| //===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the actions class which performs semantic analysis and |
| // builds an AST out of a parse stream. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/DelayedDiagnostic.h" |
| #include "TargetAttributesSema.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "clang/Sema/CXXFieldCollector.h" |
| #include "clang/Sema/TemplateDeduction.h" |
| #include "clang/Sema/ExternalSemaSource.h" |
| #include "clang/Sema/ObjCMethodList.h" |
| #include "clang/Sema/PrettyDeclStackTrace.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/SemaConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTDiagnostic.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/Lex/HeaderSearch.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Basic/FileManager.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/TargetInfo.h" |
| using namespace clang; |
| using namespace sema; |
| |
| FunctionScopeInfo::~FunctionScopeInfo() { } |
| |
| void FunctionScopeInfo::Clear() { |
| HasBranchProtectedScope = false; |
| HasBranchIntoScope = false; |
| HasIndirectGoto = false; |
| |
| SwitchStack.clear(); |
| Returns.clear(); |
| ErrorTrap.reset(); |
| PossiblyUnreachableDiags.clear(); |
| } |
| |
| BlockScopeInfo::~BlockScopeInfo() { } |
| LambdaScopeInfo::~LambdaScopeInfo() { } |
| |
| PrintingPolicy Sema::getPrintingPolicy(const ASTContext &Context, |
| const Preprocessor &PP) { |
| PrintingPolicy Policy = Context.getPrintingPolicy(); |
| Policy.Bool = Context.getLangOptions().Bool; |
| if (!Policy.Bool) { |
| if (MacroInfo *BoolMacro = PP.getMacroInfo(&Context.Idents.get("bool"))) { |
| Policy.Bool = BoolMacro->isObjectLike() && |
| BoolMacro->getNumTokens() == 1 && |
| BoolMacro->getReplacementToken(0).is(tok::kw__Bool); |
| } |
| } |
| |
| return Policy; |
| } |
| |
| void Sema::ActOnTranslationUnitScope(Scope *S) { |
| TUScope = S; |
| PushDeclContext(S, Context.getTranslationUnitDecl()); |
| |
| VAListTagName = PP.getIdentifierInfo("__va_list_tag"); |
| } |
| |
| Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer, |
| TranslationUnitKind TUKind, |
| CodeCompleteConsumer *CodeCompleter) |
| : TheTargetAttributesSema(0), FPFeatures(pp.getLangOptions()), |
| LangOpts(pp.getLangOptions()), PP(pp), Context(ctxt), Consumer(consumer), |
| Diags(PP.getDiagnostics()), SourceMgr(PP.getSourceManager()), |
| CollectStats(false), ExternalSource(0), CodeCompleter(CodeCompleter), |
| CurContext(0), OriginalLexicalContext(0), |
| PackContext(0), MSStructPragmaOn(false), VisContext(0), |
| ExprNeedsCleanups(false), LateTemplateParser(0), OpaqueParser(0), |
| IdResolver(pp), StdInitializerList(0), CXXTypeInfoDecl(0), MSVCGuidDecl(0), |
| GlobalNewDeleteDeclared(false), |
| ObjCShouldCallSuperDealloc(false), |
| ObjCShouldCallSuperFinalize(false), |
| TUKind(TUKind), |
| NumSFINAEErrors(0), SuppressAccessChecking(false), |
| AccessCheckingSFINAE(false), InNonInstantiationSFINAEContext(false), |
| NonInstantiationEntries(0), ArgumentPackSubstitutionIndex(-1), |
| CurrentInstantiationScope(0), TyposCorrected(0), |
| AnalysisWarnings(*this) |
| { |
| TUScope = 0; |
| LoadedExternalKnownNamespaces = false; |
| |
| if (getLangOptions().CPlusPlus) |
| FieldCollector.reset(new CXXFieldCollector()); |
| |
| // Tell diagnostics how to render things from the AST library. |
| PP.getDiagnostics().SetArgToStringFn(&FormatASTNodeDiagnosticArgument, |
| &Context); |
| |
| ExprEvalContexts.push_back( |
| ExpressionEvaluationContextRecord(PotentiallyEvaluated, 0, false)); |
| |
| FunctionScopes.push_back(new FunctionScopeInfo(Diags)); |
| } |
| |
| void Sema::Initialize() { |
| // Tell the AST consumer about this Sema object. |
| Consumer.Initialize(Context); |
| |
| // FIXME: Isn't this redundant with the initialization above? |
| if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer)) |
| SC->InitializeSema(*this); |
| |
| // Tell the external Sema source about this Sema object. |
| if (ExternalSemaSource *ExternalSema |
| = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource())) |
| ExternalSema->InitializeSema(*this); |
| |
| // Initialize predefined 128-bit integer types, if needed. |
| if (PP.getTargetInfo().getPointerWidth(0) >= 64) { |
| // If either of the 128-bit integer types are unavailable to name lookup, |
| // define them now. |
| DeclarationName Int128 = &Context.Idents.get("__int128_t"); |
| if (IdResolver.begin(Int128) == IdResolver.end()) |
| PushOnScopeChains(Context.getInt128Decl(), TUScope); |
| |
| DeclarationName UInt128 = &Context.Idents.get("__uint128_t"); |
| if (IdResolver.begin(UInt128) == IdResolver.end()) |
| PushOnScopeChains(Context.getUInt128Decl(), TUScope); |
| } |
| |
| |
| // Initialize predefined Objective-C types: |
| if (PP.getLangOptions().ObjC1) { |
| // If 'SEL' does not yet refer to any declarations, make it refer to the |
| // predefined 'SEL'. |
| DeclarationName SEL = &Context.Idents.get("SEL"); |
| if (IdResolver.begin(SEL) == IdResolver.end()) |
| PushOnScopeChains(Context.getObjCSelDecl(), TUScope); |
| |
| // If 'id' does not yet refer to any declarations, make it refer to the |
| // predefined 'id'. |
| DeclarationName Id = &Context.Idents.get("id"); |
| if (IdResolver.begin(Id) == IdResolver.end()) |
| PushOnScopeChains(Context.getObjCIdDecl(), TUScope); |
| |
| // Create the built-in typedef for 'Class'. |
| DeclarationName Class = &Context.Idents.get("Class"); |
| if (IdResolver.begin(Class) == IdResolver.end()) |
| PushOnScopeChains(Context.getObjCClassDecl(), TUScope); |
| |
| // Create the built-in forward declaratino for 'Protocol'. |
| DeclarationName Protocol = &Context.Idents.get("Protocol"); |
| if (IdResolver.begin(Protocol) == IdResolver.end()) |
| PushOnScopeChains(Context.getObjCProtocolDecl(), TUScope); |
| } |
| } |
| |
| Sema::~Sema() { |
| if (PackContext) FreePackedContext(); |
| if (VisContext) FreeVisContext(); |
| delete TheTargetAttributesSema; |
| MSStructPragmaOn = false; |
| // Kill all the active scopes. |
| for (unsigned I = 1, E = FunctionScopes.size(); I != E; ++I) |
| delete FunctionScopes[I]; |
| if (FunctionScopes.size() == 1) |
| delete FunctionScopes[0]; |
| |
| // Tell the SemaConsumer to forget about us; we're going out of scope. |
| if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer)) |
| SC->ForgetSema(); |
| |
| // Detach from the external Sema source. |
| if (ExternalSemaSource *ExternalSema |
| = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource())) |
| ExternalSema->ForgetSema(); |
| } |
| |
| |
| /// makeUnavailableInSystemHeader - There is an error in the current |
| /// context. If we're still in a system header, and we can plausibly |
| /// make the relevant declaration unavailable instead of erroring, do |
| /// so and return true. |
| bool Sema::makeUnavailableInSystemHeader(SourceLocation loc, |
| StringRef msg) { |
| // If we're not in a function, it's an error. |
| FunctionDecl *fn = dyn_cast<FunctionDecl>(CurContext); |
| if (!fn) return false; |
| |
| // If we're in template instantiation, it's an error. |
| if (!ActiveTemplateInstantiations.empty()) |
| return false; |
| |
| // If that function's not in a system header, it's an error. |
| if (!Context.getSourceManager().isInSystemHeader(loc)) |
| return false; |
| |
| // If the function is already unavailable, it's not an error. |
| if (fn->hasAttr<UnavailableAttr>()) return true; |
| |
| fn->addAttr(new (Context) UnavailableAttr(loc, Context, msg)); |
| return true; |
| } |
| |
| ASTMutationListener *Sema::getASTMutationListener() const { |
| return getASTConsumer().GetASTMutationListener(); |
| } |
| |
| /// \brief Print out statistics about the semantic analysis. |
| void Sema::PrintStats() const { |
| llvm::errs() << "\n*** Semantic Analysis Stats:\n"; |
| llvm::errs() << NumSFINAEErrors << " SFINAE diagnostics trapped.\n"; |
| |
| BumpAlloc.PrintStats(); |
| AnalysisWarnings.PrintStats(); |
| } |
| |
| /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast. |
| /// If there is already an implicit cast, merge into the existing one. |
| /// The result is of the given category. |
| ExprResult Sema::ImpCastExprToType(Expr *E, QualType Ty, |
| CastKind Kind, ExprValueKind VK, |
| const CXXCastPath *BasePath, |
| CheckedConversionKind CCK) { |
| #ifndef NDEBUG |
| if (VK == VK_RValue && !E->isRValue()) { |
| switch (Kind) { |
| default: |
| assert(0 && "can't implicitly cast lvalue to rvalue with this cast kind"); |
| case CK_LValueToRValue: |
| case CK_ArrayToPointerDecay: |
| case CK_FunctionToPointerDecay: |
| case CK_ToVoid: |
| break; |
| } |
| } |
| assert((VK == VK_RValue || !E->isRValue()) && "can't cast rvalue to lvalue"); |
| #endif |
| |
| QualType ExprTy = Context.getCanonicalType(E->getType()); |
| QualType TypeTy = Context.getCanonicalType(Ty); |
| |
| if (ExprTy == TypeTy) |
| return Owned(E); |
| |
| if (getLangOptions().ObjCAutoRefCount) |
| CheckObjCARCConversion(SourceRange(), Ty, E, CCK); |
| |
| // If this is a derived-to-base cast to a through a virtual base, we |
| // need a vtable. |
| if (Kind == CK_DerivedToBase && |
| BasePathInvolvesVirtualBase(*BasePath)) { |
| QualType T = E->getType(); |
| if (const PointerType *Pointer = T->getAs<PointerType>()) |
| T = Pointer->getPointeeType(); |
| if (const RecordType *RecordTy = T->getAs<RecordType>()) |
| MarkVTableUsed(E->getLocStart(), |
| cast<CXXRecordDecl>(RecordTy->getDecl())); |
| } |
| |
| if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(E)) { |
| if (ImpCast->getCastKind() == Kind && (!BasePath || BasePath->empty())) { |
| ImpCast->setType(Ty); |
| ImpCast->setValueKind(VK); |
| return Owned(E); |
| } |
| } |
| |
| return Owned(ImplicitCastExpr::Create(Context, Ty, Kind, E, BasePath, VK)); |
| } |
| |
| /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding |
| /// to the conversion from scalar type ScalarTy to the Boolean type. |
| CastKind Sema::ScalarTypeToBooleanCastKind(QualType ScalarTy) { |
| switch (ScalarTy->getScalarTypeKind()) { |
| case Type::STK_Bool: return CK_NoOp; |
| case Type::STK_CPointer: return CK_PointerToBoolean; |
| case Type::STK_BlockPointer: return CK_PointerToBoolean; |
| case Type::STK_ObjCObjectPointer: return CK_PointerToBoolean; |
| case Type::STK_MemberPointer: return CK_MemberPointerToBoolean; |
| case Type::STK_Integral: return CK_IntegralToBoolean; |
| case Type::STK_Floating: return CK_FloatingToBoolean; |
| case Type::STK_IntegralComplex: return CK_IntegralComplexToBoolean; |
| case Type::STK_FloatingComplex: return CK_FloatingComplexToBoolean; |
| } |
| return CK_Invalid; |
| } |
| |
| /// \brief Used to prune the decls of Sema's UnusedFileScopedDecls vector. |
| static bool ShouldRemoveFromUnused(Sema *SemaRef, const DeclaratorDecl *D) { |
| if (D->isUsed()) |
| return true; |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| // UnusedFileScopedDecls stores the first declaration. |
| // The declaration may have become definition so check again. |
| const FunctionDecl *DeclToCheck; |
| if (FD->hasBody(DeclToCheck)) |
| return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); |
| |
| // Later redecls may add new information resulting in not having to warn, |
| // so check again. |
| DeclToCheck = FD->getMostRecentDecl(); |
| if (DeclToCheck != FD) |
| return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); |
| } |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| // UnusedFileScopedDecls stores the first declaration. |
| // The declaration may have become definition so check again. |
| const VarDecl *DeclToCheck = VD->getDefinition(); |
| if (DeclToCheck) |
| return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); |
| |
| // Later redecls may add new information resulting in not having to warn, |
| // so check again. |
| DeclToCheck = VD->getMostRecentDecl(); |
| if (DeclToCheck != VD) |
| return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); |
| } |
| |
| return false; |
| } |
| |
| namespace { |
| struct UndefinedInternal { |
| NamedDecl *decl; |
| FullSourceLoc useLoc; |
| |
| UndefinedInternal(NamedDecl *decl, FullSourceLoc useLoc) |
| : decl(decl), useLoc(useLoc) {} |
| }; |
| |
| bool operator<(const UndefinedInternal &l, const UndefinedInternal &r) { |
| return l.useLoc.isBeforeInTranslationUnitThan(r.useLoc); |
| } |
| } |
| |
| /// checkUndefinedInternals - Check for undefined objects with internal linkage. |
| static void checkUndefinedInternals(Sema &S) { |
| if (S.UndefinedInternals.empty()) return; |
| |
| // Collect all the still-undefined entities with internal linkage. |
| SmallVector<UndefinedInternal, 16> undefined; |
| for (llvm::DenseMap<NamedDecl*,SourceLocation>::iterator |
| i = S.UndefinedInternals.begin(), e = S.UndefinedInternals.end(); |
| i != e; ++i) { |
| NamedDecl *decl = i->first; |
| |
| // Ignore attributes that have become invalid. |
| if (decl->isInvalidDecl()) continue; |
| |
| // __attribute__((weakref)) is basically a definition. |
| if (decl->hasAttr<WeakRefAttr>()) continue; |
| |
| if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) { |
| if (fn->isPure() || fn->hasBody()) |
| continue; |
| } else { |
| if (cast<VarDecl>(decl)->hasDefinition() != VarDecl::DeclarationOnly) |
| continue; |
| } |
| |
| // We build a FullSourceLoc so that we can sort with array_pod_sort. |
| FullSourceLoc loc(i->second, S.Context.getSourceManager()); |
| undefined.push_back(UndefinedInternal(decl, loc)); |
| } |
| |
| if (undefined.empty()) return; |
| |
| // Sort (in order of use site) so that we're not (as) dependent on |
| // the iteration order through an llvm::DenseMap. |
| llvm::array_pod_sort(undefined.begin(), undefined.end()); |
| |
| for (SmallVectorImpl<UndefinedInternal>::iterator |
| i = undefined.begin(), e = undefined.end(); i != e; ++i) { |
| NamedDecl *decl = i->decl; |
| S.Diag(decl->getLocation(), diag::warn_undefined_internal) |
| << isa<VarDecl>(decl) << decl; |
| S.Diag(i->useLoc, diag::note_used_here); |
| } |
| } |
| |
| void Sema::LoadExternalWeakUndeclaredIdentifiers() { |
| if (!ExternalSource) |
| return; |
| |
| SmallVector<std::pair<IdentifierInfo *, WeakInfo>, 4> WeakIDs; |
| ExternalSource->ReadWeakUndeclaredIdentifiers(WeakIDs); |
| for (unsigned I = 0, N = WeakIDs.size(); I != N; ++I) { |
| llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator Pos |
| = WeakUndeclaredIdentifiers.find(WeakIDs[I].first); |
| if (Pos != WeakUndeclaredIdentifiers.end()) |
| continue; |
| |
| WeakUndeclaredIdentifiers.insert(WeakIDs[I]); |
| } |
| } |
| |
| /// ActOnEndOfTranslationUnit - This is called at the very end of the |
| /// translation unit when EOF is reached and all but the top-level scope is |
| /// popped. |
| void Sema::ActOnEndOfTranslationUnit() { |
| // Only complete translation units define vtables and perform implicit |
| // instantiations. |
| if (TUKind == TU_Complete) { |
| // If any dynamic classes have their key function defined within |
| // this translation unit, then those vtables are considered "used" and must |
| // be emitted. |
| for (DynamicClassesType::iterator I = DynamicClasses.begin(ExternalSource), |
| E = DynamicClasses.end(); |
| I != E; ++I) { |
| assert(!(*I)->isDependentType() && |
| "Should not see dependent types here!"); |
| if (const CXXMethodDecl *KeyFunction = Context.getKeyFunction(*I)) { |
| const FunctionDecl *Definition = 0; |
| if (KeyFunction->hasBody(Definition)) |
| MarkVTableUsed(Definition->getLocation(), *I, true); |
| } |
| } |
| |
| // If DefinedUsedVTables ends up marking any virtual member functions it |
| // might lead to more pending template instantiations, which we then need |
| // to instantiate. |
| DefineUsedVTables(); |
| |
| // C++: Perform implicit template instantiations. |
| // |
| // FIXME: When we perform these implicit instantiations, we do not |
| // carefully keep track of the point of instantiation (C++ [temp.point]). |
| // This means that name lookup that occurs within the template |
| // instantiation will always happen at the end of the translation unit, |
| // so it will find some names that should not be found. Although this is |
| // common behavior for C++ compilers, it is technically wrong. In the |
| // future, we either need to be able to filter the results of name lookup |
| // or we need to perform template instantiations earlier. |
| PerformPendingInstantiations(); |
| } |
| |
| // Remove file scoped decls that turned out to be used. |
| UnusedFileScopedDecls.erase(std::remove_if(UnusedFileScopedDecls.begin(0, |
| true), |
| UnusedFileScopedDecls.end(), |
| std::bind1st(std::ptr_fun(ShouldRemoveFromUnused), |
| this)), |
| UnusedFileScopedDecls.end()); |
| |
| if (TUKind == TU_Prefix) { |
| // Translation unit prefixes don't need any of the checking below. |
| TUScope = 0; |
| return; |
| } |
| |
| // Check for #pragma weak identifiers that were never declared |
| // FIXME: This will cause diagnostics to be emitted in a non-determinstic |
| // order! Iterating over a densemap like this is bad. |
| LoadExternalWeakUndeclaredIdentifiers(); |
| for (llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator |
| I = WeakUndeclaredIdentifiers.begin(), |
| E = WeakUndeclaredIdentifiers.end(); I != E; ++I) { |
| if (I->second.getUsed()) continue; |
| |
| Diag(I->second.getLocation(), diag::warn_weak_identifier_undeclared) |
| << I->first; |
| } |
| |
| if (TUKind == TU_Module) { |
| // If we are building a module, resolve all of the exported declarations |
| // now. |
| if (Module *CurrentModule = PP.getCurrentModule()) { |
| ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap(); |
| |
| llvm::SmallVector<Module *, 2> Stack; |
| Stack.push_back(CurrentModule); |
| while (!Stack.empty()) { |
| Module *Mod = Stack.back(); |
| Stack.pop_back(); |
| |
| // Resolve the exported declarations. |
| // FIXME: Actually complain, once we figure out how to teach the |
| // diagnostic client to deal with complains in the module map at this |
| // point. |
| ModMap.resolveExports(Mod, /*Complain=*/false); |
| |
| // Queue the submodules, so their exports will also be resolved. |
| for (Module::submodule_iterator Sub = Mod->submodule_begin(), |
| SubEnd = Mod->submodule_end(); |
| Sub != SubEnd; ++Sub) { |
| Stack.push_back(*Sub); |
| } |
| } |
| } |
| |
| // Modules don't need any of the checking below. |
| TUScope = 0; |
| return; |
| } |
| |
| // C99 6.9.2p2: |
| // A declaration of an identifier for an object that has file |
| // scope without an initializer, and without a storage-class |
| // specifier or with the storage-class specifier static, |
| // constitutes a tentative definition. If a translation unit |
| // contains one or more tentative definitions for an identifier, |
| // and the translation unit contains no external definition for |
| // that identifier, then the behavior is exactly as if the |
| // translation unit contains a file scope declaration of that |
| // identifier, with the composite type as of the end of the |
| // translation unit, with an initializer equal to 0. |
| llvm::SmallSet<VarDecl *, 32> Seen; |
| for (TentativeDefinitionsType::iterator |
| T = TentativeDefinitions.begin(ExternalSource), |
| TEnd = TentativeDefinitions.end(); |
| T != TEnd; ++T) |
| { |
| VarDecl *VD = (*T)->getActingDefinition(); |
| |
| // If the tentative definition was completed, getActingDefinition() returns |
| // null. If we've already seen this variable before, insert()'s second |
| // return value is false. |
| if (VD == 0 || VD->isInvalidDecl() || !Seen.insert(VD)) |
| continue; |
| |
| if (const IncompleteArrayType *ArrayT |
| = Context.getAsIncompleteArrayType(VD->getType())) { |
| if (RequireCompleteType(VD->getLocation(), |
| ArrayT->getElementType(), |
| diag::err_tentative_def_incomplete_type_arr)) { |
| VD->setInvalidDecl(); |
| continue; |
| } |
| |
| // Set the length of the array to 1 (C99 6.9.2p5). |
| Diag(VD->getLocation(), diag::warn_tentative_incomplete_array); |
| llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true); |
| QualType T = Context.getConstantArrayType(ArrayT->getElementType(), |
| One, ArrayType::Normal, 0); |
| VD->setType(T); |
| } else if (RequireCompleteType(VD->getLocation(), VD->getType(), |
| diag::err_tentative_def_incomplete_type)) |
| VD->setInvalidDecl(); |
| |
| // Notify the consumer that we've completed a tentative definition. |
| if (!VD->isInvalidDecl()) |
| Consumer.CompleteTentativeDefinition(VD); |
| |
| } |
| |
| if (LangOpts.CPlusPlus0x && |
| Diags.getDiagnosticLevel(diag::warn_delegating_ctor_cycle, |
| SourceLocation()) |
| != DiagnosticsEngine::Ignored) |
| CheckDelegatingCtorCycles(); |
| |
| // If there were errors, disable 'unused' warnings since they will mostly be |
| // noise. |
| if (!Diags.hasErrorOccurred()) { |
| // Output warning for unused file scoped decls. |
| for (UnusedFileScopedDeclsType::iterator |
| I = UnusedFileScopedDecls.begin(ExternalSource), |
| E = UnusedFileScopedDecls.end(); I != E; ++I) { |
| if (ShouldRemoveFromUnused(this, *I)) |
| continue; |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { |
| const FunctionDecl *DiagD; |
| if (!FD->hasBody(DiagD)) |
| DiagD = FD; |
| if (DiagD->isDeleted()) |
| continue; // Deleted functions are supposed to be unused. |
| if (DiagD->isReferenced()) { |
| if (isa<CXXMethodDecl>(DiagD)) |
| Diag(DiagD->getLocation(), diag::warn_unneeded_member_function) |
| << DiagD->getDeclName(); |
| else |
| Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl) |
| << /*function*/0 << DiagD->getDeclName(); |
| } else { |
| Diag(DiagD->getLocation(), |
| isa<CXXMethodDecl>(DiagD) ? diag::warn_unused_member_function |
| : diag::warn_unused_function) |
| << DiagD->getDeclName(); |
| } |
| } else { |
| const VarDecl *DiagD = cast<VarDecl>(*I)->getDefinition(); |
| if (!DiagD) |
| DiagD = cast<VarDecl>(*I); |
| if (DiagD->isReferenced()) { |
| Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl) |
| << /*variable*/1 << DiagD->getDeclName(); |
| } else { |
| Diag(DiagD->getLocation(), diag::warn_unused_variable) |
| << DiagD->getDeclName(); |
| } |
| } |
| } |
| |
| checkUndefinedInternals(*this); |
| } |
| |
| // Check we've noticed that we're no longer parsing the initializer for every |
| // variable. If we miss cases, then at best we have a performance issue and |
| // at worst a rejects-valid bug. |
| assert(ParsingInitForAutoVars.empty() && |
| "Didn't unmark var as having its initializer parsed"); |
| |
| TUScope = 0; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions. |
| //===----------------------------------------------------------------------===// |
| |
| DeclContext *Sema::getFunctionLevelDeclContext() { |
| DeclContext *DC = CurContext; |
| |
| while (true) { |
| if (isa<BlockDecl>(DC) || isa<EnumDecl>(DC)) { |
| DC = DC->getParent(); |
| } else if (isa<CXXMethodDecl>(DC) && |
| cast<CXXRecordDecl>(DC->getParent())->isLambda()) { |
| DC = DC->getParent()->getParent(); |
| } |
| else break; |
| } |
| |
| return DC; |
| } |
| |
| /// getCurFunctionDecl - If inside of a function body, this returns a pointer |
| /// to the function decl for the function being parsed. If we're currently |
| /// in a 'block', this returns the containing context. |
| FunctionDecl *Sema::getCurFunctionDecl() { |
| DeclContext *DC = getFunctionLevelDeclContext(); |
| return dyn_cast<FunctionDecl>(DC); |
| } |
| |
| ObjCMethodDecl *Sema::getCurMethodDecl() { |
| DeclContext *DC = getFunctionLevelDeclContext(); |
| return dyn_cast<ObjCMethodDecl>(DC); |
| } |
| |
| NamedDecl *Sema::getCurFunctionOrMethodDecl() { |
| DeclContext *DC = getFunctionLevelDeclContext(); |
| if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC)) |
| return cast<NamedDecl>(DC); |
| return 0; |
| } |
| |
| Sema::SemaDiagnosticBuilder::~SemaDiagnosticBuilder() { |
| if (!isActive()) |
| return; |
| |
| if (llvm::Optional<TemplateDeductionInfo*> Info = SemaRef.isSFINAEContext()) { |
| switch (DiagnosticIDs::getDiagnosticSFINAEResponse(getDiagID())) { |
| case DiagnosticIDs::SFINAE_Report: |
| // We'll report the diagnostic below. |
| break; |
| |
| case DiagnosticIDs::SFINAE_SubstitutionFailure: |
| // Count this failure so that we know that template argument deduction |
| // has failed. |
| ++SemaRef.NumSFINAEErrors; |
| SemaRef.Diags.setLastDiagnosticIgnored(); |
| SemaRef.Diags.Clear(); |
| Clear(); |
| return; |
| |
| case DiagnosticIDs::SFINAE_AccessControl: { |
| // Per C++ Core Issue 1170, access control is part of SFINAE. |
| // Additionally, the AccessCheckingSFINAE flag can be used to temporary |
| // make access control a part of SFINAE for the purposes of checking |
| // type traits. |
| if (!SemaRef.AccessCheckingSFINAE && |
| !SemaRef.getLangOptions().CPlusPlus0x) |
| break; |
| |
| SourceLocation Loc = getLocation(); |
| |
| // Suppress this diagnostic. |
| ++SemaRef.NumSFINAEErrors; |
| SemaRef.Diags.setLastDiagnosticIgnored(); |
| SemaRef.Diags.Clear(); |
| Clear(); |
| |
| // Now the diagnostic state is clear, produce a C++98 compatibility |
| // warning. |
| SemaRef.Diag(Loc, diag::warn_cxx98_compat_sfinae_access_control); |
| |
| // The last diagnostic which Sema produced was ignored. Suppress any |
| // notes attached to it. |
| SemaRef.Diags.setLastDiagnosticIgnored(); |
| return; |
| } |
| |
| case DiagnosticIDs::SFINAE_Suppress: |
| // Make a copy of this suppressed diagnostic and store it with the |
| // template-deduction information; |
| FlushCounts(); |
| Diagnostic DiagInfo(&SemaRef.Diags); |
| |
| if (*Info) |
| (*Info)->addSuppressedDiagnostic(DiagInfo.getLocation(), |
| PartialDiagnostic(DiagInfo, |
| SemaRef.Context.getDiagAllocator())); |
| |
| // Suppress this diagnostic. |
| SemaRef.Diags.setLastDiagnosticIgnored(); |
| SemaRef.Diags.Clear(); |
| Clear(); |
| return; |
| } |
| } |
| |
| // Set up the context's printing policy based on our current state. |
| SemaRef.Context.setPrintingPolicy(SemaRef.getPrintingPolicy()); |
| |
| // Emit the diagnostic. |
| if (!this->Emit()) |
| return; |
| |
| // If this is not a note, and we're in a template instantiation |
| // that is different from the last template instantiation where |
| // we emitted an error, print a template instantiation |
| // backtrace. |
| if (!DiagnosticIDs::isBuiltinNote(DiagID) && |
| !SemaRef.ActiveTemplateInstantiations.empty() && |
| SemaRef.ActiveTemplateInstantiations.back() |
| != SemaRef.LastTemplateInstantiationErrorContext) { |
| SemaRef.PrintInstantiationStack(); |
| SemaRef.LastTemplateInstantiationErrorContext |
| = SemaRef.ActiveTemplateInstantiations.back(); |
| } |
| } |
| |
| Sema::SemaDiagnosticBuilder Sema::Diag(SourceLocation Loc, unsigned DiagID) { |
| DiagnosticBuilder DB = Diags.Report(Loc, DiagID); |
| return SemaDiagnosticBuilder(DB, *this, DiagID); |
| } |
| |
| Sema::SemaDiagnosticBuilder |
| Sema::Diag(SourceLocation Loc, const PartialDiagnostic& PD) { |
| SemaDiagnosticBuilder Builder(Diag(Loc, PD.getDiagID())); |
| PD.Emit(Builder); |
| |
| return Builder; |
| } |
| |
| /// \brief Looks through the macro-expansion chain for the given |
| /// location, looking for a macro expansion with the given name. |
| /// If one is found, returns true and sets the location to that |
| /// expansion loc. |
| bool Sema::findMacroSpelling(SourceLocation &locref, StringRef name) { |
| SourceLocation loc = locref; |
| if (!loc.isMacroID()) return false; |
| |
| // There's no good way right now to look at the intermediate |
| // expansions, so just jump to the expansion location. |
| loc = getSourceManager().getExpansionLoc(loc); |
| |
| // If that's written with the name, stop here. |
| SmallVector<char, 16> buffer; |
| if (getPreprocessor().getSpelling(loc, buffer) == name) { |
| locref = loc; |
| return true; |
| } |
| return false; |
| } |
| |
| /// \brief Determines the active Scope associated with the given declaration |
| /// context. |
| /// |
| /// This routine maps a declaration context to the active Scope object that |
| /// represents that declaration context in the parser. It is typically used |
| /// from "scope-less" code (e.g., template instantiation, lazy creation of |
| /// declarations) that injects a name for name-lookup purposes and, therefore, |
| /// must update the Scope. |
| /// |
| /// \returns The scope corresponding to the given declaraion context, or NULL |
| /// if no such scope is open. |
| Scope *Sema::getScopeForContext(DeclContext *Ctx) { |
| |
| if (!Ctx) |
| return 0; |
| |
| Ctx = Ctx->getPrimaryContext(); |
| for (Scope *S = getCurScope(); S; S = S->getParent()) { |
| // Ignore scopes that cannot have declarations. This is important for |
| // out-of-line definitions of static class members. |
| if (S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) |
| if (DeclContext *Entity = static_cast<DeclContext *> (S->getEntity())) |
| if (Ctx == Entity->getPrimaryContext()) |
| return S; |
| } |
| |
| return 0; |
| } |
| |
| /// \brief Enter a new function scope |
| void Sema::PushFunctionScope() { |
| if (FunctionScopes.size() == 1) { |
| // Use the "top" function scope rather than having to allocate |
| // memory for a new scope. |
| FunctionScopes.back()->Clear(); |
| FunctionScopes.push_back(FunctionScopes.back()); |
| return; |
| } |
| |
| FunctionScopes.push_back(new FunctionScopeInfo(getDiagnostics())); |
| } |
| |
| void Sema::PushBlockScope(Scope *BlockScope, BlockDecl *Block) { |
| FunctionScopes.push_back(new BlockScopeInfo(getDiagnostics(), |
| BlockScope, Block)); |
| } |
| |
| void Sema::PushLambdaScope(CXXRecordDecl *Lambda) { |
| FunctionScopes.push_back(new LambdaScopeInfo(getDiagnostics(), Lambda)); |
| } |
| |
| void Sema::PopFunctionScopeInfo(const AnalysisBasedWarnings::Policy *WP, |
| const Decl *D, const BlockExpr *blkExpr) { |
| FunctionScopeInfo *Scope = FunctionScopes.pop_back_val(); |
| assert(!FunctionScopes.empty() && "mismatched push/pop!"); |
| |
| // Issue any analysis-based warnings. |
| if (WP && D) |
| AnalysisWarnings.IssueWarnings(*WP, Scope, D, blkExpr); |
| else { |
| for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator |
| i = Scope->PossiblyUnreachableDiags.begin(), |
| e = Scope->PossiblyUnreachableDiags.end(); |
| i != e; ++i) { |
| const sema::PossiblyUnreachableDiag &D = *i; |
| Diag(D.Loc, D.PD); |
| } |
| } |
| |
| if (FunctionScopes.back() != Scope) { |
| delete Scope; |
| } |
| } |
| |
| /// \brief Determine whether any errors occurred within this function/method/ |
| /// block. |
| bool Sema::hasAnyUnrecoverableErrorsInThisFunction() const { |
| return getCurFunction()->ErrorTrap.hasUnrecoverableErrorOccurred(); |
| } |
| |
| BlockScopeInfo *Sema::getCurBlock() { |
| if (FunctionScopes.empty()) |
| return 0; |
| |
| return dyn_cast<BlockScopeInfo>(FunctionScopes.back()); |
| } |
| |
| LambdaScopeInfo *Sema::getCurLambda() { |
| if (FunctionScopes.empty()) |
| return 0; |
| |
| return dyn_cast<LambdaScopeInfo>(FunctionScopes.back()); |
| } |
| |
| // Pin this vtable to this file. |
| ExternalSemaSource::~ExternalSemaSource() {} |
| |
| std::pair<ObjCMethodList, ObjCMethodList> |
| ExternalSemaSource::ReadMethodPool(Selector Sel) { |
| return std::pair<ObjCMethodList, ObjCMethodList>(); |
| } |
| |
| void ExternalSemaSource::ReadKnownNamespaces( |
| SmallVectorImpl<NamespaceDecl *> &Namespaces) { |
| } |
| |
| void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { |
| SourceLocation Loc = this->Loc; |
| if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); |
| if (Loc.isValid()) { |
| Loc.print(OS, S.getSourceManager()); |
| OS << ": "; |
| } |
| OS << Message; |
| |
| if (TheDecl && isa<NamedDecl>(TheDecl)) { |
| std::string Name = cast<NamedDecl>(TheDecl)->getNameAsString(); |
| if (!Name.empty()) |
| OS << " '" << Name << '\''; |
| } |
| |
| OS << '\n'; |
| } |
| |
| /// \brief Figure out if an expression could be turned into a call. |
| /// |
| /// Use this when trying to recover from an error where the programmer may have |
| /// written just the name of a function instead of actually calling it. |
| /// |
| /// \param E - The expression to examine. |
| /// \param ZeroArgCallReturnTy - If the expression can be turned into a call |
| /// with no arguments, this parameter is set to the type returned by such a |
| /// call; otherwise, it is set to an empty QualType. |
| /// \param OverloadSet - If the expression is an overloaded function |
| /// name, this parameter is populated with the decls of the various overloads. |
| bool Sema::isExprCallable(const Expr &E, QualType &ZeroArgCallReturnTy, |
| UnresolvedSetImpl &OverloadSet) { |
| ZeroArgCallReturnTy = QualType(); |
| OverloadSet.clear(); |
| |
| if (E.getType() == Context.OverloadTy) { |
| OverloadExpr::FindResult FR = OverloadExpr::find(const_cast<Expr*>(&E)); |
| const OverloadExpr *Overloads = FR.Expression; |
| |
| for (OverloadExpr::decls_iterator it = Overloads->decls_begin(), |
| DeclsEnd = Overloads->decls_end(); it != DeclsEnd; ++it) { |
| OverloadSet.addDecl(*it); |
| |
| // Check whether the function is a non-template which takes no |
| // arguments. |
| if (const FunctionDecl *OverloadDecl |
| = dyn_cast<FunctionDecl>((*it)->getUnderlyingDecl())) { |
| if (OverloadDecl->getMinRequiredArguments() == 0) |
| ZeroArgCallReturnTy = OverloadDecl->getResultType(); |
| } |
| } |
| |
| // Ignore overloads that are pointer-to-member constants. |
| if (FR.HasFormOfMemberPointer) |
| return false; |
| |
| return true; |
| } |
| |
| if (const DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E.IgnoreParens())) { |
| if (const FunctionDecl *Fun = dyn_cast<FunctionDecl>(DeclRef->getDecl())) { |
| if (Fun->getMinRequiredArguments() == 0) |
| ZeroArgCallReturnTy = Fun->getResultType(); |
| return true; |
| } |
| } |
| |
| // We don't have an expression that's convenient to get a FunctionDecl from, |
| // but we can at least check if the type is "function of 0 arguments". |
| QualType ExprTy = E.getType(); |
| const FunctionType *FunTy = NULL; |
| QualType PointeeTy = ExprTy->getPointeeType(); |
| if (!PointeeTy.isNull()) |
| FunTy = PointeeTy->getAs<FunctionType>(); |
| if (!FunTy) |
| FunTy = ExprTy->getAs<FunctionType>(); |
| if (!FunTy && ExprTy == Context.BoundMemberTy) { |
| // Look for the bound-member type. If it's still overloaded, give up, |
| // although we probably should have fallen into the OverloadExpr case above |
| // if we actually have an overloaded bound member. |
| QualType BoundMemberTy = Expr::findBoundMemberType(&E); |
| if (!BoundMemberTy.isNull()) |
| FunTy = BoundMemberTy->castAs<FunctionType>(); |
| } |
| |
| if (const FunctionProtoType *FPT = |
| dyn_cast_or_null<FunctionProtoType>(FunTy)) { |
| if (FPT->getNumArgs() == 0) |
| ZeroArgCallReturnTy = FunTy->getResultType(); |
| return true; |
| } |
| return false; |
| } |
| |
| /// \brief Give notes for a set of overloads. |
| /// |
| /// A companion to isExprCallable. In cases when the name that the programmer |
| /// wrote was an overloaded function, we may be able to make some guesses about |
| /// plausible overloads based on their return types; such guesses can be handed |
| /// off to this method to be emitted as notes. |
| /// |
| /// \param Overloads - The overloads to note. |
| /// \param FinalNoteLoc - If we've suppressed printing some overloads due to |
| /// -fshow-overloads=best, this is the location to attach to the note about too |
| /// many candidates. Typically this will be the location of the original |
| /// ill-formed expression. |
| static void noteOverloads(Sema &S, const UnresolvedSetImpl &Overloads, |
| const SourceLocation FinalNoteLoc) { |
| int ShownOverloads = 0; |
| int SuppressedOverloads = 0; |
| for (UnresolvedSetImpl::iterator It = Overloads.begin(), |
| DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) { |
| // FIXME: Magic number for max shown overloads stolen from |
| // OverloadCandidateSet::NoteCandidates. |
| if (ShownOverloads >= 4 && |
| S.Diags.getShowOverloads() == DiagnosticsEngine::Ovl_Best) { |
| ++SuppressedOverloads; |
| continue; |
| } |
| |
| NamedDecl *Fn = (*It)->getUnderlyingDecl(); |
| S.Diag(Fn->getLocation(), diag::note_possible_target_of_call); |
| ++ShownOverloads; |
| } |
| |
| if (SuppressedOverloads) |
| S.Diag(FinalNoteLoc, diag::note_ovl_too_many_candidates) |
| << SuppressedOverloads; |
| } |
| |
| static void notePlausibleOverloads(Sema &S, SourceLocation Loc, |
| const UnresolvedSetImpl &Overloads, |
| bool (*IsPlausibleResult)(QualType)) { |
| if (!IsPlausibleResult) |
| return noteOverloads(S, Overloads, Loc); |
| |
| UnresolvedSet<2> PlausibleOverloads; |
| for (OverloadExpr::decls_iterator It = Overloads.begin(), |
| DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) { |
| const FunctionDecl *OverloadDecl = cast<FunctionDecl>(*It); |
| QualType OverloadResultTy = OverloadDecl->getResultType(); |
| if (IsPlausibleResult(OverloadResultTy)) |
| PlausibleOverloads.addDecl(It.getDecl()); |
| } |
| noteOverloads(S, PlausibleOverloads, Loc); |
| } |
| |
| /// Determine whether the given expression can be called by just |
| /// putting parentheses after it. Notably, expressions with unary |
| /// operators can't be because the unary operator will start parsing |
| /// outside the call. |
| static bool IsCallableWithAppend(Expr *E) { |
| E = E->IgnoreImplicit(); |
| return (!isa<CStyleCastExpr>(E) && |
| !isa<UnaryOperator>(E) && |
| !isa<BinaryOperator>(E) && |
| !isa<CXXOperatorCallExpr>(E)); |
| } |
| |
| bool Sema::tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD, |
| bool ForceComplain, |
| bool (*IsPlausibleResult)(QualType)) { |
| SourceLocation Loc = E.get()->getExprLoc(); |
| SourceRange Range = E.get()->getSourceRange(); |
| |
| QualType ZeroArgCallTy; |
| UnresolvedSet<4> Overloads; |
| if (isExprCallable(*E.get(), ZeroArgCallTy, Overloads) && |
| !ZeroArgCallTy.isNull() && |
| (!IsPlausibleResult || IsPlausibleResult(ZeroArgCallTy))) { |
| // At this point, we know E is potentially callable with 0 |
| // arguments and that it returns something of a reasonable type, |
| // so we can emit a fixit and carry on pretending that E was |
| // actually a CallExpr. |
| SourceLocation ParenInsertionLoc = |
| PP.getLocForEndOfToken(Range.getEnd()); |
| Diag(Loc, PD) |
| << /*zero-arg*/ 1 << Range |
| << (IsCallableWithAppend(E.get()) |
| ? FixItHint::CreateInsertion(ParenInsertionLoc, "()") |
| : FixItHint()); |
| notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult); |
| |
| // FIXME: Try this before emitting the fixit, and suppress diagnostics |
| // while doing so. |
| E = ActOnCallExpr(0, E.take(), ParenInsertionLoc, |
| MultiExprArg(*this, 0, 0), |
| ParenInsertionLoc.getLocWithOffset(1)); |
| return true; |
| } |
| |
| if (!ForceComplain) return false; |
| |
| Diag(Loc, PD) << /*not zero-arg*/ 0 << Range; |
| notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult); |
| E = ExprError(); |
| return true; |
| } |