| //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Expr nodes as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "clang/AST/AST.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Support/MathExtras.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| //===--------------------------------------------------------------------===// |
| // Miscellaneous Helper Methods |
| //===--------------------------------------------------------------------===// |
| |
| /// CreateTempAlloca - This creates a alloca and inserts it into the entry |
| /// block. |
| llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty, |
| const char *Name) { |
| return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); |
| } |
| |
| /// EvaluateExprAsBool - Perform the usual unary conversions on the specified |
| /// expression and compare the result against zero, returning an Int1Ty value. |
| llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { |
| QualType Ty; |
| RValue Val = EmitExprWithUsualUnaryConversions(E, Ty); |
| return ConvertScalarValueToBool(Val, Ty); |
| } |
| |
| /// EmitLoadOfComplex - Given an RValue reference for a complex, emit code to |
| /// load the real and imaginary pieces, returning them as Real/Imag. |
| void CodeGenFunction::EmitLoadOfComplex(RValue V, |
| llvm::Value *&Real, llvm::Value *&Imag){ |
| llvm::Value *Ptr = V.getAggregateAddr(); |
| |
| llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); |
| llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1); |
| llvm::Value *RealPtr = Builder.CreateGEP(Ptr, Zero, Zero, "realp"); |
| llvm::Value *ImagPtr = Builder.CreateGEP(Ptr, Zero, One, "imagp"); |
| |
| // FIXME: Handle volatility. |
| Real = Builder.CreateLoad(RealPtr, "real"); |
| Imag = Builder.CreateLoad(ImagPtr, "imag"); |
| } |
| |
| /// EmitStoreOfComplex - Store the specified real/imag parts into the |
| /// specified value pointer. |
| void CodeGenFunction::EmitStoreOfComplex(llvm::Value *Real, llvm::Value *Imag, |
| llvm::Value *ResPtr) { |
| llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); |
| llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1); |
| llvm::Value *RealPtr = Builder.CreateGEP(ResPtr, Zero, Zero, "real"); |
| llvm::Value *ImagPtr = Builder.CreateGEP(ResPtr, Zero, One, "imag"); |
| |
| // FIXME: Handle volatility. |
| Builder.CreateStore(Real, RealPtr); |
| Builder.CreateStore(Imag, ImagPtr); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Conversions |
| //===--------------------------------------------------------------------===// |
| |
| /// EmitConversion - Convert the value specied by Val, whose type is ValTy, to |
| /// the type specified by DstTy, following the rules of C99 6.3. |
| RValue CodeGenFunction::EmitConversion(RValue Val, QualType ValTy, |
| QualType DstTy) { |
| ValTy = ValTy.getCanonicalType(); |
| DstTy = DstTy.getCanonicalType(); |
| if (ValTy == DstTy) return Val; |
| |
| // Handle conversions to bool first, they are special: comparisons against 0. |
| if (const BuiltinType *DestBT = dyn_cast<BuiltinType>(DstTy)) |
| if (DestBT->getKind() == BuiltinType::Bool) |
| return RValue::get(ConvertScalarValueToBool(Val, ValTy)); |
| |
| // Handle pointer conversions next: pointers can only be converted to/from |
| // other pointers and integers. |
| if (isa<PointerType>(DstTy)) { |
| const llvm::Type *DestTy = ConvertType(DstTy); |
| |
| // The source value may be an integer, or a pointer. |
| assert(Val.isScalar() && "Can only convert from integer or pointer"); |
| if (isa<llvm::PointerType>(Val.getVal()->getType())) |
| return RValue::get(Builder.CreateBitCast(Val.getVal(), DestTy, "conv")); |
| assert(ValTy->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); |
| return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv")); |
| } |
| |
| if (isa<PointerType>(ValTy)) { |
| // Must be an ptr to int cast. |
| const llvm::Type *DestTy = ConvertType(DstTy); |
| assert(isa<llvm::IntegerType>(DestTy) && "not ptr->int?"); |
| return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv")); |
| } |
| |
| // Finally, we have the arithmetic types: real int/float and complex |
| // int/float. Handle real->real conversions first, they are the most |
| // common. |
| if (Val.isScalar() && DstTy->isRealType()) { |
| // We know that these are representable as scalars in LLVM, convert to LLVM |
| // types since they are easier to reason about. |
| llvm::Value *SrcVal = Val.getVal(); |
| const llvm::Type *DestTy = ConvertType(DstTy); |
| if (SrcVal->getType() == DestTy) return Val; |
| |
| llvm::Value *Result; |
| if (isa<llvm::IntegerType>(SrcVal->getType())) { |
| bool InputSigned = ValTy->isSignedIntegerType(); |
| if (isa<llvm::IntegerType>(DestTy)) |
| Result = Builder.CreateIntCast(SrcVal, DestTy, InputSigned, "conv"); |
| else if (InputSigned) |
| Result = Builder.CreateSIToFP(SrcVal, DestTy, "conv"); |
| else |
| Result = Builder.CreateUIToFP(SrcVal, DestTy, "conv"); |
| } else { |
| assert(SrcVal->getType()->isFloatingPoint() && "Unknown real conversion"); |
| if (isa<llvm::IntegerType>(DestTy)) { |
| if (DstTy->isSignedIntegerType()) |
| Result = Builder.CreateFPToSI(SrcVal, DestTy, "conv"); |
| else |
| Result = Builder.CreateFPToUI(SrcVal, DestTy, "conv"); |
| } else { |
| assert(DestTy->isFloatingPoint() && "Unknown real conversion"); |
| if (DestTy->getTypeID() < SrcVal->getType()->getTypeID()) |
| Result = Builder.CreateFPTrunc(SrcVal, DestTy, "conv"); |
| else |
| Result = Builder.CreateFPExt(SrcVal, DestTy, "conv"); |
| } |
| } |
| return RValue::get(Result); |
| } |
| |
| assert(0 && "FIXME: We don't support complex conversions yet!"); |
| } |
| |
| |
| /// ConvertScalarValueToBool - Convert the specified expression value to a |
| /// boolean (i1) truth value. This is equivalent to "Val == 0". |
| llvm::Value *CodeGenFunction::ConvertScalarValueToBool(RValue Val, QualType Ty){ |
| Ty = Ty.getCanonicalType(); |
| llvm::Value *Result; |
| if (const BuiltinType *BT = dyn_cast<BuiltinType>(Ty)) { |
| switch (BT->getKind()) { |
| default: assert(0 && "Unknown scalar value"); |
| case BuiltinType::Bool: |
| Result = Val.getVal(); |
| // Bool is already evaluated right. |
| assert(Result->getType() == llvm::Type::Int1Ty && |
| "Unexpected bool value type!"); |
| return Result; |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::SChar: |
| case BuiltinType::UChar: |
| case BuiltinType::Short: |
| case BuiltinType::UShort: |
| case BuiltinType::Int: |
| case BuiltinType::UInt: |
| case BuiltinType::Long: |
| case BuiltinType::ULong: |
| case BuiltinType::LongLong: |
| case BuiltinType::ULongLong: |
| // Code below handles simple integers. |
| break; |
| case BuiltinType::Float: |
| case BuiltinType::Double: |
| case BuiltinType::LongDouble: { |
| // Compare against 0.0 for fp scalars. |
| Result = Val.getVal(); |
| llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType()); |
| // FIXME: llvm-gcc produces a une comparison: validate this is right. |
| Result = Builder.CreateFCmpUNE(Result, Zero, "tobool"); |
| return Result; |
| } |
| } |
| } else if (isa<PointerType>(Ty) || |
| cast<TagType>(Ty)->getDecl()->getKind() == Decl::Enum) { |
| // Code below handles this fine. |
| } else { |
| assert(isa<ComplexType>(Ty) && "Unknwon type!"); |
| assert(0 && "FIXME: comparisons against complex not implemented yet"); |
| } |
| |
| // Usual case for integers, pointers, and enums: compare against zero. |
| Result = Val.getVal(); |
| |
| // Because of the type rules of C, we often end up computing a logical value, |
| // then zero extending it to int, then wanting it as a logical value again. |
| // Optimize this common case. |
| if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Result)) { |
| if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) { |
| Result = ZI->getOperand(0); |
| ZI->eraseFromParent(); |
| return Result; |
| } |
| } |
| |
| llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType()); |
| return Builder.CreateICmpNE(Result, Zero, "tobool"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LValue Expression Emission |
| //===----------------------------------------------------------------------===// |
| |
| /// EmitLValue - Emit code to compute a designator that specifies the location |
| /// of the expression. |
| /// |
| /// This can return one of two things: a simple address or a bitfield |
| /// reference. In either case, the LLVM Value* in the LValue structure is |
| /// guaranteed to be an LLVM pointer type. |
| /// |
| /// If this returns a bitfield reference, nothing about the pointee type of |
| /// the LLVM value is known: For example, it may not be a pointer to an |
| /// integer. |
| /// |
| /// If this returns a normal address, and if the lvalue's C type is fixed |
| /// size, this method guarantees that the returned pointer type will point to |
| /// an LLVM type of the same size of the lvalue's type. If the lvalue has a |
| /// variable length type, this is not possible. |
| /// |
| LValue CodeGenFunction::EmitLValue(const Expr *E) { |
| switch (E->getStmtClass()) { |
| default: |
| fprintf(stderr, "Unimplemented lvalue expr!\n"); |
| E->dump(); |
| return LValue::MakeAddr(llvm::UndefValue::get( |
| llvm::PointerType::get(llvm::Type::Int32Ty))); |
| |
| case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E)); |
| case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); |
| case Expr::PreDefinedExprClass: |
| return EmitPreDefinedLValue(cast<PreDefinedExpr>(E)); |
| case Expr::StringLiteralClass: |
| return EmitStringLiteralLValue(cast<StringLiteral>(E)); |
| |
| case Expr::UnaryOperatorClass: |
| return EmitUnaryOpLValue(cast<UnaryOperator>(E)); |
| case Expr::ArraySubscriptExprClass: |
| return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); |
| case Expr::OCUVectorComponentClass: |
| return EmitOCUVectorComponentExpr(cast<OCUVectorComponent>(E)); |
| } |
| } |
| |
| /// EmitLoadOfLValue - Given an expression that represents a value lvalue, |
| /// this method emits the address of the lvalue, then loads the result as an |
| /// rvalue, returning the rvalue. |
| RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) { |
| ExprType = ExprType.getCanonicalType(); |
| |
| if (LV.isSimple()) { |
| llvm::Value *Ptr = LV.getAddress(); |
| const llvm::Type *EltTy = |
| cast<llvm::PointerType>(Ptr->getType())->getElementType(); |
| |
| // Simple scalar l-value. |
| if (EltTy->isFirstClassType()) |
| return RValue::get(Builder.CreateLoad(Ptr, "tmp")); |
| |
| // Otherwise, we have an aggregate lvalue. |
| return RValue::getAggregate(Ptr); |
| } |
| |
| if (LV.isVectorElt()) { |
| llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), "tmp"); |
| return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), |
| "vecext")); |
| } |
| |
| assert(0 && "Bitfield ref not impl!"); |
| } |
| |
| RValue CodeGenFunction::EmitLoadOfLValue(const Expr *E) { |
| return EmitLoadOfLValue(EmitLValue(E), E->getType()); |
| } |
| |
| |
| /// EmitStoreThroughLValue - Store the specified rvalue into the specified |
| /// lvalue, where both are guaranteed to the have the same type, and that type |
| /// is 'Ty'. |
| void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, |
| QualType Ty) { |
| if (Dst.isVectorElt()) { |
| // Read/modify/write the vector, inserting the new element. |
| // FIXME: Volatility. |
| llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), "tmp"); |
| Vec = Builder.CreateInsertElement(Vec, Src.getVal(), |
| Dst.getVectorIdx(), "vecins"); |
| Builder.CreateStore(Vec, Dst.getVectorAddr()); |
| return; |
| } |
| |
| assert(Dst.isSimple() && "FIXME: Don't support store to bitfield yet"); |
| |
| llvm::Value *DstAddr = Dst.getAddress(); |
| if (Src.isScalar()) { |
| // FIXME: Handle volatility etc. |
| const llvm::Type *SrcTy = Src.getVal()->getType(); |
| const llvm::Type *AddrTy = |
| cast<llvm::PointerType>(DstAddr->getType())->getElementType(); |
| |
| if (AddrTy != SrcTy) |
| DstAddr = Builder.CreateBitCast(DstAddr, llvm::PointerType::get(SrcTy), |
| "storetmp"); |
| Builder.CreateStore(Src.getVal(), DstAddr); |
| return; |
| } |
| |
| // Don't use memcpy for complex numbers. |
| if (Ty->isComplexType()) { |
| llvm::Value *Real, *Imag; |
| EmitLoadOfComplex(Src, Real, Imag); |
| EmitStoreOfComplex(Real, Imag, Dst.getAddress()); |
| return; |
| } |
| |
| // Aggregate assignment turns into llvm.memcpy. |
| const llvm::Type *SBP = llvm::PointerType::get(llvm::Type::Int8Ty); |
| llvm::Value *SrcAddr = Src.getAggregateAddr(); |
| |
| if (DstAddr->getType() != SBP) |
| DstAddr = Builder.CreateBitCast(DstAddr, SBP, "tmp"); |
| if (SrcAddr->getType() != SBP) |
| SrcAddr = Builder.CreateBitCast(SrcAddr, SBP, "tmp"); |
| |
| unsigned Align = 1; // FIXME: Compute type alignments. |
| unsigned Size = 1234; // FIXME: Compute type sizes. |
| |
| // FIXME: Handle variable sized types. |
| const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); |
| llvm::Value *SizeVal = llvm::ConstantInt::get(IntPtr, Size); |
| |
| llvm::Value *MemCpyOps[4] = { |
| DstAddr, SrcAddr, SizeVal,llvm::ConstantInt::get(llvm::Type::Int32Ty, Align) |
| }; |
| |
| Builder.CreateCall(CGM.getMemCpyFn(), MemCpyOps, MemCpyOps+4); |
| } |
| |
| |
| LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { |
| const Decl *D = E->getDecl(); |
| if (isa<BlockVarDecl>(D) || isa<ParmVarDecl>(D)) { |
| llvm::Value *V = LocalDeclMap[D]; |
| assert(V && "BlockVarDecl not entered in LocalDeclMap?"); |
| return LValue::MakeAddr(V); |
| } else if (isa<FunctionDecl>(D) || isa<FileVarDecl>(D)) { |
| return LValue::MakeAddr(CGM.GetAddrOfGlobalDecl(D)); |
| } |
| assert(0 && "Unimp declref"); |
| } |
| |
| LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { |
| // __extension__ doesn't affect lvalue-ness. |
| if (E->getOpcode() == UnaryOperator::Extension) |
| return EmitLValue(E->getSubExpr()); |
| |
| assert(E->getOpcode() == UnaryOperator::Deref && |
| "'*' is the only unary operator that produces an lvalue"); |
| return LValue::MakeAddr(EmitExpr(E->getSubExpr()).getVal()); |
| } |
| |
| LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { |
| assert(!E->isWide() && "FIXME: Wide strings not supported yet!"); |
| const char *StrData = E->getStrData(); |
| unsigned Len = E->getByteLength(); |
| |
| // FIXME: Can cache/reuse these within the module. |
| llvm::Constant *C=llvm::ConstantArray::get(std::string(StrData, StrData+Len)); |
| |
| // Create a global variable for this. |
| C = new llvm::GlobalVariable(C->getType(), true, |
| llvm::GlobalValue::InternalLinkage, |
| C, ".str", CurFn->getParent()); |
| llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); |
| llvm::Constant *Zeros[] = { Zero, Zero }; |
| C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2); |
| return LValue::MakeAddr(C); |
| } |
| |
| LValue CodeGenFunction::EmitPreDefinedLValue(const PreDefinedExpr *E) { |
| std::string FunctionName(CurFuncDecl->getName()); |
| std::string GlobalVarName; |
| |
| switch (E->getIdentType()) { |
| default: |
| assert(0 && "unknown pre-defined ident type"); |
| case PreDefinedExpr::Func: |
| GlobalVarName = "__func__."; |
| break; |
| case PreDefinedExpr::Function: |
| GlobalVarName = "__FUNCTION__."; |
| break; |
| case PreDefinedExpr::PrettyFunction: |
| // FIXME:: Demangle C++ method names |
| GlobalVarName = "__PRETTY_FUNCTION__."; |
| break; |
| } |
| |
| GlobalVarName += CurFuncDecl->getName(); |
| |
| // FIXME: Can cache/reuse these within the module. |
| llvm::Constant *C=llvm::ConstantArray::get(FunctionName); |
| |
| // Create a global variable for this. |
| C = new llvm::GlobalVariable(C->getType(), true, |
| llvm::GlobalValue::InternalLinkage, |
| C, GlobalVarName, CurFn->getParent()); |
| llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); |
| llvm::Constant *Zeros[] = { Zero, Zero }; |
| C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2); |
| return LValue::MakeAddr(C); |
| } |
| |
| LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { |
| // The index must always be a pointer or integer, neither of which is an |
| // aggregate. Emit it. |
| QualType IdxTy; |
| llvm::Value *Idx = |
| EmitExprWithUsualUnaryConversions(E->getIdx(), IdxTy).getVal(); |
| |
| // If the base is a vector type, then we are forming a vector element lvalue |
| // with this subscript. |
| if (E->getBase()->getType()->isVectorType()) { |
| // Emit the vector as an lvalue to get its address. |
| LValue Base = EmitLValue(E->getBase()); |
| assert(Base.isSimple() && "Can only subscript lvalue vectors here!"); |
| // FIXME: This should properly sign/zero/extend or truncate Idx to i32. |
| return LValue::MakeVectorElt(Base.getAddress(), Idx); |
| } |
| |
| // At this point, the base must be a pointer or integer, neither of which are |
| // aggregates. Emit it. |
| QualType BaseTy; |
| llvm::Value *Base = |
| EmitExprWithUsualUnaryConversions(E->getBase(), BaseTy).getVal(); |
| |
| // Usually the base is the pointer type, but sometimes it is the index. |
| // Canonicalize to have the pointer as the base. |
| if (isa<llvm::PointerType>(Idx->getType())) { |
| std::swap(Base, Idx); |
| std::swap(BaseTy, IdxTy); |
| } |
| |
| // The pointer is now the base. Extend or truncate the index type to 32 or |
| // 64-bits. |
| bool IdxSigned = IdxTy->isSignedIntegerType(); |
| unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); |
| if (IdxBitwidth != LLVMPointerWidth) |
| Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth), |
| IdxSigned, "idxprom"); |
| |
| // We know that the pointer points to a type of the correct size, unless the |
| // size is a VLA. |
| if (!E->getType()->isConstantSizeType(getContext())) |
| assert(0 && "VLA idx not implemented"); |
| return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx")); |
| } |
| |
| LValue CodeGenFunction:: |
| EmitOCUVectorComponentExpr(const OCUVectorComponent *E) { |
| // Emit the base vector as an l-value. |
| LValue Base = EmitLValue(E->getBase()); |
| assert(Base.isSimple() && "Can only subscript lvalue vectors here!"); |
| |
| return LValue::MakeOCUVectorComp(Base.getAddress(), |
| E->getEncodedElementAccess()); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Expression Emission |
| //===--------------------------------------------------------------------===// |
| |
| RValue CodeGenFunction::EmitExpr(const Expr *E) { |
| assert(E && "Null expression?"); |
| |
| switch (E->getStmtClass()) { |
| default: |
| fprintf(stderr, "Unimplemented expr!\n"); |
| E->dump(); |
| return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty)); |
| |
| // l-values. |
| case Expr::DeclRefExprClass: |
| // DeclRef's of EnumConstantDecl's are simple rvalues. |
| if (const EnumConstantDecl *EC = |
| dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl())) |
| return RValue::get(llvm::ConstantInt::get(EC->getInitVal())); |
| return EmitLoadOfLValue(E); |
| case Expr::ArraySubscriptExprClass: |
| return EmitArraySubscriptExprRV(cast<ArraySubscriptExpr>(E)); |
| case Expr::PreDefinedExprClass: |
| case Expr::StringLiteralClass: |
| return RValue::get(EmitLValue(E).getAddress()); |
| |
| // Leaf expressions. |
| case Expr::IntegerLiteralClass: |
| return EmitIntegerLiteral(cast<IntegerLiteral>(E)); |
| case Expr::FloatingLiteralClass: |
| return EmitFloatingLiteral(cast<FloatingLiteral>(E)); |
| case Expr::CharacterLiteralClass: |
| return EmitCharacterLiteral(cast<CharacterLiteral>(E)); |
| |
| // Operators. |
| case Expr::ParenExprClass: |
| return EmitExpr(cast<ParenExpr>(E)->getSubExpr()); |
| case Expr::UnaryOperatorClass: |
| return EmitUnaryOperator(cast<UnaryOperator>(E)); |
| case Expr::SizeOfAlignOfTypeExprClass: |
| return EmitSizeAlignOf(cast<SizeOfAlignOfTypeExpr>(E)->getArgumentType(), |
| E->getType(), |
| cast<SizeOfAlignOfTypeExpr>(E)->isSizeOf()); |
| case Expr::ImplicitCastExprClass: |
| return EmitCastExpr(cast<ImplicitCastExpr>(E)->getSubExpr(), E->getType()); |
| case Expr::CastExprClass: |
| return EmitCastExpr(cast<CastExpr>(E)->getSubExpr(), E->getType()); |
| case Expr::CallExprClass: |
| return EmitCallExpr(cast<CallExpr>(E)); |
| case Expr::BinaryOperatorClass: |
| return EmitBinaryOperator(cast<BinaryOperator>(E)); |
| |
| case Expr::ConditionalOperatorClass: |
| return EmitConditionalOperator(cast<ConditionalOperator>(E)); |
| } |
| |
| } |
| |
| RValue CodeGenFunction::EmitIntegerLiteral(const IntegerLiteral *E) { |
| return RValue::get(llvm::ConstantInt::get(E->getValue())); |
| } |
| RValue CodeGenFunction::EmitFloatingLiteral(const FloatingLiteral *E) { |
| return RValue::get(llvm::ConstantFP::get(ConvertType(E->getType()), |
| E->getValue())); |
| } |
| RValue CodeGenFunction::EmitCharacterLiteral(const CharacterLiteral *E) { |
| return RValue::get(llvm::ConstantInt::get(ConvertType(E->getType()), |
| E->getValue())); |
| } |
| |
| RValue CodeGenFunction::EmitArraySubscriptExprRV(const ArraySubscriptExpr *E) { |
| // Emit subscript expressions in rvalue context's. For most cases, this just |
| // loads the lvalue formed by the subscript expr. However, we have to be |
| // careful, because the base of a vector subscript is occasionally an rvalue, |
| // so we can't get it as an lvalue. |
| if (!E->getBase()->getType()->isVectorType()) |
| return EmitLoadOfLValue(E); |
| |
| // Handle the vector case. The base must be a vector, the index must be an |
| // integer value. |
| QualType BaseTy, IdxTy; |
| llvm::Value *Base = |
| EmitExprWithUsualUnaryConversions(E->getBase(), BaseTy).getVal(); |
| llvm::Value *Idx = |
| EmitExprWithUsualUnaryConversions(E->getIdx(), IdxTy).getVal(); |
| |
| // FIXME: Convert Idx to i32 type. |
| |
| return RValue::get(Builder.CreateExtractElement(Base, Idx, "vecext")); |
| } |
| |
| // EmitCastExpr - Emit code for an explicit or implicit cast. Implicit casts |
| // have to handle a more broad range of conversions than explicit casts, as they |
| // handle things like function to ptr-to-function decay etc. |
| RValue CodeGenFunction::EmitCastExpr(const Expr *Op, QualType DestTy) { |
| QualType SrcTy; |
| RValue Src = EmitExprWithUsualUnaryConversions(Op, SrcTy); |
| |
| // If the destination is void, just evaluate the source. |
| if (DestTy->isVoidType()) |
| return RValue::getAggregate(0); |
| |
| return EmitConversion(Src, SrcTy, DestTy); |
| } |
| |
| RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) { |
| QualType CalleeTy; |
| llvm::Value *Callee = |
| EmitExprWithUsualUnaryConversions(E->getCallee(), CalleeTy).getVal(); |
| |
| // The callee type will always be a pointer to function type, get the function |
| // type. |
| CalleeTy = cast<PointerType>(CalleeTy.getCanonicalType())->getPointeeType(); |
| |
| // Get information about the argument types. |
| FunctionTypeProto::arg_type_iterator ArgTyIt = 0, ArgTyEnd = 0; |
| |
| // Calling unprototyped functions provides no argument info. |
| if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(CalleeTy)) { |
| ArgTyIt = FTP->arg_type_begin(); |
| ArgTyEnd = FTP->arg_type_end(); |
| } |
| |
| llvm::SmallVector<llvm::Value*, 16> Args; |
| |
| // FIXME: Handle struct return. |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { |
| QualType ArgTy; |
| RValue ArgVal = EmitExprWithUsualUnaryConversions(E->getArg(i), ArgTy); |
| |
| // If this argument has prototype information, convert it. |
| if (ArgTyIt != ArgTyEnd) { |
| ArgVal = EmitConversion(ArgVal, ArgTy, *ArgTyIt++); |
| } else { |
| // Otherwise, if passing through "..." or to a function with no prototype, |
| // perform the "default argument promotions" (C99 6.5.2.2p6), which |
| // includes the usual unary conversions, but also promotes float to |
| // double. |
| if (const BuiltinType *BT = |
| dyn_cast<BuiltinType>(ArgTy.getCanonicalType())) { |
| if (BT->getKind() == BuiltinType::Float) |
| ArgVal = RValue::get(Builder.CreateFPExt(ArgVal.getVal(), |
| llvm::Type::DoubleTy,"tmp")); |
| } |
| } |
| |
| |
| if (ArgVal.isScalar()) |
| Args.push_back(ArgVal.getVal()); |
| else // Pass by-address. FIXME: Set attribute bit on call. |
| Args.push_back(ArgVal.getAggregateAddr()); |
| } |
| |
| llvm::Value *V = Builder.CreateCall(Callee, &Args[0], &Args[0]+Args.size()); |
| if (V->getType() != llvm::Type::VoidTy) |
| V->setName("call"); |
| |
| // FIXME: Struct return; |
| return RValue::get(V); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Unary Operator Emission |
| //===----------------------------------------------------------------------===// |
| |
| RValue CodeGenFunction::EmitExprWithUsualUnaryConversions(const Expr *E, |
| QualType &ResTy) { |
| ResTy = E->getType().getCanonicalType(); |
| |
| if (isa<FunctionType>(ResTy)) { // C99 6.3.2.1p4 |
| // Functions are promoted to their address. |
| ResTy = getContext().getPointerType(ResTy); |
| return RValue::get(EmitLValue(E).getAddress()); |
| } else if (const ArrayType *ary = dyn_cast<ArrayType>(ResTy)) { |
| // C99 6.3.2.1p3 |
| ResTy = getContext().getPointerType(ary->getElementType()); |
| |
| // FIXME: For now we assume that all source arrays map to LLVM arrays. This |
| // will not true when we add support for VLAs. |
| llvm::Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. |
| |
| assert(isa<llvm::PointerType>(V->getType()) && |
| isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) |
| ->getElementType()) && |
| "Doesn't support VLAs yet!"); |
| llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); |
| return RValue::get(Builder.CreateGEP(V, Idx0, Idx0, "arraydecay")); |
| } else if (ResTy->isPromotableIntegerType()) { // C99 6.3.1.1p2 |
| // FIXME: this probably isn't right, pending clarification from Steve. |
| llvm::Value *Val = EmitExpr(E).getVal(); |
| |
| // If the input is a signed integer, sign extend to the destination. |
| if (ResTy->isSignedIntegerType()) { |
| Val = Builder.CreateSExt(Val, LLVMIntTy, "promote"); |
| } else { |
| // This handles unsigned types, including bool. |
| Val = Builder.CreateZExt(Val, LLVMIntTy, "promote"); |
| } |
| ResTy = getContext().IntTy; |
| |
| return RValue::get(Val); |
| } |
| |
| // Otherwise, this is a float, double, int, struct, etc. |
| return EmitExpr(E); |
| } |
| |
| |
| RValue CodeGenFunction::EmitUnaryOperator(const UnaryOperator *E) { |
| switch (E->getOpcode()) { |
| default: |
| printf("Unimplemented unary expr!\n"); |
| E->dump(); |
| return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty)); |
| case UnaryOperator::PostInc: |
| case UnaryOperator::PostDec: |
| case UnaryOperator::PreInc : |
| case UnaryOperator::PreDec : return EmitUnaryIncDec(E); |
| case UnaryOperator::AddrOf : return EmitUnaryAddrOf(E); |
| case UnaryOperator::Deref : return EmitLoadOfLValue(E); |
| case UnaryOperator::Plus : return EmitUnaryPlus(E); |
| case UnaryOperator::Minus : return EmitUnaryMinus(E); |
| case UnaryOperator::Not : return EmitUnaryNot(E); |
| case UnaryOperator::LNot : return EmitUnaryLNot(E); |
| case UnaryOperator::SizeOf : |
| return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true); |
| case UnaryOperator::AlignOf : |
| return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false); |
| // FIXME: real/imag |
| case UnaryOperator::Extension: return EmitExpr(E->getSubExpr()); |
| } |
| } |
| |
| RValue CodeGenFunction::EmitUnaryIncDec(const UnaryOperator *E) { |
| LValue LV = EmitLValue(E->getSubExpr()); |
| RValue InVal = EmitLoadOfLValue(LV, E->getSubExpr()->getType()); |
| |
| // We know the operand is real or pointer type, so it must be an LLVM scalar. |
| assert(InVal.isScalar() && "Unknown thing to increment"); |
| llvm::Value *InV = InVal.getVal(); |
| |
| int AmountVal = 1; |
| if (E->getOpcode() == UnaryOperator::PreDec || |
| E->getOpcode() == UnaryOperator::PostDec) |
| AmountVal = -1; |
| |
| llvm::Value *NextVal; |
| if (isa<llvm::IntegerType>(InV->getType())) { |
| NextVal = llvm::ConstantInt::get(InV->getType(), AmountVal); |
| NextVal = Builder.CreateAdd(InV, NextVal, AmountVal == 1 ? "inc" : "dec"); |
| } else if (InV->getType()->isFloatingPoint()) { |
| NextVal = llvm::ConstantFP::get(InV->getType(), AmountVal); |
| NextVal = Builder.CreateAdd(InV, NextVal, AmountVal == 1 ? "inc" : "dec"); |
| } else { |
| // FIXME: This is not right for pointers to VLA types. |
| assert(isa<llvm::PointerType>(InV->getType())); |
| NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal); |
| NextVal = Builder.CreateGEP(InV, NextVal, AmountVal == 1 ? "inc" : "dec"); |
| } |
| |
| RValue NextValToStore = RValue::get(NextVal); |
| |
| // Store the updated result through the lvalue. |
| EmitStoreThroughLValue(NextValToStore, LV, E->getSubExpr()->getType()); |
| |
| // If this is a postinc, return the value read from memory, otherwise use the |
| // updated value. |
| if (E->getOpcode() == UnaryOperator::PreDec || |
| E->getOpcode() == UnaryOperator::PreInc) |
| return NextValToStore; |
| else |
| return InVal; |
| } |
| |
| /// C99 6.5.3.2 |
| RValue CodeGenFunction::EmitUnaryAddrOf(const UnaryOperator *E) { |
| // The address of the operand is just its lvalue. It cannot be a bitfield. |
| return RValue::get(EmitLValue(E->getSubExpr()).getAddress()); |
| } |
| |
| RValue CodeGenFunction::EmitUnaryPlus(const UnaryOperator *E) { |
| // Unary plus just performs promotions on its arithmetic operand. |
| QualType Ty; |
| return EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty); |
| } |
| |
| RValue CodeGenFunction::EmitUnaryMinus(const UnaryOperator *E) { |
| // Unary minus performs promotions, then negates its arithmetic operand. |
| QualType Ty; |
| RValue V = EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty); |
| |
| if (V.isScalar()) |
| return RValue::get(Builder.CreateNeg(V.getVal(), "neg")); |
| |
| assert(0 && "FIXME: This doesn't handle complex operands yet"); |
| } |
| |
| RValue CodeGenFunction::EmitUnaryNot(const UnaryOperator *E) { |
| // Unary not performs promotions, then complements its integer operand. |
| QualType Ty; |
| RValue V = EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty); |
| |
| if (V.isScalar()) |
| return RValue::get(Builder.CreateNot(V.getVal(), "neg")); |
| |
| assert(0 && "FIXME: This doesn't handle integer complex operands yet (GNU)"); |
| } |
| |
| |
| /// C99 6.5.3.3 |
| RValue CodeGenFunction::EmitUnaryLNot(const UnaryOperator *E) { |
| // Compare operand to zero. |
| llvm::Value *BoolVal = EvaluateExprAsBool(E->getSubExpr()); |
| |
| // Invert value. |
| // TODO: Could dynamically modify easy computations here. For example, if |
| // the operand is an icmp ne, turn into icmp eq. |
| BoolVal = Builder.CreateNot(BoolVal, "lnot"); |
| |
| // ZExt result to int. |
| return RValue::get(Builder.CreateZExt(BoolVal, LLVMIntTy, "lnot.ext")); |
| } |
| |
| /// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as |
| /// an integer (RetType). |
| RValue CodeGenFunction::EmitSizeAlignOf(QualType TypeToSize, |
| QualType RetType, bool isSizeOf) { |
| /// FIXME: This doesn't handle VLAs yet! |
| std::pair<uint64_t, unsigned> Info = |
| getContext().getTypeInfo(TypeToSize, SourceLocation()); |
| |
| uint64_t Val = isSizeOf ? Info.first : Info.second; |
| Val /= 8; // Return size in bytes, not bits. |
| |
| assert(RetType->isIntegerType() && "Result type must be an integer!"); |
| |
| unsigned ResultWidth = getContext().getTypeSize(RetType, SourceLocation()); |
| return RValue::get(llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val))); |
| } |
| |
| |
| //===--------------------------------------------------------------------===// |
| // Binary Operator Emission |
| //===--------------------------------------------------------------------===// |
| |
| // FIXME describe. |
| QualType CodeGenFunction:: |
| EmitUsualArithmeticConversions(const BinaryOperator *E, RValue &LHS, |
| RValue &RHS) { |
| QualType LHSType, RHSType; |
| LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), LHSType); |
| RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSType); |
| |
| // If both operands have the same source type, we're done already. |
| if (LHSType == RHSType) return LHSType; |
| |
| // If either side is a non-arithmetic type (e.g. a pointer), we are done. |
| // The caller can deal with this (e.g. pointer + int). |
| if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType()) |
| return LHSType; |
| |
| // At this point, we have two different arithmetic types. |
| |
| // Handle complex types first (C99 6.3.1.8p1). |
| if (LHSType->isComplexType() || RHSType->isComplexType()) { |
| assert(0 && "FIXME: complex types unimp"); |
| #if 0 |
| // if we have an integer operand, the result is the complex type. |
| if (rhs->isIntegerType()) |
| return lhs; |
| if (lhs->isIntegerType()) |
| return rhs; |
| return Context.maxComplexType(lhs, rhs); |
| #endif |
| } |
| |
| // If neither operand is complex, they must be scalars. |
| llvm::Value *LHSV = LHS.getVal(); |
| llvm::Value *RHSV = RHS.getVal(); |
| |
| // If the LLVM types are already equal, then they only differed in sign, or it |
| // was something like char/signed char or double/long double. |
| if (LHSV->getType() == RHSV->getType()) |
| return LHSType; |
| |
| // Now handle "real" floating types (i.e. float, double, long double). |
| if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) { |
| // if we have an integer operand, the result is the real floating type, and |
| // the integer converts to FP. |
| if (RHSType->isIntegerType()) { |
| // Promote the RHS to an FP type of the LHS, with the sign following the |
| // RHS. |
| if (RHSType->isSignedIntegerType()) |
| RHS = RValue::get(Builder.CreateSIToFP(RHSV,LHSV->getType(),"promote")); |
| else |
| RHS = RValue::get(Builder.CreateUIToFP(RHSV,LHSV->getType(),"promote")); |
| return LHSType; |
| } |
| |
| if (LHSType->isIntegerType()) { |
| // Promote the LHS to an FP type of the RHS, with the sign following the |
| // LHS. |
| if (LHSType->isSignedIntegerType()) |
| LHS = RValue::get(Builder.CreateSIToFP(LHSV,RHSV->getType(),"promote")); |
| else |
| LHS = RValue::get(Builder.CreateUIToFP(LHSV,RHSV->getType(),"promote")); |
| return RHSType; |
| } |
| |
| // Otherwise, they are two FP types. Promote the smaller operand to the |
| // bigger result. |
| QualType BiggerType = ASTContext::maxFloatingType(LHSType, RHSType); |
| |
| if (BiggerType == LHSType) |
| RHS = RValue::get(Builder.CreateFPExt(RHSV, LHSV->getType(), "promote")); |
| else |
| LHS = RValue::get(Builder.CreateFPExt(LHSV, RHSV->getType(), "promote")); |
| return BiggerType; |
| } |
| |
| // Finally, we have two integer types that are different according to C. Do |
| // a sign or zero extension if needed. |
| |
| // Otherwise, one type is smaller than the other. |
| QualType ResTy = ASTContext::maxIntegerType(LHSType, RHSType); |
| |
| if (LHSType == ResTy) { |
| if (RHSType->isSignedIntegerType()) |
| RHS = RValue::get(Builder.CreateSExt(RHSV, LHSV->getType(), "promote")); |
| else |
| RHS = RValue::get(Builder.CreateZExt(RHSV, LHSV->getType(), "promote")); |
| } else { |
| assert(RHSType == ResTy && "Unknown conversion"); |
| if (LHSType->isSignedIntegerType()) |
| LHS = RValue::get(Builder.CreateSExt(LHSV, RHSV->getType(), "promote")); |
| else |
| LHS = RValue::get(Builder.CreateZExt(LHSV, RHSV->getType(), "promote")); |
| } |
| return ResTy; |
| } |
| |
| /// EmitCompoundAssignmentOperands - Compound assignment operations (like +=) |
| /// are strange in that the result of the operation is not the same type as the |
| /// intermediate computation. This function emits the LHS and RHS operands of |
| /// the compound assignment, promoting them to their common computation type. |
| /// |
| /// Since the LHS is an lvalue, and the result is stored back through it, we |
| /// return the lvalue as well as the LHS/RHS rvalues. On return, the LHS and |
| /// RHS values are both in the computation type for the operator. |
| void CodeGenFunction:: |
| EmitCompoundAssignmentOperands(const CompoundAssignOperator *E, |
| LValue &LHSLV, RValue &LHS, RValue &RHS) { |
| LHSLV = EmitLValue(E->getLHS()); |
| |
| // Load the LHS and RHS operands. |
| QualType LHSTy = E->getLHS()->getType(); |
| LHS = EmitLoadOfLValue(LHSLV, LHSTy); |
| QualType RHSTy; |
| RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy); |
| |
| // Shift operands do the usual unary conversions, but do not do the binary |
| // conversions. |
| if (E->isShiftAssignOp()) { |
| // FIXME: This is broken. Implicit conversions should be made explicit, |
| // so that this goes away. This causes us to reload the LHS. |
| LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), LHSTy); |
| } |
| |
| // Convert the LHS and RHS to the common evaluation type. |
| LHS = EmitConversion(LHS, LHSTy, E->getComputationType()); |
| RHS = EmitConversion(RHS, RHSTy, E->getComputationType()); |
| } |
| |
| /// EmitCompoundAssignmentResult - Given a result value in the computation type, |
| /// truncate it down to the actual result type, store it through the LHS lvalue, |
| /// and return it. |
| RValue CodeGenFunction:: |
| EmitCompoundAssignmentResult(const CompoundAssignOperator *E, |
| LValue LHSLV, RValue ResV) { |
| |
| // Truncate back to the destination type. |
| if (E->getComputationType() != E->getType()) |
| ResV = EmitConversion(ResV, E->getComputationType(), E->getType()); |
| |
| // Store the result value into the LHS. |
| EmitStoreThroughLValue(ResV, LHSLV, E->getType()); |
| |
| // Return the result. |
| return ResV; |
| } |
| |
| |
| RValue CodeGenFunction::EmitBinaryOperator(const BinaryOperator *E) { |
| RValue LHS, RHS; |
| switch (E->getOpcode()) { |
| default: |
| fprintf(stderr, "Unimplemented binary expr!\n"); |
| E->dump(); |
| return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty)); |
| case BinaryOperator::Mul: |
| EmitUsualArithmeticConversions(E, LHS, RHS); |
| return EmitMul(LHS, RHS, E->getType()); |
| case BinaryOperator::Div: |
| EmitUsualArithmeticConversions(E, LHS, RHS); |
| return EmitDiv(LHS, RHS, E->getType()); |
| case BinaryOperator::Rem: |
| EmitUsualArithmeticConversions(E, LHS, RHS); |
| return EmitRem(LHS, RHS, E->getType()); |
| case BinaryOperator::Add: { |
| QualType ExprTy = E->getType(); |
| if (ExprTy->isPointerType()) { |
| Expr *LHSExpr = E->getLHS(); |
| QualType LHSTy; |
| LHS = EmitExprWithUsualUnaryConversions(LHSExpr, LHSTy); |
| Expr *RHSExpr = E->getRHS(); |
| QualType RHSTy; |
| RHS = EmitExprWithUsualUnaryConversions(RHSExpr, RHSTy); |
| return EmitPointerAdd(LHS, LHSTy, RHS, RHSTy, ExprTy); |
| } else { |
| EmitUsualArithmeticConversions(E, LHS, RHS); |
| return EmitAdd(LHS, RHS, ExprTy); |
| } |
| } |
| case BinaryOperator::Sub: { |
| QualType ExprTy = E->getType(); |
| Expr *LHSExpr = E->getLHS(); |
| if (LHSExpr->getType()->isPointerType()) { |
| QualType LHSTy; |
| LHS = EmitExprWithUsualUnaryConversions(LHSExpr, LHSTy); |
| Expr *RHSExpr = E->getRHS(); |
| QualType RHSTy; |
| RHS = EmitExprWithUsualUnaryConversions(RHSExpr, RHSTy); |
| return EmitPointerSub(LHS, LHSTy, RHS, RHSTy, ExprTy); |
| } else { |
| EmitUsualArithmeticConversions(E, LHS, RHS); |
| return EmitSub(LHS, RHS, ExprTy); |
| } |
| } |
| case BinaryOperator::Shl: |
| EmitShiftOperands(E, LHS, RHS); |
| return EmitShl(LHS, RHS, E->getType()); |
| case BinaryOperator::Shr: |
| EmitShiftOperands(E, LHS, RHS); |
| return EmitShr(LHS, RHS, E->getType()); |
| case BinaryOperator::And: |
| EmitUsualArithmeticConversions(E, LHS, RHS); |
| return EmitAnd(LHS, RHS, E->getType()); |
| case BinaryOperator::Xor: |
| EmitUsualArithmeticConversions(E, LHS, RHS); |
| return EmitXor(LHS, RHS, E->getType()); |
| case BinaryOperator::Or : |
| EmitUsualArithmeticConversions(E, LHS, RHS); |
| return EmitOr(LHS, RHS, E->getType()); |
| case BinaryOperator::LAnd: return EmitBinaryLAnd(E); |
| case BinaryOperator::LOr: return EmitBinaryLOr(E); |
| case BinaryOperator::LT: |
| return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULT, |
| llvm::ICmpInst::ICMP_SLT, |
| llvm::FCmpInst::FCMP_OLT); |
| case BinaryOperator::GT: |
| return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGT, |
| llvm::ICmpInst::ICMP_SGT, |
| llvm::FCmpInst::FCMP_OGT); |
| case BinaryOperator::LE: |
| return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULE, |
| llvm::ICmpInst::ICMP_SLE, |
| llvm::FCmpInst::FCMP_OLE); |
| case BinaryOperator::GE: |
| return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGE, |
| llvm::ICmpInst::ICMP_SGE, |
| llvm::FCmpInst::FCMP_OGE); |
| case BinaryOperator::EQ: |
| return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_EQ, |
| llvm::ICmpInst::ICMP_EQ, |
| llvm::FCmpInst::FCMP_OEQ); |
| case BinaryOperator::NE: |
| return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_NE, |
| llvm::ICmpInst::ICMP_NE, |
| llvm::FCmpInst::FCMP_UNE); |
| case BinaryOperator::Assign: |
| return EmitBinaryAssign(E); |
| |
| case BinaryOperator::MulAssign: { |
| const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); |
| LValue LHSLV; |
| EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); |
| LHS = EmitMul(LHS, RHS, CAO->getComputationType()); |
| return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); |
| } |
| case BinaryOperator::DivAssign: { |
| const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); |
| LValue LHSLV; |
| EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); |
| LHS = EmitDiv(LHS, RHS, CAO->getComputationType()); |
| return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); |
| } |
| case BinaryOperator::RemAssign: { |
| const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); |
| LValue LHSLV; |
| EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); |
| LHS = EmitRem(LHS, RHS, CAO->getComputationType()); |
| return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); |
| } |
| case BinaryOperator::AddAssign: { |
| const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); |
| LValue LHSLV; |
| EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); |
| LHS = EmitAdd(LHS, RHS, CAO->getComputationType()); |
| return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); |
| } |
| case BinaryOperator::SubAssign: { |
| const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); |
| LValue LHSLV; |
| EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); |
| LHS = EmitSub(LHS, RHS, CAO->getComputationType()); |
| return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); |
| } |
| case BinaryOperator::ShlAssign: { |
| const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); |
| LValue LHSLV; |
| EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); |
| LHS = EmitShl(LHS, RHS, CAO->getComputationType()); |
| return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); |
| } |
| case BinaryOperator::ShrAssign: { |
| const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); |
| LValue LHSLV; |
| EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); |
| LHS = EmitShr(LHS, RHS, CAO->getComputationType()); |
| return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); |
| } |
| case BinaryOperator::AndAssign: { |
| const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); |
| LValue LHSLV; |
| EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); |
| LHS = EmitAnd(LHS, RHS, CAO->getComputationType()); |
| return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); |
| } |
| case BinaryOperator::OrAssign: { |
| const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); |
| LValue LHSLV; |
| EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); |
| LHS = EmitOr(LHS, RHS, CAO->getComputationType()); |
| return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); |
| } |
| case BinaryOperator::XorAssign: { |
| const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); |
| LValue LHSLV; |
| EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); |
| LHS = EmitXor(LHS, RHS, CAO->getComputationType()); |
| return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); |
| } |
| case BinaryOperator::Comma: return EmitBinaryComma(E); |
| } |
| } |
| |
| RValue CodeGenFunction::EmitMul(RValue LHS, RValue RHS, QualType ResTy) { |
| if (LHS.isScalar()) |
| return RValue::get(Builder.CreateMul(LHS.getVal(), RHS.getVal(), "mul")); |
| |
| // Otherwise, this must be a complex number. |
| llvm::Value *LHSR, *LHSI, *RHSR, *RHSI; |
| |
| EmitLoadOfComplex(LHS, LHSR, LHSI); |
| EmitLoadOfComplex(RHS, RHSR, RHSI); |
| |
| llvm::Value *ResRl = Builder.CreateMul(LHSR, RHSR, "mul.rl"); |
| llvm::Value *ResRr = Builder.CreateMul(LHSI, RHSI, "mul.rr"); |
| llvm::Value *ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); |
| |
| llvm::Value *ResIl = Builder.CreateMul(LHSI, RHSR, "mul.il"); |
| llvm::Value *ResIr = Builder.CreateMul(LHSR, RHSI, "mul.ir"); |
| llvm::Value *ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); |
| |
| llvm::Value *Res = CreateTempAlloca(ConvertType(ResTy)); |
| EmitStoreOfComplex(ResR, ResI, Res); |
| return RValue::getAggregate(Res); |
| } |
| |
| RValue CodeGenFunction::EmitDiv(RValue LHS, RValue RHS, QualType ResTy) { |
| if (LHS.isScalar()) { |
| llvm::Value *RV; |
| if (LHS.getVal()->getType()->isFloatingPoint()) |
| RV = Builder.CreateFDiv(LHS.getVal(), RHS.getVal(), "div"); |
| else if (ResTy->isUnsignedIntegerType()) |
| RV = Builder.CreateUDiv(LHS.getVal(), RHS.getVal(), "div"); |
| else |
| RV = Builder.CreateSDiv(LHS.getVal(), RHS.getVal(), "div"); |
| return RValue::get(RV); |
| } |
| assert(0 && "FIXME: This doesn't handle complex operands yet"); |
| } |
| |
| RValue CodeGenFunction::EmitRem(RValue LHS, RValue RHS, QualType ResTy) { |
| if (LHS.isScalar()) { |
| llvm::Value *RV; |
| // Rem in C can't be a floating point type: C99 6.5.5p2. |
| if (ResTy->isUnsignedIntegerType()) |
| RV = Builder.CreateURem(LHS.getVal(), RHS.getVal(), "rem"); |
| else |
| RV = Builder.CreateSRem(LHS.getVal(), RHS.getVal(), "rem"); |
| return RValue::get(RV); |
| } |
| |
| assert(0 && "FIXME: This doesn't handle complex operands yet"); |
| } |
| |
| RValue CodeGenFunction::EmitAdd(RValue LHS, RValue RHS, QualType ResTy) { |
| if (LHS.isScalar()) |
| return RValue::get(Builder.CreateAdd(LHS.getVal(), RHS.getVal(), "add")); |
| |
| // Otherwise, this must be a complex number. |
| llvm::Value *LHSR, *LHSI, *RHSR, *RHSI; |
| |
| EmitLoadOfComplex(LHS, LHSR, LHSI); |
| EmitLoadOfComplex(RHS, RHSR, RHSI); |
| |
| llvm::Value *ResR = Builder.CreateAdd(LHSR, RHSR, "add.r"); |
| llvm::Value *ResI = Builder.CreateAdd(LHSI, RHSI, "add.i"); |
| |
| llvm::Value *Res = CreateTempAlloca(ConvertType(ResTy)); |
| EmitStoreOfComplex(ResR, ResI, Res); |
| return RValue::getAggregate(Res); |
| } |
| |
| RValue CodeGenFunction::EmitPointerAdd(RValue LHS, QualType LHSTy, |
| RValue RHS, QualType RHSTy, |
| QualType ResTy) { |
| llvm::Value *LHSValue = LHS.getVal(); |
| llvm::Value *RHSValue = RHS.getVal(); |
| if (LHSTy->isPointerType()) { |
| // pointer + int |
| return RValue::get(Builder.CreateGEP(LHSValue, RHSValue, "add.ptr")); |
| } else { |
| // int + pointer |
| return RValue::get(Builder.CreateGEP(RHSValue, LHSValue, "add.ptr")); |
| } |
| } |
| |
| RValue CodeGenFunction::EmitSub(RValue LHS, RValue RHS, QualType ResTy) { |
| if (LHS.isScalar()) |
| return RValue::get(Builder.CreateSub(LHS.getVal(), RHS.getVal(), "sub")); |
| |
| assert(0 && "FIXME: This doesn't handle complex operands yet"); |
| } |
| |
| RValue CodeGenFunction::EmitPointerSub(RValue LHS, QualType LHSTy, |
| RValue RHS, QualType RHSTy, |
| QualType ResTy) { |
| llvm::Value *LHSValue = LHS.getVal(); |
| llvm::Value *RHSValue = RHS.getVal(); |
| if (const PointerType *RHSPtrType = |
| dyn_cast<PointerType>(RHSTy.getTypePtr())) { |
| // pointer - pointer |
| const PointerType *LHSPtrType = cast<PointerType>(LHSTy.getTypePtr()); |
| QualType LHSElementType = LHSPtrType->getPointeeType(); |
| assert(LHSElementType == RHSPtrType->getPointeeType() && |
| "can't subtract pointers with differing element types"); |
| uint64_t ElementSize = getContext().getTypeSize(LHSElementType, |
| SourceLocation()) / 8; |
| const llvm::Type *ResultType = ConvertType(ResTy); |
| llvm::Value *CastLHS = Builder.CreatePtrToInt(LHSValue, ResultType, |
| "sub.ptr.lhs.cast"); |
| llvm::Value *CastRHS = Builder.CreatePtrToInt(RHSValue, ResultType, |
| "sub.ptr.rhs.cast"); |
| llvm::Value *BytesBetween = Builder.CreateSub(CastLHS, CastRHS, |
| "sub.ptr.sub"); |
| |
| // HACK: LLVM doesn't have an divide instruction that 'knows' there is no |
| // remainder. As such, we handle common power-of-two cases here to generate |
| // better code. |
| if (llvm::isPowerOf2_64(ElementSize)) { |
| llvm::Value *ShAmt = |
| llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize)); |
| return RValue::get(Builder.CreateAShr(BytesBetween, ShAmt,"sub.ptr.shr")); |
| } else { |
| // Otherwise, do a full sdiv. |
| llvm::Value *BytesPerElement = |
| llvm::ConstantInt::get(ResultType, ElementSize); |
| return RValue::get(Builder.CreateSDiv(BytesBetween, BytesPerElement, |
| "sub.ptr.div")); |
| } |
| } else { |
| // pointer - int |
| llvm::Value *NegatedRHS = Builder.CreateNeg(RHSValue, "sub.ptr.neg"); |
| return RValue::get(Builder.CreateGEP(LHSValue, NegatedRHS, "sub.ptr")); |
| } |
| } |
| |
| void CodeGenFunction::EmitShiftOperands(const BinaryOperator *E, |
| RValue &LHS, RValue &RHS) { |
| // For shifts, integer promotions are performed, but the usual arithmetic |
| // conversions are not. The LHS and RHS need not have the same type. |
| QualType ResTy; |
| LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), ResTy); |
| RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), ResTy); |
| } |
| |
| |
| RValue CodeGenFunction::EmitShl(RValue LHSV, RValue RHSV, QualType ResTy) { |
| llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal(); |
| |
| // LLVM requires the LHS and RHS to be the same type, promote or truncate the |
| // RHS to the same size as the LHS. |
| if (LHS->getType() != RHS->getType()) |
| RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom"); |
| |
| return RValue::get(Builder.CreateShl(LHS, RHS, "shl")); |
| } |
| |
| RValue CodeGenFunction::EmitShr(RValue LHSV, RValue RHSV, QualType ResTy) { |
| llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal(); |
| |
| // LLVM requires the LHS and RHS to be the same type, promote or truncate the |
| // RHS to the same size as the LHS. |
| if (LHS->getType() != RHS->getType()) |
| RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom"); |
| |
| if (ResTy->isUnsignedIntegerType()) |
| return RValue::get(Builder.CreateLShr(LHS, RHS, "shr")); |
| else |
| return RValue::get(Builder.CreateAShr(LHS, RHS, "shr")); |
| } |
| |
| RValue CodeGenFunction::EmitBinaryCompare(const BinaryOperator *E, |
| unsigned UICmpOpc, unsigned SICmpOpc, |
| unsigned FCmpOpc) { |
| RValue LHS, RHS; |
| EmitUsualArithmeticConversions(E, LHS, RHS); |
| |
| llvm::Value *Result; |
| if (LHS.isScalar()) { |
| if (LHS.getVal()->getType()->isFloatingPoint()) { |
| Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, |
| LHS.getVal(), RHS.getVal(), "cmp"); |
| } else if (E->getLHS()->getType()->isUnsignedIntegerType()) { |
| // FIXME: This check isn't right for "unsigned short < int" where ushort |
| // promotes to int and does a signed compare. |
| Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, |
| LHS.getVal(), RHS.getVal(), "cmp"); |
| } else { |
| // Signed integers and pointers. |
| Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, |
| LHS.getVal(), RHS.getVal(), "cmp"); |
| } |
| } else { |
| // Struct/union/complex |
| llvm::Value *LHSR, *LHSI, *RHSR, *RHSI, *ResultR, *ResultI; |
| EmitLoadOfComplex(LHS, LHSR, LHSI); |
| EmitLoadOfComplex(RHS, RHSR, RHSI); |
| |
| // FIXME: need to consider _Complex over integers too! |
| |
| ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, |
| LHSR, RHSR, "cmp.r"); |
| ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, |
| LHSI, RHSI, "cmp.i"); |
| if (BinaryOperator::EQ == E->getOpcode()) { |
| Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); |
| } else if (BinaryOperator::NE == E->getOpcode()) { |
| Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); |
| } else { |
| assert(0 && "Complex comparison other than == or != ?"); |
| } |
| } |
| |
| // ZExt result to int. |
| return RValue::get(Builder.CreateZExt(Result, LLVMIntTy, "cmp.ext")); |
| } |
| |
| RValue CodeGenFunction::EmitAnd(RValue LHS, RValue RHS, QualType ResTy) { |
| if (LHS.isScalar()) |
| return RValue::get(Builder.CreateAnd(LHS.getVal(), RHS.getVal(), "and")); |
| |
| assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)"); |
| } |
| |
| RValue CodeGenFunction::EmitXor(RValue LHS, RValue RHS, QualType ResTy) { |
| if (LHS.isScalar()) |
| return RValue::get(Builder.CreateXor(LHS.getVal(), RHS.getVal(), "xor")); |
| |
| assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)"); |
| } |
| |
| RValue CodeGenFunction::EmitOr(RValue LHS, RValue RHS, QualType ResTy) { |
| if (LHS.isScalar()) |
| return RValue::get(Builder.CreateOr(LHS.getVal(), RHS.getVal(), "or")); |
| |
| assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)"); |
| } |
| |
| RValue CodeGenFunction::EmitBinaryLAnd(const BinaryOperator *E) { |
| llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS()); |
| |
| llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont"); |
| llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs"); |
| |
| llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock(); |
| Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock); |
| |
| EmitBlock(RHSBlock); |
| llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS()); |
| |
| // Reaquire the RHS block, as there may be subblocks inserted. |
| RHSBlock = Builder.GetInsertBlock(); |
| EmitBlock(ContBlock); |
| |
| // Create a PHI node. If we just evaluted the LHS condition, the result is |
| // false. If we evaluated both, the result is the RHS condition. |
| llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land"); |
| PN->reserveOperandSpace(2); |
| PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock); |
| PN->addIncoming(RHSCond, RHSBlock); |
| |
| // ZExt result to int. |
| return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "land.ext")); |
| } |
| |
| RValue CodeGenFunction::EmitBinaryLOr(const BinaryOperator *E) { |
| llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS()); |
| |
| llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont"); |
| llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs"); |
| |
| llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock(); |
| Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock); |
| |
| EmitBlock(RHSBlock); |
| llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS()); |
| |
| // Reaquire the RHS block, as there may be subblocks inserted. |
| RHSBlock = Builder.GetInsertBlock(); |
| EmitBlock(ContBlock); |
| |
| // Create a PHI node. If we just evaluted the LHS condition, the result is |
| // true. If we evaluated both, the result is the RHS condition. |
| llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor"); |
| PN->reserveOperandSpace(2); |
| PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock); |
| PN->addIncoming(RHSCond, RHSBlock); |
| |
| // ZExt result to int. |
| return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "lor.ext")); |
| } |
| |
| RValue CodeGenFunction::EmitBinaryAssign(const BinaryOperator *E) { |
| LValue LHS = EmitLValue(E->getLHS()); |
| |
| QualType RHSTy; |
| RValue RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy); |
| |
| // Convert the RHS to the type of the LHS. |
| RHS = EmitConversion(RHS, RHSTy, E->getType()); |
| |
| // Store the value into the LHS. |
| EmitStoreThroughLValue(RHS, LHS, E->getType()); |
| |
| // Return the converted RHS. |
| return RHS; |
| } |
| |
| |
| RValue CodeGenFunction::EmitBinaryComma(const BinaryOperator *E) { |
| EmitExpr(E->getLHS()); |
| return EmitExpr(E->getRHS()); |
| } |
| |
| RValue CodeGenFunction::EmitConditionalOperator(const ConditionalOperator *E) { |
| llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?"); |
| llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:"); |
| llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont"); |
| |
| llvm::Value *Cond = EvaluateExprAsBool(E->getCond()); |
| Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); |
| |
| // FIXME: Implement this for aggregate values. |
| |
| // FIXME: LHS & RHS need the "usual arithmetic conversions" but |
| // that's not possible with the current design. |
| |
| EmitBlock(LHSBlock); |
| QualType LHSTy; |
| llvm::Value *LHSValue = E->getLHS() ? // GNU extension |
| EmitExprWithUsualUnaryConversions(E->getLHS(), LHSTy).getVal() : |
| Cond; |
| Builder.CreateBr(ContBlock); |
| LHSBlock = Builder.GetInsertBlock(); |
| |
| EmitBlock(RHSBlock); |
| QualType RHSTy; |
| llvm::Value *RHSValue = |
| EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy).getVal(); |
| Builder.CreateBr(ContBlock); |
| RHSBlock = Builder.GetInsertBlock(); |
| |
| const llvm::Type *LHSType = LHSValue->getType(); |
| assert(LHSType == RHSValue->getType() && "?: LHS & RHS must have same type"); |
| |
| EmitBlock(ContBlock); |
| llvm::PHINode *PN = Builder.CreatePHI(LHSType, "cond"); |
| PN->reserveOperandSpace(2); |
| PN->addIncoming(LHSValue, LHSBlock); |
| PN->addIncoming(RHSValue, RHSBlock); |
| |
| return RValue::get(PN); |
| } |