
| CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(), |
| SourceLocation(), SourceLocation(), |
| CatName); |
| CatIDecl->setClassInterface(IDecl); |
| CatIDecl->insertNextClassCategory(); |
| } |
| } |
| |
| ObjCCategoryImplDecl *CDecl = |
| ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName, |
| IDecl); |
| /// Check that class of this category is already completely declared. |
| if (!IDecl || IDecl->isForwardDecl()) |
| Diag(ClassLoc, diag::err_undef_interface) << ClassName; |
| |
| // FIXME: PushOnScopeChains? |
| CurContext->addDecl(CDecl); |
| |
| /// Check that CatName, category name, is not used in another implementation. |
| if (CatIDecl) { |
| if (CatIDecl->getImplementation()) { |
| Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName |
| << CatName; |
| Diag(CatIDecl->getImplementation()->getLocation(), |
| diag::note_previous_definition); |
| } else { |
| CatIDecl->setImplementation(CDecl); |
| // Warn on implementating category of deprecated class under |
| // -Wdeprecated-implementations flag. |
| DiagnoseObjCImplementedDeprecations(*this, |
| dyn_cast<NamedDecl>(IDecl), |
| CDecl->getLocation(), 2); |
| } |
| } |
| |
| CheckObjCDeclScope(CDecl); |
| return CDecl; |
| } |
| |
| Decl *Sema::ActOnStartClassImplementation( |
| SourceLocation AtClassImplLoc, |
| IdentifierInfo *ClassName, SourceLocation ClassLoc, |
| IdentifierInfo *SuperClassname, |
| SourceLocation SuperClassLoc) { |
| ObjCInterfaceDecl* IDecl = 0; |
| // Check for another declaration kind with the same name. |
| NamedDecl *PrevDecl |
| = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, |
| ForRedeclaration); |
| if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { |
| Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { |
| // If this is a forward declaration of an interface, warn. |
| if (IDecl->isForwardDecl()) { |
| Diag(ClassLoc, diag::warn_undef_interface) << ClassName; |
| IDecl = 0; |
| } |
| } else { |
| // We did not find anything with the name ClassName; try to correct for |
| // typos in the class name. |
| LookupResult R(*this, ClassName, ClassLoc, LookupOrdinaryName); |
| if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) && |
| (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) { |
| // Suggest the (potentially) correct interface name. However, put the |
| // fix-it hint itself in a separate note, since changing the name in |
| // the warning would make the fix-it change semantics.However, don't |
| // provide a code-modification hint or use the typo name for recovery, |
| // because this is just a warning. The program may actually be correct. |
| Diag(ClassLoc, diag::warn_undef_interface_suggest) |
| << ClassName << R.getLookupName(); |
| Diag(IDecl->getLocation(), diag::note_previous_decl) |
| << R.getLookupName() |
| << FixItHint::CreateReplacement(ClassLoc, |
| R.getLookupName().getAsString()); |
| IDecl = 0; |
| } else { |
| Diag(ClassLoc, diag::warn_undef_interface) << ClassName; |
| } |
| } |
| |
| // Check that super class name is valid class name |
| ObjCInterfaceDecl* SDecl = 0; |
| if (SuperClassname) { |
| // Check if a different kind of symbol declared in this scope. |
| PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, |
| LookupOrdinaryName); |
| if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { |
| Diag(SuperClassLoc, diag::err_redefinition_different_kind) |
| << SuperClassname; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| } else { |
| SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); |
| if (!SDecl) |
| Diag(SuperClassLoc, diag::err_undef_superclass) |
| << SuperClassname << ClassName; |
| else if (IDecl && IDecl->getSuperClass() != SDecl) { |
| // This implementation and its interface do not have the same |
| // super class. |
| Diag(SuperClassLoc, diag::err_conflicting_super_class) |
| << SDecl->getDeclName(); |
| Diag(SDecl->getLocation(), diag::note_previous_definition); |
| } |
| } |
| } |
| |
| if (!IDecl) { |
| // Legacy case of @implementation with no corresponding @interface. |
| // Build, chain & install the interface decl into the identifier. |
| |
| // FIXME: Do we support attributes on the @implementation? If so we should |
| // copy them over. |
| IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, |
| ClassName, ClassLoc, false, true); |
| IDecl->setSuperClass(SDecl); |
| IDecl->setLocEnd(ClassLoc); |
| |
| PushOnScopeChains(IDecl, TUScope); |
| } else { |
| // Mark the interface as being completed, even if it was just as |
| // @class ....; |
| // declaration; the user cannot reopen it. |
| IDecl->setForwardDecl(false); |
| } |
| |
| ObjCImplementationDecl* IMPDecl = |
| ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc, |
| IDecl, SDecl); |
| |
| if (CheckObjCDeclScope(IMPDecl)) |
| return IMPDecl; |
| |
| // Check that there is no duplicate implementation of this class. |
| if (IDecl->getImplementation()) { |
| // FIXME: Don't leak everything! |
| Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; |
| Diag(IDecl->getImplementation()->getLocation(), |
| diag::note_previous_definition); |
| } else { // add it to the list. |
| IDecl->setImplementation(IMPDecl); |
| PushOnScopeChains(IMPDecl, TUScope); |
| // Warn on implementating deprecated class under |
| // -Wdeprecated-implementations flag. |
| DiagnoseObjCImplementedDeprecations(*this, |
| dyn_cast<NamedDecl>(IDecl), |
| IMPDecl->getLocation(), 1); |
| } |
| return IMPDecl; |
| } |
| |
| void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, |
| ObjCIvarDecl **ivars, unsigned numIvars, |
| SourceLocation RBrace) { |
| assert(ImpDecl && "missing implementation decl"); |
| ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); |
| if (!IDecl) |
| return; |
| /// Check case of non-existing @interface decl. |
| /// (legacy objective-c @implementation decl without an @interface decl). |
| /// Add implementations's ivar to the synthesize class's ivar list. |
| if (IDecl->isImplicitInterfaceDecl()) { |
| IDecl->setLocEnd(RBrace); |
| // Add ivar's to class's DeclContext. |
| for (unsigned i = 0, e = numIvars; i != e; ++i) { |
| ivars[i]->setLexicalDeclContext(ImpDecl); |
| IDecl->makeDeclVisibleInContext(ivars[i], false); |
| ImpDecl->addDecl(ivars[i]); |
| } |
| |
| return; |
| } |
| // If implementation has empty ivar list, just return. |
| if (numIvars == 0) |
| return; |
| |
| assert(ivars && "missing @implementation ivars"); |
| if (LangOpts.ObjCNonFragileABI2) { |
| if (ImpDecl->getSuperClass()) |
| Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); |
| for (unsigned i = 0; i < numIvars; i++) { |
| ObjCIvarDecl* ImplIvar = ivars[i]; |
| if (const ObjCIvarDecl *ClsIvar = |
| IDecl->getIvarDecl(ImplIvar->getIdentifier())) { |
| Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); |
| Diag(ClsIvar->getLocation(), diag::note_previous_definition); |
| continue; |
| } |
| // Instance ivar to Implementation's DeclContext. |
| ImplIvar->setLexicalDeclContext(ImpDecl); |
| IDecl->makeDeclVisibleInContext(ImplIvar, false); |
| ImpDecl->addDecl(ImplIvar); |
| } |
| return; |
| } |
| // Check interface's Ivar list against those in the implementation. |
| // names and types must match. |
| // |
| unsigned j = 0; |
| ObjCInterfaceDecl::ivar_iterator |
| IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); |
| for (; numIvars > 0 && IVI != IVE; ++IVI) { |
| ObjCIvarDecl* ImplIvar = ivars[j++]; |
| ObjCIvarDecl* ClsIvar = *IVI; |
| assert (ImplIvar && "missing implementation ivar"); |
| assert (ClsIvar && "missing class ivar"); |
| |
| // First, make sure the types match. |
| if (Context.getCanonicalType(ImplIvar->getType()) != |
| Context.getCanonicalType(ClsIvar->getType())) { |
| Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) |
| << ImplIvar->getIdentifier() |
| << ImplIvar->getType() << ClsIvar->getType(); |
| Diag(ClsIvar->getLocation(), diag::note_previous_definition); |
| } else if (ImplIvar->isBitField() && ClsIvar->isBitField()) { |
| Expr *ImplBitWidth = ImplIvar->getBitWidth(); |
| Expr *ClsBitWidth = ClsIvar->getBitWidth(); |
| if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() != |
| ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) { |
| Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth) |
| << ImplIvar->getIdentifier(); |
| Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition); |
| } |
| } |
| // Make sure the names are identical. |
| if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { |
| Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) |
| << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); |
| Diag(ClsIvar->getLocation(), diag::note_previous_definition); |
| } |
| --numIvars; |
| } |
| |
| if (numIvars > 0) |
| Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count); |
| else if (IVI != IVE) |
| Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count); |
| } |
| |
| void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, |
| bool &IncompleteImpl, unsigned DiagID) { |
| // No point warning no definition of method which is 'unavailable'. |
| if (method->hasAttr<UnavailableAttr>()) |
| return; |
| if (!IncompleteImpl) { |
| Diag(ImpLoc, diag::warn_incomplete_impl); |
| IncompleteImpl = true; |
| } |
| if (DiagID == diag::warn_unimplemented_protocol_method) |
| Diag(ImpLoc, DiagID) << method->getDeclName(); |
| else |
| Diag(method->getLocation(), DiagID) << method->getDeclName(); |
| } |
| |
| /// Determines if type B can be substituted for type A. Returns true if we can |
| /// guarantee that anything that the user will do to an object of type A can |
| /// also be done to an object of type B. This is trivially true if the two |
| /// types are the same, or if B is a subclass of A. It becomes more complex |
| /// in cases where protocols are involved. |
| /// |
| /// Object types in Objective-C describe the minimum requirements for an |
| /// object, rather than providing a complete description of a type. For |
| /// example, if A is a subclass of B, then B* may refer to an instance of A. |
| /// The principle of substitutability means that we may use an instance of A |
| /// anywhere that we may use an instance of B - it will implement all of the |
| /// ivars of B and all of the methods of B. |
| /// |
| /// This substitutability is important when type checking methods, because |
| /// the implementation may have stricter type definitions than the interface. |
| /// The interface specifies minimum requirements, but the implementation may |
| /// have more accurate ones. For example, a method may privately accept |
| /// instances of B, but only publish that it accepts instances of A. Any |
| /// object passed to it will be type checked against B, and so will implicitly |
| /// by a valid A*. Similarly, a method may return a subclass of the class that |
| /// it is declared as returning. |
| /// |
| /// This is most important when considering subclassing. A method in a |
| /// subclass must accept any object as an argument that its superclass's |
| /// implementation accepts. It may, however, accept a more general type |
| /// without breaking substitutability (i.e. you can still use the subclass |
| /// anywhere that you can use the superclass, but not vice versa). The |
| /// converse requirement applies to return types: the return type for a |
| /// subclass method must be a valid object of the kind that the superclass |
| /// advertises, but it may be specified more accurately. This avoids the need |
| /// for explicit down-casting by callers. |
| /// |
| /// Note: This is a stricter requirement than for assignment. |
| static bool isObjCTypeSubstitutable(ASTContext &Context, |
| const ObjCObjectPointerType *A, |
| const ObjCObjectPointerType *B, |
| bool rejectId) { |
| // Reject a protocol-unqualified id. |
| if (rejectId && B->isObjCIdType()) return false; |
| |
| // If B is a qualified id, then A must also be a qualified id and it must |
| // implement all of the protocols in B. It may not be a qualified class. |
| // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a |
| // stricter definition so it is not substitutable for id<A>. |
| if (B->isObjCQualifiedIdType()) { |
| return A->isObjCQualifiedIdType() && |
| Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0), |
| QualType(B,0), |
| false); |
| } |
| |
| /* |
| // id is a special type that bypasses type checking completely. We want a |
| // warning when it is used in one place but not another. |
| if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; |
| |
| |
| // If B is a qualified id, then A must also be a qualified id (which it isn't |
| // if we've got this far) |
| if (B->isObjCQualifiedIdType()) return false; |
| */ |
| |
| // Now we know that A and B are (potentially-qualified) class types. The |
| // normal rules for assignment apply. |
| return Context.canAssignObjCInterfaces(A, B); |
| } |
| |
| static SourceRange getTypeRange(TypeSourceInfo *TSI) { |
| return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); |
| } |
| |
| static void CheckMethodOverrideReturn(Sema &S, |
| ObjCMethodDecl *MethodImpl, |
| ObjCMethodDecl *MethodDecl, |
| bool IsProtocolMethodDecl) { |
| if (IsProtocolMethodDecl && |
| (MethodDecl->getObjCDeclQualifier() != |
| MethodImpl->getObjCDeclQualifier())) { |
| S.Diag(MethodImpl->getLocation(), |
| diag::warn_conflicting_ret_type_modifiers) |
| << MethodImpl->getDeclName() |
| << getTypeRange(MethodImpl->getResultTypeSourceInfo()); |
| S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) |
| << getTypeRange(MethodDecl->getResultTypeSourceInfo()); |
| } |
| |
| if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(), |
| MethodDecl->getResultType())) |
| return; |
| |
| unsigned DiagID = diag::warn_conflicting_ret_types; |
| |
| // Mismatches between ObjC pointers go into a different warning |
| // category, and sometimes they're even completely whitelisted. |
| if (const ObjCObjectPointerType *ImplPtrTy = |
| MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) { |
| if (const ObjCObjectPointerType *IfacePtrTy = |
| MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) { |
| // Allow non-matching return types as long as they don't violate |
| // the principle of substitutability. Specifically, we permit |
| // return types that are subclasses of the declared return type, |
| // or that are more-qualified versions of the declared type. |
| if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) |
| return; |
| |
| DiagID = diag::warn_non_covariant_ret_types; |
| } |
| } |
| |
| S.Diag(MethodImpl->getLocation(), DiagID) |
| << MethodImpl->getDeclName() |
| << MethodDecl->getResultType() |
| << MethodImpl->getResultType() |
| << getTypeRange(MethodImpl->getResultTypeSourceInfo()); |
| S.Diag(MethodDecl->getLocation(), diag::note_previous_definition) |
| << getTypeRange(MethodDecl->getResultTypeSourceInfo()); |
| } |
| |
| static void CheckMethodOverrideParam(Sema &S, |
| ObjCMethodDecl *MethodImpl, |
| ObjCMethodDecl *MethodDecl, |
| ParmVarDecl *ImplVar, |
| ParmVarDecl *IfaceVar, |
| bool IsProtocolMethodDecl) { |
| if (IsProtocolMethodDecl && |
| (ImplVar->getObjCDeclQualifier() != |
| IfaceVar->getObjCDeclQualifier())) { |
| S.Diag(ImplVar->getLocation(), |
| diag::warn_conflicting_param_modifiers) |
| << getTypeRange(ImplVar->getTypeSourceInfo()) |
| << MethodImpl->getDeclName(); |
| S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) |
| << getTypeRange(IfaceVar->getTypeSourceInfo()); |
| } |
| |
| QualType ImplTy = ImplVar->getType(); |
| QualType IfaceTy = IfaceVar->getType(); |
| |
| if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) |
| return; |
| |
| unsigned DiagID = diag::warn_conflicting_param_types; |
| |
| // Mismatches between ObjC pointers go into a different warning |
| // category, and sometimes they're even completely whitelisted. |
| if (const ObjCObjectPointerType *ImplPtrTy = |
| ImplTy->getAs<ObjCObjectPointerType>()) { |
| if (const ObjCObjectPointerType *IfacePtrTy = |
| IfaceTy->getAs<ObjCObjectPointerType>()) { |
| // Allow non-matching argument types as long as they don't |
| // violate the principle of substitutability. Specifically, the |
| // implementation must accept any objects that the superclass |
| // accepts, however it may also accept others. |
| if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) |
| return; |
| |
| DiagID = diag::warn_non_contravariant_param_types; |
| } |
| } |
| |
| S.Diag(ImplVar->getLocation(), DiagID) |
| << getTypeRange(ImplVar->getTypeSourceInfo()) |
| << MethodImpl->getDeclName() << IfaceTy << ImplTy; |
| S.Diag(IfaceVar->getLocation(), diag::note_previous_definition) |
| << getTypeRange(IfaceVar->getTypeSourceInfo()); |
| } |
| |
| /// In ARC, check whether the conventional meanings of the two methods |
| /// match. If they don't, it's a hard error. |
| static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, |
| ObjCMethodDecl *decl) { |
| ObjCMethodFamily implFamily = impl->getMethodFamily(); |
| ObjCMethodFamily declFamily = decl->getMethodFamily(); |
| if (implFamily == declFamily) return false; |
| |
| // Since conventions are sorted by selector, the only possibility is |
| // that the types differ enough to cause one selector or the other |
| // to fall out of the family. |
| assert(implFamily == OMF_None || declFamily == OMF_None); |
| |
| // No further diagnostics required on invalid declarations. |
| if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; |
| |
| const ObjCMethodDecl *unmatched = impl; |
| ObjCMethodFamily family = declFamily; |
| unsigned errorID = diag::err_arc_lost_method_convention; |
| unsigned noteID = diag::note_arc_lost_method_convention; |
| if (declFamily == OMF_None) { |
| unmatched = decl; |
| family = implFamily; |
| errorID = diag::err_arc_gained_method_convention; |
| noteID = diag::note_arc_gained_method_convention; |
| } |
| |
| // Indexes into a %select clause in the diagnostic. |
| enum FamilySelector { |
| F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new |
| }; |
| FamilySelector familySelector = FamilySelector(); |
| |
| switch (family) { |
| case OMF_None: llvm_unreachable("logic error, no method convention"); |
| case OMF_retain: |
| case OMF_release: |
| case OMF_autorelease: |
| case OMF_dealloc: |
| case OMF_retainCount: |
| case OMF_self: |
| // Mismatches for these methods don't change ownership |
| // conventions, so we don't care. |
| return false; |
| |
| case OMF_init: familySelector = F_init; break; |
| case OMF_alloc: familySelector = F_alloc; break; |
| case OMF_copy: familySelector = F_copy; break; |
| case OMF_mutableCopy: familySelector = F_mutableCopy; break; |
| case OMF_new: familySelector = F_new; break; |
| } |
| |
| enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; |
| ReasonSelector reasonSelector; |
| |
| // The only reason these methods don't fall within their families is |
| // due to unusual result types. |
| if (unmatched->getResultType()->isObjCObjectPointerType()) { |
| reasonSelector = R_UnrelatedReturn; |
| } else { |
| reasonSelector = R_NonObjectReturn; |
| } |
| |
| S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector; |
| S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector; |
| |
| return true; |
| } |
| |
| void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, |
| ObjCMethodDecl *MethodDecl, |
| bool IsProtocolMethodDecl) { |
| if (getLangOptions().ObjCAutoRefCount && |
| checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) |
| return; |
| |
| CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, |
| IsProtocolMethodDecl); |
| |
| for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), |
| IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(); |
| IM != EM; ++IM, ++IF) |
| CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, |
| IsProtocolMethodDecl); |
| |
| if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { |
| Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic); |
| Diag(MethodDecl->getLocation(), diag::note_previous_declaration); |
| } |
| } |
| |
| /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely |
| /// improve the efficiency of selector lookups and type checking by associating |
| /// with each protocol / interface / category the flattened instance tables. If |
| /// we used an immutable set to keep the table then it wouldn't add significant |
| /// memory cost and it would be handy for lookups. |
| |
| /// CheckProtocolMethodDefs - This routine checks unimplemented methods |
| /// Declared in protocol, and those referenced by it. |
| void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc, |
| ObjCProtocolDecl *PDecl, |
| bool& IncompleteImpl, |
| const llvm::DenseSet<Selector> &InsMap, |
| const llvm::DenseSet<Selector> &ClsMap, |
| ObjCContainerDecl *CDecl) { |
| ObjCInterfaceDecl *IDecl; |
| if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) |
| IDecl = C->getClassInterface(); |
| else |
| IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl); |
| assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); |
| |
| ObjCInterfaceDecl *Super = IDecl->getSuperClass(); |
| ObjCInterfaceDecl *NSIDecl = 0; |
| if (getLangOptions().NeXTRuntime) { |
| // check to see if class implements forwardInvocation method and objects |
| // of this class are derived from 'NSProxy' so that to forward requests |
| // from one object to another. |
| // Under such conditions, which means that every method possible is |
| // implemented in the class, we should not issue "Method definition not |
| // found" warnings. |
| // FIXME: Use a general GetUnarySelector method for this. |
| IdentifierInfo* II = &Context.Idents.get("forwardInvocation"); |
| Selector fISelector = Context.Selectors.getSelector(1, &II); |
| if (InsMap.count(fISelector)) |
| // Is IDecl derived from 'NSProxy'? If so, no instance methods |
| // need be implemented in the implementation. |
| NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy")); |
| } |
| |
| // If a method lookup fails locally we still need to look and see if |
| // the method was implemented by a base class or an inherited |
| // protocol. This lookup is slow, but occurs rarely in correct code |
| // and otherwise would terminate in a warning. |
| |
| // check unimplemented instance methods. |
| if (!NSIDecl) |
| for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(), |
| E = PDecl->instmeth_end(); I != E; ++I) { |
| ObjCMethodDecl *method = *I; |
| if (method->getImplementationControl() != ObjCMethodDecl::Optional && |
| !method->isSynthesized() && !InsMap.count(method->getSelector()) && |
| (!Super || |
| !Super->lookupInstanceMethod(method->getSelector()))) { |
| // Ugly, but necessary. Method declared in protcol might have |
| // have been synthesized due to a property declared in the class which |
| // uses the protocol. |
| ObjCMethodDecl *MethodInClass = |
| IDecl->lookupInstanceMethod(method->getSelector()); |
| if (!MethodInClass || !MethodInClass->isSynthesized()) { |
| unsigned DIAG = diag::warn_unimplemented_protocol_method; |
| if (Diags.getDiagnosticLevel(DIAG, ImpLoc) |
| != Diagnostic::Ignored) { |
| WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); |
| Diag(method->getLocation(), diag::note_method_declared_at); |
| Diag(CDecl->getLocation(), diag::note_required_for_protocol_at) |
| << PDecl->getDeclName(); |
| } |
| } |
| } |
| } |
| // check unimplemented class methods |
| for (ObjCProtocolDecl::classmeth_iterator |
| I = PDecl->classmeth_begin(), E = PDecl->classmeth_end(); |
| I != E; ++I) { |
| ObjCMethodDecl *method = *I; |
| if (method->getImplementationControl() != ObjCMethodDecl::Optional && |
| !ClsMap.count(method->getSelector()) && |
| (!Super || !Super->lookupClassMethod(method->getSelector()))) { |
| unsigned DIAG = diag::warn_unimplemented_protocol_method; |
| if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != Diagnostic::Ignored) { |
| WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); |
| Diag(method->getLocation(), diag::note_method_declared_at); |
| Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) << |
| PDecl->getDeclName(); |
| } |
| } |
| } |
| // Check on this protocols's referenced protocols, recursively. |
| for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(), |
| E = PDecl->protocol_end(); PI != E; ++PI) |
| CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl); |
| } |
| |
| /// MatchAllMethodDeclarations - Check methods declaraed in interface or |
| /// or protocol against those declared in their implementations. |
| /// |
| void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap, |
| const llvm::DenseSet<Selector> &ClsMap, |
| llvm::DenseSet<Selector> &InsMapSeen, |
| llvm::DenseSet<Selector> &ClsMapSeen, |
| ObjCImplDecl* IMPDecl, |
| ObjCContainerDecl* CDecl, |
| bool &IncompleteImpl, |
| bool ImmediateClass) { |
| // Check and see if instance methods in class interface have been |
| // implemented in the implementation class. If so, their types match. |
| for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(), |
| E = CDecl->instmeth_end(); I != E; ++I) { |
| if (InsMapSeen.count((*I)->getSelector())) |
| continue; |
| InsMapSeen.insert((*I)->getSelector()); |
| if (!(*I)->isSynthesized() && |
| !InsMap.count((*I)->getSelector())) { |
| if (ImmediateClass) |
| WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, |
| diag::note_undef_method_impl); |
| continue; |
| } else { |
| ObjCMethodDecl *ImpMethodDecl = |
| IMPDecl->getInstanceMethod((*I)->getSelector()); |
| ObjCMethodDecl *MethodDecl = |
| CDecl->getInstanceMethod((*I)->getSelector()); |
| assert(MethodDecl && |
| "MethodDecl is null in ImplMethodsVsClassMethods"); |
| // ImpMethodDecl may be null as in a @dynamic property. |
| if (ImpMethodDecl) |
| WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, |
| isa<ObjCProtocolDecl>(CDecl)); |
| } |
| } |
| |
| // Check and see if class methods in class interface have been |
| // implemented in the implementation class. If so, their types match. |
| for (ObjCInterfaceDecl::classmeth_iterator |
| I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) { |
| if (ClsMapSeen.count((*I)->getSelector())) |
| continue; |
| ClsMapSeen.insert((*I)->getSelector()); |
| if (!ClsMap.count((*I)->getSelector())) { |
| if (ImmediateClass) |
| WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, |
| diag::note_undef_method_impl); |
| } else { |
| ObjCMethodDecl *ImpMethodDecl = |
| IMPDecl->getClassMethod((*I)->getSelector()); |
| ObjCMethodDecl *MethodDecl = |
| CDecl->getClassMethod((*I)->getSelector()); |
| WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, |
| isa<ObjCProtocolDecl>(CDecl)); |
| } |
| } |
| |
| if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { |
| // Also methods in class extensions need be looked at next. |
| for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension(); |
| ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) |
| MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| IMPDecl, |
| const_cast<ObjCCategoryDecl *>(ClsExtDecl), |
| IncompleteImpl, false); |
| |
| // Check for any implementation of a methods declared in protocol. |
| for (ObjCInterfaceDecl::all_protocol_iterator |
| PI = I->all_referenced_protocol_begin(), |
| E = I->all_referenced_protocol_end(); PI != E; ++PI) |
| MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| IMPDecl, |
| (*PI), IncompleteImpl, false); |
| if (I->getSuperClass()) |
| MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| IMPDecl, |
| I->getSuperClass(), IncompleteImpl, false); |
| } |
| } |
| |
| void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, |
| ObjCContainerDecl* CDecl, |
| bool IncompleteImpl) { |
| llvm::DenseSet<Selector> InsMap; |
| // Check and see if instance methods in class interface have been |
| // implemented in the implementation class. |
| for (ObjCImplementationDecl::instmeth_iterator |
| I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I) |
| InsMap.insert((*I)->getSelector()); |
| |
| // Check and see if properties declared in the interface have either 1) |
| // an implementation or 2) there is a @synthesize/@dynamic implementation |
| // of the property in the @implementation. |
| if (isa<ObjCInterfaceDecl>(CDecl) && |
| !(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2)) |
| DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); |
| |
| llvm::DenseSet<Selector> ClsMap; |
| for (ObjCImplementationDecl::classmeth_iterator |
| I = IMPDecl->classmeth_begin(), |
| E = IMPDecl->classmeth_end(); I != E; ++I) |
| ClsMap.insert((*I)->getSelector()); |
| |
| // Check for type conflict of methods declared in a class/protocol and |
| // its implementation; if any. |
| llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen; |
| MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| IMPDecl, CDecl, |
| IncompleteImpl, true); |
| |
| // Check the protocol list for unimplemented methods in the @implementation |
| // class. |
| // Check and see if class methods in class interface have been |
| // implemented in the implementation class. |
| |
| if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { |
| for (ObjCInterfaceDecl::all_protocol_iterator |
| PI = I->all_referenced_protocol_begin(), |
| E = I->all_referenced_protocol_end(); PI != E; ++PI) |
| CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, |
| InsMap, ClsMap, I); |
| // Check class extensions (unnamed categories) |
| for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension(); |
| Categories; Categories = Categories->getNextClassExtension()) |
| ImplMethodsVsClassMethods(S, IMPDecl, |
| const_cast<ObjCCategoryDecl*>(Categories), |
| IncompleteImpl); |
| } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { |
| // For extended class, unimplemented methods in its protocols will |
| // be reported in the primary class. |
| if (!C->IsClassExtension()) { |
| for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(), |
| E = C->protocol_end(); PI != E; ++PI) |
| CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, |
| InsMap, ClsMap, CDecl); |
| // Report unimplemented properties in the category as well. |
| // When reporting on missing setter/getters, do not report when |
| // setter/getter is implemented in category's primary class |
| // implementation. |
| if (ObjCInterfaceDecl *ID = C->getClassInterface()) |
| if (ObjCImplDecl *IMP = ID->getImplementation()) { |
| for (ObjCImplementationDecl::instmeth_iterator |
| I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I) |
| InsMap.insert((*I)->getSelector()); |
| } |
| DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); |
| } |
| } else |
| assert(false && "invalid ObjCContainerDecl type."); |
| } |
| |
| /// ActOnForwardClassDeclaration - |
| Decl * |
| Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, |
| IdentifierInfo **IdentList, |
| SourceLocation *IdentLocs, |
| unsigned NumElts) { |
| llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces; |
| |
| for (unsigned i = 0; i != NumElts; ++i) { |
| // Check for another declaration kind with the same name. |
| NamedDecl *PrevDecl |
| = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], |
| LookupOrdinaryName, ForRedeclaration); |
| if (PrevDecl && PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl); |
| // Just pretend that we didn't see the previous declaration. |
| PrevDecl = 0; |
| } |
| |
| if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { |
| // GCC apparently allows the following idiom: |
| // |
| // typedef NSObject < XCElementTogglerP > XCElementToggler; |
| // @class XCElementToggler; |
| // |
| // FIXME: Make an extension? |
| TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); |
| if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { |
| Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| } else { |
| // a forward class declaration matching a typedef name of a class refers |
| // to the underlying class. |
| if (const ObjCObjectType *OI = |
| TDD->getUnderlyingType()->getAs<ObjCObjectType>()) |
| PrevDecl = OI->getInterface(); |
| } |
| } |
| ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); |
| if (!IDecl) { // Not already seen? Make a forward decl. |
| IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, |
| IdentList[i], IdentLocs[i], true); |
| |
| // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to |
| // the current DeclContext. This prevents clients that walk DeclContext |
| // from seeing the imaginary ObjCInterfaceDecl until it is actually |
| // declared later (if at all). We also take care to explicitly make |
| // sure this declaration is visible for name lookup. |
| PushOnScopeChains(IDecl, TUScope, false); |
| CurContext->makeDeclVisibleInContext(IDecl, true); |
| } |
| |
| Interfaces.push_back(IDecl); |
| } |
| |
| assert(Interfaces.size() == NumElts); |
| ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc, |
| Interfaces.data(), IdentLocs, |
| Interfaces.size()); |
| CurContext->addDecl(CDecl); |
| CheckObjCDeclScope(CDecl); |
| return CDecl; |
| } |
| |
| static bool tryMatchRecordTypes(ASTContext &Context, |
| Sema::MethodMatchStrategy strategy, |
| const Type *left, const Type *right); |
| |
| static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, |
| QualType leftQT, QualType rightQT) { |
| const Type *left = |
| Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); |
| const Type *right = |
| Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); |
| |
| if (left == right) return true; |
| |
| // If we're doing a strict match, the types have to match exactly. |
| if (strategy == Sema::MMS_strict) return false; |
| |
| if (left->isIncompleteType() || right->isIncompleteType()) return false; |
| |
| // Otherwise, use this absurdly complicated algorithm to try to |
| // validate the basic, low-level compatibility of the two types. |
| |
| // As a minimum, require the sizes and alignments to match. |
| if (Context.getTypeInfo(left) != Context.getTypeInfo(right)) |
| return false; |
| |
| // Consider all the kinds of non-dependent canonical types: |
| // - functions and arrays aren't possible as return and parameter types |
| |
| // - vector types of equal size can be arbitrarily mixed |
| if (isa<VectorType>(left)) return isa<VectorType>(right); |
| if (isa<VectorType>(right)) return false; |
| |
| // - references should only match references of identical type |
| // - structs, unions, and Objective-C objects must match more-or-less |
| // exactly |
| // - everything else should be a scalar |
| if (!left->isScalarType() || !right->isScalarType()) |
| return tryMatchRecordTypes(Context, strategy, left, right); |
| |
| // Make scalars agree in kind, except count bools as chars. |
| Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); |
| Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); |
| if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; |
| if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; |
| |
| // Note that data member pointers and function member pointers don't |
| // intermix because of the size differences. |
| |
| return (leftSK == rightSK); |
| } |
| |
| static bool tryMatchRecordTypes(ASTContext &Context, |
| Sema::MethodMatchStrategy strategy, |
| const Type *lt, const Type *rt) { |
| assert(lt && rt && lt != rt); |
| |
| if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; |
| RecordDecl *left = cast<RecordType>(lt)->getDecl(); |
| RecordDecl *right = cast<RecordType>(rt)->getDecl(); |
| |
| // Require union-hood to match. |
| if (left->isUnion() != right->isUnion()) return false; |
| |
| // Require an exact match if either is non-POD. |
| if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || |
| (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) |
| return false; |
| |
| // Require size and alignment to match. |
| if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false; |
| |
| // Require fields to match. |
| RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); |
| RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); |
| for (; li != le && ri != re; ++li, ++ri) { |
| if (!matchTypes(Context, strategy, li->getType(), ri->getType())) |
| return false; |
| } |
| return (li == le && ri == re); |
| } |
| |
| /// MatchTwoMethodDeclarations - Checks that two methods have matching type and |
| /// returns true, or false, accordingly. |
| /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons |
| bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, |
| const ObjCMethodDecl *right, |
| MethodMatchStrategy strategy) { |
| if (!matchTypes(Context, strategy, |
| left->getResultType(), right->getResultType())) |
| return false; |
| |
| if (getLangOptions().ObjCAutoRefCount && |
| (left->hasAttr<NSReturnsRetainedAttr>() |
| != right->hasAttr<NSReturnsRetainedAttr>() || |
| left->hasAttr<NSConsumesSelfAttr>() |
| != right->hasAttr<NSConsumesSelfAttr>())) |
| return false; |
| |
| ObjCMethodDecl::param_iterator |
| li = left->param_begin(), le = left->param_end(), ri = right->param_begin(); |
| |
| for (; li != le; ++li, ++ri) { |
| assert(ri != right->param_end() && "Param mismatch"); |
| ParmVarDecl *lparm = *li, *rparm = *ri; |
| |
| if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) |
| return false; |
| |
| if (getLangOptions().ObjCAutoRefCount && |
| lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) |
| return false; |
| } |
| return true; |
| } |
| |
| /// \brief Read the contents of the method pool for a given selector from |
| /// external storage. |
| /// |
| /// This routine should only be called once, when the method pool has no entry |
| /// for this selector. |
| Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) { |
| assert(ExternalSource && "We need an external AST source"); |
| assert(MethodPool.find(Sel) == MethodPool.end() && |
| "Selector data already loaded into the method pool"); |
| |
| // Read the method list from the external source. |
| GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel); |
| |
| return MethodPool.insert(std::make_pair(Sel, Methods)).first; |
| } |
| |
| void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, |
| bool instance) { |
| GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); |
| if (Pos == MethodPool.end()) { |
| if (ExternalSource) |
| Pos = ReadMethodPool(Method->getSelector()); |
| else |
| Pos = MethodPool.insert(std::make_pair(Method->getSelector(), |
| GlobalMethods())).first; |
| } |
| Method->setDefined(impl); |
| ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; |
| if (Entry.Method == 0) { |
| // Haven't seen a method with this selector name yet - add it. |
| Entry.Method = Method; |
| Entry.Next = 0; |
| return; |
| } |
| |
| // We've seen a method with this name, see if we have already seen this type |
| // signature. |
| for (ObjCMethodList *List = &Entry; List; List = List->Next) { |
| bool match = MatchTwoMethodDeclarations(Method, List->Method); |
| |
| if (match) { |
| ObjCMethodDecl *PrevObjCMethod = List->Method; |
| PrevObjCMethod->setDefined(impl); |
| // If a method is deprecated, push it in the global pool. |
| // This is used for better diagnostics. |
| if (Method->isDeprecated()) { |
| if (!PrevObjCMethod->isDeprecated()) |
| List->Method = Method; |
| } |
| // If new method is unavailable, push it into global pool |
| // unless previous one is deprecated. |
| if (Method->isUnavailable()) { |
| if (PrevObjCMethod->getAvailability() < AR_Deprecated) |
| List->Method = Method; |
| } |
| return; |
| } |
| } |
| |
| // We have a new signature for an existing method - add it. |
| // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". |
| ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); |
| Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next); |
| } |
| |
| /// Determines if this is an "acceptable" loose mismatch in the global |
| /// method pool. This exists mostly as a hack to get around certain |
| /// global mismatches which we can't afford to make warnings / errors. |
| /// Really, what we want is a way to take a method out of the global |
| /// method pool. |
| static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, |
| ObjCMethodDecl *other) { |
| if (!chosen->isInstanceMethod()) |
| return false; |
| |
| Selector sel = chosen->getSelector(); |
| if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") |
| return false; |
| |
| // Don't complain about mismatches for -length if the method we |
| // chose has an integral result type. |
| return (chosen->getResultType()->isIntegerType()); |
| } |
| |
| ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, |
| bool receiverIdOrClass, |
| bool warn, bool instance) { |
| GlobalMethodPool::iterator Pos = MethodPool.find(Sel); |
| if (Pos == MethodPool.end()) { |
| if (ExternalSource) |
| Pos = ReadMethodPool(Sel); |
| else |
| return 0; |
| } |
| |
| ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; |
| |
| if (warn && MethList.Method && MethList.Next) { |
| bool issueDiagnostic = false, issueError = false; |
| |
| // We support a warning which complains about *any* difference in |
| // method signature. |
| bool strictSelectorMatch = |
| (receiverIdOrClass && warn && |
| (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl, |
| R.getBegin()) != |
| Diagnostic::Ignored)); |
| if (strictSelectorMatch) |
| for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { |
| if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, |
| MMS_strict)) { |
| issueDiagnostic = true; |
| break; |
| } |
| } |
| |
| // If we didn't see any strict differences, we won't see any loose |
| // differences. In ARC, however, we also need to check for loose |
| // mismatches, because most of them are errors. |
| if (!strictSelectorMatch || |
| (issueDiagnostic && getLangOptions().ObjCAutoRefCount)) |
| for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { |
| // This checks if the methods differ in type mismatch. |
| if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, |
| MMS_loose) && |
| !isAcceptableMethodMismatch(MethList.Method, Next->Method)) { |
| issueDiagnostic = true; |
| if (getLangOptions().ObjCAutoRefCount) |
| issueError = true; |
| break; |
| } |
| } |
| |
| if (issueDiagnostic) { |
| if (issueError) |
| Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; |
| else if (strictSelectorMatch) |
| Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; |
| else |
| Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; |
| |
| Diag(MethList.Method->getLocStart(), |
| issueError ? diag::note_possibility : diag::note_using) |
| << MethList.Method->getSourceRange(); |
| for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) |
| Diag(Next->Method->getLocStart(), diag::note_also_found) |
| << Next->Method->getSourceRange(); |
| } |
| } |
| return MethList.Method; |
| } |
| |
| ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { |
| GlobalMethodPool::iterator Pos = MethodPool.find(Sel); |
| if (Pos == MethodPool.end()) |
| return 0; |
| |
| GlobalMethods &Methods = Pos->second; |
| |
| if (Methods.first.Method && Methods.first.Method->isDefined()) |
| return Methods.first.Method; |
| if (Methods.second.Method && Methods.second.Method->isDefined()) |
| return Methods.second.Method; |
| return 0; |
| } |
| |
| /// CompareMethodParamsInBaseAndSuper - This routine compares methods with |
| /// identical selector names in current and its super classes and issues |
| /// a warning if any of their argument types are incompatible. |
| void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl, |
| ObjCMethodDecl *Method, |
| bool IsInstance) { |
| ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl); |
| if (ID == 0) return; |
| |
| while (ObjCInterfaceDecl *SD = ID->getSuperClass()) { |
| ObjCMethodDecl *SuperMethodDecl = |
| SD->lookupMethod(Method->getSelector(), IsInstance); |
| if (SuperMethodDecl == 0) { |
| ID = SD; |
| continue; |
| } |
| ObjCMethodDecl::param_iterator ParamI = Method->param_begin(), |
| E = Method->param_end(); |
| ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin(); |
| for (; ParamI != E; ++ParamI, ++PrevI) { |
| // Number of parameters are the same and is guaranteed by selector match. |
| assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch"); |
| QualType T1 = Context.getCanonicalType((*ParamI)->getType()); |
| QualType T2 = Context.getCanonicalType((*PrevI)->getType()); |
| // If type of argument of method in this class does not match its |
| // respective argument type in the super class method, issue warning; |
| if (!Context.typesAreCompatible(T1, T2)) { |
| Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) |
| << T1 << T2; |
| Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration); |
| return; |
| } |
| } |
| ID = SD; |
| } |
| } |
| |
| /// DiagnoseDuplicateIvars - |
| /// Check for duplicate ivars in the entire class at the start of |
| /// @implementation. This becomes necesssary because class extension can |
| /// add ivars to a class in random order which will not be known until |
| /// class's @implementation is seen. |
| void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, |
| ObjCInterfaceDecl *SID) { |
| for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(), |
| IVE = ID->ivar_end(); IVI != IVE; ++IVI) { |
| ObjCIvarDecl* Ivar = (*IVI); |
| if (Ivar->isInvalidDecl()) |
| continue; |
| if (IdentifierInfo *II = Ivar->getIdentifier()) { |
| ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); |
| if (prevIvar) { |
| Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; |
| Diag(prevIvar->getLocation(), diag::note_previous_declaration); |
| Ivar->setInvalidDecl(); |
| } |
| } |
| } |
| } |
| |
| // Note: For class/category implemenations, allMethods/allProperties is |
| // always null. |
| void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, |
| Decl *ClassDecl, |
| Decl **allMethods, unsigned allNum, |
| Decl **allProperties, unsigned pNum, |
| DeclGroupPtrTy *allTUVars, unsigned tuvNum) { |
| // FIXME: If we don't have a ClassDecl, we have an error. We should consider |
| // always passing in a decl. If the decl has an error, isInvalidDecl() |
| // should be true. |
| if (!ClassDecl) |
| return; |
| |
| bool isInterfaceDeclKind = |
| isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) |
| || isa<ObjCProtocolDecl>(ClassDecl); |
| bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); |
| |
| if (!isInterfaceDeclKind && AtEnd.isInvalid()) { |
| // FIXME: This is wrong. We shouldn't be pretending that there is |
| // an '@end' in the declaration. |
| SourceLocation L = ClassDecl->getLocation(); |
| AtEnd.setBegin(L); |
| AtEnd.setEnd(L); |
| Diag(L, diag::err_missing_atend); |
| } |
| |
| // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. |
| llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; |
| llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; |
| |
| for (unsigned i = 0; i < allNum; i++ ) { |
| ObjCMethodDecl *Method = |
| cast_or_null<ObjCMethodDecl>(allMethods[i]); |
| |
| if (!Method) continue; // Already issued a diagnostic. |
| if (Method->isInstanceMethod()) { |
| /// Check for instance method of the same name with incompatible types |
| const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; |
| bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) |
| : false; |
| if ((isInterfaceDeclKind && PrevMethod && !match) |
| || (checkIdenticalMethods && match)) { |
| Diag(Method->getLocation(), diag::err_duplicate_method_decl) |
| << Method->getDeclName(); |
| Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
| Method->setInvalidDecl(); |
| } else { |
| InsMap[Method->getSelector()] = Method; |
| /// The following allows us to typecheck messages to "id". |
| AddInstanceMethodToGlobalPool(Method); |
| // verify that the instance method conforms to the same definition of |
| // parent methods if it shadows one. |
| CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true); |
| } |
| } else { |
| /// Check for class method of the same name with incompatible types |
| const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; |
| bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) |
| : false; |
| if ((isInterfaceDeclKind && PrevMethod && !match) |
| || (checkIdenticalMethods && match)) { |
| Diag(Method->getLocation(), diag::err_duplicate_method_decl) |
| << Method->getDeclName(); |
| Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
| Method->setInvalidDecl(); |
| } else { |
| ClsMap[Method->getSelector()] = Method; |
| /// The following allows us to typecheck messages to "Class". |
| AddFactoryMethodToGlobalPool(Method); |
| // verify that the class method conforms to the same definition of |
| // parent methods if it shadows one. |
| CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false); |
| } |
| } |
| } |
| if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { |
| // Compares properties declared in this class to those of its |
| // super class. |
| ComparePropertiesInBaseAndSuper(I); |
| CompareProperties(I, I); |
| } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { |
| // Categories are used to extend the class by declaring new methods. |
| // By the same token, they are also used to add new properties. No |
| // need to compare the added property to those in the class. |
| |
| // Compare protocol properties with those in category |
| CompareProperties(C, C); |
| if (C->IsClassExtension()) { |
| ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); |
| DiagnoseClassExtensionDupMethods(C, CCPrimary); |
| } |
| } |
| if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { |
| if (CDecl->getIdentifier()) |
| // ProcessPropertyDecl is responsible for diagnosing conflicts with any |
| // user-defined setter/getter. It also synthesizes setter/getter methods |
| // and adds them to the DeclContext and global method pools. |
| for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(), |
| E = CDecl->prop_end(); |
| I != E; ++I) |
| ProcessPropertyDecl(*I, CDecl); |
| CDecl->setAtEndRange(AtEnd); |
| } |
| if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { |
| IC->setAtEndRange(AtEnd); |
| if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { |
| // Any property declared in a class extension might have user |
| // declared setter or getter in current class extension or one |
| // of the other class extensions. Mark them as synthesized as |
| // property will be synthesized when property with same name is |
| // seen in the @implementation. |
| for (const ObjCCategoryDecl *ClsExtDecl = |
| IDecl->getFirstClassExtension(); |
| ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) { |
| for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(), |
| E = ClsExtDecl->prop_end(); I != E; ++I) { |
| ObjCPropertyDecl *Property = (*I); |
| // Skip over properties declared @dynamic |
| if (const ObjCPropertyImplDecl *PIDecl |
| = IC->FindPropertyImplDecl(Property->getIdentifier())) |
| if (PIDecl->getPropertyImplementation() |
| == ObjCPropertyImplDecl::Dynamic) |
| continue; |
| |
| for (const ObjCCategoryDecl *CExtDecl = |
| IDecl->getFirstClassExtension(); |
| CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) { |
| if (ObjCMethodDecl *GetterMethod = |
| CExtDecl->getInstanceMethod(Property->getGetterName())) |
| GetterMethod->setSynthesized(true); |
| if (!Property->isReadOnly()) |
| if (ObjCMethodDecl *SetterMethod = |
| CExtDecl->getInstanceMethod(Property->getSetterName())) |
| SetterMethod->setSynthesized(true); |
| } |
| } |
| } |
| |
| if (LangOpts.ObjCDefaultSynthProperties && |
| LangOpts.ObjCNonFragileABI2) |
| DefaultSynthesizeProperties(S, IC, IDecl); |
| ImplMethodsVsClassMethods(S, IC, IDecl); |
| AtomicPropertySetterGetterRules(IC, IDecl); |
| DiagnoseOwningPropertyGetterSynthesis(IC); |
| |
| if (LangOpts.ObjCNonFragileABI2) |
| while (IDecl->getSuperClass()) { |
| DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); |
| IDecl = IDecl->getSuperClass(); |
| } |
| } |
| SetIvarInitializers(IC); |
| } else if (ObjCCategoryImplDecl* CatImplClass = |
| dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { |
| CatImplClass->setAtEndRange(AtEnd); |
| |
| // Find category interface decl and then check that all methods declared |
| // in this interface are implemented in the category @implementation. |
| if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { |
| for (ObjCCategoryDecl *Categories = IDecl->getCategoryList(); |
| Categories; Categories = Categories->getNextClassCategory()) { |
| if (Categories->getIdentifier() == CatImplClass->getIdentifier()) { |
| ImplMethodsVsClassMethods(S, CatImplClass, Categories); |
| break; |
| } |
| } |
| } |
| } |
| if (isInterfaceDeclKind) { |
| // Reject invalid vardecls. |
| for (unsigned i = 0; i != tuvNum; i++) { |
| DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); |
| for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) |
| if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { |
| if (!VDecl->hasExternalStorage()) |
| Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); |
| } |
| } |
| } |
| } |
| |
| |
| /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for |
| /// objective-c's type qualifier from the parser version of the same info. |
| static Decl::ObjCDeclQualifier |
| CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { |
| return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; |
| } |
| |
| static inline |
| bool containsInvalidMethodImplAttribute(const AttrVec &A) { |
| // The 'ibaction' attribute is allowed on method definitions because of |
| // how the IBAction macro is used on both method declarations and definitions. |
| // If the method definitions contains any other attributes, return true. |
| for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) |
| if ((*i)->getKind() != attr::IBAction) |
| return true; |
| return false; |
| } |
| |
| /// \brief Check whether the declared result type of the given Objective-C |
| /// method declaration is compatible with the method's class. |
| /// |
| static bool |
| CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, |
| ObjCInterfaceDecl *CurrentClass) { |
| QualType ResultType = Method->getResultType(); |
| SourceRange ResultTypeRange; |
| if (const TypeSourceInfo *ResultTypeInfo = Method->getResultTypeSourceInfo()) |
| ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); |
| |
| // If an Objective-C method inherits its related result type, then its |
| // declared result type must be compatible with its own class type. The |
| // declared result type is compatible if: |
| if (const ObjCObjectPointerType *ResultObjectType |
| = ResultType->getAs<ObjCObjectPointerType>()) { |
| // - it is id or qualified id, or |
| if (ResultObjectType->isObjCIdType() || |
| ResultObjectType->isObjCQualifiedIdType()) |
| return false; |
| |
| if (CurrentClass) { |
| if (ObjCInterfaceDecl *ResultClass |
| = ResultObjectType->getInterfaceDecl()) { |
| // - it is the same as the method's class type, or |
| if (CurrentClass == ResultClass) |
| return false; |
| |
| // - it is a superclass of the method's class type |
| if (ResultClass->isSuperClassOf(CurrentClass)) |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /// \brief Determine if any method in the global method pool has an inferred |
| /// result type. |
| static bool |
| anyMethodInfersRelatedResultType(Sema &S, Selector Sel, bool IsInstance) { |
| Sema::GlobalMethodPool::iterator Pos = S.MethodPool.find(Sel); |
| if (Pos == S.MethodPool.end()) { |
| if (S.ExternalSource) |
| Pos = S.ReadMethodPool(Sel); |
| else |
| return 0; |
| } |
| |
| ObjCMethodList &List = IsInstance ? Pos->second.first : Pos->second.second; |
| for (ObjCMethodList *M = &List; M; M = M->Next) { |
| if (M->Method && M->Method->hasRelatedResultType()) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| Decl *Sema::ActOnMethodDeclaration( |
| Scope *S, |
| SourceLocation MethodLoc, SourceLocation EndLoc, |
| tok::TokenKind MethodType, Decl *ClassDecl, |
| ObjCDeclSpec &ReturnQT, ParsedType ReturnType, |
| SourceLocation SelectorStartLoc, |
| Selector Sel, |
| // optional arguments. The number of types/arguments is obtained |
| // from the Sel.getNumArgs(). |
| ObjCArgInfo *ArgInfo, |
| DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args |
| AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind, |
| bool isVariadic, bool MethodDefinition) { |
| // Make sure we can establish a context for the method. |
| if (!ClassDecl) { |
| Diag(MethodLoc, diag::error_missing_method_context); |
| return 0; |
| } |
| QualType resultDeclType; |
| |
| TypeSourceInfo *ResultTInfo = 0; |
| if (ReturnType) { |
| resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo); |
| |
| // Methods cannot return interface types. All ObjC objects are |
| // passed by reference. |
| if (resultDeclType->isObjCObjectType()) { |
| Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value) |
| << 0 << resultDeclType; |
| return 0; |
| } |
| } else // get the type for "id". |
| resultDeclType = Context.getObjCIdType(); |
| |
| ObjCMethodDecl* ObjCMethod = |
| ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType, |
| ResultTInfo, |
| cast<DeclContext>(ClassDecl), |
| MethodType == tok::minus, isVariadic, |
| false, false, |
| MethodDeclKind == tok::objc_optional |
| ? ObjCMethodDecl::Optional |
| : ObjCMethodDecl::Required, |
| false); |
| |
| llvm::SmallVector<ParmVarDecl*, 16> Params; |
| |
| for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { |
| QualType ArgType; |
| TypeSourceInfo *DI; |
| |
| if (ArgInfo[i].Type == 0) { |
| ArgType = Context.getObjCIdType(); |
| DI = 0; |
| } else { |
| ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); |
| // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). |
| ArgType = adjustParameterType(ArgType); |
| } |
| |
| LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, |
| LookupOrdinaryName, ForRedeclaration); |
| LookupName(R, S); |
| if (R.isSingleResult()) { |
| NamedDecl *PrevDecl = R.getFoundDecl(); |
| if (S->isDeclScope(PrevDecl)) { |
| Diag(ArgInfo[i].NameLoc, |
| (MethodDefinition ? diag::warn_method_param_redefinition |
| : diag::warn_method_param_declaration)) |
| << ArgInfo[i].Name; |
| Diag(PrevDecl->getLocation(), |
| diag::note_previous_declaration); |
| } |
| } |
| |
| SourceLocation StartLoc = DI |
| ? DI->getTypeLoc().getBeginLoc() |
| : ArgInfo[i].NameLoc; |
| |
| ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, |
| ArgInfo[i].NameLoc, ArgInfo[i].Name, |
| ArgType, DI, SC_None, SC_None); |
| |
| Param->setObjCMethodScopeInfo(i); |
| |
| Param->setObjCDeclQualifier( |
| CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); |
| |
| // Apply the attributes to the parameter. |
| ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); |
| |
| S->AddDecl(Param); |
| IdResolver.AddDecl(Param); |
| |
| Params.push_back(Param); |
| } |
| |
| for (unsigned i = 0, e = CNumArgs; i != e; ++i) { |
| ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); |
| QualType ArgType = Param->getType(); |
| if (ArgType.isNull()) |
| ArgType = Context.getObjCIdType(); |
| else |
| // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). |
| ArgType = adjustParameterType(ArgType); |
| if (ArgType->isObjCObjectType()) { |
| Diag(Param->getLocation(), |
| diag::err_object_cannot_be_passed_returned_by_value) |
| << 1 << ArgType; |
| Param->setInvalidDecl(); |
| } |
| Param->setDeclContext(ObjCMethod); |
| |
| Params.push_back(Param); |
| } |
| |
| ObjCMethod->setMethodParams(Context, Params.data(), Params.size(), |
| Sel.getNumArgs()); |
| ObjCMethod->setObjCDeclQualifier( |
| CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); |
| const ObjCMethodDecl *PrevMethod = 0; |
| |
| if (AttrList) |
| ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); |
| |
| const ObjCMethodDecl *InterfaceMD = 0; |
| |
| // Add the method now. |
| if (ObjCImplementationDecl *ImpDecl = |
| dyn_cast<ObjCImplementationDecl>(ClassDecl)) { |
| if (MethodType == tok::minus) { |
| PrevMethod = ImpDecl->getInstanceMethod(Sel); |
| ImpDecl->addInstanceMethod(ObjCMethod); |
| } else { |
| PrevMethod = ImpDecl->getClassMethod(Sel); |
| ImpDecl->addClassMethod(ObjCMethod); |
| } |
| InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel, |
| MethodType == tok::minus); |
| |
| if (ObjCMethod->hasAttrs() && |
| containsInvalidMethodImplAttribute(ObjCMethod->getAttrs())) |
| Diag(EndLoc, diag::warn_attribute_method_def); |
| } else if (ObjCCategoryImplDecl *CatImpDecl = |
| dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { |
| if (MethodType == tok::minus) { |
| PrevMethod = CatImpDecl->getInstanceMethod(Sel); |
| CatImpDecl->addInstanceMethod(ObjCMethod); |
| } else { |
| PrevMethod = CatImpDecl->getClassMethod(Sel); |
| CatImpDecl->addClassMethod(ObjCMethod); |
| } |
| |
| if (ObjCCategoryDecl *Cat = CatImpDecl->getCategoryDecl()) |
| InterfaceMD = Cat->getMethod(Sel, MethodType == tok::minus); |
| |
| if (ObjCMethod->hasAttrs() && |
| containsInvalidMethodImplAttribute(ObjCMethod->getAttrs())) |
| Diag(EndLoc, diag::warn_attribute_method_def); |
| } else { |
| cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); |
| } |
| if (PrevMethod) { |
| // You can never have two method definitions with the same name. |
| Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) |
| << ObjCMethod->getDeclName(); |
| Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
| } |
| |
| // If this Objective-C method does not have a related result type, but we |
| // are allowed to infer related result types, try to do so based on the |
| // method family. |
| ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); |
| if (!CurrentClass) { |
| if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) |
| CurrentClass = Cat->getClassInterface(); |
| else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) |
| CurrentClass = Impl->getClassInterface(); |
| else if (ObjCCategoryImplDecl *CatImpl |
| = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) |
| CurrentClass = CatImpl->getClassInterface(); |
| } |
| |
| // Merge information down from the interface declaration if we have one. |
| if (InterfaceMD) { |
| // Inherit the related result type, if we can. |
| if (InterfaceMD->hasRelatedResultType() && |
| !CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass)) |
| ObjCMethod->SetRelatedResultType(); |
| |
| mergeObjCMethodDecls(ObjCMethod, InterfaceMD); |
| } |
| |
| bool ARCError = false; |
| if (getLangOptions().ObjCAutoRefCount) |
| ARCError = CheckARCMethodDecl(*this, ObjCMethod); |
| |
| if (!ObjCMethod->hasRelatedResultType() && !ARCError && |
| getLangOptions().ObjCInferRelatedResultType) { |
| bool InferRelatedResultType = false; |
| switch (ObjCMethod->getMethodFamily()) { |
| case OMF_None: |
| case OMF_copy: |
| case OMF_dealloc: |
| case OMF_mutableCopy: |
| case OMF_release: |
| case OMF_retainCount: |
| break; |
| |
| case OMF_alloc: |
| case OMF_new: |
| InferRelatedResultType = ObjCMethod->isClassMethod(); |
| break; |
| |
| case OMF_init: |
| case OMF_autorelease: |
| case OMF_retain: |
| case OMF_self: |
| InferRelatedResultType = ObjCMethod->isInstanceMethod(); |
| break; |
| } |
| |
| if (InferRelatedResultType && |
| !CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass)) |
| ObjCMethod->SetRelatedResultType(); |
| |
| if (!InterfaceMD && |
| anyMethodInfersRelatedResultType(*this, ObjCMethod->getSelector(), |
| ObjCMethod->isInstanceMethod())) |
| CheckObjCMethodOverrides(ObjCMethod, cast<DeclContext>(ClassDecl)); |
| } |
| |
| return ObjCMethod; |
| } |
| |
| bool Sema::CheckObjCDeclScope(Decl *D) { |
| if (isa<TranslationUnitDecl>(CurContext->getRedeclContext())) |
| return false; |
| |
| Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); |
| D->setInvalidDecl(); |
| |
| return true; |
| } |
| |
| /// Called whenever @defs(ClassName) is encountered in the source. Inserts the |
| /// instance variables of ClassName into Decls. |
| void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, |
| IdentifierInfo *ClassName, |
| llvm::SmallVectorImpl<Decl*> &Decls) { |
| // Check that ClassName is a valid class |
| ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); |
| if (!Class) { |
| Diag(DeclStart, diag::err_undef_interface) << ClassName; |
| return; |
| } |
| if (LangOpts.ObjCNonFragileABI) { |
| Diag(DeclStart, diag::err_atdef_nonfragile_interface); |
| return; |
| } |
| |
| // Collect the instance variables |
| llvm::SmallVector<ObjCIvarDecl*, 32> Ivars; |
| Context.DeepCollectObjCIvars(Class, true, Ivars); |
| // For each ivar, create a fresh ObjCAtDefsFieldDecl. |
| for (unsigned i = 0; i < Ivars.size(); i++) { |
| FieldDecl* ID = cast<FieldDecl>(Ivars[i]); |
| RecordDecl *Record = dyn_cast<RecordDecl>(TagD); |
| Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, |
| /*FIXME: StartL=*/ID->getLocation(), |
| ID->getLocation(), |
| ID->getIdentifier(), ID->getType(), |
| ID->getBitWidth()); |
| Decls.push_back(FD); |
| } |
| |
| // Introduce all of these fields into the appropriate scope. |
| for (llvm::SmallVectorImpl<Decl*>::iterator D = Decls.begin(); |
| D != Decls.end(); ++D) { |
| FieldDecl *FD = cast<FieldDecl>(*D); |
| if (getLangOptions().CPlusPlus) |
| PushOnScopeChains(cast<FieldDecl>(FD), S); |
| else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) |
| Record->addDecl(FD); |
| } |
| } |
| |
| /// \brief Build a type-check a new Objective-C exception variable declaration. |
| VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, |
| SourceLocation StartLoc, |
| SourceLocation IdLoc, |
| IdentifierInfo *Id, |
| bool Invalid) { |
| // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage |
| // duration shall not be qualified by an address-space qualifier." |
| // Since all parameters have automatic store duration, they can not have |
| // an address space. |
| if (T.getAddressSpace() != 0) { |
| Diag(IdLoc, diag::err_arg_with_address_space); |
| Invalid = true; |
| } |
| |
| // An @catch parameter must be an unqualified object pointer type; |
| // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? |
| if (Invalid) { |
| // Don't do any further checking. |
| } else if (T->isDependentType()) { |
| // Okay: we don't know what this type will instantiate to. |
| } else if (!T->isObjCObjectPointerType()) { |
| Invalid = true; |
| Diag(IdLoc ,diag::err_catch_param_not_objc_type); |
| } else if (T->isObjCQualifiedIdType()) { |
| Invalid = true; |
| Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); |
| } |
| |
| VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, |
| T, TInfo, SC_None, SC_None); |
| New->setExceptionVariable(true); |
| |
| if (Invalid) |
| New->setInvalidDecl(); |
| return New; |
| } |
| |
| Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { |
| const DeclSpec &DS = D.getDeclSpec(); |
| |
| // We allow the "register" storage class on exception variables because |
| // GCC did, but we drop it completely. Any other storage class is an error. |
| if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { |
| Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) |
| << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); |
| } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { |
| Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) |
| << DS.getStorageClassSpec(); |
| } |
| if (D.getDeclSpec().isThreadSpecified()) |
| Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| |
| DiagnoseFunctionSpecifiers(D); |
| |
| // Check that there are no default arguments inside the type of this |
| // exception object (C++ only). |
| if (getLangOptions().CPlusPlus) |
| CheckExtraCXXDefaultArguments(D); |
| |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
| QualType ExceptionType = TInfo->getType(); |
| |
| VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, |
| D.getSourceRange().getBegin(), |
| D.getIdentifierLoc(), |
| D.getIdentifier(), |
| D.isInvalidType()); |
| |
| // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). |
| if (D.getCXXScopeSpec().isSet()) { |
| Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) |
| << D.getCXXScopeSpec().getRange(); |
| New->setInvalidDecl(); |
| } |
| |
| // Add the parameter declaration into this scope. |
| S->AddDecl(New); |
| if (D.getIdentifier()) |
| IdResolver.AddDecl(New); |
| |
| ProcessDeclAttributes(S, New, D); |
| |
| if (New->hasAttr<BlocksAttr>()) |
| Diag(New->getLocation(), diag::err_block_on_nonlocal); |
| return New; |
| } |
| |
| /// CollectIvarsToConstructOrDestruct - Collect those ivars which require |
| /// initialization. |
| void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, |
| llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) { |
| for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; |
| Iv= Iv->getNextIvar()) { |
| QualType QT = Context.getBaseElementType(Iv->getType()); |
| if (QT->isRecordType()) |
| Ivars.push_back(Iv); |
| } |
| } |
| |
| void ObjCImplementationDecl::setIvarInitializers(ASTContext &C, |
| CXXCtorInitializer ** initializers, |
| unsigned numInitializers) { |
| if (numInitializers > 0) { |
| NumIvarInitializers = numInitializers; |
| CXXCtorInitializer **ivarInitializers = |
| new (C) CXXCtorInitializer*[NumIvarInitializers]; |
| memcpy(ivarInitializers, initializers, |
| numInitializers * sizeof(CXXCtorInitializer*)); |
| IvarInitializers = ivarInitializers; |
| } |
| } |
| |
| void Sema::DiagnoseUseOfUnimplementedSelectors() { |
| // Warning will be issued only when selector table is |
| // generated (which means there is at lease one implementation |
| // in the TU). This is to match gcc's behavior. |
| if (ReferencedSelectors.empty() || |
| !Context.AnyObjCImplementation()) |
| return; |
| for (llvm::DenseMap<Selector, SourceLocation>::iterator S = |
| ReferencedSelectors.begin(), |
| E = ReferencedSelectors.end(); S != E; ++S) { |
| Selector Sel = (*S).first; |
| if (!LookupImplementedMethodInGlobalPool(Sel)) |
| Diag((*S).second, diag::warn_unimplemented_selector) << Sel; |
| } |
| return; |
| } |