blob: b81871ace23e3ea6d8ffe3561a35c82c6a5dba7c [file] [log] [blame]
//===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the C++ Decl subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLCXX_H
#define LLVM_CLANG_AST_DECLCXX_H
#include "clang/AST/Decl.h"
#include "llvm/ADT/SmallVector.h"
namespace clang {
class ClassTemplateDecl;
class CXXRecordDecl;
class CXXConstructorDecl;
class CXXDestructorDecl;
class CXXConversionDecl;
class CXXMethodDecl;
class ClassTemplateSpecializationDecl;
/// OverloadedFunctionDecl - An instance of this class represents a
/// set of overloaded functions. All of the functions have the same
/// name and occur within the same scope.
///
/// An OverloadedFunctionDecl has no ownership over the FunctionDecl
/// nodes it contains. Rather, the FunctionDecls are owned by the
/// enclosing scope (which also owns the OverloadedFunctionDecl
/// node). OverloadedFunctionDecl is used primarily to store a set of
/// overloaded functions for name lookup.
class OverloadedFunctionDecl : public NamedDecl {
protected:
OverloadedFunctionDecl(DeclContext *DC, DeclarationName N)
: NamedDecl(OverloadedFunction, DC, SourceLocation(), N) { }
/// Functions - the set of overloaded functions contained in this
/// overload set.
llvm::SmallVector<FunctionDecl *, 4> Functions;
// FIXME: This should go away when we stop using
// OverloadedFunctionDecl to store conversions in CXXRecordDecl.
friend class CXXRecordDecl;
public:
typedef llvm::SmallVector<FunctionDecl *, 4>::iterator function_iterator;
typedef llvm::SmallVector<FunctionDecl *, 4>::const_iterator
function_const_iterator;
static OverloadedFunctionDecl *Create(ASTContext &C, DeclContext *DC,
DeclarationName N);
/// addOverload - Add an overloaded function FD to this set of
/// overloaded functions.
void addOverload(FunctionDecl *FD) {
assert((FD->getDeclName() == getDeclName() ||
isa<CXXConversionDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
"Overloaded functions must have the same name");
Functions.push_back(FD);
// An overloaded function declaration always has the location of
// the most-recently-added function declaration.
if (FD->getLocation().isValid())
this->setLocation(FD->getLocation());
}
function_iterator function_begin() { return Functions.begin(); }
function_iterator function_end() { return Functions.end(); }
function_const_iterator function_begin() const { return Functions.begin(); }
function_const_iterator function_end() const { return Functions.end(); }
/// getNumFunctions - the number of overloaded functions stored in
/// this set.
unsigned getNumFunctions() const { return Functions.size(); }
/// getFunction - retrieve the ith function in the overload set.
const FunctionDecl *getFunction(unsigned i) const {
assert(i < getNumFunctions() && "Illegal function #");
return Functions[i];
}
FunctionDecl *getFunction(unsigned i) {
assert(i < getNumFunctions() && "Illegal function #");
return Functions[i];
}
// getDeclContext - Get the context of these overloaded functions.
DeclContext *getDeclContext() {
assert(getNumFunctions() > 0 && "Context of an empty overload set");
return getFunction(0)->getDeclContext();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) {
return D->getKind() == OverloadedFunction;
}
static bool classof(const OverloadedFunctionDecl *D) { return true; }
};
/// CXXBaseSpecifier - A base class of a C++ class.
///
/// Each CXXBaseSpecifier represents a single, direct base class (or
/// struct) of a C++ class (or struct). It specifies the type of that
/// base class, whether it is a virtual or non-virtual base, and what
/// level of access (public, protected, private) is used for the
/// derivation. For example:
///
/// @code
/// class A { };
/// class B { };
/// class C : public virtual A, protected B { };
/// @endcode
///
/// In this code, C will have two CXXBaseSpecifiers, one for "public
/// virtual A" and the other for "protected B".
class CXXBaseSpecifier {
/// Range - The source code range that covers the full base
/// specifier, including the "virtual" (if present) and access
/// specifier (if present).
SourceRange Range;
/// Virtual - Whether this is a virtual base class or not.
bool Virtual : 1;
/// BaseOfClass - Whether this is the base of a class (true) or of a
/// struct (false). This determines the mapping from the access
/// specifier as written in the source code to the access specifier
/// used for semantic analysis.
bool BaseOfClass : 1;
/// Access - Access specifier as written in the source code (which
/// may be AS_none). The actual type of data stored here is an
/// AccessSpecifier, but we use "unsigned" here to work around a
/// VC++ bug.
unsigned Access : 2;
/// BaseType - The type of the base class. This will be a class or
/// struct (or a typedef of such).
QualType BaseType;
public:
CXXBaseSpecifier() { }
CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A, QualType T)
: Range(R), Virtual(V), BaseOfClass(BC), Access(A), BaseType(T) { }
/// getSourceRange - Retrieves the source range that contains the
/// entire base specifier.
SourceRange getSourceRange() const { return Range; }
/// isVirtual - Determines whether the base class is a virtual base
/// class (or not).
bool isVirtual() const { return Virtual; }
/// getAccessSpecifier - Returns the access specifier for this base
/// specifier. This is the actual base specifier as used for
/// semantic analysis, so the result can never be AS_none. To
/// retrieve the access specifier as written in the source code, use
/// getAccessSpecifierAsWritten().
AccessSpecifier getAccessSpecifier() const {
if ((AccessSpecifier)Access == AS_none)
return BaseOfClass? AS_private : AS_public;
else
return (AccessSpecifier)Access;
}
/// getAccessSpecifierAsWritten - Retrieves the access specifier as
/// written in the source code (which may mean that no access
/// specifier was explicitly written). Use getAccessSpecifier() to
/// retrieve the access specifier for use in semantic analysis.
AccessSpecifier getAccessSpecifierAsWritten() const {
return (AccessSpecifier)Access;
}
/// getType - Retrieves the type of the base class. This type will
/// always be an unqualified class type.
QualType getType() const { return BaseType; }
};
/// CXXRecordDecl - Represents a C++ struct/union/class.
/// FIXME: This class will disappear once we've properly taught RecordDecl
/// to deal with C++-specific things.
class CXXRecordDecl : public RecordDecl {
/// UserDeclaredConstructor - True when this class has a
/// user-declared constructor.
bool UserDeclaredConstructor : 1;
/// UserDeclaredCopyConstructor - True when this class has a
/// user-declared copy constructor.
bool UserDeclaredCopyConstructor : 1;
/// UserDeclaredCopyAssignment - True when this class has a
/// user-declared copy assignment operator.
bool UserDeclaredCopyAssignment : 1;
/// UserDeclaredDestructor - True when this class has a
/// user-declared destructor.
bool UserDeclaredDestructor : 1;
/// Aggregate - True when this class is an aggregate.
bool Aggregate : 1;
/// PlainOldData - True when this class is a POD-type.
bool PlainOldData : 1;
/// Polymorphic - True when this class is polymorphic, i.e. has at least one
/// virtual member or derives from a polymorphic class.
bool Polymorphic : 1;
/// Abstract - True when this class is abstract, i.e. has at least one
/// pure virtual function, (that can come from a base class).
bool Abstract : 1;
/// HasTrivialConstructor - True when this class has a trivial constructor
bool HasTrivialConstructor : 1;
/// HasTrivialDestructor - True when this class has a trivial destructor
bool HasTrivialDestructor : 1;
/// Bases - Base classes of this class.
/// FIXME: This is wasted space for a union.
CXXBaseSpecifier *Bases;
/// NumBases - The number of base class specifiers in Bases.
unsigned NumBases;
/// Conversions - Overload set containing the conversion functions
/// of this C++ class (but not its inherited conversion
/// functions). Each of the entries in this overload set is a
/// CXXConversionDecl.
OverloadedFunctionDecl Conversions;
/// \brief The template or declaration that is declaration is
/// instantiated from.
///
/// For non-templates, this value will be NULL. For record
/// declarations that describe a class template, this will be a
/// pointer to a ClassTemplateDecl. For member
/// classes of class template specializations, this will be the
/// RecordDecl from which the member class was instantiated.
llvm::PointerUnion<ClassTemplateDecl*, CXXRecordDecl*>TemplateOrInstantiation;
protected:
CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id);
~CXXRecordDecl();
public:
/// base_class_iterator - Iterator that traverses the base classes
/// of a clas.
typedef CXXBaseSpecifier* base_class_iterator;
/// base_class_const_iterator - Iterator that traverses the base
/// classes of a clas.
typedef const CXXBaseSpecifier* base_class_const_iterator;
static CXXRecordDecl *Create(ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
CXXRecordDecl* PrevDecl=0);
/// setBases - Sets the base classes of this struct or class.
void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
/// getNumBases - Retrieves the number of base classes of this
/// class.
unsigned getNumBases() const { return NumBases; }
base_class_iterator bases_begin() { return Bases; }
base_class_const_iterator bases_begin() const { return Bases; }
base_class_iterator bases_end() { return Bases + NumBases; }
base_class_const_iterator bases_end() const { return Bases + NumBases; }
/// hasConstCopyConstructor - Determines whether this class has a
/// copy constructor that accepts a const-qualified argument.
bool hasConstCopyConstructor(ASTContext &Context) const;
/// hasConstCopyAssignment - Determines whether this class has a
/// copy assignment operator that accepts a const-qualified argument.
bool hasConstCopyAssignment(ASTContext &Context) const;
/// addedConstructor - Notify the class that another constructor has
/// been added. This routine helps maintain information about the
/// class based on which constructors have been added.
void addedConstructor(ASTContext &Context, CXXConstructorDecl *ConDecl);
/// hasUserDeclaredConstructor - Whether this class has any
/// user-declared constructors. When true, a default constructor
/// will not be implicitly declared.
bool hasUserDeclaredConstructor() const { return UserDeclaredConstructor; }
/// hasUserDeclaredCopyConstructor - Whether this class has a
/// user-declared copy constructor. When false, a copy constructor
/// will be implicitly declared.
bool hasUserDeclaredCopyConstructor() const {
return UserDeclaredCopyConstructor;
}
/// addedAssignmentOperator - Notify the class that another assignment
/// operator has been added. This routine helps maintain information about the
/// class based on which operators have been added.
void addedAssignmentOperator(ASTContext &Context, CXXMethodDecl *OpDecl);
/// hasUserDeclaredCopyAssignment - Whether this class has a
/// user-declared copy assignment operator. When false, a copy
/// assigment operator will be implicitly declared.
bool hasUserDeclaredCopyAssignment() const {
return UserDeclaredCopyAssignment;
}
/// hasUserDeclaredDestructor - Whether this class has a
/// user-declared destructor. When false, a destructor will be
/// implicitly declared.
bool hasUserDeclaredDestructor() const { return UserDeclaredDestructor; }
/// setUserDeclaredDestructor - Set whether this class has a
/// user-declared destructor. If not set by the time the class is
/// fully defined, a destructor will be implicitly declared.
void setUserDeclaredDestructor(bool UCD) {
UserDeclaredDestructor = UCD;
}
/// getConversions - Retrieve the overload set containing all of the
/// conversion functions in this class.
OverloadedFunctionDecl *getConversionFunctions() {
return &Conversions;
}
const OverloadedFunctionDecl *getConversionFunctions() const {
return &Conversions;
}
/// addConversionFunction - Add a new conversion function to the
/// list of conversion functions.
void addConversionFunction(ASTContext &Context, CXXConversionDecl *ConvDecl);
/// isAggregate - Whether this class is an aggregate (C++
/// [dcl.init.aggr]), which is a class with no user-declared
/// constructors, no private or protected non-static data members,
/// no base classes, and no virtual functions (C++ [dcl.init.aggr]p1).
bool isAggregate() const { return Aggregate; }
/// setAggregate - Set whether this class is an aggregate (C++
/// [dcl.init.aggr]).
void setAggregate(bool Agg) { Aggregate = Agg; }
/// isPOD - Whether this class is a POD-type (C++ [class]p4), which is a class
/// that is an aggregate that has no non-static non-POD data members, no
/// reference data members, no user-defined copy assignment operator and no
/// user-defined destructor.
bool isPOD() const { return PlainOldData; }
/// setPOD - Set whether this class is a POD-type (C++ [class]p4).
void setPOD(bool POD) { PlainOldData = POD; }
/// isPolymorphic - Whether this class is polymorphic (C++ [class.virtual]),
/// which means that the class contains or inherits a virtual function.
bool isPolymorphic() const { return Polymorphic; }
/// setPolymorphic - Set whether this class is polymorphic (C++
/// [class.virtual]).
void setPolymorphic(bool Poly) { Polymorphic = Poly; }
/// isAbstract - Whether this class is abstract (C++ [class.abstract]),
/// which means that the class contains or inherits a pure virtual function.
bool isAbstract() const { return Abstract; }
/// setAbstract - Set whether this class is abstract (C++ [class.abstract])
void setAbstract(bool Abs) { Abstract = Abs; }
// hasTrivialConstructor - Whether this class has a trivial constructor
// (C++ [class.ctor]p5)
bool hasTrivialConstructor() const { return HasTrivialConstructor; }
// setHasTrivialConstructor - Set whether this class has a trivial constructor
// (C++ [class.ctor]p5)
void setHasTrivialConstructor(bool TC) { HasTrivialConstructor = TC; }
// hasTrivialDestructor - Whether this class has a trivial destructor
// (C++ [class.dtor]p3)
bool hasTrivialDestructor() const { return HasTrivialDestructor; }
// setHasTrivialDestructor - Set whether this class has a trivial destructor
// (C++ [class.dtor]p3)
void setHasTrivialDestructor(bool TC) { HasTrivialDestructor = TC; }
/// \brief If this record is an instantiation of a member class,
/// retrieves the member class from which it was instantiated.
///
/// This routine will return non-NULL for (non-templated) member
/// classes of class templates. For example, given:
///
/// \code
/// template<typename T>
/// struct X {
/// struct A { };
/// };
/// \endcode
///
/// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
/// whose parent is the class template specialization X<int>. For
/// this declaration, getInstantiatedFromMemberClass() will return
/// the CXXRecordDecl X<T>::A. When a complete definition of
/// X<int>::A is required, it will be instantiated from the
/// declaration returned by getInstantiatedFromMemberClass().
CXXRecordDecl *getInstantiatedFromMemberClass() {
return TemplateOrInstantiation.dyn_cast<CXXRecordDecl*>();
}
/// \brief Specify that this record is an instantiation of the
/// member class RD.
void setInstantiationOfMemberClass(CXXRecordDecl *RD) {
TemplateOrInstantiation = RD;
}
/// \brief Retrieves the class template that is described by this
/// class declaration.
///
/// Every class template is represented as a ClassTemplateDecl and a
/// CXXRecordDecl. The former contains template properties (such as
/// the template parameter lists) while the latter contains the
/// actual description of the template's
/// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
/// CXXRecordDecl that from a ClassTemplateDecl, while
/// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
/// a CXXRecordDecl.
ClassTemplateDecl *getDescribedClassTemplate() {
return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl*>();
}
void setDescribedClassTemplate(ClassTemplateDecl *Template) {
TemplateOrInstantiation = Template;
}
/// viewInheritance - Renders and displays an inheritance diagram
/// for this C++ class and all of its base classes (transitively) using
/// GraphViz.
void viewInheritance(ASTContext& Context) const;
static bool classof(const Decl *D) {
return D->getKind() == CXXRecord ||
D->getKind() == ClassTemplateSpecialization;
}
static bool classof(const CXXRecordDecl *D) { return true; }
static bool classof(const ClassTemplateSpecializationDecl *D) {
return true;
}
};
/// CXXMethodDecl - Represents a static or instance method of a
/// struct/union/class.
class CXXMethodDecl : public FunctionDecl {
protected:
CXXMethodDecl(Kind DK, CXXRecordDecl *RD, SourceLocation L,
DeclarationName N, QualType T,
bool isStatic, bool isInline)
: FunctionDecl(DK, RD, L, N, T, (isStatic ? Static : None),
isInline) {}
public:
static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, bool isStatic = false,
bool isInline = false);
bool isStatic() const { return getStorageClass() == Static; }
bool isInstance() const { return !isStatic(); }
bool isOutOfLineDefinition() const {
return getLexicalDeclContext() != getDeclContext();
}
/// getParent - Returns the parent of this method declaration, which
/// is the class in which this method is defined.
const CXXRecordDecl *getParent() const {
return cast<CXXRecordDecl>(FunctionDecl::getParent());
}
/// getParent - Returns the parent of this method declaration, which
/// is the class in which this method is defined.
CXXRecordDecl *getParent() {
return const_cast<CXXRecordDecl *>(
cast<CXXRecordDecl>(FunctionDecl::getParent()));
}
/// getThisType - Returns the type of 'this' pointer.
/// Should only be called for instance methods.
QualType getThisType(ASTContext &C) const;
unsigned getTypeQualifiers() const {
return getType()->getAsFunctionProtoType()->getTypeQuals();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) {
return D->getKind() >= CXXMethod && D->getKind() <= CXXConversion;
}
static bool classof(const CXXMethodDecl *D) { return true; }
};
/// CXXBaseOrMemberInitializer - Represents a C++ base or member
/// initializer, which is part of a constructor initializer that
/// initializes one non-static member variable or one base class. For
/// example, in the following, both 'A(a)' and 'f(3.14159)' are member
/// initializers:
///
/// @code
/// class A { };
/// class B : public A {
/// float f;
/// public:
/// B(A& a) : A(a), f(3.14159) { }
/// };
class CXXBaseOrMemberInitializer {
/// BaseOrMember - This points to the entity being initialized,
/// which is either a base class (a Type) or a non-static data
/// member. When the low bit is 1, it's a base
/// class; when the low bit is 0, it's a member.
uintptr_t BaseOrMember;
/// Args - The arguments used to initialize the base or member.
Expr **Args;
unsigned NumArgs;
public:
/// CXXBaseOrMemberInitializer - Creates a new base-class initializer.
explicit
CXXBaseOrMemberInitializer(QualType BaseType, Expr **Args, unsigned NumArgs);
/// CXXBaseOrMemberInitializer - Creates a new member initializer.
explicit
CXXBaseOrMemberInitializer(FieldDecl *Member, Expr **Args, unsigned NumArgs);
/// ~CXXBaseOrMemberInitializer - Destroy the base or member initializer.
~CXXBaseOrMemberInitializer();
/// arg_iterator - Iterates through the member initialization
/// arguments.
typedef Expr **arg_iterator;
/// arg_const_iterator - Iterates through the member initialization
/// arguments.
typedef Expr * const * arg_const_iterator;
/// isBaseInitializer - Returns true when this initializer is
/// initializing a base class.
bool isBaseInitializer() const { return (BaseOrMember & 0x1) != 0; }
/// isMemberInitializer - Returns true when this initializer is
/// initializing a non-static data member.
bool isMemberInitializer() const { return (BaseOrMember & 0x1) == 0; }
/// getBaseClass - If this is a base class initializer, returns the
/// type used to specify the initializer. The resulting type will be
/// a class type or a typedef of a class type. If this is not a base
/// class initializer, returns NULL.
Type *getBaseClass() {
if (isBaseInitializer())
return reinterpret_cast<Type*>(BaseOrMember & ~0x01);
else
return 0;
}
/// getBaseClass - If this is a base class initializer, returns the
/// type used to specify the initializer. The resulting type will be
/// a class type or a typedef of a class type. If this is not a base
/// class initializer, returns NULL.
const Type *getBaseClass() const {
if (isBaseInitializer())
return reinterpret_cast<const Type*>(BaseOrMember & ~0x01);
else
return 0;
}
/// getMember - If this is a member initializer, returns the
/// declaration of the non-static data member being
/// initialized. Otherwise, returns NULL.
FieldDecl *getMember() {
if (isMemberInitializer())
return reinterpret_cast<FieldDecl *>(BaseOrMember);
else
return 0;
}
/// begin() - Retrieve an iterator to the first initializer argument.
arg_iterator begin() { return Args; }
/// begin() - Retrieve an iterator to the first initializer argument.
arg_const_iterator begin() const { return Args; }
/// end() - Retrieve an iterator past the last initializer argument.
arg_iterator end() { return Args + NumArgs; }
/// end() - Retrieve an iterator past the last initializer argument.
arg_const_iterator end() const { return Args + NumArgs; }
/// getNumArgs - Determine the number of arguments used to
/// initialize the member or base.
unsigned getNumArgs() const { return NumArgs; }
};
/// CXXConstructorDecl - Represents a C++ constructor within a
/// class. For example:
///
/// @code
/// class X {
/// public:
/// explicit X(int); // represented by a CXXConstructorDecl.
/// };
/// @endcode
class CXXConstructorDecl : public CXXMethodDecl {
/// Explicit - Whether this constructor is explicit.
bool Explicit : 1;
/// ImplicitlyDefined - Whether this constructor was implicitly
/// defined by the compiler. When false, the constructor was defined
/// by the user. In C++03, this flag will have the same value as
/// Implicit. In C++0x, however, a constructor that is
/// explicitly defaulted (i.e., defined with " = default") will have
/// @c !Implicit && ImplicitlyDefined.
bool ImplicitlyDefined : 1;
/// FIXME: Add support for base and member initializers.
CXXConstructorDecl(CXXRecordDecl *RD, SourceLocation L,
DeclarationName N, QualType T,
bool isExplicit, bool isInline, bool isImplicitlyDeclared)
: CXXMethodDecl(CXXConstructor, RD, L, N, T, false, isInline),
Explicit(isExplicit), ImplicitlyDefined(false) {
setImplicit(isImplicitlyDeclared);
}
public:
static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, bool isExplicit,
bool isInline, bool isImplicitlyDeclared);
/// isExplicit - Whether this constructor was marked "explicit" or not.
bool isExplicit() const { return Explicit; }
/// isImplicitlyDefined - Whether this constructor was implicitly
/// defined. If false, then this constructor was defined by the
/// user. This operation can only be invoked if the constructor has
/// already been defined.
bool isImplicitlyDefined(ASTContext &C) const {
assert(isThisDeclarationADefinition() &&
"Can only get the implicit-definition flag once the constructor has been defined");
return ImplicitlyDefined;
}
/// setImplicitlyDefined - Set whether this constructor was
/// implicitly defined or not.
void setImplicitlyDefined(bool ID) {
assert(isThisDeclarationADefinition() &&
"Can only set the implicit-definition flag once the constructor has been defined");
ImplicitlyDefined = ID;
}
/// isDefaultConstructor - Whether this constructor is a default
/// constructor (C++ [class.ctor]p5), which can be used to
/// default-initialize a class of this type.
bool isDefaultConstructor() const;
/// isCopyConstructor - Whether this constructor is a copy
/// constructor (C++ [class.copy]p2, which can be used to copy the
/// class. @p TypeQuals will be set to the qualifiers on the
/// argument type. For example, @p TypeQuals would be set to @c
/// QualType::Const for the following copy constructor:
///
/// @code
/// class X {
/// public:
/// X(const X&);
/// };
/// @endcode
bool isCopyConstructor(ASTContext &Context, unsigned &TypeQuals) const;
/// isCopyConstructor - Whether this constructor is a copy
/// constructor (C++ [class.copy]p2, which can be used to copy the
/// class.
bool isCopyConstructor(ASTContext &Context) const {
unsigned TypeQuals = 0;
return isCopyConstructor(Context, TypeQuals);
}
/// isConvertingConstructor - Whether this constructor is a
/// converting constructor (C++ [class.conv.ctor]), which can be
/// used for user-defined conversions.
bool isConvertingConstructor() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) {
return D->getKind() == CXXConstructor;
}
static bool classof(const CXXConstructorDecl *D) { return true; }
};
/// CXXDestructorDecl - Represents a C++ destructor within a
/// class. For example:
///
/// @code
/// class X {
/// public:
/// ~X(); // represented by a CXXDestructorDecl.
/// };
/// @endcode
class CXXDestructorDecl : public CXXMethodDecl {
/// ImplicitlyDefined - Whether this destructor was implicitly
/// defined by the compiler. When false, the destructor was defined
/// by the user. In C++03, this flag will have the same value as
/// Implicit. In C++0x, however, a destructor that is
/// explicitly defaulted (i.e., defined with " = default") will have
/// @c !Implicit && ImplicitlyDefined.
bool ImplicitlyDefined : 1;
CXXDestructorDecl(CXXRecordDecl *RD, SourceLocation L,
DeclarationName N, QualType T,
bool isInline, bool isImplicitlyDeclared)
: CXXMethodDecl(CXXDestructor, RD, L, N, T, false, isInline),
ImplicitlyDefined(false) {
setImplicit(isImplicitlyDeclared);
}
public:
static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, bool isInline,
bool isImplicitlyDeclared);
/// isImplicitlyDefined - Whether this destructor was implicitly
/// defined. If false, then this destructor was defined by the
/// user. This operation can only be invoked if the destructor has
/// already been defined.
bool isImplicitlyDefined() const {
assert(isThisDeclarationADefinition() &&
"Can only get the implicit-definition flag once the destructor has been defined");
return ImplicitlyDefined;
}
/// setImplicitlyDefined - Set whether this destructor was
/// implicitly defined or not.
void setImplicitlyDefined(bool ID) {
assert(isThisDeclarationADefinition() &&
"Can only set the implicit-definition flag once the destructor has been defined");
ImplicitlyDefined = ID;
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) {
return D->getKind() == CXXDestructor;
}
static bool classof(const CXXDestructorDecl *D) { return true; }
};
/// CXXConversionDecl - Represents a C++ conversion function within a
/// class. For example:
///
/// @code
/// class X {
/// public:
/// operator bool();
/// };
/// @endcode
class CXXConversionDecl : public CXXMethodDecl {
/// Explicit - Whether this conversion function is marked
/// "explicit", meaning that it can only be applied when the user
/// explicitly wrote a cast. This is a C++0x feature.
bool Explicit : 1;
CXXConversionDecl(CXXRecordDecl *RD, SourceLocation L,
DeclarationName N, QualType T,
bool isInline, bool isExplicit)
: CXXMethodDecl(CXXConversion, RD, L, N, T, false, isInline),
Explicit(isExplicit) { }
public:
static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, bool isInline,
bool isExplicit);
/// isExplicit - Whether this is an explicit conversion operator
/// (C++0x only). Explicit conversion operators are only considered
/// when the user has explicitly written a cast.
bool isExplicit() const { return Explicit; }
/// getConversionType - Returns the type that this conversion
/// function is converting to.
QualType getConversionType() const {
return getType()->getAsFunctionType()->getResultType();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) {
return D->getKind() == CXXConversion;
}
static bool classof(const CXXConversionDecl *D) { return true; }
};
/// LinkageSpecDecl - This represents a linkage specification. For example:
/// extern "C" void foo();
///
class LinkageSpecDecl : public Decl, public DeclContext {
public:
/// LanguageIDs - Used to represent the language in a linkage
/// specification. The values are part of the serialization abi for
/// ASTs and cannot be changed without altering that abi. To help
/// ensure a stable abi for this, we choose the DW_LANG_ encodings
/// from the dwarf standard.
enum LanguageIDs { lang_c = /* DW_LANG_C */ 0x0002,
lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004 };
private:
/// Language - The language for this linkage specification.
LanguageIDs Language;
/// HadBraces - Whether this linkage specification had curly braces or not.
bool HadBraces : 1;
LinkageSpecDecl(DeclContext *DC, SourceLocation L, LanguageIDs lang,
bool Braces)
: Decl(LinkageSpec, DC, L),
DeclContext(LinkageSpec), Language(lang), HadBraces(Braces) { }
public:
static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, LanguageIDs Lang,
bool Braces);
LanguageIDs getLanguage() const { return Language; }
/// hasBraces - Determines whether this linkage specification had
/// braces in its syntactic form.
bool hasBraces() const { return HadBraces; }
static bool classof(const Decl *D) {
return D->getKind() == LinkageSpec;
}
static bool classof(const LinkageSpecDecl *D) { return true; }
static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
}
static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
}
};
/// UsingDirectiveDecl - Represents C++ using-directive. For example:
///
/// using namespace std;
///
// NB: UsingDirectiveDecl should be Decl not NamedDecl, but we provide
// artificial name, for all using-directives in order to store
// them in DeclContext effectively.
class UsingDirectiveDecl : public NamedDecl {
/// SourceLocation - Location of 'namespace' token.
SourceLocation NamespaceLoc;
/// IdentLoc - Location of nominated namespace-name identifier.
// FIXME: We don't store location of scope specifier.
SourceLocation IdentLoc;
/// NominatedNamespace - Namespace nominated by using-directive.
NamespaceDecl *NominatedNamespace;
/// Enclosing context containing both using-directive and nomintated
/// namespace.
DeclContext *CommonAncestor;
/// getUsingDirectiveName - Returns special DeclarationName used by
/// using-directives. This is only used by DeclContext for storing
/// UsingDirectiveDecls in its lookup structure.
static DeclarationName getName() {
return DeclarationName::getUsingDirectiveName();
}
UsingDirectiveDecl(DeclContext *DC, SourceLocation L,
SourceLocation NamespcLoc,
SourceLocation IdentLoc,
NamespaceDecl *Nominated,
DeclContext *CommonAncestor)
: NamedDecl(Decl::UsingDirective, DC, L, getName()),
NamespaceLoc(NamespcLoc), IdentLoc(IdentLoc),
NominatedNamespace(Nominated? Nominated->getOriginalNamespace() : 0),
CommonAncestor(CommonAncestor) {
}
public:
/// getNominatedNamespace - Returns namespace nominated by using-directive.
NamespaceDecl *getNominatedNamespace() { return NominatedNamespace; }
const NamespaceDecl *getNominatedNamespace() const {
return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
}
/// getCommonAncestor - returns common ancestor context of using-directive,
/// and nominated by it namespace.
DeclContext *getCommonAncestor() { return CommonAncestor; }
const DeclContext *getCommonAncestor() const { return CommonAncestor; }
/// getNamespaceKeyLocation - Returns location of namespace keyword.
SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
/// getIdentLocation - Returns location of identifier.
SourceLocation getIdentLocation() const { return IdentLoc; }
static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
SourceLocation NamespaceLoc,
SourceLocation IdentLoc,
NamespaceDecl *Nominated,
DeclContext *CommonAncestor);
static bool classof(const Decl *D) {
return D->getKind() == Decl::UsingDirective;
}
static bool classof(const UsingDirectiveDecl *D) { return true; }
// Friend for getUsingDirectiveName.
friend class DeclContext;
};
/// NamespaceAliasDecl - Represents a C++ namespace alias. For example:
///
/// @code
/// namespace Foo = Bar;
/// @endcode
class NamespaceAliasDecl : public NamedDecl {
SourceLocation AliasLoc;
/// IdentLoc - Location of namespace identifier.
/// FIXME: We don't store location of scope specifier.
SourceLocation IdentLoc;
/// Namespace - The Decl that this alias points to. Can either be a
/// NamespaceDecl or a NamespaceAliasDecl.
NamedDecl *Namespace;
NamespaceAliasDecl(DeclContext *DC, SourceLocation L,
SourceLocation AliasLoc, IdentifierInfo *Alias,
SourceLocation IdentLoc, NamedDecl *Namespace)
: NamedDecl(Decl::NamespaceAlias, DC, L, Alias), AliasLoc(AliasLoc),
IdentLoc(IdentLoc), Namespace(Namespace) { }
public:
NamespaceDecl *getNamespace() {
if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
return AD->getNamespace();
return cast<NamespaceDecl>(Namespace);
}
const NamespaceDecl *getNamespace() const {
return const_cast<NamespaceAliasDecl*>(this)->getNamespace();
}
static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, SourceLocation AliasLoc,
IdentifierInfo *Alias,
SourceLocation IdentLoc,
NamedDecl *Namespace);
static bool classof(const Decl *D) {
return D->getKind() == Decl::NamespaceAlias;
}
static bool classof(const NamespaceAliasDecl *D) { return true; }
};
/// StaticAssertDecl - Represents a C++0x static_assert declaration.
class StaticAssertDecl : public Decl {
Expr *AssertExpr;
StringLiteral *Message;
StaticAssertDecl(DeclContext *DC, SourceLocation L,
Expr *assertexpr, StringLiteral *message)
: Decl(StaticAssert, DC, L), AssertExpr(assertexpr), Message(message) { }
public:
static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, Expr *AssertExpr,
StringLiteral *Message);
Expr *getAssertExpr() { return AssertExpr; }
const Expr *getAssertExpr() const { return AssertExpr; }
StringLiteral *getMessage() { return Message; }
const StringLiteral *getMessage() const { return Message; }
virtual ~StaticAssertDecl();
virtual void Destroy(ASTContext& C);
static bool classof(const Decl *D) {
return D->getKind() == Decl::StaticAssert;
}
static bool classof(StaticAssertDecl *D) { return true; }
};
/// CXXTempVarDecl - Represents an implicit C++ temporary variable declaration.
class CXXTempVarDecl : public VarDecl {
protected:
CXXTempVarDecl(DeclContext *DC, QualType T)
: VarDecl(CXXTempVar, DC, SourceLocation(), 0, T, None) {}
public:
static CXXTempVarDecl *Create(ASTContext &C, DeclContext *DC,
QualType T);
static bool classof(const Decl *D) {
return D->getKind() == Decl::CXXTempVar;
}
static bool classof(CXXTempVarDecl *D) { return true; }
};
/// Insertion operator for diagnostics. This allows sending AccessSpecifier's
/// into a diagnostic with <<.
const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
AccessSpecifier AS);
} // end namespace clang
#endif