blob: 6e6849f0b240f5ac430b19f34a7cef384cafcff8 [file] [log] [blame]
//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTContext interface.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallVector.h"
using namespace clang;
enum FloatingRank {
FloatRank, DoubleRank, LongDoubleRank
};
ASTContext::~ASTContext() {
// Deallocate all the types.
while (!Types.empty()) {
if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(Types.back())) {
// Destroy the object, but don't call delete. These are malloc'd.
FT->~FunctionTypeProto();
free(FT);
} else {
delete Types.back();
}
Types.pop_back();
}
}
void ASTContext::PrintStats() const {
fprintf(stderr, "*** AST Context Stats:\n");
fprintf(stderr, " %d types total.\n", (int)Types.size());
unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
Type *T = Types[i];
if (isa<BuiltinType>(T))
++NumBuiltin;
else if (isa<PointerType>(T))
++NumPointer;
else if (isa<ReferenceType>(T))
++NumReference;
else if (isa<ArrayType>(T))
++NumArray;
else if (isa<FunctionTypeNoProto>(T))
++NumFunctionNP;
else if (isa<FunctionTypeProto>(T))
++NumFunctionP;
else if (isa<TypedefType>(T))
++NumTypeName;
else if (TagType *TT = dyn_cast<TagType>(T)) {
++NumTagged;
switch (TT->getDecl()->getKind()) {
default: assert(0 && "Unknown tagged type!");
case Decl::Struct: ++NumTagStruct; break;
case Decl::Union: ++NumTagUnion; break;
case Decl::Class: ++NumTagClass; break;
case Decl::Enum: ++NumTagEnum; break;
}
} else {
assert(0 && "Unknown type!");
}
}
fprintf(stderr, " %d builtin types\n", NumBuiltin);
fprintf(stderr, " %d pointer types\n", NumPointer);
fprintf(stderr, " %d reference types\n", NumReference);
fprintf(stderr, " %d array types\n", NumArray);
fprintf(stderr, " %d function types with proto\n", NumFunctionP);
fprintf(stderr, " %d function types with no proto\n", NumFunctionNP);
fprintf(stderr, " %d typename (typedef) types\n", NumTypeName);
fprintf(stderr, " %d tagged types\n", NumTagged);
fprintf(stderr, " %d struct types\n", NumTagStruct);
fprintf(stderr, " %d union types\n", NumTagUnion);
fprintf(stderr, " %d class types\n", NumTagClass);
fprintf(stderr, " %d enum types\n", NumTagEnum);
fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
NumFunctionP*sizeof(FunctionTypeProto)+
NumFunctionNP*sizeof(FunctionTypeNoProto)+
NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)));
}
void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
}
void ASTContext::InitBuiltinTypes() {
assert(VoidTy.isNull() && "Context reinitialized?");
// C99 6.2.5p19.
InitBuiltinType(VoidTy, BuiltinType::Void);
// C99 6.2.5p2.
InitBuiltinType(BoolTy, BuiltinType::Bool);
// C99 6.2.5p3.
if (Target.isCharSigned(SourceLocation()))
InitBuiltinType(CharTy, BuiltinType::Char_S);
else
InitBuiltinType(CharTy, BuiltinType::Char_U);
// C99 6.2.5p4.
InitBuiltinType(SignedCharTy, BuiltinType::SChar);
InitBuiltinType(ShortTy, BuiltinType::Short);
InitBuiltinType(IntTy, BuiltinType::Int);
InitBuiltinType(LongTy, BuiltinType::Long);
InitBuiltinType(LongLongTy, BuiltinType::LongLong);
// C99 6.2.5p6.
InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
// C99 6.2.5p10.
InitBuiltinType(FloatTy, BuiltinType::Float);
InitBuiltinType(DoubleTy, BuiltinType::Double);
InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
// C99 6.2.5p11.
FloatComplexTy = getComplexType(FloatTy);
DoubleComplexTy = getComplexType(DoubleTy);
LongDoubleComplexTy = getComplexType(LongDoubleTy);
}
/// getTypeSize - Return the size of the specified type, in bits. This method
/// does not work on incomplete types.
std::pair<uint64_t, unsigned>
ASTContext::getTypeInfo(QualType T, SourceLocation L) {
T = T.getCanonicalType();
uint64_t Size;
unsigned Align;
switch (T->getTypeClass()) {
default:
case Type::Complex:
case Type::Array:
case Type::Vector:
case Type::TypeName:
case Type::Tagged:
assert(0 && "Unimplemented type sizes!");
case Type::FunctionNoProto:
case Type::FunctionProto:
assert(0 && "Incomplete types have no size!");
case Type::Builtin: {
// FIXME: need to use TargetInfo to derive the target specific sizes. This
// implementation will suffice for play with vector support.
switch (cast<BuiltinType>(T)->getKind()) {
default: assert(0 && "Unknown builtin type!");
case BuiltinType::Void:
assert(0 && "Incomplete types have no size!");
case BuiltinType::Bool: Target.getBoolInfo(Size, Align, L); break;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::UChar:
case BuiltinType::SChar: Target.getCharInfo(Size, Align, L); break;
case BuiltinType::UShort:
case BuiltinType::Short: Target.getShortInfo(Size, Align, L); break;
case BuiltinType::UInt:
case BuiltinType::Int: Target.getIntInfo(Size, Align, L); break;
case BuiltinType::ULong:
case BuiltinType::Long: Target.getLongInfo(Size, Align, L); break;
case BuiltinType::ULongLong:
case BuiltinType::LongLong: Target.getLongLongInfo(Size, Align, L); break;
case BuiltinType::Float: Target.getFloatInfo(Size, Align, L); break;
case BuiltinType::Double: Target.getDoubleInfo(Size, Align, L); break;
case BuiltinType::LongDouble: Target.getLongDoubleInfo(Size, Align,L);break;
}
break;
}
case Type::Pointer: Target.getPointerInfo(Size, Align, L); break;
case Type::Reference:
// "When applied to a reference or a reference type, the result is the size
// of the referenced type." C++98 5.3.3p2: expr.sizeof
return getTypeInfo(cast<ReferenceType>(T)->getReferenceeType(), L);
}
return std::make_pair(Size, Align);
}
//===----------------------------------------------------------------------===//
// Type creation/memoization methods
//===----------------------------------------------------------------------===//
/// getComplexType - Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType ASTContext::getComplexType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ComplexType::Profile(ID, T);
void *InsertPos = 0;
if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(CT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getComplexType(T.getCanonicalType());
// Get the new insert position for the node we care about.
ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ComplexType *New = new ComplexType(T, Canonical);
Types.push_back(New);
ComplexTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getPointerType - Return the uniqued reference to the type for a pointer to
/// the specified type.
QualType ASTContext::getPointerType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
PointerType::Profile(ID, T);
void *InsertPos = 0;
if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getPointerType(T.getCanonicalType());
// Get the new insert position for the node we care about.
PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
PointerType *New = new PointerType(T, Canonical);
Types.push_back(New);
PointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getReferenceType - Return the uniqued reference to the type for a reference
/// to the specified type.
QualType ASTContext::getReferenceType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ReferenceType::Profile(ID, T);
void *InsertPos = 0;
if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(RT, 0);
// If the referencee type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getReferenceType(T.getCanonicalType());
// Get the new insert position for the node we care about.
ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ReferenceType *New = new ReferenceType(T, Canonical);
Types.push_back(New);
ReferenceTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getArrayType - Return the unique reference to the type for an array of the
/// specified element type.
QualType ASTContext::getArrayType(QualType EltTy,ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals, Expr *NumElts) {
// Unique array types, to guarantee there is only one array of a particular
// structure.
llvm::FoldingSetNodeID ID;
ArrayType::Profile(ID, ASM, EltTypeQuals, EltTy, NumElts);
void *InsertPos = 0;
if (ArrayType *ATP = ArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ATP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!EltTy->isCanonical()) {
Canonical = getArrayType(EltTy.getCanonicalType(), ASM, EltTypeQuals,
NumElts);
// Get the new insert position for the node we care about.
ArrayType *NewIP = ArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ArrayType *New = new ArrayType(EltTy, ASM, EltTypeQuals, Canonical, NumElts);
ArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// convertToVectorType - Return the unique reference to a vector type of
/// the specified element type and size. VectorType can be a pointer, array,
/// function, or built-in type (i.e. _Bool, integer, or float).
QualType ASTContext::convertToVectorType(QualType vecType, unsigned NumElts) {
BuiltinType *baseType;
baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr());
assert(baseType != 0 &&
"convertToVectorType(): Complex vector types unimplemented");
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts);
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType->isCanonical()) {
Canonical = convertToVectorType(vecType.getCanonicalType(), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
VectorType *New = new VectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
///
QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionTypeNoProto::Profile(ID, ResultTy);
void *InsertPos = 0;
if (FunctionTypeNoProto *FT =
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
return QualType(FT, 0);
QualType Canonical;
if (!ResultTy->isCanonical()) {
Canonical = getFunctionTypeNoProto(ResultTy.getCanonicalType());
// Get the new insert position for the node we care about.
FunctionTypeNoProto *NewIP =
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
Types.push_back(New);
FunctionTypeProtos.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getFunctionType - Return a normal function type with a typed argument
/// list. isVariadic indicates whether the argument list includes '...'.
QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray,
unsigned NumArgs, bool isVariadic) {
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
void *InsertPos = 0;
if (FunctionTypeProto *FTP =
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
return QualType(FTP, 0);
// Determine whether the type being created is already canonical or not.
bool isCanonical = ResultTy->isCanonical();
for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
if (!ArgArray[i]->isCanonical())
isCanonical = false;
// If this type isn't canonical, get the canonical version of it.
QualType Canonical;
if (!isCanonical) {
llvm::SmallVector<QualType, 16> CanonicalArgs;
CanonicalArgs.reserve(NumArgs);
for (unsigned i = 0; i != NumArgs; ++i)
CanonicalArgs.push_back(ArgArray[i].getCanonicalType());
Canonical = getFunctionType(ResultTy.getCanonicalType(),
&CanonicalArgs[0], NumArgs,
isVariadic);
// Get the new insert position for the node we care about.
FunctionTypeProto *NewIP =
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
// FunctionTypeProto objects are not allocated with new because they have a
// variable size array (for parameter types) at the end of them.
FunctionTypeProto *FTP =
(FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) +
(NumArgs-1)*sizeof(QualType));
new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
Canonical);
Types.push_back(FTP);
FunctionTypeProtos.InsertNode(FTP, InsertPos);
return QualType(FTP, 0);
}
/// getTypedefType - Return the unique reference to the type for the
/// specified typename decl.
QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
QualType Canonical = Decl->getUnderlyingType().getCanonicalType();
Decl->TypeForDecl = new TypedefType(Decl, Canonical);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// getTagDeclType - Return the unique reference to the type for the
/// specified TagDecl (struct/union/class/enum) decl.
QualType ASTContext::getTagDeclType(TagDecl *Decl) {
// The decl stores the type cache.
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
Decl->TypeForDecl = new TagType(Decl, QualType());
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
/// needs to agree with the definition in <stddef.h>.
QualType ASTContext::getSizeType() const {
// On Darwin, size_t is defined as a "long unsigned int".
// FIXME: should derive from "Target".
return UnsignedLongTy;
}
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType ASTContext::getPointerDiffType() const {
// On Darwin, ptrdiff_t is defined as a "int". This seems like a bug...
// FIXME: should derive from "Target".
return IntTy;
}
/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
/// routine will assert if passed a built-in type that isn't an integer or enum.
static int getIntegerRank(QualType t) {
if (const TagType *TT = dyn_cast<TagType>(t.getCanonicalType())) {
assert(TT->getDecl()->getKind() == Decl::Enum && "not an int or enum");
return 4;
}
const BuiltinType *BT = cast<BuiltinType>(t.getCanonicalType());
switch (BT->getKind()) {
default:
assert(0 && "getIntegerRank(): not a built-in integer");
case BuiltinType::Bool:
return 1;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
return 2;
case BuiltinType::Short:
case BuiltinType::UShort:
return 3;
case BuiltinType::Int:
case BuiltinType::UInt:
return 4;
case BuiltinType::Long:
case BuiltinType::ULong:
return 5;
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
return 6;
}
}
/// getFloatingRank - Return a relative rank for floating point types.
/// This routine will assert if passed a built-in type that isn't a float.
static int getFloatingRank(QualType T) {
T = T.getCanonicalType();
if (ComplexType *CT = dyn_cast<ComplexType>(T))
return getFloatingRank(CT->getElementType());
switch (cast<BuiltinType>(T)->getKind()) {
default: assert(0 && "getFloatingPointRank(): not a floating type");
case BuiltinType::Float: return FloatRank;
case BuiltinType::Double: return DoubleRank;
case BuiltinType::LongDouble: return LongDoubleRank;
}
}
// maxComplexType - the following code handles 3 different combinations:
// complex/complex, complex/float, float/complex.
// When both operands are complex, the shorter operand is converted to the
// type of the longer, and that is the type of the result. This corresponds
// to what is done when combining two real floating-point operands.
// The fun begins when size promotion occur across type domains. g
// getFloatingRank & convertFloatingRankToComplexType handle this without
// enumerating all permutations.
// It also allows us to add new types without breakage.
// From H&S 6.3.4: When one operand is complex and the other is a real
// floating-point type, the less precise type is converted, within it's
// real or complex domain, to the precision of the other type. For example,
// when combining a "long double" with a "double _Complex", the
// "double _Complex" is promoted to "long double _Complex".
QualType ASTContext::maxComplexType(QualType lt, QualType rt) const {
switch (std::max(getFloatingRank(lt), getFloatingRank(rt))) {
default: assert(0 && "convertRankToComplex(): illegal value for rank");
case FloatRank: return FloatComplexTy;
case DoubleRank: return DoubleComplexTy;
case LongDoubleRank: return LongDoubleComplexTy;
}
}
// maxFloatingType - handles the simple case, both operands are floats.
QualType ASTContext::maxFloatingType(QualType lt, QualType rt) {
return getFloatingRank(lt) > getFloatingRank(rt) ? lt : rt;
}
// maxIntegerType - Returns the highest ranked integer type. Handles 3 case:
// unsigned/unsigned, signed/signed, signed/unsigned. C99 6.3.1.8p1.
QualType ASTContext::maxIntegerType(QualType lhs, QualType rhs) {
if (lhs == rhs) return lhs;
bool t1Unsigned = lhs->isUnsignedIntegerType();
bool t2Unsigned = rhs->isUnsignedIntegerType();
if ((t1Unsigned && t2Unsigned) || (!t1Unsigned && !t2Unsigned))
return getIntegerRank(lhs) >= getIntegerRank(rhs) ? lhs : rhs;
// We have two integer types with differing signs
QualType unsignedType = t1Unsigned ? lhs : rhs;
QualType signedType = t1Unsigned ? rhs : lhs;
if (getIntegerRank(unsignedType) >= getIntegerRank(signedType))
return unsignedType;
else {
// FIXME: Need to check if the signed type can represent all values of the
// unsigned type. If it can, then the result is the signed type.
// If it can't, then the result is the unsigned version of the signed type.
// Should probably add a helper that returns a signed integer type from
// an unsigned (and vice versa). C99 6.3.1.8.
return signedType;
}
}