blob: 2877d52b084ea1c40f595a2894073b1c9acf21d3 [file] [log] [blame]
//===---------------- SemaCodeComplete.cpp - Code Completion ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the code-completion semantic actions.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "Lookup.h"
#include "clang/Sema/CodeCompleteConsumer.h"
#include "clang/Sema/ExternalSemaSource.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include <list>
#include <map>
#include <vector>
using namespace clang;
namespace {
/// \brief A container of code-completion results.
class ResultBuilder {
public:
/// \brief The type of a name-lookup filter, which can be provided to the
/// name-lookup routines to specify which declarations should be included in
/// the result set (when it returns true) and which declarations should be
/// filtered out (returns false).
typedef bool (ResultBuilder::*LookupFilter)(NamedDecl *) const;
typedef CodeCompleteConsumer::Result Result;
private:
/// \brief The actual results we have found.
std::vector<Result> Results;
/// \brief A record of all of the declarations we have found and placed
/// into the result set, used to ensure that no declaration ever gets into
/// the result set twice.
llvm::SmallPtrSet<Decl*, 16> AllDeclsFound;
typedef std::pair<NamedDecl *, unsigned> DeclIndexPair;
/// \brief An entry in the shadow map, which is optimized to store
/// a single (declaration, index) mapping (the common case) but
/// can also store a list of (declaration, index) mappings.
class ShadowMapEntry {
typedef llvm::SmallVector<DeclIndexPair, 4> DeclIndexPairVector;
/// \brief Contains either the solitary NamedDecl * or a vector
/// of (declaration, index) pairs.
llvm::PointerUnion<NamedDecl *, DeclIndexPairVector*> DeclOrVector;
/// \brief When the entry contains a single declaration, this is
/// the index associated with that entry.
unsigned SingleDeclIndex;
public:
ShadowMapEntry() : DeclOrVector(), SingleDeclIndex(0) { }
void Add(NamedDecl *ND, unsigned Index) {
if (DeclOrVector.isNull()) {
// 0 - > 1 elements: just set the single element information.
DeclOrVector = ND;
SingleDeclIndex = Index;
return;
}
if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
// 1 -> 2 elements: create the vector of results and push in the
// existing declaration.
DeclIndexPairVector *Vec = new DeclIndexPairVector;
Vec->push_back(DeclIndexPair(PrevND, SingleDeclIndex));
DeclOrVector = Vec;
}
// Add the new element to the end of the vector.
DeclOrVector.get<DeclIndexPairVector*>()->push_back(
DeclIndexPair(ND, Index));
}
void Destroy() {
if (DeclIndexPairVector *Vec
= DeclOrVector.dyn_cast<DeclIndexPairVector *>()) {
delete Vec;
DeclOrVector = ((NamedDecl *)0);
}
}
// Iteration.
class iterator;
iterator begin() const;
iterator end() const;
};
/// \brief A mapping from declaration names to the declarations that have
/// this name within a particular scope and their index within the list of
/// results.
typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
/// \brief The semantic analysis object for which results are being
/// produced.
Sema &SemaRef;
/// \brief If non-NULL, a filter function used to remove any code-completion
/// results that are not desirable.
LookupFilter Filter;
/// \brief Whether we should allow declarations as
/// nested-name-specifiers that would otherwise be filtered out.
bool AllowNestedNameSpecifiers;
/// \brief If set, the type that we would prefer our resulting value
/// declarations to have.
///
/// Closely matching the preferred type gives a boost to a result's
/// priority.
CanQualType PreferredType;
/// \brief A list of shadow maps, which is used to model name hiding at
/// different levels of, e.g., the inheritance hierarchy.
std::list<ShadowMap> ShadowMaps;
public:
explicit ResultBuilder(Sema &SemaRef, LookupFilter Filter = 0)
: SemaRef(SemaRef), Filter(Filter), AllowNestedNameSpecifiers(false) { }
/// \brief Whether we should include code patterns in the completion
/// results.
bool includeCodePatterns() const {
return SemaRef.CodeCompleter &&
SemaRef.CodeCompleter->includeCodePatterns();
}
/// \brief Set the filter used for code-completion results.
void setFilter(LookupFilter Filter) {
this->Filter = Filter;
}
typedef std::vector<Result>::iterator iterator;
iterator begin() { return Results.begin(); }
iterator end() { return Results.end(); }
Result *data() { return Results.empty()? 0 : &Results.front(); }
unsigned size() const { return Results.size(); }
bool empty() const { return Results.empty(); }
/// \brief Specify the preferred type.
void setPreferredType(QualType T) {
PreferredType = SemaRef.Context.getCanonicalType(T);
}
/// \brief Specify whether nested-name-specifiers are allowed.
void allowNestedNameSpecifiers(bool Allow = true) {
AllowNestedNameSpecifiers = Allow;
}
/// \brief Determine whether the given declaration is at all interesting
/// as a code-completion result.
///
/// \param ND the declaration that we are inspecting.
///
/// \param AsNestedNameSpecifier will be set true if this declaration is
/// only interesting when it is a nested-name-specifier.
bool isInterestingDecl(NamedDecl *ND, bool &AsNestedNameSpecifier) const;
/// \brief Check whether the result is hidden by the Hiding declaration.
///
/// \returns true if the result is hidden and cannot be found, false if
/// the hidden result could still be found. When false, \p R may be
/// modified to describe how the result can be found (e.g., via extra
/// qualification).
bool CheckHiddenResult(Result &R, DeclContext *CurContext,
NamedDecl *Hiding);
/// \brief Add a new result to this result set (if it isn't already in one
/// of the shadow maps), or replace an existing result (for, e.g., a
/// redeclaration).
///
/// \param CurContext the result to add (if it is unique).
///
/// \param R the context in which this result will be named.
void MaybeAddResult(Result R, DeclContext *CurContext = 0);
/// \brief Add a new result to this result set, where we already know
/// the hiding declation (if any).
///
/// \param R the result to add (if it is unique).
///
/// \param CurContext the context in which this result will be named.
///
/// \param Hiding the declaration that hides the result.
///
/// \param InBaseClass whether the result was found in a base
/// class of the searched context.
void AddResult(Result R, DeclContext *CurContext, NamedDecl *Hiding,
bool InBaseClass);
/// \brief Add a new non-declaration result to this result set.
void AddResult(Result R);
/// \brief Enter into a new scope.
void EnterNewScope();
/// \brief Exit from the current scope.
void ExitScope();
/// \brief Ignore this declaration, if it is seen again.
void Ignore(Decl *D) { AllDeclsFound.insert(D->getCanonicalDecl()); }
/// \name Name lookup predicates
///
/// These predicates can be passed to the name lookup functions to filter the
/// results of name lookup. All of the predicates have the same type, so that
///
//@{
bool IsOrdinaryName(NamedDecl *ND) const;
bool IsOrdinaryNonTypeName(NamedDecl *ND) const;
bool IsOrdinaryNonValueName(NamedDecl *ND) const;
bool IsNestedNameSpecifier(NamedDecl *ND) const;
bool IsEnum(NamedDecl *ND) const;
bool IsClassOrStruct(NamedDecl *ND) const;
bool IsUnion(NamedDecl *ND) const;
bool IsNamespace(NamedDecl *ND) const;
bool IsNamespaceOrAlias(NamedDecl *ND) const;
bool IsType(NamedDecl *ND) const;
bool IsMember(NamedDecl *ND) const;
bool IsObjCIvar(NamedDecl *ND) const;
bool IsObjCMessageReceiver(NamedDecl *ND) const;
//@}
};
}
class ResultBuilder::ShadowMapEntry::iterator {
llvm::PointerUnion<NamedDecl*, const DeclIndexPair*> DeclOrIterator;
unsigned SingleDeclIndex;
public:
typedef DeclIndexPair value_type;
typedef value_type reference;
typedef std::ptrdiff_t difference_type;
typedef std::input_iterator_tag iterator_category;
class pointer {
DeclIndexPair Value;
public:
pointer(const DeclIndexPair &Value) : Value(Value) { }
const DeclIndexPair *operator->() const {
return &Value;
}
};
iterator() : DeclOrIterator((NamedDecl *)0), SingleDeclIndex(0) { }
iterator(NamedDecl *SingleDecl, unsigned Index)
: DeclOrIterator(SingleDecl), SingleDeclIndex(Index) { }
iterator(const DeclIndexPair *Iterator)
: DeclOrIterator(Iterator), SingleDeclIndex(0) { }
iterator &operator++() {
if (DeclOrIterator.is<NamedDecl *>()) {
DeclOrIterator = (NamedDecl *)0;
SingleDeclIndex = 0;
return *this;
}
const DeclIndexPair *I = DeclOrIterator.get<const DeclIndexPair*>();
++I;
DeclOrIterator = I;
return *this;
}
iterator operator++(int) {
iterator tmp(*this);
++(*this);
return tmp;
}
reference operator*() const {
if (NamedDecl *ND = DeclOrIterator.dyn_cast<NamedDecl *>())
return reference(ND, SingleDeclIndex);
return *DeclOrIterator.get<const DeclIndexPair*>();
}
pointer operator->() const {
return pointer(**this);
}
friend bool operator==(const iterator &X, const iterator &Y) {
return X.DeclOrIterator.getOpaqueValue()
== Y.DeclOrIterator.getOpaqueValue() &&
X.SingleDeclIndex == Y.SingleDeclIndex;
}
friend bool operator!=(const iterator &X, const iterator &Y) {
return !(X == Y);
}
};
ResultBuilder::ShadowMapEntry::iterator
ResultBuilder::ShadowMapEntry::begin() const {
if (DeclOrVector.isNull())
return iterator();
if (NamedDecl *ND = DeclOrVector.dyn_cast<NamedDecl *>())
return iterator(ND, SingleDeclIndex);
return iterator(DeclOrVector.get<DeclIndexPairVector *>()->begin());
}
ResultBuilder::ShadowMapEntry::iterator
ResultBuilder::ShadowMapEntry::end() const {
if (DeclOrVector.is<NamedDecl *>() || DeclOrVector.isNull())
return iterator();
return iterator(DeclOrVector.get<DeclIndexPairVector *>()->end());
}
/// \brief Compute the qualification required to get from the current context
/// (\p CurContext) to the target context (\p TargetContext).
///
/// \param Context the AST context in which the qualification will be used.
///
/// \param CurContext the context where an entity is being named, which is
/// typically based on the current scope.
///
/// \param TargetContext the context in which the named entity actually
/// resides.
///
/// \returns a nested name specifier that refers into the target context, or
/// NULL if no qualification is needed.
static NestedNameSpecifier *
getRequiredQualification(ASTContext &Context,
DeclContext *CurContext,
DeclContext *TargetContext) {
llvm::SmallVector<DeclContext *, 4> TargetParents;
for (DeclContext *CommonAncestor = TargetContext;
CommonAncestor && !CommonAncestor->Encloses(CurContext);
CommonAncestor = CommonAncestor->getLookupParent()) {
if (CommonAncestor->isTransparentContext() ||
CommonAncestor->isFunctionOrMethod())
continue;
TargetParents.push_back(CommonAncestor);
}
NestedNameSpecifier *Result = 0;
while (!TargetParents.empty()) {
DeclContext *Parent = TargetParents.back();
TargetParents.pop_back();
if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Parent))
Result = NestedNameSpecifier::Create(Context, Result, Namespace);
else if (TagDecl *TD = dyn_cast<TagDecl>(Parent))
Result = NestedNameSpecifier::Create(Context, Result,
false,
Context.getTypeDeclType(TD).getTypePtr());
}
return Result;
}
bool ResultBuilder::isInterestingDecl(NamedDecl *ND,
bool &AsNestedNameSpecifier) const {
AsNestedNameSpecifier = false;
ND = ND->getUnderlyingDecl();
unsigned IDNS = ND->getIdentifierNamespace();
// Skip unnamed entities.
if (!ND->getDeclName())
return false;
// Friend declarations and declarations introduced due to friends are never
// added as results.
if (IDNS & (Decl::IDNS_OrdinaryFriend | Decl::IDNS_TagFriend))
return false;
// Class template (partial) specializations are never added as results.
if (isa<ClassTemplateSpecializationDecl>(ND) ||
isa<ClassTemplatePartialSpecializationDecl>(ND))
return false;
// Using declarations themselves are never added as results.
if (isa<UsingDecl>(ND))
return false;
// Some declarations have reserved names that we don't want to ever show.
if (const IdentifierInfo *Id = ND->getIdentifier()) {
// __va_list_tag is a freak of nature. Find it and skip it.
if (Id->isStr("__va_list_tag") || Id->isStr("__builtin_va_list"))
return false;
// Filter out names reserved for the implementation (C99 7.1.3,
// C++ [lib.global.names]). Users don't need to see those.
//
// FIXME: Add predicate for this.
if (Id->getLength() >= 2) {
const char *Name = Id->getNameStart();
if (Name[0] == '_' &&
(Name[1] == '_' || (Name[1] >= 'A' && Name[1] <= 'Z')))
return false;
}
}
// C++ constructors are never found by name lookup.
if (isa<CXXConstructorDecl>(ND))
return false;
// Filter out any unwanted results.
if (Filter && !(this->*Filter)(ND)) {
// Check whether it is interesting as a nested-name-specifier.
if (AllowNestedNameSpecifiers && SemaRef.getLangOptions().CPlusPlus &&
IsNestedNameSpecifier(ND) &&
(Filter != &ResultBuilder::IsMember ||
(isa<CXXRecordDecl>(ND) &&
cast<CXXRecordDecl>(ND)->isInjectedClassName()))) {
AsNestedNameSpecifier = true;
return true;
}
return false;
}
if (Filter == &ResultBuilder::IsNestedNameSpecifier)
AsNestedNameSpecifier = true;
// ... then it must be interesting!
return true;
}
bool ResultBuilder::CheckHiddenResult(Result &R, DeclContext *CurContext,
NamedDecl *Hiding) {
// In C, there is no way to refer to a hidden name.
// FIXME: This isn't true; we can find a tag name hidden by an ordinary
// name if we introduce the tag type.
if (!SemaRef.getLangOptions().CPlusPlus)
return true;
DeclContext *HiddenCtx = R.Declaration->getDeclContext()->getLookupContext();
// There is no way to qualify a name declared in a function or method.
if (HiddenCtx->isFunctionOrMethod())
return true;
if (HiddenCtx == Hiding->getDeclContext()->getLookupContext())
return true;
// We can refer to the result with the appropriate qualification. Do it.
R.Hidden = true;
R.QualifierIsInformative = false;
if (!R.Qualifier)
R.Qualifier = getRequiredQualification(SemaRef.Context,
CurContext,
R.Declaration->getDeclContext());
return false;
}
void ResultBuilder::MaybeAddResult(Result R, DeclContext *CurContext) {
assert(!ShadowMaps.empty() && "Must enter into a results scope");
if (R.Kind != Result::RK_Declaration) {
// For non-declaration results, just add the result.
Results.push_back(R);
return;
}
// Look through using declarations.
if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(R.Declaration)) {
MaybeAddResult(Result(Using->getTargetDecl(), R.Qualifier), CurContext);
return;
}
Decl *CanonDecl = R.Declaration->getCanonicalDecl();
unsigned IDNS = CanonDecl->getIdentifierNamespace();
bool AsNestedNameSpecifier = false;
if (!isInterestingDecl(R.Declaration, AsNestedNameSpecifier))
return;
ShadowMap &SMap = ShadowMaps.back();
ShadowMapEntry::iterator I, IEnd;
ShadowMap::iterator NamePos = SMap.find(R.Declaration->getDeclName());
if (NamePos != SMap.end()) {
I = NamePos->second.begin();
IEnd = NamePos->second.end();
}
for (; I != IEnd; ++I) {
NamedDecl *ND = I->first;
unsigned Index = I->second;
if (ND->getCanonicalDecl() == CanonDecl) {
// This is a redeclaration. Always pick the newer declaration.
Results[Index].Declaration = R.Declaration;
// We're done.
return;
}
}
// This is a new declaration in this scope. However, check whether this
// declaration name is hidden by a similarly-named declaration in an outer
// scope.
std::list<ShadowMap>::iterator SM, SMEnd = ShadowMaps.end();
--SMEnd;
for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) {
ShadowMapEntry::iterator I, IEnd;
ShadowMap::iterator NamePos = SM->find(R.Declaration->getDeclName());
if (NamePos != SM->end()) {
I = NamePos->second.begin();
IEnd = NamePos->second.end();
}
for (; I != IEnd; ++I) {
// A tag declaration does not hide a non-tag declaration.
if (I->first->hasTagIdentifierNamespace() &&
(IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
Decl::IDNS_ObjCProtocol)))
continue;
// Protocols are in distinct namespaces from everything else.
if (((I->first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
|| (IDNS & Decl::IDNS_ObjCProtocol)) &&
I->first->getIdentifierNamespace() != IDNS)
continue;
// The newly-added result is hidden by an entry in the shadow map.
if (CheckHiddenResult(R, CurContext, I->first))
return;
break;
}
}
// Make sure that any given declaration only shows up in the result set once.
if (!AllDeclsFound.insert(CanonDecl))
return;
// If the filter is for nested-name-specifiers, then this result starts a
// nested-name-specifier.
if (AsNestedNameSpecifier) {
R.StartsNestedNameSpecifier = true;
R.Priority = CCP_NestedNameSpecifier;
}
// If this result is supposed to have an informative qualifier, add one.
if (R.QualifierIsInformative && !R.Qualifier &&
!R.StartsNestedNameSpecifier) {
DeclContext *Ctx = R.Declaration->getDeclContext();
if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Ctx))
R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, Namespace);
else if (TagDecl *Tag = dyn_cast<TagDecl>(Ctx))
R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, false,
SemaRef.Context.getTypeDeclType(Tag).getTypePtr());
else
R.QualifierIsInformative = false;
}
// Insert this result into the set of results and into the current shadow
// map.
SMap[R.Declaration->getDeclName()].Add(R.Declaration, Results.size());
Results.push_back(R);
}
enum SimplifiedTypeClass {
STC_Arithmetic,
STC_Array,
STC_Block,
STC_Function,
STC_ObjectiveC,
STC_Other,
STC_Pointer,
STC_Record,
STC_Void
};
/// \brief A simplified classification of types used to determine whether two
/// types are "similar enough" when adjusting priorities.
static SimplifiedTypeClass getSimplifiedTypeClass(CanQualType T) {
switch (T->getTypeClass()) {
case Type::Builtin:
switch (cast<BuiltinType>(T)->getKind()) {
case BuiltinType::Void:
return STC_Void;
case BuiltinType::NullPtr:
return STC_Pointer;
case BuiltinType::Overload:
case BuiltinType::Dependent:
case BuiltinType::UndeducedAuto:
return STC_Other;
case BuiltinType::ObjCId:
case BuiltinType::ObjCClass:
case BuiltinType::ObjCSel:
return STC_ObjectiveC;
default:
return STC_Arithmetic;
}
return STC_Other;
case Type::Complex:
return STC_Arithmetic;
case Type::Pointer:
return STC_Pointer;
case Type::BlockPointer:
return STC_Block;
case Type::LValueReference:
case Type::RValueReference:
return getSimplifiedTypeClass(T->getAs<ReferenceType>()->getPointeeType());
case Type::ConstantArray:
case Type::IncompleteArray:
case Type::VariableArray:
case Type::DependentSizedArray:
return STC_Array;
case Type::DependentSizedExtVector:
case Type::Vector:
case Type::ExtVector:
return STC_Arithmetic;
case Type::FunctionProto:
case Type::FunctionNoProto:
return STC_Function;
case Type::Record:
return STC_Record;
case Type::Enum:
return STC_Arithmetic;
case Type::ObjCObject:
case Type::ObjCInterface:
case Type::ObjCObjectPointer:
return STC_ObjectiveC;
default:
return STC_Other;
}
}
/// \brief Get the type that a given expression will have if this declaration
/// is used as an expression in its "typical" code-completion form.
static QualType getDeclUsageType(ASTContext &C, NamedDecl *ND) {
ND = cast<NamedDecl>(ND->getUnderlyingDecl());
if (TypeDecl *Type = dyn_cast<TypeDecl>(ND))
return C.getTypeDeclType(Type);
if (ObjCInterfaceDecl *Iface = dyn_cast<ObjCInterfaceDecl>(ND))
return C.getObjCInterfaceType(Iface);
QualType T;
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(ND))
T = Function->getResultType();
else if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
T = Method->getResultType();
else if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(ND))
T = FunTmpl->getTemplatedDecl()->getResultType();
else if (EnumConstantDecl *Enumerator = dyn_cast<EnumConstantDecl>(ND))
T = C.getTypeDeclType(cast<EnumDecl>(Enumerator->getDeclContext()));
else if (ObjCPropertyDecl *Property = dyn_cast<ObjCPropertyDecl>(ND))
T = Property->getType();
else if (ValueDecl *Value = dyn_cast<ValueDecl>(ND))
T = Value->getType();
else
return QualType();
return T.getNonReferenceType();
}
void ResultBuilder::AddResult(Result R, DeclContext *CurContext,
NamedDecl *Hiding, bool InBaseClass = false) {
if (R.Kind != Result::RK_Declaration) {
// For non-declaration results, just add the result.
Results.push_back(R);
return;
}
// Look through using declarations.
if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(R.Declaration)) {
AddResult(Result(Using->getTargetDecl(), R.Qualifier), CurContext, Hiding);
return;
}
bool AsNestedNameSpecifier = false;
if (!isInterestingDecl(R.Declaration, AsNestedNameSpecifier))
return;
if (Hiding && CheckHiddenResult(R, CurContext, Hiding))
return;
// Make sure that any given declaration only shows up in the result set once.
if (!AllDeclsFound.insert(R.Declaration->getCanonicalDecl()))
return;
// If the filter is for nested-name-specifiers, then this result starts a
// nested-name-specifier.
if (AsNestedNameSpecifier) {
R.StartsNestedNameSpecifier = true;
R.Priority = CCP_NestedNameSpecifier;
}
else if (Filter == &ResultBuilder::IsMember && !R.Qualifier && InBaseClass &&
isa<CXXRecordDecl>(R.Declaration->getDeclContext()
->getLookupContext()))
R.QualifierIsInformative = true;
// If this result is supposed to have an informative qualifier, add one.
if (R.QualifierIsInformative && !R.Qualifier &&
!R.StartsNestedNameSpecifier) {
DeclContext *Ctx = R.Declaration->getDeclContext();
if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Ctx))
R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, Namespace);
else if (TagDecl *Tag = dyn_cast<TagDecl>(Ctx))
R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, false,
SemaRef.Context.getTypeDeclType(Tag).getTypePtr());
else
R.QualifierIsInformative = false;
}
// Adjust the priority if this result comes from a base class.
if (InBaseClass)
R.Priority += CCD_InBaseClass;
if (!PreferredType.isNull()) {
if (ValueDecl *Value = dyn_cast<ValueDecl>(R.Declaration)) {
CanQualType T = SemaRef.Context.getCanonicalType(
getDeclUsageType(SemaRef.Context, Value));
// Check for exactly-matching types (modulo qualifiers).
if (SemaRef.Context.hasSameUnqualifiedType(PreferredType, T))
R.Priority /= CCF_ExactTypeMatch;
// Check for nearly-matching types, based on classification of each.
else if ((getSimplifiedTypeClass(PreferredType)
== getSimplifiedTypeClass(T)) &&
!(PreferredType->isEnumeralType() && T->isEnumeralType()))
R.Priority /= CCF_SimilarTypeMatch;
}
}
// Insert this result into the set of results.
Results.push_back(R);
}
void ResultBuilder::AddResult(Result R) {
assert(R.Kind != Result::RK_Declaration &&
"Declaration results need more context");
Results.push_back(R);
}
/// \brief Enter into a new scope.
void ResultBuilder::EnterNewScope() {
ShadowMaps.push_back(ShadowMap());
}
/// \brief Exit from the current scope.
void ResultBuilder::ExitScope() {
for (ShadowMap::iterator E = ShadowMaps.back().begin(),
EEnd = ShadowMaps.back().end();
E != EEnd;
++E)
E->second.Destroy();
ShadowMaps.pop_back();
}
/// \brief Determines whether this given declaration will be found by
/// ordinary name lookup.
bool ResultBuilder::IsOrdinaryName(NamedDecl *ND) const {
ND = cast<NamedDecl>(ND->getUnderlyingDecl());
unsigned IDNS = Decl::IDNS_Ordinary;
if (SemaRef.getLangOptions().CPlusPlus)
IDNS |= Decl::IDNS_Tag | Decl::IDNS_Namespace | Decl::IDNS_Member;
else if (SemaRef.getLangOptions().ObjC1 && isa<ObjCIvarDecl>(ND))
return true;
return ND->getIdentifierNamespace() & IDNS;
}
/// \brief Determines whether this given declaration will be found by
/// ordinary name lookup but is not a type name.
bool ResultBuilder::IsOrdinaryNonTypeName(NamedDecl *ND) const {
ND = cast<NamedDecl>(ND->getUnderlyingDecl());
if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND))
return false;
unsigned IDNS = Decl::IDNS_Ordinary;
if (SemaRef.getLangOptions().CPlusPlus)
IDNS |= Decl::IDNS_Tag | Decl::IDNS_Namespace | Decl::IDNS_Member;
else if (SemaRef.getLangOptions().ObjC1 && isa<ObjCIvarDecl>(ND))
return true;
return ND->getIdentifierNamespace() & IDNS;
}
/// \brief Determines whether this given declaration will be found by
/// ordinary name lookup.
bool ResultBuilder::IsOrdinaryNonValueName(NamedDecl *ND) const {
ND = cast<NamedDecl>(ND->getUnderlyingDecl());
unsigned IDNS = Decl::IDNS_Ordinary;
if (SemaRef.getLangOptions().CPlusPlus)
IDNS |= Decl::IDNS_Tag | Decl::IDNS_Namespace;
return (ND->getIdentifierNamespace() & IDNS) &&
!isa<ValueDecl>(ND) && !isa<FunctionTemplateDecl>(ND) &&
!isa<ObjCPropertyDecl>(ND);
}
/// \brief Determines whether the given declaration is suitable as the
/// start of a C++ nested-name-specifier, e.g., a class or namespace.
bool ResultBuilder::IsNestedNameSpecifier(NamedDecl *ND) const {
// Allow us to find class templates, too.
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
ND = ClassTemplate->getTemplatedDecl();
return SemaRef.isAcceptableNestedNameSpecifier(ND);
}
/// \brief Determines whether the given declaration is an enumeration.
bool ResultBuilder::IsEnum(NamedDecl *ND) const {
return isa<EnumDecl>(ND);
}
/// \brief Determines whether the given declaration is a class or struct.
bool ResultBuilder::IsClassOrStruct(NamedDecl *ND) const {
// Allow us to find class templates, too.
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
ND = ClassTemplate->getTemplatedDecl();
if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
return RD->getTagKind() == TTK_Class ||
RD->getTagKind() == TTK_Struct;
return false;
}
/// \brief Determines whether the given declaration is a union.
bool ResultBuilder::IsUnion(NamedDecl *ND) const {
// Allow us to find class templates, too.
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
ND = ClassTemplate->getTemplatedDecl();
if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
return RD->getTagKind() == TTK_Union;
return false;
}
/// \brief Determines whether the given declaration is a namespace.
bool ResultBuilder::IsNamespace(NamedDecl *ND) const {
return isa<NamespaceDecl>(ND);
}
/// \brief Determines whether the given declaration is a namespace or
/// namespace alias.
bool ResultBuilder::IsNamespaceOrAlias(NamedDecl *ND) const {
return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
}
/// \brief Determines whether the given declaration is a type.
bool ResultBuilder::IsType(NamedDecl *ND) const {
return isa<TypeDecl>(ND);
}
/// \brief Determines which members of a class should be visible via
/// "." or "->". Only value declarations, nested name specifiers, and
/// using declarations thereof should show up.
bool ResultBuilder::IsMember(NamedDecl *ND) const {
if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(ND))
ND = Using->getTargetDecl();
return isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND) ||
isa<ObjCPropertyDecl>(ND);
}
static bool isObjCReceiverType(ASTContext &C, QualType T) {
T = C.getCanonicalType(T);
switch (T->getTypeClass()) {
case Type::ObjCObject:
case Type::ObjCInterface:
case Type::ObjCObjectPointer:
return true;
case Type::Builtin:
switch (cast<BuiltinType>(T)->getKind()) {
case BuiltinType::ObjCId:
case BuiltinType::ObjCClass:
case BuiltinType::ObjCSel:
return true;
default:
break;
}
return false;
default:
break;
}
if (!C.getLangOptions().CPlusPlus)
return false;
// FIXME: We could perform more analysis here to determine whether a
// particular class type has any conversions to Objective-C types. For now,
// just accept all class types.
return T->isDependentType() || T->isRecordType();
}
bool ResultBuilder::IsObjCMessageReceiver(NamedDecl *ND) const {
QualType T = getDeclUsageType(SemaRef.Context, ND);
if (T.isNull())
return false;
T = SemaRef.Context.getBaseElementType(T);
return isObjCReceiverType(SemaRef.Context, T);
}
/// \rief Determines whether the given declaration is an Objective-C
/// instance variable.
bool ResultBuilder::IsObjCIvar(NamedDecl *ND) const {
return isa<ObjCIvarDecl>(ND);
}
namespace {
/// \brief Visible declaration consumer that adds a code-completion result
/// for each visible declaration.
class CodeCompletionDeclConsumer : public VisibleDeclConsumer {
ResultBuilder &Results;
DeclContext *CurContext;
public:
CodeCompletionDeclConsumer(ResultBuilder &Results, DeclContext *CurContext)
: Results(Results), CurContext(CurContext) { }
virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass) {
Results.AddResult(ND, CurContext, Hiding, InBaseClass);
}
};
}
/// \brief Add type specifiers for the current language as keyword results.
static void AddTypeSpecifierResults(const LangOptions &LangOpts,
ResultBuilder &Results) {
typedef CodeCompleteConsumer::Result Result;
Results.AddResult(Result("short", CCP_Type));
Results.AddResult(Result("long", CCP_Type));
Results.AddResult(Result("signed", CCP_Type));
Results.AddResult(Result("unsigned", CCP_Type));
Results.AddResult(Result("void", CCP_Type));
Results.AddResult(Result("char", CCP_Type));
Results.AddResult(Result("int", CCP_Type));
Results.AddResult(Result("float", CCP_Type));
Results.AddResult(Result("double", CCP_Type));
Results.AddResult(Result("enum", CCP_Type));
Results.AddResult(Result("struct", CCP_Type));
Results.AddResult(Result("union", CCP_Type));
Results.AddResult(Result("const", CCP_Type));
Results.AddResult(Result("volatile", CCP_Type));
if (LangOpts.C99) {
// C99-specific
Results.AddResult(Result("_Complex", CCP_Type));
Results.AddResult(Result("_Imaginary", CCP_Type));
Results.AddResult(Result("_Bool", CCP_Type));
Results.AddResult(Result("restrict", CCP_Type));
}
if (LangOpts.CPlusPlus) {
// C++-specific
Results.AddResult(Result("bool", CCP_Type));
Results.AddResult(Result("class", CCP_Type));
Results.AddResult(Result("wchar_t", CCP_Type));
// typename qualified-id
CodeCompletionString *Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("typename");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("qualifier");
Pattern->AddTextChunk("::");
Pattern->AddPlaceholderChunk("name");
Results.AddResult(Result(Pattern));
if (LangOpts.CPlusPlus0x) {
Results.AddResult(Result("auto", CCP_Type));
Results.AddResult(Result("char16_t", CCP_Type));
Results.AddResult(Result("char32_t", CCP_Type));
CodeCompletionString *Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("decltype");
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("expression");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Results.AddResult(Result(Pattern));
}
}
// GNU extensions
if (LangOpts.GNUMode) {
// FIXME: Enable when we actually support decimal floating point.
// Results.AddResult(Result("_Decimal32"));
// Results.AddResult(Result("_Decimal64"));
// Results.AddResult(Result("_Decimal128"));
CodeCompletionString *Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("typeof");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("expression");
Results.AddResult(Result(Pattern));
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("typeof");
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("type");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Results.AddResult(Result(Pattern));
}
}
static void AddStorageSpecifiers(Action::CodeCompletionContext CCC,
const LangOptions &LangOpts,
ResultBuilder &Results) {
typedef CodeCompleteConsumer::Result Result;
// Note: we don't suggest either "auto" or "register", because both
// are pointless as storage specifiers. Elsewhere, we suggest "auto"
// in C++0x as a type specifier.
Results.AddResult(Result("extern"));
Results.AddResult(Result("static"));
}
static void AddFunctionSpecifiers(Action::CodeCompletionContext CCC,
const LangOptions &LangOpts,
ResultBuilder &Results) {
typedef CodeCompleteConsumer::Result Result;
switch (CCC) {
case Action::CCC_Class:
case Action::CCC_MemberTemplate:
if (LangOpts.CPlusPlus) {
Results.AddResult(Result("explicit"));
Results.AddResult(Result("friend"));
Results.AddResult(Result("mutable"));
Results.AddResult(Result("virtual"));
}
// Fall through
case Action::CCC_ObjCInterface:
case Action::CCC_ObjCImplementation:
case Action::CCC_Namespace:
case Action::CCC_Template:
if (LangOpts.CPlusPlus || LangOpts.C99)
Results.AddResult(Result("inline"));
break;
case Action::CCC_ObjCInstanceVariableList:
case Action::CCC_Expression:
case Action::CCC_Statement:
case Action::CCC_ForInit:
case Action::CCC_Condition:
case Action::CCC_RecoveryInFunction:
break;
}
}
static void AddObjCExpressionResults(ResultBuilder &Results, bool NeedAt);
static void AddObjCStatementResults(ResultBuilder &Results, bool NeedAt);
static void AddObjCVisibilityResults(const LangOptions &LangOpts,
ResultBuilder &Results,
bool NeedAt);
static void AddObjCImplementationResults(const LangOptions &LangOpts,
ResultBuilder &Results,
bool NeedAt);
static void AddObjCInterfaceResults(const LangOptions &LangOpts,
ResultBuilder &Results,
bool NeedAt);
static void AddObjCTopLevelResults(ResultBuilder &Results, bool NeedAt);
static void AddTypedefResult(ResultBuilder &Results) {
CodeCompletionString *Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("typedef");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("type");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("name");
Results.AddResult(CodeCompleteConsumer::Result(Pattern));
}
static bool WantTypesInContext(Action::CodeCompletionContext CCC,
const LangOptions &LangOpts) {
if (LangOpts.CPlusPlus)
return true;
switch (CCC) {
case Action::CCC_Namespace:
case Action::CCC_Class:
case Action::CCC_ObjCInstanceVariableList:
case Action::CCC_Template:
case Action::CCC_MemberTemplate:
case Action::CCC_Statement:
case Action::CCC_RecoveryInFunction:
return true;
case Action::CCC_ObjCInterface:
case Action::CCC_ObjCImplementation:
case Action::CCC_Expression:
case Action::CCC_Condition:
return false;
case Action::CCC_ForInit:
return LangOpts.ObjC1 || LangOpts.C99;
}
return false;
}
/// \brief Add language constructs that show up for "ordinary" names.
static void AddOrdinaryNameResults(Action::CodeCompletionContext CCC,
Scope *S,
Sema &SemaRef,
ResultBuilder &Results) {
typedef CodeCompleteConsumer::Result Result;
switch (CCC) {
case Action::CCC_Namespace:
if (SemaRef.getLangOptions().CPlusPlus) {
CodeCompletionString *Pattern = 0;
if (Results.includeCodePatterns()) {
// namespace <identifier> { declarations }
CodeCompletionString *Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("namespace");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("identifier");
Pattern->AddChunk(CodeCompletionString::CK_LeftBrace);
Pattern->AddPlaceholderChunk("declarations");
Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace);
Pattern->AddChunk(CodeCompletionString::CK_RightBrace);
Results.AddResult(Result(Pattern));
}
// namespace identifier = identifier ;
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("namespace");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("name");
Pattern->AddChunk(CodeCompletionString::CK_Equal);
Pattern->AddPlaceholderChunk("namespace");
Results.AddResult(Result(Pattern));
// Using directives
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("using");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddTextChunk("namespace");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("identifier");
Results.AddResult(Result(Pattern));
// asm(string-literal)
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("asm");
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("string-literal");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Results.AddResult(Result(Pattern));
if (Results.includeCodePatterns()) {
// Explicit template instantiation
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("template");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("declaration");
Results.AddResult(Result(Pattern));
}
}
if (SemaRef.getLangOptions().ObjC1)
AddObjCTopLevelResults(Results, true);
AddTypedefResult(Results);
// Fall through
case Action::CCC_Class:
if (SemaRef.getLangOptions().CPlusPlus) {
// Using declaration
CodeCompletionString *Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("using");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("qualifier");
Pattern->AddTextChunk("::");
Pattern->AddPlaceholderChunk("name");
Results.AddResult(Result(Pattern));
// using typename qualifier::name (only in a dependent context)
if (SemaRef.CurContext->isDependentContext()) {
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("using");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddTextChunk("typename");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("qualifier");
Pattern->AddTextChunk("::");
Pattern->AddPlaceholderChunk("name");
Results.AddResult(Result(Pattern));
}
if (CCC == Action::CCC_Class) {
AddTypedefResult(Results);
// public:
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("public");
Pattern->AddChunk(CodeCompletionString::CK_Colon);
Results.AddResult(Result(Pattern));
// protected:
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("protected");
Pattern->AddChunk(CodeCompletionString::CK_Colon);
Results.AddResult(Result(Pattern));
// private:
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("private");
Pattern->AddChunk(CodeCompletionString::CK_Colon);
Results.AddResult(Result(Pattern));
}
}
// Fall through
case Action::CCC_Template:
case Action::CCC_MemberTemplate:
if (SemaRef.getLangOptions().CPlusPlus && Results.includeCodePatterns()) {
// template < parameters >
CodeCompletionString *Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("template");
Pattern->AddChunk(CodeCompletionString::CK_LeftAngle);
Pattern->AddPlaceholderChunk("parameters");
Pattern->AddChunk(CodeCompletionString::CK_RightAngle);
Results.AddResult(Result(Pattern));
}
AddStorageSpecifiers(CCC, SemaRef.getLangOptions(), Results);
AddFunctionSpecifiers(CCC, SemaRef.getLangOptions(), Results);
break;
case Action::CCC_ObjCInterface:
AddObjCInterfaceResults(SemaRef.getLangOptions(), Results, true);
AddStorageSpecifiers(CCC, SemaRef.getLangOptions(), Results);
AddFunctionSpecifiers(CCC, SemaRef.getLangOptions(), Results);
break;
case Action::CCC_ObjCImplementation:
AddObjCImplementationResults(SemaRef.getLangOptions(), Results, true);
AddStorageSpecifiers(CCC, SemaRef.getLangOptions(), Results);
AddFunctionSpecifiers(CCC, SemaRef.getLangOptions(), Results);
break;
case Action::CCC_ObjCInstanceVariableList:
AddObjCVisibilityResults(SemaRef.getLangOptions(), Results, true);
break;
case Action::CCC_RecoveryInFunction:
case Action::CCC_Statement: {
AddTypedefResult(Results);
CodeCompletionString *Pattern = 0;
if (SemaRef.getLangOptions().CPlusPlus && Results.includeCodePatterns()) {
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("try");
Pattern->AddChunk(CodeCompletionString::CK_LeftBrace);
Pattern->AddPlaceholderChunk("statements");
Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace);
Pattern->AddChunk(CodeCompletionString::CK_RightBrace);
Pattern->AddTextChunk("catch");
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("declaration");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Pattern->AddChunk(CodeCompletionString::CK_LeftBrace);
Pattern->AddPlaceholderChunk("statements");
Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace);
Pattern->AddChunk(CodeCompletionString::CK_RightBrace);
Results.AddResult(Result(Pattern));
}
if (SemaRef.getLangOptions().ObjC1)
AddObjCStatementResults(Results, true);
if (Results.includeCodePatterns()) {
// if (condition) { statements }
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("if");
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
if (SemaRef.getLangOptions().CPlusPlus)
Pattern->AddPlaceholderChunk("condition");
else
Pattern->AddPlaceholderChunk("expression");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Pattern->AddChunk(CodeCompletionString::CK_LeftBrace);
Pattern->AddPlaceholderChunk("statements");
Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace);
Pattern->AddChunk(CodeCompletionString::CK_RightBrace);
Results.AddResult(Result(Pattern));
// switch (condition) { }
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("switch");
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
if (SemaRef.getLangOptions().CPlusPlus)
Pattern->AddPlaceholderChunk("condition");
else
Pattern->AddPlaceholderChunk("expression");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Pattern->AddChunk(CodeCompletionString::CK_LeftBrace);
Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace);
Pattern->AddChunk(CodeCompletionString::CK_RightBrace);
Results.AddResult(Result(Pattern));
}
// Switch-specific statements.
if (!SemaRef.getSwitchStack().empty()) {
// case expression:
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("case");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("expression");
Pattern->AddChunk(CodeCompletionString::CK_Colon);
Results.AddResult(Result(Pattern));
// default:
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("default");
Pattern->AddChunk(CodeCompletionString::CK_Colon);
Results.AddResult(Result(Pattern));
}
if (Results.includeCodePatterns()) {
/// while (condition) { statements }
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("while");
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
if (SemaRef.getLangOptions().CPlusPlus)
Pattern->AddPlaceholderChunk("condition");
else
Pattern->AddPlaceholderChunk("expression");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Pattern->AddChunk(CodeCompletionString::CK_LeftBrace);
Pattern->AddPlaceholderChunk("statements");
Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace);
Pattern->AddChunk(CodeCompletionString::CK_RightBrace);
Results.AddResult(Result(Pattern));
// do { statements } while ( expression );
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("do");
Pattern->AddChunk(CodeCompletionString::CK_LeftBrace);
Pattern->AddPlaceholderChunk("statements");
Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace);
Pattern->AddChunk(CodeCompletionString::CK_RightBrace);
Pattern->AddTextChunk("while");
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("expression");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Results.AddResult(Result(Pattern));
// for ( for-init-statement ; condition ; expression ) { statements }
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("for");
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
if (SemaRef.getLangOptions().CPlusPlus || SemaRef.getLangOptions().C99)
Pattern->AddPlaceholderChunk("init-statement");
else
Pattern->AddPlaceholderChunk("init-expression");
Pattern->AddChunk(CodeCompletionString::CK_SemiColon);
Pattern->AddPlaceholderChunk("condition");
Pattern->AddChunk(CodeCompletionString::CK_SemiColon);
Pattern->AddPlaceholderChunk("inc-expression");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Pattern->AddChunk(CodeCompletionString::CK_LeftBrace);
Pattern->AddPlaceholderChunk("statements");
Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace);
Pattern->AddChunk(CodeCompletionString::CK_RightBrace);
Results.AddResult(Result(Pattern));
}
if (S->getContinueParent()) {
// continue ;
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("continue");
Results.AddResult(Result(Pattern));
}
if (S->getBreakParent()) {
// break ;
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("break");
Results.AddResult(Result(Pattern));
}
// "return expression ;" or "return ;", depending on whether we
// know the function is void or not.
bool isVoid = false;
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(SemaRef.CurContext))
isVoid = Function->getResultType()->isVoidType();
else if (ObjCMethodDecl *Method
= dyn_cast<ObjCMethodDecl>(SemaRef.CurContext))
isVoid = Method->getResultType()->isVoidType();
else if (SemaRef.getCurBlock() &&
!SemaRef.getCurBlock()->ReturnType.isNull())
isVoid = SemaRef.getCurBlock()->ReturnType->isVoidType();
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("return");
if (!isVoid) {
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("expression");
}
Results.AddResult(Result(Pattern));
// goto identifier ;
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("goto");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("label");
Results.AddResult(Result(Pattern));
// Using directives
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("using");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddTextChunk("namespace");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("identifier");
Results.AddResult(Result(Pattern));
}
// Fall through (for statement expressions).
case Action::CCC_ForInit:
case Action::CCC_Condition:
AddStorageSpecifiers(CCC, SemaRef.getLangOptions(), Results);
// Fall through: conditions and statements can have expressions.
case Action::CCC_Expression: {
CodeCompletionString *Pattern = 0;
if (SemaRef.getLangOptions().CPlusPlus) {
// 'this', if we're in a non-static member function.
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(SemaRef.CurContext))
if (!Method->isStatic())
Results.AddResult(Result("this"));
// true, false
Results.AddResult(Result("true"));
Results.AddResult(Result("false"));
// dynamic_cast < type-id > ( expression )
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("dynamic_cast");
Pattern->AddChunk(CodeCompletionString::CK_LeftAngle);
Pattern->AddPlaceholderChunk("type");
Pattern->AddChunk(CodeCompletionString::CK_RightAngle);
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("expression");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Results.AddResult(Result(Pattern));
// static_cast < type-id > ( expression )
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("static_cast");
Pattern->AddChunk(CodeCompletionString::CK_LeftAngle);
Pattern->AddPlaceholderChunk("type");
Pattern->AddChunk(CodeCompletionString::CK_RightAngle);
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("expression");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Results.AddResult(Result(Pattern));
// reinterpret_cast < type-id > ( expression )
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("reinterpret_cast");
Pattern->AddChunk(CodeCompletionString::CK_LeftAngle);
Pattern->AddPlaceholderChunk("type");
Pattern->AddChunk(CodeCompletionString::CK_RightAngle);
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("expression");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Results.AddResult(Result(Pattern));
// const_cast < type-id > ( expression )
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("const_cast");
Pattern->AddChunk(CodeCompletionString::CK_LeftAngle);
Pattern->AddPlaceholderChunk("type");
Pattern->AddChunk(CodeCompletionString::CK_RightAngle);
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("expression");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Results.AddResult(Result(Pattern));
// typeid ( expression-or-type )
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("typeid");
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("expression-or-type");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Results.AddResult(Result(Pattern));
// new T ( ... )
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("new");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("type");
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("expressions");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Results.AddResult(Result(Pattern));
// new T [ ] ( ... )
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("new");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("type");
Pattern->AddChunk(CodeCompletionString::CK_LeftBracket);
Pattern->AddPlaceholderChunk("size");
Pattern->AddChunk(CodeCompletionString::CK_RightBracket);
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("expressions");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Results.AddResult(Result(Pattern));
// delete expression
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("delete");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("expression");
Results.AddResult(Result(Pattern));
// delete [] expression
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("delete");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddChunk(CodeCompletionString::CK_LeftBracket);
Pattern->AddChunk(CodeCompletionString::CK_RightBracket);
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("expression");
Results.AddResult(Result(Pattern));
// throw expression
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("throw");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("expression");
Results.AddResult(Result(Pattern));
// FIXME: Rethrow?
}
if (SemaRef.getLangOptions().ObjC1) {
// Add "super", if we're in an Objective-C class with a superclass.
if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
// The interface can be NULL.
if (ObjCInterfaceDecl *ID = Method->getClassInterface())
if (ID->getSuperClass())
Results.AddResult(Result("super"));
}
AddObjCExpressionResults(Results, true);
}
// sizeof expression
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk("sizeof");
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("expression-or-type");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Results.AddResult(Result(Pattern));
break;
}
}
if (WantTypesInContext(CCC, SemaRef.getLangOptions()))
AddTypeSpecifierResults(SemaRef.getLangOptions(), Results);
if (SemaRef.getLangOptions().CPlusPlus)
Results.AddResult(Result("operator"));
}
/// \brief If the given declaration has an associated type, add it as a result
/// type chunk.
static void AddResultTypeChunk(ASTContext &Context,
NamedDecl *ND,
CodeCompletionString *Result) {
if (!ND)
return;
// Determine the type of the declaration (if it has a type).
QualType T;
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(ND))
T = Function->getResultType();
else if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
T = Method->getResultType();
else if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(ND))
T = FunTmpl->getTemplatedDecl()->getResultType();
else if (EnumConstantDecl *Enumerator = dyn_cast<EnumConstantDecl>(ND))
T = Context.getTypeDeclType(cast<TypeDecl>(Enumerator->getDeclContext()));
else if (isa<UnresolvedUsingValueDecl>(ND)) {
/* Do nothing: ignore unresolved using declarations*/
} else if (ValueDecl *Value = dyn_cast<ValueDecl>(ND))
T = Value->getType();
else if (ObjCPropertyDecl *Property = dyn_cast<ObjCPropertyDecl>(ND))
T = Property->getType();
if (T.isNull() || Context.hasSameType(T, Context.DependentTy))
return;
PrintingPolicy Policy(Context.PrintingPolicy);
Policy.AnonymousTagLocations = false;
std::string TypeStr;
T.getAsStringInternal(TypeStr, Policy);
Result->AddResultTypeChunk(TypeStr);
}
/// \brief Add function parameter chunks to the given code completion string.
static void AddFunctionParameterChunks(ASTContext &Context,
FunctionDecl *Function,
CodeCompletionString *Result) {
typedef CodeCompletionString::Chunk Chunk;
CodeCompletionString *CCStr = Result;
for (unsigned P = 0, N = Function->getNumParams(); P != N; ++P) {
ParmVarDecl *Param = Function->getParamDecl(P);
if (Param->hasDefaultArg()) {
// When we see an optional default argument, put that argument and
// the remaining default arguments into a new, optional string.
CodeCompletionString *Opt = new CodeCompletionString;
CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt));
CCStr = Opt;
}
if (P != 0)
CCStr->AddChunk(Chunk(CodeCompletionString::CK_Comma));
// Format the placeholder string.
std::string PlaceholderStr;
if (Param->getIdentifier())
PlaceholderStr = Param->getIdentifier()->getName();
Param->getType().getAsStringInternal(PlaceholderStr,
Context.PrintingPolicy);
// Add the placeholder string.
CCStr->AddPlaceholderChunk(PlaceholderStr);
}
if (const FunctionProtoType *Proto
= Function->getType()->getAs<FunctionProtoType>())
if (Proto->isVariadic())
CCStr->AddPlaceholderChunk(", ...");
}
/// \brief Add template parameter chunks to the given code completion string.
static void AddTemplateParameterChunks(ASTContext &Context,
TemplateDecl *Template,
CodeCompletionString *Result,
unsigned MaxParameters = 0) {
typedef CodeCompletionString::Chunk Chunk;
CodeCompletionString *CCStr = Result;
bool FirstParameter = true;
TemplateParameterList *Params = Template->getTemplateParameters();
TemplateParameterList::iterator PEnd = Params->end();
if (MaxParameters)
PEnd = Params->begin() + MaxParameters;
for (TemplateParameterList::iterator P = Params->begin(); P != PEnd; ++P) {
bool HasDefaultArg = false;
std::string PlaceholderStr;
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
if (TTP->wasDeclaredWithTypename())
PlaceholderStr = "typename";
else
PlaceholderStr = "class";
if (TTP->getIdentifier()) {
PlaceholderStr += ' ';
PlaceholderStr += TTP->getIdentifier()->getName();
}
HasDefaultArg = TTP->hasDefaultArgument();
} else if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(*P)) {
if (NTTP->getIdentifier())
PlaceholderStr = NTTP->getIdentifier()->getName();
NTTP->getType().getAsStringInternal(PlaceholderStr,
Context.PrintingPolicy);
HasDefaultArg = NTTP->hasDefaultArgument();
} else {
assert(isa<TemplateTemplateParmDecl>(*P));
TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
// Since putting the template argument list into the placeholder would
// be very, very long, we just use an abbreviation.
PlaceholderStr = "template<...> class";
if (TTP->getIdentifier()) {
PlaceholderStr += ' ';
PlaceholderStr += TTP->getIdentifier()->getName();
}
HasDefaultArg = TTP->hasDefaultArgument();
}
if (HasDefaultArg) {
// When we see an optional default argument, put that argument and
// the remaining default arguments into a new, optional string.
CodeCompletionString *Opt = new CodeCompletionString;
CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt));
CCStr = Opt;
}
if (FirstParameter)
FirstParameter = false;
else
CCStr->AddChunk(Chunk(CodeCompletionString::CK_Comma));
// Add the placeholder string.
CCStr->AddPlaceholderChunk(PlaceholderStr);
}
}
/// \brief Add a qualifier to the given code-completion string, if the
/// provided nested-name-specifier is non-NULL.
static void
AddQualifierToCompletionString(CodeCompletionString *Result,
NestedNameSpecifier *Qualifier,
bool QualifierIsInformative,
ASTContext &Context) {
if (!Qualifier)
return;
std::string PrintedNNS;
{
llvm::raw_string_ostream OS(PrintedNNS);
Qualifier->print(OS, Context.PrintingPolicy);
}
if (QualifierIsInformative)
Result->AddInformativeChunk(PrintedNNS);
else
Result->AddTextChunk(PrintedNNS);
}
static void AddFunctionTypeQualsToCompletionString(CodeCompletionString *Result,
FunctionDecl *Function) {
const FunctionProtoType *Proto
= Function->getType()->getAs<FunctionProtoType>();
if (!Proto || !Proto->getTypeQuals())
return;
std::string QualsStr;
if (Proto->getTypeQuals() & Qualifiers::Const)
QualsStr += " const";
if (Proto->getTypeQuals() & Qualifiers::Volatile)
QualsStr += " volatile";
if (Proto->getTypeQuals() & Qualifiers::Restrict)
QualsStr += " restrict";
Result->AddInformativeChunk(QualsStr);
}
/// \brief If possible, create a new code completion string for the given
/// result.
///
/// \returns Either a new, heap-allocated code completion string describing
/// how to use this result, or NULL to indicate that the string or name of the
/// result is all that is needed.
CodeCompletionString *
CodeCompleteConsumer::Result::CreateCodeCompletionString(Sema &S) {
typedef CodeCompletionString::Chunk Chunk;
if (Kind == RK_Pattern)
return Pattern->Clone();
CodeCompletionString *Result = new CodeCompletionString;
if (Kind == RK_Keyword) {
Result->AddTypedTextChunk(Keyword);
return Result;
}
if (Kind == RK_Macro) {
MacroInfo *MI = S.PP.getMacroInfo(Macro);
assert(MI && "Not a macro?");
Result->AddTypedTextChunk(Macro->getName());
if (!MI->isFunctionLike())
return Result;
// Format a function-like macro with placeholders for the arguments.
Result->AddChunk(Chunk(CodeCompletionString::CK_LeftParen));
for (MacroInfo::arg_iterator A = MI->arg_begin(), AEnd = MI->arg_end();
A != AEnd; ++A) {
if (A != MI->arg_begin())
Result->AddChunk(Chunk(CodeCompletionString::CK_Comma));
if (!MI->isVariadic() || A != AEnd - 1) {
// Non-variadic argument.
Result->AddPlaceholderChunk((*A)->getName());
continue;
}
// Variadic argument; cope with the different between GNU and C99
// variadic macros, providing a single placeholder for the rest of the
// arguments.
if ((*A)->isStr("__VA_ARGS__"))
Result->AddPlaceholderChunk("...");
else {
std::string Arg = (*A)->getName();
Arg += "...";
Result->AddPlaceholderChunk(Arg);
}
}
Result->AddChunk(Chunk(CodeCompletionString::CK_RightParen));
return Result;
}
assert(Kind == RK_Declaration && "Missed a result kind?");
NamedDecl *ND = Declaration;
if (StartsNestedNameSpecifier) {
Result->AddTypedTextChunk(ND->getNameAsString());
Result->AddTextChunk("::");
return Result;
}
AddResultTypeChunk(S.Context, ND, Result);
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(ND)) {
AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
S.Context);
Result->AddTypedTextChunk(Function->getNameAsString());
Result->AddChunk(Chunk(CodeCompletionString::CK_LeftParen));
AddFunctionParameterChunks(S.Context, Function, Result);
Result->AddChunk(Chunk(CodeCompletionString::CK_RightParen));
AddFunctionTypeQualsToCompletionString(Result, Function);
return Result;
}
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(ND)) {
AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
S.Context);
FunctionDecl *Function = FunTmpl->getTemplatedDecl();
Result->AddTypedTextChunk(Function->getNameAsString());
// Figure out which template parameters are deduced (or have default
// arguments).
llvm::SmallVector<bool, 16> Deduced;
S.MarkDeducedTemplateParameters(FunTmpl, Deduced);
unsigned LastDeducibleArgument;
for (LastDeducibleArgument = Deduced.size(); LastDeducibleArgument > 0;
--LastDeducibleArgument) {
if (!Deduced[LastDeducibleArgument - 1]) {
// C++0x: Figure out if the template argument has a default. If so,
// the user doesn't need to type this argument.
// FIXME: We need to abstract template parameters better!
bool HasDefaultArg = false;
NamedDecl *Param = FunTmpl->getTemplateParameters()->getParam(
LastDeducibleArgument - 1);
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
HasDefaultArg = TTP->hasDefaultArgument();
else if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(Param))
HasDefaultArg = NTTP->hasDefaultArgument();
else {
assert(isa<TemplateTemplateParmDecl>(Param));
HasDefaultArg
= cast<TemplateTemplateParmDecl>(Param)->hasDefaultArgument();
}
if (!HasDefaultArg)
break;
}
}
if (LastDeducibleArgument) {
// Some of the function template arguments cannot be deduced from a
// function call, so we introduce an explicit template argument list
// containing all of the arguments up to the first deducible argument.
Result->AddChunk(Chunk(CodeCompletionString::CK_LeftAngle));
AddTemplateParameterChunks(S.Context, FunTmpl, Result,
LastDeducibleArgument);
Result->AddChunk(Chunk(CodeCompletionString::CK_RightAngle));
}
// Add the function parameters
Result->AddChunk(Chunk(CodeCompletionString::CK_LeftParen));
AddFunctionParameterChunks(S.Context, Function, Result);
Result->AddChunk(Chunk(CodeCompletionString::CK_RightParen));
AddFunctionTypeQualsToCompletionString(Result, Function);
return Result;
}
if (TemplateDecl *Template = dyn_cast<TemplateDecl>(ND)) {
AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
S.Context);
Result->AddTypedTextChunk(Template->getNameAsString());
Result->AddChunk(Chunk(CodeCompletionString::CK_LeftAngle));
AddTemplateParameterChunks(S.Context, Template, Result);
Result->AddChunk(Chunk(CodeCompletionString::CK_RightAngle));
return Result;
}
if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND)) {
Selector Sel = Method->getSelector();
if (Sel.isUnarySelector()) {
Result->AddTypedTextChunk(Sel.getIdentifierInfoForSlot(0)->getName());
return Result;
}
std::string SelName = Sel.getIdentifierInfoForSlot(0)->getName().str();
SelName += ':';
if (StartParameter == 0)
Result->AddTypedTextChunk(SelName);
else {
Result->AddInformativeChunk(SelName);
// If there is only one parameter, and we're past it, add an empty
// typed-text chunk since there is nothing to type.
if (Method->param_size() == 1)
Result->AddTypedTextChunk("");
}
unsigned Idx = 0;
for (ObjCMethodDecl::param_iterator P = Method->param_begin(),
PEnd = Method->param_end();
P != PEnd; (void)++P, ++Idx) {
if (Idx > 0) {
std::string Keyword;
if (Idx > StartParameter)
Result->AddChunk(CodeCompletionString::CK_HorizontalSpace);
if (IdentifierInfo *II = Sel.getIdentifierInfoForSlot(Idx))
Keyword += II->getName().str();
Keyword += ":";
if (Idx < StartParameter || AllParametersAreInformative) {
Result->AddInformativeChunk(Keyword);
} else if (Idx == StartParameter)
Result->AddTypedTextChunk(Keyword);
else
Result->AddTextChunk(Keyword);
}
// If we're before the starting parameter, skip the placeholder.
if (Idx < StartParameter)
continue;
std::string Arg;
(*P)->getType().getAsStringInternal(Arg, S.Context.PrintingPolicy);
Arg = "(" + Arg + ")";
if (IdentifierInfo *II = (*P)->getIdentifier())
Arg += II->getName().str();
if (AllParametersAreInformative)
Result->AddInformativeChunk(Arg);
else
Result->AddPlaceholderChunk(Arg);
}
if (Method->isVariadic()) {
if (AllParametersAreInformative)
Result->AddInformativeChunk(", ...");
else
Result->AddPlaceholderChunk(", ...");
}
return Result;
}
if (Qualifier)
AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
S.Context);
Result->AddTypedTextChunk(ND->getNameAsString());
return Result;
}
CodeCompletionString *
CodeCompleteConsumer::OverloadCandidate::CreateSignatureString(
unsigned CurrentArg,
Sema &S) const {
typedef CodeCompletionString::Chunk Chunk;
CodeCompletionString *Result = new CodeCompletionString;
FunctionDecl *FDecl = getFunction();
AddResultTypeChunk(S.Context, FDecl, Result);
const FunctionProtoType *Proto
= dyn_cast<FunctionProtoType>(getFunctionType());
if (!FDecl && !Proto) {
// Function without a prototype. Just give the return type and a
// highlighted ellipsis.
const FunctionType *FT = getFunctionType();
Result->AddTextChunk(
FT->getResultType().getAsString(S.Context.PrintingPolicy));
Result->AddChunk(Chunk(CodeCompletionString::CK_LeftParen));
Result->AddChunk(Chunk(CodeCompletionString::CK_CurrentParameter, "..."));
Result->AddChunk(Chunk(CodeCompletionString::CK_RightParen));
return Result;
}
if (FDecl)
Result->AddTextChunk(FDecl->getNameAsString());
else
Result->AddTextChunk(
Proto->getResultType().getAsString(S.Context.PrintingPolicy));
Result->AddChunk(Chunk(CodeCompletionString::CK_LeftParen));
unsigned NumParams = FDecl? FDecl->getNumParams() : Proto->getNumArgs();
for (unsigned I = 0; I != NumParams; ++I) {
if (I)
Result->AddChunk(Chunk(CodeCompletionString::CK_Comma));
std::string ArgString;
QualType ArgType;
if (FDecl) {
ArgString = FDecl->getParamDecl(I)->getNameAsString();
ArgType = FDecl->getParamDecl(I)->getOriginalType();
} else {
ArgType = Proto->getArgType(I);
}
ArgType.getAsStringInternal(ArgString, S.Context.PrintingPolicy);
if (I == CurrentArg)
Result->AddChunk(Chunk(CodeCompletionString::CK_CurrentParameter,
ArgString));
else
Result->AddTextChunk(ArgString);
}
if (Proto && Proto->isVariadic()) {
Result->AddChunk(Chunk(CodeCompletionString::CK_Comma));
if (CurrentArg < NumParams)
Result->AddTextChunk("...");
else
Result->AddChunk(Chunk(CodeCompletionString::CK_CurrentParameter, "..."));
}
Result->AddChunk(Chunk(CodeCompletionString::CK_RightParen));
return Result;
}
namespace {
struct SortCodeCompleteResult {
typedef CodeCompleteConsumer::Result Result;
bool isEarlierDeclarationName(DeclarationName X, DeclarationName Y) const {
Selector XSel = X.getObjCSelector();
Selector YSel = Y.getObjCSelector();
if (!XSel.isNull() && !YSel.isNull()) {
// We are comparing two selectors.
unsigned N = std::min(XSel.getNumArgs(), YSel.getNumArgs());
if (N == 0)
++N;
for (unsigned I = 0; I != N; ++I) {
IdentifierInfo *XId = XSel.getIdentifierInfoForSlot(I);
IdentifierInfo *YId = YSel.getIdentifierInfoForSlot(I);
if (!XId || !YId)
return XId && !YId;
switch (XId->getName().compare_lower(YId->getName())) {
case -1: return true;
case 1: return false;
default: break;
}
}
return XSel.getNumArgs() < YSel.getNumArgs();
}
// For non-selectors, order by kind.
if (X.getNameKind() != Y.getNameKind())
return X.getNameKind() < Y.getNameKind();
// Order identifiers by comparison of their lowercased names.
if (IdentifierInfo *XId = X.getAsIdentifierInfo())
return XId->getName().compare_lower(
Y.getAsIdentifierInfo()->getName()) < 0;
// Order overloaded operators by the order in which they appear
// in our list of operators.
if (OverloadedOperatorKind XOp = X.getCXXOverloadedOperator())
return XOp < Y.getCXXOverloadedOperator();
// Order C++0x user-defined literal operators lexically by their
// lowercased suffixes.
if (IdentifierInfo *XLit = X.getCXXLiteralIdentifier())
return XLit->getName().compare_lower(
Y.getCXXLiteralIdentifier()->getName()) < 0;
// The only stable ordering we have is to turn the name into a
// string and then compare the lower-case strings. This is
// inefficient, but thankfully does not happen too often.
return llvm::StringRef(X.getAsString()).compare_lower(
Y.getAsString()) < 0;
}
/// \brief Retrieve the name that should be used to order a result.
///
/// If the name needs to be constructed as a string, that string will be
/// saved into Saved and the returned StringRef will refer to it.
static llvm::StringRef getOrderedName(const Result &R,
std::string &Saved) {
switch (R.Kind) {
case Result::RK_Keyword:
return R.Keyword;
case Result::RK_Pattern:
return R.Pattern->getTypedText();
case Result::RK_Macro:
return R.Macro->getName();
case Result::RK_Declaration:
// Handle declarations below.
break;
}
DeclarationName Name = R.Declaration->getDeclName();
// If the name is a simple identifier (by far the common case), or a
// zero-argument selector, just return a reference to that identifier.
if (IdentifierInfo *Id = Name.getAsIdentifierInfo())
return Id->getName();
if (Name.isObjCZeroArgSelector())
if (IdentifierInfo *Id
= Name.getObjCSelector().getIdentifierInfoForSlot(0))
return Id->getName();
Saved = Name.getAsString();
return Saved;
}
bool operator()(const Result &X, const Result &Y) const {
std::string XSaved, YSaved;
llvm::StringRef XStr = getOrderedName(X, XSaved);
llvm::StringRef YStr = getOrderedName(Y, YSaved);
int cmp = XStr.compare_lower(YStr);
if (cmp)
return cmp < 0;
// Non-hidden names precede hidden names.
if (X.Hidden != Y.Hidden)
return !X.Hidden;
// Non-nested-name-specifiers precede nested-name-specifiers.
if (X.StartsNestedNameSpecifier != Y.StartsNestedNameSpecifier)
return !X.StartsNestedNameSpecifier;
return false;
}
};
}
static void AddMacroResults(Preprocessor &PP, ResultBuilder &Results) {
Results.EnterNewScope();
for (Preprocessor::macro_iterator M = PP.macro_begin(),
MEnd = PP.macro_end();
M != MEnd; ++M)
Results.AddResult(M->first);
Results.ExitScope();
}
static void HandleCodeCompleteResults(Sema *S,
CodeCompleteConsumer *CodeCompleter,
CodeCompleteConsumer::Result *Results,
unsigned NumResults) {
std::stable_sort(Results, Results + NumResults, SortCodeCompleteResult());
if (CodeCompleter)
CodeCompleter->ProcessCodeCompleteResults(*S, Results, NumResults);
for (unsigned I = 0; I != NumResults; ++I)
Results[I].Destroy();
}
void Sema::CodeCompleteOrdinaryName(Scope *S,
CodeCompletionContext CompletionContext) {
typedef CodeCompleteConsumer::Result Result;
ResultBuilder Results(*this);
// Determine how to filter results, e.g., so that the names of
// values (functions, enumerators, function templates, etc.) are
// only allowed where we can have an expression.
switch (CompletionContext) {
case CCC_Namespace:
case CCC_Class:
case CCC_ObjCInterface:
case CCC_ObjCImplementation:
case CCC_ObjCInstanceVariableList:
case CCC_Template:
case CCC_MemberTemplate:
Results.setFilter(&ResultBuilder::IsOrdinaryNonValueName);
break;
case CCC_Expression:
case CCC_Statement:
case CCC_ForInit:
case CCC_Condition:
if (WantTypesInContext(CompletionContext, getLangOptions()))
Results.setFilter(&ResultBuilder::IsOrdinaryName);
else
Results.setFilter(&ResultBuilder::IsOrdinaryNonTypeName);
break;
case CCC_RecoveryInFunction:
// Unfiltered
break;
}
CodeCompletionDeclConsumer Consumer(Results, CurContext);
LookupVisibleDecls(S, LookupOrdinaryName, Consumer);
Results.EnterNewScope();
AddOrdinaryNameResults(CompletionContext, S, *this, Results);
Results.ExitScope();
if (CodeCompleter->includeMacros())
AddMacroResults(PP, Results);
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
/// \brief Perform code-completion in an expression context when we know what
/// type we're looking for.
void Sema::CodeCompleteExpression(Scope *S, QualType T) {
typedef CodeCompleteConsumer::Result Result;
ResultBuilder Results(*this);
if (WantTypesInContext(CCC_Expression, getLangOptions()))
Results.setFilter(&ResultBuilder::IsOrdinaryName);
else
Results.setFilter(&ResultBuilder::IsOrdinaryNonTypeName);
Results.setPreferredType(T.getNonReferenceType());
CodeCompletionDeclConsumer Consumer(Results, CurContext);
LookupVisibleDecls(S, LookupOrdinaryName, Consumer);
Results.EnterNewScope();
AddOrdinaryNameResults(CCC_Expression, S, *this, Results);
Results.ExitScope();
if (CodeCompleter->includeMacros())
AddMacroResults(PP, Results);
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
static void AddObjCProperties(ObjCContainerDecl *Container,
bool AllowCategories,
DeclContext *CurContext,
ResultBuilder &Results) {
typedef CodeCompleteConsumer::Result Result;
// Add properties in this container.
for (ObjCContainerDecl::prop_iterator P = Container->prop_begin(),
PEnd = Container->prop_end();
P != PEnd;
++P)
Results.MaybeAddResult(Result(*P, 0), CurContext);
// Add properties in referenced protocols.
if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Container)) {
for (ObjCProtocolDecl::protocol_iterator P = Protocol->protocol_begin(),
PEnd = Protocol->protocol_end();
P != PEnd; ++P)
AddObjCProperties(*P, AllowCategories, CurContext, Results);
} else if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Container)){
if (AllowCategories) {
// Look through categories.
for (ObjCCategoryDecl *Category = IFace->getCategoryList();
Category; Category = Category->getNextClassCategory())
AddObjCProperties(Category, AllowCategories, CurContext, Results);
}
// Look through protocols.
for (ObjCInterfaceDecl::protocol_iterator I = IFace->protocol_begin(),
E = IFace->protocol_end();
I != E; ++I)
AddObjCProperties(*I, AllowCategories, CurContext, Results);
// Look in the superclass.
if (IFace->getSuperClass())
AddObjCProperties(IFace->getSuperClass(), AllowCategories, CurContext,
Results);
} else if (const ObjCCategoryDecl *Category
= dyn_cast<ObjCCategoryDecl>(Container)) {
// Look through protocols.
for (ObjCInterfaceDecl::protocol_iterator P = Category->protocol_begin(),
PEnd = Category->protocol_end();
P != PEnd; ++P)
AddObjCProperties(*P, AllowCategories, CurContext, Results);
}
}
void Sema::CodeCompleteMemberReferenceExpr(Scope *S, ExprTy *BaseE,
SourceLocation OpLoc,
bool IsArrow) {
if (!BaseE || !CodeCompleter)
return;
typedef CodeCompleteConsumer::Result Result;
Expr *Base = static_cast<Expr *>(BaseE);
QualType BaseType = Base->getType();
if (IsArrow) {
if (const PointerType *Ptr = BaseType->getAs<PointerType>())
BaseType = Ptr->getPointeeType();
else if (BaseType->isObjCObjectPointerType())
/*Do nothing*/ ;
else
return;
}
ResultBuilder Results(*this, &ResultBuilder::IsMember);
Results.EnterNewScope();
if (const RecordType *Record = BaseType->getAs<RecordType>()) {
// Access to a C/C++ class, struct, or union.
Results.allowNestedNameSpecifiers();
CodeCompletionDeclConsumer Consumer(Results, CurContext);
LookupVisibleDecls(Record->getDecl(), LookupMemberName, Consumer);
if (getLangOptions().CPlusPlus) {
if (!Results.empty()) {
// The "template" keyword can follow "->" or "." in the grammar.
// However, we only want to suggest the template keyword if something
// is dependent.
bool IsDependent = BaseType->isDependentType();
if (!IsDependent) {
for (Scope *DepScope = S; DepScope; DepScope = DepScope->getParent())
if (DeclContext *Ctx = (DeclContext *)DepScope->getEntity()) {
IsDependent = Ctx->isDependentContext();
break;
}
}
if (IsDependent)
Results.AddResult(Result("template"));
}
}
} else if (!IsArrow && BaseType->getAsObjCInterfacePointerType()) {
// Objective-C property reference.
// Add property results based on our interface.
const ObjCObjectPointerType *ObjCPtr
= BaseType->getAsObjCInterfacePointerType();
assert(ObjCPtr && "Non-NULL pointer guaranteed above!");
AddObjCProperties(ObjCPtr->getInterfaceDecl(), true, CurContext, Results);
// Add properties from the protocols in a qualified interface.
for (ObjCObjectPointerType::qual_iterator I = ObjCPtr->qual_begin(),
E = ObjCPtr->qual_end();
I != E; ++I)
AddObjCProperties(*I, true, CurContext, Results);
} else if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
(!IsArrow && BaseType->isObjCObjectType())) {
// Objective-C instance variable access.
ObjCInterfaceDecl *Class = 0;
if (const ObjCObjectPointerType *ObjCPtr
= BaseType->getAs<ObjCObjectPointerType>())
Class = ObjCPtr->getInterfaceDecl();
else
Class = BaseType->getAs<ObjCObjectType>()->getInterface();
// Add all ivars from this class and its superclasses.
if (Class) {
CodeCompletionDeclConsumer Consumer(Results, CurContext);
Results.setFilter(&ResultBuilder::IsObjCIvar);
LookupVisibleDecls(Class, LookupMemberName, Consumer);
}
}
// FIXME: How do we cope with isa?
Results.ExitScope();
// Hand off the results found for code completion.
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteTag(Scope *S, unsigned TagSpec) {
if (!CodeCompleter)
return;
typedef CodeCompleteConsumer::Result Result;
ResultBuilder::LookupFilter Filter = 0;
switch ((DeclSpec::TST)TagSpec) {
case DeclSpec::TST_enum:
Filter = &ResultBuilder::IsEnum;
break;
case DeclSpec::TST_union:
Filter = &ResultBuilder::IsUnion;
break;
case DeclSpec::TST_struct:
case DeclSpec::TST_class:
Filter = &ResultBuilder::IsClassOrStruct;
break;
default:
assert(false && "Unknown type specifier kind in CodeCompleteTag");
return;
}
ResultBuilder Results(*this);
CodeCompletionDeclConsumer Consumer(Results, CurContext);
// First pass: look for tags.
Results.setFilter(Filter);
LookupVisibleDecls(S, LookupTagName, Consumer);
// Second pass: look for nested name specifiers.
Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
LookupVisibleDecls(S, LookupNestedNameSpecifierName, Consumer);
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteCase(Scope *S) {
if (getSwitchStack().empty() || !CodeCompleter)
return;
SwitchStmt *Switch = getSwitchStack().back();
if (!Switch->getCond()->getType()->isEnumeralType())
return;
// Code-complete the cases of a switch statement over an enumeration type
// by providing the list of
EnumDecl *Enum = Switch->getCond()->getType()->getAs<EnumType>()->getDecl();
// Determine which enumerators we have already seen in the switch statement.
// FIXME: Ideally, we would also be able to look *past* the code-completion
// token, in case we are code-completing in the middle of the switch and not
// at the end. However, we aren't able to do so at the moment.
llvm::SmallPtrSet<EnumConstantDecl *, 8> EnumeratorsSeen;
NestedNameSpecifier *Qualifier = 0;
for (SwitchCase *SC = Switch->getSwitchCaseList(); SC;
SC = SC->getNextSwitchCase()) {
CaseStmt *Case = dyn_cast<CaseStmt>(SC);
if (!Case)
continue;
Expr *CaseVal = Case->getLHS()->IgnoreParenCasts();
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CaseVal))
if (EnumConstantDecl *Enumerator
= dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
// We look into the AST of the case statement to determine which
// enumerator was named. Alternatively, we could compute the value of
// the integral constant expression, then compare it against the
// values of each enumerator. However, value-based approach would not
// work as well with C++ templates where enumerators declared within a
// template are type- and value-dependent.
EnumeratorsSeen.insert(Enumerator);
// If this is a qualified-id, keep track of the nested-name-specifier
// so that we can reproduce it as part of code completion, e.g.,
//
// switch (TagD.getKind()) {
// case TagDecl::TK_enum:
// break;
// case XXX
//
// At the XXX, our completions are TagDecl::TK_union,
// TagDecl::TK_struct, and TagDecl::TK_class, rather than TK_union,
// TK_struct, and TK_class.
Qualifier = DRE->getQualifier();
}
}
if (getLangOptions().CPlusPlus && !Qualifier && EnumeratorsSeen.empty()) {
// If there are no prior enumerators in C++, check whether we have to
// qualify the names of the enumerators that we suggest, because they
// may not be visible in this scope.
Qualifier = getRequiredQualification(Context, CurContext,
Enum->getDeclContext());
// FIXME: Scoped enums need to start with "EnumDecl" as the context!
}
// Add any enumerators that have not yet been mentioned.
ResultBuilder Results(*this);
Results.EnterNewScope();
for (EnumDecl::enumerator_iterator E = Enum->enumerator_begin(),
EEnd = Enum->enumerator_end();
E != EEnd; ++E) {
if (EnumeratorsSeen.count(*E))
continue;
Results.AddResult(CodeCompleteConsumer::Result(*E, Qualifier),
CurContext, 0, false);
}
Results.ExitScope();
if (CodeCompleter->includeMacros())
AddMacroResults(PP, Results);
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
namespace {
struct IsBetterOverloadCandidate {
Sema &S;
SourceLocation Loc;
public:
explicit IsBetterOverloadCandidate(Sema &S, SourceLocation Loc)
: S(S), Loc(Loc) { }
bool
operator()(const OverloadCandidate &X, const OverloadCandidate &Y) const {
return S.isBetterOverloadCandidate(X, Y, Loc);
}
};
}
static bool anyNullArguments(Expr **Args, unsigned NumArgs) {
if (NumArgs && !Args)
return true;
for (unsigned I = 0; I != NumArgs; ++I)
if (!Args[I])
return true;
return false;
}
void Sema::CodeCompleteCall(Scope *S, ExprTy *FnIn,
ExprTy **ArgsIn, unsigned NumArgs) {
if (!CodeCompleter)
return;
// When we're code-completing for a call, we fall back to ordinary
// name code-completion whenever we can't produce specific
// results. We may want to revisit this strategy in the future,
// e.g., by merging the two kinds of results.
Expr *Fn = (Expr *)FnIn;
Expr **Args = (Expr **)ArgsIn;
// Ignore type-dependent call expressions entirely.
if (!Fn || Fn->isTypeDependent() || anyNullArguments(Args, NumArgs) ||
Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
CodeCompleteOrdinaryName(S, CCC_Expression);
return;
}
// Build an overload candidate set based on the functions we find.
SourceLocation Loc = Fn->getExprLoc();
OverloadCandidateSet CandidateSet(Loc);
// FIXME: What if we're calling something that isn't a function declaration?
// FIXME: What if we're calling a pseudo-destructor?
// FIXME: What if we're calling a member function?
typedef CodeCompleteConsumer::OverloadCandidate ResultCandidate;
llvm::SmallVector<ResultCandidate, 8> Results;
Expr *NakedFn = Fn->IgnoreParenCasts();
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(NakedFn))
AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet,
/*PartialOverloading=*/ true);
else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
if (FDecl) {
if (!getLangOptions().CPlusPlus ||
!FDecl->getType()->getAs<FunctionProtoType>())
Results.push_back(ResultCandidate(FDecl));
else
// FIXME: access?
AddOverloadCandidate(FDecl, DeclAccessPair::make(FDecl, AS_none),
Args, NumArgs, CandidateSet,
false, /*PartialOverloading*/true);
}
}
QualType ParamType;
if (!CandidateSet.empty()) {
// Sort the overload candidate set by placing the best overloads first.
std::stable_sort(CandidateSet.begin(), CandidateSet.end(),
IsBetterOverloadCandidate(*this, Loc));
// Add the remaining viable overload candidates as code-completion reslults.
for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
CandEnd = CandidateSet.end();
Cand != CandEnd; ++Cand) {
if (Cand->Viable)
Results.push_back(ResultCandidate(Cand->Function));
}
// From the viable candidates, try to determine the type of this parameter.
for (unsigned I = 0, N = Results.size(); I != N; ++I) {
if (const FunctionType *FType = Results[I].getFunctionType())
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FType))
if (NumArgs < Proto->getNumArgs()) {
if (ParamType.isNull())
ParamType = Proto->getArgType(NumArgs);
else if (!Context.hasSameUnqualifiedType(
ParamType.getNonReferenceType(),
Proto->getArgType(NumArgs).getNonReferenceType())) {
ParamType = QualType();
break;
}
}
}
} else {
// Try to determine the parameter type from the type of the expression
// being called.
QualType FunctionType = Fn->getType();
if (const PointerType *Ptr = FunctionType->getAs<PointerType>())
FunctionType = Ptr->getPointeeType();
else if (const BlockPointerType *BlockPtr
= FunctionType->getAs<BlockPointerType>())
FunctionType = BlockPtr->getPointeeType();
else if (const MemberPointerType *MemPtr
= FunctionType->getAs<MemberPointerType>())
FunctionType = MemPtr->getPointeeType();
if (const FunctionProtoType *Proto
= FunctionType->getAs<FunctionProtoType>()) {
if (NumArgs < Proto->getNumArgs())
ParamType = Proto->getArgType(NumArgs);
}
}
if (ParamType.isNull())
CodeCompleteOrdinaryName(S, CCC_Expression);
else
CodeCompleteExpression(S, ParamType);
if (!Results.empty())
CodeCompleter->ProcessOverloadCandidates(*this, NumArgs, Results.data(),
Results.size());
}
void Sema::CodeCompleteInitializer(Scope *S, DeclPtrTy D) {
ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D.getAs<Decl>());
if (!VD) {
CodeCompleteOrdinaryName(S, CCC_Expression);
return;
}
CodeCompleteExpression(S, VD->getType());
}
void Sema::CodeCompleteReturn(Scope *S) {
QualType ResultType;
if (isa<BlockDecl>(CurContext)) {
if (BlockScopeInfo *BSI = getCurBlock())
ResultType = BSI->ReturnType;
} else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(CurContext))
ResultType = Function->getResultType();
else if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(CurContext))
ResultType = Method->getResultType();
if (ResultType.isNull())
CodeCompleteOrdinaryName(S, CCC_Expression);
else
CodeCompleteExpression(S, ResultType);
}
void Sema::CodeCompleteAssignmentRHS(Scope *S, ExprTy *LHS) {
if (LHS)
CodeCompleteExpression(S, static_cast<Expr *>(LHS)->getType());
else
CodeCompleteOrdinaryName(S, CCC_Expression);
}
void Sema::CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS,
bool EnteringContext) {
if (!SS.getScopeRep() || !CodeCompleter)
return;
DeclContext *Ctx = computeDeclContext(SS, EnteringContext);
if (!Ctx)
return;
// Try to instantiate any non-dependent declaration contexts before
// we look in them.
if (!isDependentScopeSpecifier(SS) && RequireCompleteDeclContext(SS, Ctx))
return;
ResultBuilder Results(*this);
CodeCompletionDeclConsumer Consumer(Results, CurContext);
LookupVisibleDecls(Ctx, LookupOrdinaryName, Consumer);
// The "template" keyword can follow "::" in the grammar, but only
// put it into the grammar if the nested-name-specifier is dependent.
NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
if (!Results.empty() && NNS->isDependent())
Results.AddResult("template");
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteUsing(Scope *S) {
if (!CodeCompleter)
return;
ResultBuilder Results(*this, &ResultBuilder::IsNestedNameSpecifier);
Results.EnterNewScope();
// If we aren't in class scope, we could see the "namespace" keyword.
if (!S->isClassScope())
Results.AddResult(CodeCompleteConsumer::Result("namespace"));
// After "using", we can see anything that would start a
// nested-name-specifier.
CodeCompletionDeclConsumer Consumer(Results, CurContext);
LookupVisibleDecls(S, LookupOrdinaryName, Consumer);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteUsingDirective(Scope *S) {
if (!CodeCompleter)
return;
// After "using namespace", we expect to see a namespace name or namespace
// alias.
ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias);
Results.EnterNewScope();
CodeCompletionDeclConsumer Consumer(Results, CurContext);
LookupVisibleDecls(S, LookupOrdinaryName, Consumer);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteNamespaceDecl(Scope *S) {
if (!CodeCompleter)
return;
ResultBuilder Results(*this, &ResultBuilder::IsNamespace);
DeclContext *Ctx = (DeclContext *)S->getEntity();
if (!S->getParent())
Ctx = Context.getTranslationUnitDecl();
if (Ctx && Ctx->isFileContext()) {
// We only want to see those namespaces that have already been defined
// within this scope, because its likely that the user is creating an
// extended namespace declaration. Keep track of the most recent
// definition of each namespace.
std::map<NamespaceDecl *, NamespaceDecl *> OrigToLatest;
for (DeclContext::specific_decl_iterator<NamespaceDecl>
NS(Ctx->decls_begin()), NSEnd(Ctx->decls_end());
NS != NSEnd; ++NS)
OrigToLatest[NS->getOriginalNamespace()] = *NS;
// Add the most recent definition (or extended definition) of each
// namespace to the list of results.
Results.EnterNewScope();
for (std::map<NamespaceDecl *, NamespaceDecl *>::iterator
NS = OrigToLatest.begin(), NSEnd = OrigToLatest.end();
NS != NSEnd; ++NS)
Results.AddResult(CodeCompleteConsumer::Result(NS->second, 0),
CurContext, 0, false);
Results.ExitScope();
}
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteNamespaceAliasDecl(Scope *S) {
if (!CodeCompleter)
return;
// After "namespace", we expect to see a namespace or alias.
ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias);
CodeCompletionDeclConsumer Consumer(Results, CurContext);
LookupVisibleDecls(S, LookupOrdinaryName, Consumer);
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteOperatorName(Scope *S) {
if (!CodeCompleter)
return;
typedef CodeCompleteConsumer::Result Result;
ResultBuilder Results(*this, &ResultBuilder::IsType);
Results.EnterNewScope();
// Add the names of overloadable operators.
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
if (std::strcmp(Spelling, "?")) \
Results.AddResult(Result(Spelling));
#include "clang/Basic/OperatorKinds.def"
// Add any type names visible from the current scope
Results.allowNestedNameSpecifiers();
CodeCompletionDeclConsumer Consumer(Results, CurContext);
LookupVisibleDecls(S, LookupOrdinaryName, Consumer);
// Add any type specifiers
AddTypeSpecifierResults(getLangOptions(), Results);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
// Macro that expands to @Keyword or Keyword, depending on whether NeedAt is
// true or false.
#define OBJC_AT_KEYWORD_NAME(NeedAt,Keyword) NeedAt? "@" #Keyword : #Keyword
static void AddObjCImplementationResults(const LangOptions &LangOpts,
ResultBuilder &Results,
bool NeedAt) {
typedef CodeCompleteConsumer::Result Result;
// Since we have an implementation, we can end it.
Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,end)));
CodeCompletionString *Pattern = 0;
if (LangOpts.ObjC2) {
// @dynamic
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,dynamic));
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("property");
Results.AddResult(Result(Pattern));
// @synthesize
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,synthesize));
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("property");
Results.AddResult(Result(Pattern));
}
}
static void AddObjCInterfaceResults(const LangOptions &LangOpts,
ResultBuilder &Results,
bool NeedAt) {
typedef CodeCompleteConsumer::Result Result;
// Since we have an interface or protocol, we can end it.
Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,end)));
if (LangOpts.ObjC2) {
// @property
Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,property)));
// @required
Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,required)));
// @optional
Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,optional)));
}
}
static void AddObjCTopLevelResults(ResultBuilder &Results, bool NeedAt) {
typedef CodeCompleteConsumer::Result Result;
CodeCompletionString *Pattern = 0;
// @class name ;
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,class));
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("name");
Results.AddResult(Result(Pattern));
if (Results.includeCodePatterns()) {
// @interface name
// FIXME: Could introduce the whole pattern, including superclasses and
// such.
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,interface));
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("class");
Results.AddResult(Result(Pattern));
// @protocol name
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,protocol));
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("protocol");
Results.AddResult(Result(Pattern));
// @implementation name
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,implementation));
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("class");
Results.AddResult(Result(Pattern));
}
// @compatibility_alias name
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,compatibility_alias));
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("alias");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("class");
Results.AddResult(Result(Pattern));
}
void Sema::CodeCompleteObjCAtDirective(Scope *S, DeclPtrTy ObjCImpDecl,
bool InInterface) {
typedef CodeCompleteConsumer::Result Result;
ResultBuilder Results(*this);
Results.EnterNewScope();
if (ObjCImpDecl)
AddObjCImplementationResults(getLangOptions(), Results, false);
else if (InInterface)
AddObjCInterfaceResults(getLangOptions(), Results, false);
else
AddObjCTopLevelResults(Results, false);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
static void AddObjCExpressionResults(ResultBuilder &Results, bool NeedAt) {
typedef CodeCompleteConsumer::Result Result;
CodeCompletionString *Pattern = 0;
// @encode ( type-name )
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,encode));
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("type-name");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Results.AddResult(Result(Pattern));
// @protocol ( protocol-name )
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,protocol));
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("protocol-name");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Results.AddResult(Result(Pattern));
// @selector ( selector )
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,selector));
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("selector");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Results.AddResult(Result(Pattern));
}
static void AddObjCStatementResults(ResultBuilder &Results, bool NeedAt) {
typedef CodeCompleteConsumer::Result Result;
CodeCompletionString *Pattern = 0;
if (Results.includeCodePatterns()) {
// @try { statements } @catch ( declaration ) { statements } @finally
// { statements }
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,try));
Pattern->AddChunk(CodeCompletionString::CK_LeftBrace);
Pattern->AddPlaceholderChunk("statements");
Pattern->AddChunk(CodeCompletionString::CK_RightBrace);
Pattern->AddTextChunk("@catch");
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("parameter");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Pattern->AddChunk(CodeCompletionString::CK_LeftBrace);
Pattern->AddPlaceholderChunk("statements");
Pattern->AddChunk(CodeCompletionString::CK_RightBrace);
Pattern->AddTextChunk("@finally");
Pattern->AddChunk(CodeCompletionString::CK_LeftBrace);
Pattern->AddPlaceholderChunk("statements");
Pattern->AddChunk(CodeCompletionString::CK_RightBrace);
Results.AddResult(Result(Pattern));
}
// @throw
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,throw));
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("expression");
Results.AddResult(Result(Pattern));
if (Results.includeCodePatterns()) {
// @synchronized ( expression ) { statements }
Pattern = new CodeCompletionString;
Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,synchronized));
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddPlaceholderChunk("expression");
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
Pattern->AddChunk(CodeCompletionString::CK_LeftBrace);
Pattern->AddPlaceholderChunk("statements");
Pattern->AddChunk(CodeCompletionString::CK_RightBrace);
Results.AddResult(Result(Pattern));
}
}
static void AddObjCVisibilityResults(const LangOptions &LangOpts,
ResultBuilder &Results,
bool NeedAt) {
typedef CodeCompleteConsumer::Result Result;
Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,private)));
Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,protected)));
Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,public)));
if (LangOpts.ObjC2)
Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,package)));
}
void Sema::CodeCompleteObjCAtVisibility(Scope *S) {
ResultBuilder Results(*this);
Results.EnterNewScope();
AddObjCVisibilityResults(getLangOptions(), Results, false);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteObjCAtStatement(Scope *S) {
ResultBuilder Results(*this);
Results.EnterNewScope();
AddObjCStatementResults(Results, false);
AddObjCExpressionResults(Results, false);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteObjCAtExpression(Scope *S) {
ResultBuilder Results(*this);
Results.EnterNewScope();
AddObjCExpressionResults(Results, false);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
/// \brief Determine whether the addition of the given flag to an Objective-C
/// property's attributes will cause a conflict.
static bool ObjCPropertyFlagConflicts(unsigned Attributes, unsigned NewFlag) {
// Check if we've already added this flag.
if (Attributes & NewFlag)
return true;
Attributes |= NewFlag;
// Check for collisions with "readonly".
if ((Attributes & ObjCDeclSpec::DQ_PR_readonly) &&
(Attributes & (ObjCDeclSpec::DQ_PR_readwrite |
ObjCDeclSpec::DQ_PR_assign |
ObjCDeclSpec::DQ_PR_copy |
ObjCDeclSpec::DQ_PR_retain)))
return true;
// Check for more than one of { assign, copy, retain }.
unsigned AssignCopyRetMask = Attributes & (ObjCDeclSpec::DQ_PR_assign |
ObjCDeclSpec::DQ_PR_copy |
ObjCDeclSpec::DQ_PR_retain);
if (AssignCopyRetMask &&
AssignCopyRetMask != ObjCDeclSpec::DQ_PR_assign &&
AssignCopyRetMask != ObjCDeclSpec::DQ_PR_copy &&
AssignCopyRetMask != ObjCDeclSpec::DQ_PR_retain)
return true;
return false;
}
void Sema::CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS) {
if (!CodeCompleter)
return;
unsigned Attributes = ODS.getPropertyAttributes();
typedef CodeCompleteConsumer::Result Result;
ResultBuilder Results(*this);
Results.EnterNewScope();
if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_readonly))
Results.AddResult(CodeCompleteConsumer::Result("readonly"));
if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_assign))
Results.AddResult(CodeCompleteConsumer::Result("assign"));
if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_readwrite))
Results.AddResult(CodeCompleteConsumer::Result("readwrite"));
if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_retain))
Results.AddResult(CodeCompleteConsumer::Result("retain"));
if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_copy))
Results.AddResult(CodeCompleteConsumer::Result("copy"));
if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_nonatomic))
Results.AddResult(CodeCompleteConsumer::Result("nonatomic"));
if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_setter)) {
CodeCompletionString *Setter = new CodeCompletionString;
Setter->AddTypedTextChunk("setter");
Setter->AddTextChunk(" = ");
Setter->AddPlaceholderChunk("method");
Results.AddResult(CodeCompleteConsumer::Result(Setter));
}
if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_getter)) {
CodeCompletionString *Getter = new CodeCompletionString;
Getter->AddTypedTextChunk("getter");
Getter->AddTextChunk(" = ");
Getter->AddPlaceholderChunk("method");
Results.AddResult(CodeCompleteConsumer::Result(Getter));
}
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
/// \brief Descripts the kind of Objective-C method that we want to find
/// via code completion.
enum ObjCMethodKind {
MK_Any, //< Any kind of method, provided it means other specified criteria.
MK_ZeroArgSelector, //< Zero-argument (unary) selector.
MK_OneArgSelector //< One-argument selector.
};
static bool isAcceptableObjCMethod(ObjCMethodDecl *Method,
ObjCMethodKind WantKind,
IdentifierInfo **SelIdents,
unsigned NumSelIdents) {
Selector Sel = Method->getSelector();
if (NumSelIdents > Sel.getNumArgs())
return false;
switch (WantKind) {
case MK_Any: break;
case MK_ZeroArgSelector: return Sel.isUnarySelector();
case MK_OneArgSelector: return Sel.getNumArgs() == 1;
}
for (unsigned I = 0; I != NumSelIdents; ++I)
if (SelIdents[I] != Sel.getIdentifierInfoForSlot(I))
return false;
return true;
}
/// \brief Add all of the Objective-C methods in the given Objective-C
/// container to the set of results.
///
/// The container will be a class, protocol, category, or implementation of
/// any of the above. This mether will recurse to include methods from
/// the superclasses of classes along with their categories, protocols, and
/// implementations.
///
/// \param Container the container in which we'll look to find methods.
///
/// \param WantInstance whether to add instance methods (only); if false, this
/// routine will add factory methods (only).
///
/// \param CurContext the context in which we're performing the lookup that
/// finds methods.
///
/// \param Results the structure into which we'll add results.
static void AddObjCMethods(ObjCContainerDecl *Container,
bool WantInstanceMethods,
ObjCMethodKind WantKind,
IdentifierInfo **SelIdents,
unsigned NumSelIdents,
DeclContext *CurContext,
ResultBuilder &Results) {
typedef CodeCompleteConsumer::Result Result;
for (ObjCContainerDecl::method_iterator M = Container->meth_begin(),
MEnd = Container->meth_end();
M != MEnd; ++M) {
if ((*M)->isInstanceMethod() == WantInstanceMethods) {
// Check whether the selector identifiers we've been given are a
// subset of the identifiers for this particular method.
if (!isAcceptableObjCMethod(*M, WantKind, SelIdents, NumSelIdents))
continue;
Result R = Result(*M, 0);
R.StartParameter = NumSelIdents;
R.AllParametersAreInformative = (WantKind != MK_Any);
Results.MaybeAddResult(R, CurContext);
}
}
ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Container);
if (!IFace)
return;
// Add methods in protocols.
const ObjCList<ObjCProtocolDecl> &Protocols= IFace->getReferencedProtocols();
for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
E = Protocols.end();
I != E; ++I)
AddObjCMethods(*I, WantInstanceMethods, WantKind, SelIdents, NumSelIdents,
CurContext, Results);
// Add methods in categories.
for (ObjCCategoryDecl *CatDecl = IFace->getCategoryList(); CatDecl;
CatDecl = CatDecl->getNextClassCategory()) {
AddObjCMethods(CatDecl, WantInstanceMethods, WantKind, SelIdents,
NumSelIdents, CurContext, Results);
// Add a categories protocol methods.
const ObjCList<ObjCProtocolDecl> &Protocols
= CatDecl->getReferencedProtocols();
for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
E = Protocols.end();
I != E; ++I)
AddObjCMethods(*I, WantInstanceMethods, WantKind, SelIdents,
NumSelIdents, CurContext, Results);
// Add methods in category implementations.
if (ObjCCategoryImplDecl *Impl = CatDecl->getImplementation())
AddObjCMethods(Impl, WantInstanceMethods, WantKind, SelIdents,
NumSelIdents, CurContext, Results);
}
// Add methods in superclass.
if (IFace->getSuperClass())
AddObjCMethods(IFace->getSuperClass(), WantInstanceMethods, WantKind,
SelIdents, NumSelIdents, CurContext, Results);
// Add methods in our implementation, if any.
if (ObjCImplementationDecl *Impl = IFace->getImplementation())
AddObjCMethods(Impl, WantInstanceMethods, WantKind, SelIdents,
NumSelIdents, CurContext, Results);
}
void Sema::CodeCompleteObjCPropertyGetter(Scope *S, DeclPtrTy ClassDecl,
DeclPtrTy *Methods,
unsigned NumMethods) {
typedef CodeCompleteConsumer::Result Result;
// Try to find the interface where getters might live.
ObjCInterfaceDecl *Class
= dyn_cast_or_null<ObjCInterfaceDecl>(ClassDecl.getAs<Decl>());
if (!Class) {
if (ObjCCategoryDecl *Category
= dyn_cast_or_null<ObjCCategoryDecl>(ClassDecl.getAs<Decl>()))
Class = Category->getClassInterface();
if (!Class)
return;
}
// Find all of the potential getters.
ResultBuilder Results(*this);
Results.EnterNewScope();
// FIXME: We need to do this because Objective-C methods don't get
// pushed into DeclContexts early enough. Argh!
for (unsigned I = 0; I != NumMethods; ++I) {
if (ObjCMethodDecl *Method
= dyn_cast_or_null<ObjCMethodDecl>(Methods[I].getAs<Decl>()))
if (Method->isInstanceMethod() &&
isAcceptableObjCMethod(Method, MK_ZeroArgSelector, 0, 0)) {
Result R = Result(Method, 0);
R.AllParametersAreInformative = true;
Results.MaybeAddResult(R, CurContext);
}
}
AddObjCMethods(Class, true, MK_ZeroArgSelector, 0, 0, CurContext, Results);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter,Results.data(),Results.size());
}
void Sema::CodeCompleteObjCPropertySetter(Scope *S, DeclPtrTy ObjCImplDecl,
DeclPtrTy *Methods,
unsigned NumMethods) {
typedef CodeCompleteConsumer::Result Result;
// Try to find the interface where setters might live.
ObjCInterfaceDecl *Class
= dyn_cast_or_null<ObjCInterfaceDecl>(ObjCImplDecl.getAs<Decl>());
if (!Class) {
if (ObjCCategoryDecl *Category
= dyn_cast_or_null<ObjCCategoryDecl>(ObjCImplDecl.getAs<Decl>()))
Class = Category->getClassInterface();
if (!Class)
return;
}
// Find all of the potential getters.
ResultBuilder Results(*this);
Results.EnterNewScope();
// FIXME: We need to do this because Objective-C methods don't get
// pushed into DeclContexts early enough. Argh!
for (unsigned I = 0; I != NumMethods; ++I) {
if (ObjCMethodDecl *Method
= dyn_cast_or_null<ObjCMethodDecl>(Methods[I].getAs<Decl>()))
if (Method->isInstanceMethod() &&
isAcceptableObjCMethod(Method, MK_OneArgSelector, 0, 0)) {
Result R = Result(Method, 0);
R.AllParametersAreInformative = true;
Results.MaybeAddResult(R, CurContext);
}
}
AddObjCMethods(Class, true, MK_OneArgSelector, 0, 0, CurContext, Results);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter,Results.data(),Results.size());
}
/// \brief When we have an expression with type "id", we may assume
/// that it has some more-specific class type based on knowledge of
/// common uses of Objective-C. This routine returns that class type,
/// or NULL if no better result could be determined.
static ObjCInterfaceDecl *GetAssumedMessageSendExprType(Expr *E) {
ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E);
if (!Msg)
return 0;
Selector Sel = Msg->getSelector();
if (Sel.isNull())
return 0;
IdentifierInfo *Id = Sel.getIdentifierInfoForSlot(0);
if (!Id)
return 0;
ObjCMethodDecl *Method = Msg->getMethodDecl();
if (!Method)
return 0;
// Determine the class that we're sending the message to.
ObjCInterfaceDecl *IFace = 0;
switch (Msg->getReceiverKind()) {
case ObjCMessageExpr::Class:
if (const ObjCObjectType *ObjType
= Msg->getClassReceiver()->getAs<ObjCObjectType>())
IFace = ObjType->getInterface();
break;
case ObjCMessageExpr::Instance: {
QualType T = Msg->getInstanceReceiver()->getType();
if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
IFace = Ptr->getInterfaceDecl();
break;
}
case ObjCMessageExpr::SuperInstance:
case ObjCMessageExpr::SuperClass:
break;
}
if (!IFace)
return 0;
ObjCInterfaceDecl *Super = IFace->getSuperClass();
if (Method->isInstanceMethod())
return llvm::StringSwitch<ObjCInterfaceDecl *>(Id->getName())
.Case("retain", IFace)
.Case("autorelease", IFace)
.Case("copy", IFace)
.Case("copyWithZone", IFace)
.Case("mutableCopy", IFace)
.Case("mutableCopyWithZone", IFace)
.Case("awakeFromCoder", IFace)
.Case("replacementObjectFromCoder", IFace)
.Case("class", IFace)
.Case("classForCoder", IFace)
.Case("superclass", Super)
.Default(0);
return llvm::StringSwitch<ObjCInterfaceDecl *>(Id->getName())
.Case("new", IFace)
.Case("alloc", IFace)
.Case("allocWithZone", IFace)
.Case("class", IFace)
.Case("superclass", Super)
.Default(0);
}
void Sema::CodeCompleteObjCMessageReceiver(Scope *S) {
typedef CodeCompleteConsumer::Result Result;
ResultBuilder Results(*this);
// Find anything that looks like it could be a message receiver.
Results.setFilter(&ResultBuilder::IsObjCMessageReceiver);
CodeCompletionDeclConsumer Consumer(Results, CurContext);
Results.EnterNewScope();
LookupVisibleDecls(S, LookupOrdinaryName, Consumer);
// If we are in an Objective-C method inside a class that has a superclass,
// add "super" as an option.
if (ObjCMethodDecl *Method = getCurMethodDecl())
if (ObjCInterfaceDecl *Iface = Method->getClassInterface())
if (Iface->getSuperClass())
Results.AddResult(Result("super"));
Results.ExitScope();
if (CodeCompleter->includeMacros())
AddMacroResults(PP, Results);
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc,
IdentifierInfo **SelIdents,
unsigned NumSelIdents) {
ObjCInterfaceDecl *CDecl = 0;
if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) {
// Figure out which interface we're in.
CDecl = CurMethod->getClassInterface();
if (!CDecl)
return;
// Find the superclass of this class.
CDecl = CDecl->getSuperClass();
if (!CDecl)
return;
if (CurMethod->isInstanceMethod()) {
// We are inside an instance method, which means that the message
// send [super ...] is actually calling an instance method on the
// current object. Build the super expression and handle this like
// an instance method.
QualType SuperTy = Context.getObjCInterfaceType(CDecl);
SuperTy = Context.getObjCObjectPointerType(SuperTy);
OwningExprResult Super
= Owned(new (Context) ObjCSuperExpr(SuperLoc, SuperTy));
return CodeCompleteObjCInstanceMessage(S, (Expr *)Super.get(),
SelIdents, NumSelIdents);
}
// Fall through to send to the superclass in CDecl.
} else {
// "super" may be the name of a type or variable. Figure out which
// it is.
IdentifierInfo *Super = &Context.Idents.get("super");
NamedDecl *ND = LookupSingleName(S, Super, SuperLoc,
LookupOrdinaryName);
if ((CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(ND))) {
// "super" names an interface. Use it.
} else if (TypeDecl *TD = dyn_cast_or_null<TypeDecl>(ND)) {
if (const ObjCObjectType *Iface
= Context.getTypeDeclType(TD)->getAs<ObjCObjectType>())
CDecl = Iface->getInterface();
} else if (ND && isa<UnresolvedUsingTypenameDecl>(ND)) {
// "super" names an unresolved type; we can't be more specific.
} else {
// Assume that "super" names some kind of value and parse that way.
CXXScopeSpec SS;
UnqualifiedId id;
id.setIdentifier(Super, SuperLoc);
OwningExprResult SuperExpr = ActOnIdExpression(S, SS, id, false, false);
return CodeCompleteObjCInstanceMessage(S, (Expr *)SuperExpr.get(),
SelIdents, NumSelIdents);
}
// Fall through
}
TypeTy *Receiver = 0;
if (CDecl)
Receiver = Context.getObjCInterfaceType(CDecl).getAsOpaquePtr();
return CodeCompleteObjCClassMessage(S, Receiver, SelIdents,
NumSelIdents);
}
void Sema::CodeCompleteObjCClassMessage(Scope *S, TypeTy *Receiver,
IdentifierInfo **SelIdents,
unsigned NumSelIdents) {
typedef CodeCompleteConsumer::Result Result;
ObjCInterfaceDecl *CDecl = 0;
// If the given name refers to an interface type, retrieve the
// corresponding declaration.
if (Receiver) {
QualType T = GetTypeFromParser(Receiver, 0);
if (!T.isNull())
if (const ObjCObjectType *Interface = T->getAs<ObjCObjectType>())
CDecl = Interface->getInterface();
}
// Add all of the factory methods in this Objective-C class, its protocols,
// superclasses, categories, implementation, etc.
ResultBuilder Results(*this);
Results.EnterNewScope();
if (CDecl)
AddObjCMethods(CDecl, false, MK_Any, SelIdents, NumSelIdents, CurContext,
Results);
else {
// We're messaging "id" as a type; provide all class/factory methods.
// If we have an external source, load the entire class method
// pool from the PCH file.
if (ExternalSource) {
for (uint32_t I = 0, N = ExternalSource->GetNumExternalSelectors();
I != N; ++I) {
Selector Sel = ExternalSource->GetExternalSelector(I);
if (Sel.isNull() || FactoryMethodPool.count(Sel) ||
InstanceMethodPool.count(Sel))
continue;
ReadMethodPool(Sel, /*isInstance=*/false);
}
}
for (llvm::DenseMap<Selector, ObjCMethodList>::iterator
M = FactoryMethodPool.begin(),
MEnd = FactoryMethodPool.end();
M != MEnd;
++M) {
for (ObjCMethodList *MethList = &M->second; MethList && MethList->Method;
MethList = MethList->Next) {
if (!isAcceptableObjCMethod(MethList->Method, MK_Any, SelIdents,
NumSelIdents))
continue;
Result R(MethList->Method, 0);
R.StartParameter = NumSelIdents;
R.AllParametersAreInformative = false;
Results.MaybeAddResult(R, CurContext);
}
}
}
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteObjCInstanceMessage(Scope *S, ExprTy *Receiver,
IdentifierInfo **SelIdents,
unsigned NumSelIdents) {
typedef CodeCompleteConsumer::Result Result;
Expr *RecExpr = static_cast<Expr *>(Receiver);
// If necessary, apply function/array conversion to the receiver.
// C99 6.7.5.3p[7,8].
DefaultFunctionArrayLvalueConversion(RecExpr);
QualType ReceiverType = RecExpr->getType();
// Build the set of methods we can see.
ResultBuilder Results(*this);
Results.EnterNewScope();
// If we're messaging an expression with type "id" or "Class", check
// whether we know something special about the receiver that allows
// us to assume a more-specific receiver type.
if (ReceiverType->isObjCIdType() || ReceiverType->isObjCClassType())
if (ObjCInterfaceDecl *IFace = GetAssumedMessageSendExprType(RecExpr))
ReceiverType = Context.getObjCObjectPointerType(
Context.getObjCInterfaceType(IFace));
// Handle messages to Class. This really isn't a message to an instance
// method, so we treat it the same way we would treat a message send to a
// class method.
if (ReceiverType->isObjCClassType() ||
ReceiverType->isObjCQualifiedClassType()) {
if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) {
if (ObjCInterfaceDecl *ClassDecl = CurMethod->getClassInterface())
AddObjCMethods(ClassDecl, false, MK_Any, SelIdents, NumSelIdents,
CurContext, Results);
}
}
// Handle messages to a qualified ID ("id<foo>").
else if (const ObjCObjectPointerType *QualID
= ReceiverType->getAsObjCQualifiedIdType()) {
// Search protocols for instance methods.
for (ObjCObjectPointerType::qual_iterator I = QualID->qual_begin(),
E = QualID->qual_end();
I != E; ++I)
AddObjCMethods(*I, true, MK_Any, SelIdents, NumSelIdents, CurContext,
Results);
}
// Handle messages to a pointer to interface type.
else if (const ObjCObjectPointerType *IFacePtr
= ReceiverType->getAsObjCInterfacePointerType()) {
// Search the class, its superclasses, etc., for instance methods.
AddObjCMethods(IFacePtr->getInterfaceDecl(), true, MK_Any, SelIdents,
NumSelIdents, CurContext, Results);
// Search protocols for instance methods.
for (ObjCObjectPointerType::qual_iterator I = IFacePtr->qual_begin(),
E = IFacePtr->qual_end();
I != E; ++I)
AddObjCMethods(*I, true, MK_Any, SelIdents, NumSelIdents, CurContext,
Results);
}
// Handle messages to "id".
else if (ReceiverType->isObjCIdType()) {
// We're messaging "id", so provide all instance methods we know
// about as code-completion results.
// If we have an external source, load the entire class method
// pool from the PCH file.
if (ExternalSource) {
for (uint32_t I = 0, N = ExternalSource->GetNumExternalSelectors();
I != N; ++I) {
Selector Sel = ExternalSource->GetExternalSelector(I);
if (Sel.isNull() || InstanceMethodPool.count(Sel) ||
FactoryMethodPool.count(Sel))
continue;
ReadMethodPool(Sel, /*isInstance=*/true);
}
}
for (llvm::DenseMap<Selector, ObjCMethodList>::iterator
M = InstanceMethodPool.begin(),
MEnd = InstanceMethodPool.end();
M != MEnd;
++M) {
for (ObjCMethodList *MethList = &M->second; MethList && MethList->Method;
MethList = MethList->Next) {
if (!isAcceptableObjCMethod(MethList->Method, MK_Any, SelIdents,
NumSelIdents))
continue;
Result R(MethList->Method, 0);
R.StartParameter = NumSelIdents;
R.AllParametersAreInformative = false;
Results.MaybeAddResult(R, CurContext);
}
}
}
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
/// \brief Add all of the protocol declarations that we find in the given
/// (translation unit) context.
static void AddProtocolResults(DeclContext *Ctx, DeclContext *CurContext,
bool OnlyForwardDeclarations,
ResultBuilder &Results) {
typedef CodeCompleteConsumer::Result Result;
for (DeclContext::decl_iterator D = Ctx->decls_begin(),
DEnd = Ctx->decls_end();
D != DEnd; ++D) {
// Record any protocols we find.
if (ObjCProtocolDecl *Proto = dyn_cast<ObjCProtocolDecl>(*D))
if (!OnlyForwardDeclarations || Proto->isForwardDecl())
Results.AddResult(Result(Proto, 0), CurContext, 0, false);
// Record any forward-declared protocols we find.
if (ObjCForwardProtocolDecl *Forward
= dyn_cast<ObjCForwardProtocolDecl>(*D)) {
for (ObjCForwardProtocolDecl::protocol_iterator
P = Forward->protocol_begin(),
PEnd = Forward->protocol_end();
P != PEnd; ++P)
if (!OnlyForwardDeclarations || (*P)->isForwardDecl())
Results.AddResult(Result(*P, 0), CurContext, 0, false);
}
}
}
void Sema::CodeCompleteObjCProtocolReferences(IdentifierLocPair *Protocols,
unsigned NumProtocols) {
ResultBuilder Results(*this);
Results.EnterNewScope();
// Tell the result set to ignore all of the protocols we have
// already seen.
for (unsigned I = 0; I != NumProtocols; ++I)
if (ObjCProtocolDecl *Protocol = LookupProtocol(Protocols[I].first,
Protocols[I].second))
Results.Ignore(Protocol);
// Add all protocols.
AddProtocolResults(Context.getTranslationUnitDecl(), CurContext, false,
Results);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteObjCProtocolDecl(Scope *) {
ResultBuilder Results(*this);
Results.EnterNewScope();
// Add all protocols.
AddProtocolResults(Context.getTranslationUnitDecl(), CurContext, true,
Results);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
/// \brief Add all of the Objective-C interface declarations that we find in
/// the given (translation unit) context.
static void AddInterfaceResults(DeclContext *Ctx, DeclContext *CurContext,
bool OnlyForwardDeclarations,
bool OnlyUnimplemented,
ResultBuilder &Results) {
typedef CodeCompleteConsumer::Result Result;
for (DeclContext::decl_iterator D = Ctx->decls_begin(),
DEnd = Ctx->decls_end();
D != DEnd; ++D) {
// Record any interfaces we find.
if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(*D))
if ((!OnlyForwardDeclarations || Class->isForwardDecl()) &&
(!OnlyUnimplemented || !Class->getImplementation()))
Results.AddResult(Result(Class, 0), CurContext, 0, false);
// Record any forward-declared interfaces we find.
if (ObjCClassDecl *Forward = dyn_cast<ObjCClassDecl>(*D)) {
for (ObjCClassDecl::iterator C = Forward->begin(), CEnd = Forward->end();
C != CEnd; ++C)
if ((!OnlyForwardDeclarations || C->getInterface()->isForwardDecl()) &&
(!OnlyUnimplemented || !C->getInterface()->getImplementation()))
Results.AddResult(Result(C->getInterface(), 0), CurContext,
0, false);
}
}
}
void Sema::CodeCompleteObjCInterfaceDecl(Scope *S) {
ResultBuilder Results(*this);
Results.EnterNewScope();
// Add all classes.
AddInterfaceResults(Context.getTranslationUnitDecl(), CurContext, true,
false, Results);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteObjCSuperclass(Scope *S, IdentifierInfo *ClassName,
SourceLocation ClassNameLoc) {
ResultBuilder Results(*this);
Results.EnterNewScope();
// Make sure that we ignore the class we're currently defining.
NamedDecl *CurClass
= LookupSingleName(TUScope, ClassName, ClassNameLoc, LookupOrdinaryName);
if (CurClass && isa<ObjCInterfaceDecl>(CurClass))
Results.Ignore(CurClass);
// Add all classes.
AddInterfaceResults(Context.getTranslationUnitDecl(), CurContext, false,
false, Results);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteObjCImplementationDecl(Scope *S) {
ResultBuilder Results(*this);
Results.EnterNewScope();
// Add all unimplemented classes.
AddInterfaceResults(Context.getTranslationUnitDecl(), CurContext, false,
true, Results);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteObjCInterfaceCategory(Scope *S,
IdentifierInfo *ClassName,
SourceLocation ClassNameLoc) {
typedef CodeCompleteConsumer::Result Result;
ResultBuilder Results(*this);
// Ignore any categories we find that have already been implemented by this
// interface.
llvm::SmallPtrSet<IdentifierInfo *, 16> CategoryNames;
NamedDecl *CurClass
= LookupSingleName(TUScope, ClassName, ClassNameLoc, LookupOrdinaryName);
if (ObjCInterfaceDecl *Class = dyn_cast_or_null<ObjCInterfaceDecl>(CurClass))
for (ObjCCategoryDecl *Category = Class->getCategoryList(); Category;
Category = Category->getNextClassCategory())
CategoryNames.insert(Category->getIdentifier());
// Add all of the categories we know about.
Results.EnterNewScope();
TranslationUnitDecl *TU = Context.getTranslationUnitDecl();
for (DeclContext::decl_iterator D = TU->decls_begin(),
DEnd = TU->decls_end();
D != DEnd; ++D)
if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(*D))
if (CategoryNames.insert(Category->getIdentifier()))
Results.AddResult(Result(Category, 0), CurContext, 0, false);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteObjCImplementationCategory(Scope *S,
IdentifierInfo *ClassName,
SourceLocation ClassNameLoc) {
typedef CodeCompleteConsumer::Result Result;
// Find the corresponding interface. If we couldn't find the interface, the
// program itself is ill-formed. However, we'll try to be helpful still by
// providing the list of all of the categories we know about.
NamedDecl *CurClass
= LookupSingleName(TUScope, ClassName, ClassNameLoc, LookupOrdinaryName);
ObjCInterfaceDecl *Class = dyn_cast_or_null<ObjCInterfaceDecl>(CurClass);
if (!Class)
return CodeCompleteObjCInterfaceCategory(S, ClassName, ClassNameLoc);
ResultBuilder Results(*this);
// Add all of the categories that have have corresponding interface
// declarations in this class and any of its superclasses, except for
// already-implemented categories in the class itself.
llvm::SmallPtrSet<IdentifierInfo *, 16> CategoryNames;
Results.EnterNewScope();
bool IgnoreImplemented = true;
while (Class) {
for (ObjCCategoryDecl *Category = Class->getCategoryList(); Category;
Category = Category->getNextClassCategory())
if ((!IgnoreImplemented || !Category->getImplementation()) &&
CategoryNames.insert(Category->getIdentifier()))
Results.AddResult(Result(Category, 0), CurContext, 0, false);
Class = Class->getSuperClass();
IgnoreImplemented = false;
}
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteObjCPropertyDefinition(Scope *S, DeclPtrTy ObjCImpDecl) {
typedef CodeCompleteConsumer::Result Result;
ResultBuilder Results(*this);
// Figure out where this @synthesize lives.
ObjCContainerDecl *Container
= dyn_cast_or_null<ObjCContainerDecl>(ObjCImpDecl.getAs<Decl>());
if (!Container ||
(!isa<ObjCImplementationDecl>(Container) &&
!isa<ObjCCategoryImplDecl>(Container)))
return;
// Ignore any properties that have already been implemented.
for (DeclContext::decl_iterator D = Container->decls_begin(),
DEnd = Container->decls_end();
D != DEnd; ++D)
if (ObjCPropertyImplDecl *PropertyImpl = dyn_cast<ObjCPropertyImplDecl>(*D))
Results.Ignore(PropertyImpl->getPropertyDecl());
// Add any properties that we find.
Results.EnterNewScope();
if (ObjCImplementationDecl *ClassImpl
= dyn_cast<ObjCImplementationDecl>(Container))
AddObjCProperties(ClassImpl->getClassInterface(), false, CurContext,
Results);
else
AddObjCProperties(cast<ObjCCategoryImplDecl>(Container)->getCategoryDecl(),
false, CurContext, Results);
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteObjCPropertySynthesizeIvar(Scope *S,
IdentifierInfo *PropertyName,
DeclPtrTy ObjCImpDecl) {
typedef CodeCompleteConsumer::Result Result;
ResultBuilder Results(*this);
// Figure out where this @synthesize lives.
ObjCContainerDecl *Container
= dyn_cast_or_null<ObjCContainerDecl>(ObjCImpDecl.getAs<Decl>());
if (!Container ||
(!isa<ObjCImplementationDecl>(Container) &&
!isa<ObjCCategoryImplDecl>(Container)))
return;
// Figure out which interface we're looking into.
ObjCInterfaceDecl *Class = 0;
if (ObjCImplementationDecl *ClassImpl
= dyn_cast<ObjCImplementationDecl>(Container))
Class = ClassImpl->getClassInterface();
else
Class = cast<ObjCCategoryImplDecl>(Container)->getCategoryDecl()
->getClassInterface();
// Add all of the instance variables in this class and its superclasses.
Results.EnterNewScope();
for(; Class; Class = Class->getSuperClass()) {
// FIXME: We could screen the type of each ivar for compatibility with
// the property, but is that being too paternal?
for (ObjCInterfaceDecl::ivar_iterator IVar = Class->ivar_begin(),
IVarEnd = Class->ivar_end();
IVar != IVarEnd; ++IVar)
Results.AddResult(Result(*IVar, 0), CurContext, 0, false);
}
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
typedef llvm::DenseMap<Selector, ObjCMethodDecl *> KnownMethodsMap;
/// \brief Find all of the methods that reside in the given container
/// (and its superclasses, protocols, etc.) that meet the given
/// criteria. Insert those methods into the map of known methods,
/// indexed by selector so they can be easily found.
static void FindImplementableMethods(ASTContext &Context,
ObjCContainerDecl *Container,
bool WantInstanceMethods,
QualType ReturnType,
bool IsInImplementation,
KnownMethodsMap &KnownMethods) {
if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Container)) {
// Recurse into protocols.
const ObjCList<ObjCProtocolDecl> &Protocols
= IFace->getReferencedProtocols();
for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
E = Protocols.end();
I != E; ++I)
FindImplementableMethods(Context, *I, WantInstanceMethods, ReturnType,
IsInImplementation, KnownMethods);
// If we're not in the implementation of a class, also visit the
// superclass.
if (!IsInImplementation && IFace->getSuperClass())
FindImplementableMethods(Context, IFace->getSuperClass(),
WantInstanceMethods, ReturnType,
IsInImplementation, KnownMethods);
// Add methods from any class extensions (but not from categories;
// those should go into category implementations).
for (const ObjCCategoryDecl *Cat = IFace->getFirstClassExtension(); Cat;
Cat = Cat->getNextClassExtension())
FindImplementableMethods(Context, const_cast<ObjCCategoryDecl*>(Cat),
WantInstanceMethods, ReturnType,
IsInImplementation, KnownMethods);
}
if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Container)) {
// Recurse into protocols.
const ObjCList<ObjCProtocolDecl> &Protocols
= Category->getReferencedProtocols();
for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
E = Protocols.end();
I != E; ++I)
FindImplementableMethods(Context, *I, WantInstanceMethods, ReturnType,
IsInImplementation, KnownMethods);
}
if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Container)) {
// Recurse into protocols.
const ObjCList<ObjCProtocolDecl> &Protocols
= Protocol->getReferencedProtocols();
for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
E = Protocols.end();
I != E; ++I)
FindImplementableMethods(Context, *I, WantInstanceMethods, ReturnType,
IsInImplementation, KnownMethods);
}
// Add methods in this container. This operation occurs last because
// we want the methods from this container to override any methods
// we've previously seen with the same selector.
for (ObjCContainerDecl::method_iterator M = Container->meth_begin(),
MEnd = Container->meth_end();
M != MEnd; ++M) {
if ((*M)->isInstanceMethod() == WantInstanceMethods) {
if (!ReturnType.isNull() &&
!Context.hasSameUnqualifiedType(ReturnType, (*M)->getResultType()))
continue;
KnownMethods[(*M)->getSelector()] = *M;
}
}
}
void Sema::CodeCompleteObjCMethodDecl(Scope *S,
bool IsInstanceMethod,
TypeTy *ReturnTy,
DeclPtrTy IDecl) {
// Determine the return type of the method we're declaring, if
// provided.
QualType ReturnType = GetTypeFromParser(ReturnTy);
// Determine where we should start searching for methods, and where we
ObjCContainerDecl *SearchDecl = 0, *CurrentDecl = 0;
bool IsInImplementation = false;
if (Decl *D = IDecl.getAs<Decl>()) {
if (ObjCImplementationDecl *Impl = dyn_cast<ObjCImplementationDecl>(D)) {
SearchDecl = Impl->getClassInterface();
CurrentDecl = Impl;
IsInImplementation = true;
} else if (ObjCCategoryImplDecl *CatImpl
= dyn_cast<ObjCCategoryImplDecl>(D)) {
SearchDecl = CatImpl->getCategoryDecl();
CurrentDecl = CatImpl;
IsInImplementation = true;
} else {
SearchDecl = dyn_cast<ObjCContainerDecl>(D);
CurrentDecl = SearchDecl;
}
}
if (!SearchDecl && S) {
if (DeclContext *DC = static_cast<DeclContext *>(S->getEntity())) {
SearchDecl = dyn_cast<ObjCContainerDecl>(DC);
CurrentDecl = SearchDecl;
}
}
if (!SearchDecl || !CurrentDecl) {
HandleCodeCompleteResults(this, CodeCompleter, 0, 0);
return;
}
// Find all of the methods that we could declare/implement here.
KnownMethodsMap KnownMethods;
FindImplementableMethods(Context, SearchDecl, IsInstanceMethod,
ReturnType, IsInImplementation, KnownMethods);
// Erase any methods that have already been declared or
// implemented here.
for (ObjCContainerDecl::method_iterator M = CurrentDecl->meth_begin(),
MEnd = CurrentDecl->meth_end();
M != MEnd; ++M) {
if ((*M)->isInstanceMethod() != IsInstanceMethod)
continue;
KnownMethodsMap::iterator Pos = KnownMethods.find((*M)->getSelector());
if (Pos != KnownMethods.end())
KnownMethods.erase(Pos);
}
// Add declarations or definitions for each of the known methods.
typedef CodeCompleteConsumer::Result Result;
ResultBuilder Results(*this);
Results.EnterNewScope();
PrintingPolicy Policy(Context.PrintingPolicy);
Policy.AnonymousTagLocations = false;
for (KnownMethodsMap::iterator M = KnownMethods.begin(),
MEnd = KnownMethods.end();
M != MEnd; ++M) {
ObjCMethodDecl *Method = M->second;
CodeCompletionString *Pattern = new CodeCompletionString;
// If the result type was not already provided, add it to the
// pattern as (type).
if (ReturnType.isNull()) {
std::string TypeStr;
Method->getResultType().getAsStringInternal(TypeStr, Policy);
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddTextChunk(TypeStr);
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
}
Selector Sel = Method->getSelector();
// Add the first part of the selector to the pattern.
Pattern->AddTypedTextChunk(Sel.getIdentifierInfoForSlot(0)->getName());
// Add parameters to the pattern.
unsigned I = 0;
for (ObjCMethodDecl::param_iterator P = Method->param_begin(),
PEnd = Method->param_end();
P != PEnd; (void)++P, ++I) {
// Add the part of the selector name.
if (I == 0)
Pattern->AddChunk(CodeCompletionString::CK_Colon);
else if (I < Sel.getNumArgs()) {
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddTextChunk(Sel.getIdentifierInfoForSlot(1)->getName());
Pattern->AddChunk(CodeCompletionString::CK_Colon);
} else
break;
// Add the parameter type.
std::string TypeStr;
(*P)->getOriginalType().getAsStringInternal(TypeStr, Policy);
Pattern->AddChunk(CodeCompletionString::CK_LeftParen);
Pattern->AddTextChunk(TypeStr);
Pattern->AddChunk(CodeCompletionString::CK_RightParen);
if (IdentifierInfo *Id = (*P)->getIdentifier())
Pattern->AddTextChunk(Id->getName());
}
if (Method->isVariadic()) {
if (Method->param_size() > 0)
Pattern->AddChunk(CodeCompletionString::CK_Comma);
Pattern->AddTextChunk("...");
}
if (IsInImplementation && Results.includeCodePatterns()) {
// We will be defining the method here, so add a compound statement.
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddChunk(CodeCompletionString::CK_LeftBrace);
Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace);
if (!Method->getResultType()->isVoidType()) {
// If the result type is not void, add a return clause.
Pattern->AddTextChunk("return");
Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace);
Pattern->AddPlaceholderChunk("expression");
Pattern->AddChunk(CodeCompletionString::CK_SemiColon);
} else
Pattern->AddPlaceholderChunk("statements");
Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace);
Pattern->AddChunk(CodeCompletionString::CK_RightBrace);
}
Results.AddResult(Result(Pattern));
}
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}