| //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/ |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| //===----------------------------------------------------------------------===/ |
| // |
| // This file implements C++ template argument deduction. |
| // |
| //===----------------------------------------------------------------------===/ |
| |
| #include "clang/Sema/Sema.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/Template.h" |
| #include "clang/Sema/TemplateDeduction.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "TreeTransform.h" |
| #include <algorithm> |
| |
| namespace clang { |
| using namespace sema; |
| |
| /// \brief Various flags that control template argument deduction. |
| /// |
| /// These flags can be bitwise-OR'd together. |
| enum TemplateDeductionFlags { |
| /// \brief No template argument deduction flags, which indicates the |
| /// strictest results for template argument deduction (as used for, e.g., |
| /// matching class template partial specializations). |
| TDF_None = 0, |
| /// \brief Within template argument deduction from a function call, we are |
| /// matching with a parameter type for which the original parameter was |
| /// a reference. |
| TDF_ParamWithReferenceType = 0x1, |
| /// \brief Within template argument deduction from a function call, we |
| /// are matching in a case where we ignore cv-qualifiers. |
| TDF_IgnoreQualifiers = 0x02, |
| /// \brief Within template argument deduction from a function call, |
| /// we are matching in a case where we can perform template argument |
| /// deduction from a template-id of a derived class of the argument type. |
| TDF_DerivedClass = 0x04, |
| /// \brief Allow non-dependent types to differ, e.g., when performing |
| /// template argument deduction from a function call where conversions |
| /// may apply. |
| TDF_SkipNonDependent = 0x08, |
| /// \brief Whether we are performing template argument deduction for |
| /// parameters and arguments in a top-level template argument |
| TDF_TopLevelParameterTypeList = 0x10 |
| }; |
| } |
| |
| using namespace clang; |
| |
| /// \brief Compare two APSInts, extending and switching the sign as |
| /// necessary to compare their values regardless of underlying type. |
| static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) { |
| if (Y.getBitWidth() > X.getBitWidth()) |
| X = X.extend(Y.getBitWidth()); |
| else if (Y.getBitWidth() < X.getBitWidth()) |
| Y = Y.extend(X.getBitWidth()); |
| |
| // If there is a signedness mismatch, correct it. |
| if (X.isSigned() != Y.isSigned()) { |
| // If the signed value is negative, then the values cannot be the same. |
| if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative())) |
| return false; |
| |
| Y.setIsSigned(true); |
| X.setIsSigned(true); |
| } |
| |
| return X == Y; |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| const TemplateArgument &Param, |
| TemplateArgument Arg, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced); |
| |
| /// \brief Whether template argument deduction for two reference parameters |
| /// resulted in the argument type, parameter type, or neither type being more |
| /// qualified than the other. |
| enum DeductionQualifierComparison { |
| NeitherMoreQualified = 0, |
| ParamMoreQualified, |
| ArgMoreQualified |
| }; |
| |
| /// \brief Stores the result of comparing two reference parameters while |
| /// performing template argument deduction for partial ordering of function |
| /// templates. |
| struct RefParamPartialOrderingComparison { |
| /// \brief Whether the parameter type is an rvalue reference type. |
| bool ParamIsRvalueRef; |
| /// \brief Whether the argument type is an rvalue reference type. |
| bool ArgIsRvalueRef; |
| |
| /// \brief Whether the parameter or argument (or neither) is more qualified. |
| DeductionQualifierComparison Qualifiers; |
| }; |
| |
| |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArgumentsByTypeMatch(Sema &S, |
| TemplateParameterList *TemplateParams, |
| QualType Param, |
| QualType Arg, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> & |
| Deduced, |
| unsigned TDF, |
| bool PartialOrdering = false, |
| SmallVectorImpl<RefParamPartialOrderingComparison> * |
| RefParamComparisons = 0); |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| const TemplateArgument *Params, unsigned NumParams, |
| const TemplateArgument *Args, unsigned NumArgs, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool NumberOfArgumentsMustMatch = true); |
| |
| /// \brief If the given expression is of a form that permits the deduction |
| /// of a non-type template parameter, return the declaration of that |
| /// non-type template parameter. |
| static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) { |
| // If we are within an alias template, the expression may have undergone |
| // any number of parameter substitutions already. |
| while (1) { |
| if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E)) |
| E = IC->getSubExpr(); |
| else if (SubstNonTypeTemplateParmExpr *Subst = |
| dyn_cast<SubstNonTypeTemplateParmExpr>(E)) |
| E = Subst->getReplacement(); |
| else |
| break; |
| } |
| |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) |
| return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); |
| |
| return 0; |
| } |
| |
| /// \brief Determine whether two declaration pointers refer to the same |
| /// declaration. |
| static bool isSameDeclaration(Decl *X, Decl *Y) { |
| if (NamedDecl *NX = dyn_cast<NamedDecl>(X)) |
| X = NX->getUnderlyingDecl(); |
| if (NamedDecl *NY = dyn_cast<NamedDecl>(Y)) |
| Y = NY->getUnderlyingDecl(); |
| |
| return X->getCanonicalDecl() == Y->getCanonicalDecl(); |
| } |
| |
| /// \brief Verify that the given, deduced template arguments are compatible. |
| /// |
| /// \returns The deduced template argument, or a NULL template argument if |
| /// the deduced template arguments were incompatible. |
| static DeducedTemplateArgument |
| checkDeducedTemplateArguments(ASTContext &Context, |
| const DeducedTemplateArgument &X, |
| const DeducedTemplateArgument &Y) { |
| // We have no deduction for one or both of the arguments; they're compatible. |
| if (X.isNull()) |
| return Y; |
| if (Y.isNull()) |
| return X; |
| |
| switch (X.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Non-deduced template arguments handled above"); |
| |
| case TemplateArgument::Type: |
| // If two template type arguments have the same type, they're compatible. |
| if (Y.getKind() == TemplateArgument::Type && |
| Context.hasSameType(X.getAsType(), Y.getAsType())) |
| return X; |
| |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Integral: |
| // If we deduced a constant in one case and either a dependent expression or |
| // declaration in another case, keep the integral constant. |
| // If both are integral constants with the same value, keep that value. |
| if (Y.getKind() == TemplateArgument::Expression || |
| Y.getKind() == TemplateArgument::Declaration || |
| (Y.getKind() == TemplateArgument::Integral && |
| hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()))) |
| return DeducedTemplateArgument(X, |
| X.wasDeducedFromArrayBound() && |
| Y.wasDeducedFromArrayBound()); |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Template: |
| if (Y.getKind() == TemplateArgument::Template && |
| Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate())) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::TemplateExpansion: |
| if (Y.getKind() == TemplateArgument::TemplateExpansion && |
| Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(), |
| Y.getAsTemplateOrTemplatePattern())) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Expression: |
| // If we deduced a dependent expression in one case and either an integral |
| // constant or a declaration in another case, keep the integral constant |
| // or declaration. |
| if (Y.getKind() == TemplateArgument::Integral || |
| Y.getKind() == TemplateArgument::Declaration) |
| return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() && |
| Y.wasDeducedFromArrayBound()); |
| |
| if (Y.getKind() == TemplateArgument::Expression) { |
| // Compare the expressions for equality |
| llvm::FoldingSetNodeID ID1, ID2; |
| X.getAsExpr()->Profile(ID1, Context, true); |
| Y.getAsExpr()->Profile(ID2, Context, true); |
| if (ID1 == ID2) |
| return X; |
| } |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Declaration: |
| // If we deduced a declaration and a dependent expression, keep the |
| // declaration. |
| if (Y.getKind() == TemplateArgument::Expression) |
| return X; |
| |
| // If we deduced a declaration and an integral constant, keep the |
| // integral constant. |
| if (Y.getKind() == TemplateArgument::Integral) |
| return Y; |
| |
| // If we deduced two declarations, make sure they they refer to the |
| // same declaration. |
| if (Y.getKind() == TemplateArgument::Declaration && |
| isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) && |
| X.isDeclForReferenceParam() == Y.isDeclForReferenceParam()) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::NullPtr: |
| // If we deduced a null pointer and a dependent expression, keep the |
| // null pointer. |
| if (Y.getKind() == TemplateArgument::Expression) |
| return X; |
| |
| // If we deduced a null pointer and an integral constant, keep the |
| // integral constant. |
| if (Y.getKind() == TemplateArgument::Integral) |
| return Y; |
| |
| // If we deduced two null pointers, make sure they have the same type. |
| if (Y.getKind() == TemplateArgument::NullPtr && |
| Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType())) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Pack: |
| if (Y.getKind() != TemplateArgument::Pack || |
| X.pack_size() != Y.pack_size()) |
| return DeducedTemplateArgument(); |
| |
| for (TemplateArgument::pack_iterator XA = X.pack_begin(), |
| XAEnd = X.pack_end(), |
| YA = Y.pack_begin(); |
| XA != XAEnd; ++XA, ++YA) { |
| if (checkDeducedTemplateArguments(Context, |
| DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), |
| DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())) |
| .isNull()) |
| return DeducedTemplateArgument(); |
| } |
| |
| return X; |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| /// \brief Deduce the value of the given non-type template parameter |
| /// from the given constant. |
| static Sema::TemplateDeductionResult |
| DeduceNonTypeTemplateArgument(Sema &S, |
| NonTypeTemplateParmDecl *NTTP, |
| llvm::APSInt Value, QualType ValueType, |
| bool DeducedFromArrayBound, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| assert(NTTP->getDepth() == 0 && |
| "Cannot deduce non-type template argument with depth > 0"); |
| |
| DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType, |
| DeducedFromArrayBound); |
| DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, |
| Deduced[NTTP->getIndex()], |
| NewDeduced); |
| if (Result.isNull()) { |
| Info.Param = NTTP; |
| Info.FirstArg = Deduced[NTTP->getIndex()]; |
| Info.SecondArg = NewDeduced; |
| return Sema::TDK_Inconsistent; |
| } |
| |
| Deduced[NTTP->getIndex()] = Result; |
| return Sema::TDK_Success; |
| } |
| |
| /// \brief Deduce the value of the given non-type template parameter |
| /// from the given type- or value-dependent expression. |
| /// |
| /// \returns true if deduction succeeded, false otherwise. |
| static Sema::TemplateDeductionResult |
| DeduceNonTypeTemplateArgument(Sema &S, |
| NonTypeTemplateParmDecl *NTTP, |
| Expr *Value, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| assert(NTTP->getDepth() == 0 && |
| "Cannot deduce non-type template argument with depth > 0"); |
| assert((Value->isTypeDependent() || Value->isValueDependent()) && |
| "Expression template argument must be type- or value-dependent."); |
| |
| DeducedTemplateArgument NewDeduced(Value); |
| DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, |
| Deduced[NTTP->getIndex()], |
| NewDeduced); |
| |
| if (Result.isNull()) { |
| Info.Param = NTTP; |
| Info.FirstArg = Deduced[NTTP->getIndex()]; |
| Info.SecondArg = NewDeduced; |
| return Sema::TDK_Inconsistent; |
| } |
| |
| Deduced[NTTP->getIndex()] = Result; |
| return Sema::TDK_Success; |
| } |
| |
| /// \brief Deduce the value of the given non-type template parameter |
| /// from the given declaration. |
| /// |
| /// \returns true if deduction succeeded, false otherwise. |
| static Sema::TemplateDeductionResult |
| DeduceNonTypeTemplateArgument(Sema &S, |
| NonTypeTemplateParmDecl *NTTP, |
| ValueDecl *D, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| assert(NTTP->getDepth() == 0 && |
| "Cannot deduce non-type template argument with depth > 0"); |
| |
| D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : 0; |
| TemplateArgument New(D, NTTP->getType()->isReferenceType()); |
| DeducedTemplateArgument NewDeduced(New); |
| DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, |
| Deduced[NTTP->getIndex()], |
| NewDeduced); |
| if (Result.isNull()) { |
| Info.Param = NTTP; |
| Info.FirstArg = Deduced[NTTP->getIndex()]; |
| Info.SecondArg = NewDeduced; |
| return Sema::TDK_Inconsistent; |
| } |
| |
| Deduced[NTTP->getIndex()] = Result; |
| return Sema::TDK_Success; |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| TemplateName Param, |
| TemplateName Arg, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); |
| if (!ParamDecl) { |
| // The parameter type is dependent and is not a template template parameter, |
| // so there is nothing that we can deduce. |
| return Sema::TDK_Success; |
| } |
| |
| if (TemplateTemplateParmDecl *TempParam |
| = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) { |
| DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg)); |
| DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, |
| Deduced[TempParam->getIndex()], |
| NewDeduced); |
| if (Result.isNull()) { |
| Info.Param = TempParam; |
| Info.FirstArg = Deduced[TempParam->getIndex()]; |
| Info.SecondArg = NewDeduced; |
| return Sema::TDK_Inconsistent; |
| } |
| |
| Deduced[TempParam->getIndex()] = Result; |
| return Sema::TDK_Success; |
| } |
| |
| // Verify that the two template names are equivalent. |
| if (S.Context.hasSameTemplateName(Param, Arg)) |
| return Sema::TDK_Success; |
| |
| // Mismatch of non-dependent template parameter to argument. |
| Info.FirstArg = TemplateArgument(Param); |
| Info.SecondArg = TemplateArgument(Arg); |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| /// \brief Deduce the template arguments by comparing the template parameter |
| /// type (which is a template-id) with the template argument type. |
| /// |
| /// \param S the Sema |
| /// |
| /// \param TemplateParams the template parameters that we are deducing |
| /// |
| /// \param Param the parameter type |
| /// |
| /// \param Arg the argument type |
| /// |
| /// \param Info information about the template argument deduction itself |
| /// |
| /// \param Deduced the deduced template arguments |
| /// |
| /// \returns the result of template argument deduction so far. Note that a |
| /// "success" result means that template argument deduction has not yet failed, |
| /// but it may still fail, later, for other reasons. |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| const TemplateSpecializationType *Param, |
| QualType Arg, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| assert(Arg.isCanonical() && "Argument type must be canonical"); |
| |
| // Check whether the template argument is a dependent template-id. |
| if (const TemplateSpecializationType *SpecArg |
| = dyn_cast<TemplateSpecializationType>(Arg)) { |
| // Perform template argument deduction for the template name. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(S, TemplateParams, |
| Param->getTemplateName(), |
| SpecArg->getTemplateName(), |
| Info, Deduced)) |
| return Result; |
| |
| |
| // Perform template argument deduction on each template |
| // argument. Ignore any missing/extra arguments, since they could be |
| // filled in by default arguments. |
| return DeduceTemplateArguments(S, TemplateParams, |
| Param->getArgs(), Param->getNumArgs(), |
| SpecArg->getArgs(), SpecArg->getNumArgs(), |
| Info, Deduced, |
| /*NumberOfArgumentsMustMatch=*/false); |
| } |
| |
| // If the argument type is a class template specialization, we |
| // perform template argument deduction using its template |
| // arguments. |
| const RecordType *RecordArg = dyn_cast<RecordType>(Arg); |
| if (!RecordArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| ClassTemplateSpecializationDecl *SpecArg |
| = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl()); |
| if (!SpecArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // Perform template argument deduction for the template name. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(S, |
| TemplateParams, |
| Param->getTemplateName(), |
| TemplateName(SpecArg->getSpecializedTemplate()), |
| Info, Deduced)) |
| return Result; |
| |
| // Perform template argument deduction for the template arguments. |
| return DeduceTemplateArguments(S, TemplateParams, |
| Param->getArgs(), Param->getNumArgs(), |
| SpecArg->getTemplateArgs().data(), |
| SpecArg->getTemplateArgs().size(), |
| Info, Deduced); |
| } |
| |
| /// \brief Determines whether the given type is an opaque type that |
| /// might be more qualified when instantiated. |
| static bool IsPossiblyOpaquelyQualifiedType(QualType T) { |
| switch (T->getTypeClass()) { |
| case Type::TypeOfExpr: |
| case Type::TypeOf: |
| case Type::DependentName: |
| case Type::Decltype: |
| case Type::UnresolvedUsing: |
| case Type::TemplateTypeParm: |
| return true; |
| |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| case Type::DependentSizedArray: |
| return IsPossiblyOpaquelyQualifiedType( |
| cast<ArrayType>(T)->getElementType()); |
| |
| default: |
| return false; |
| } |
| } |
| |
| /// \brief Retrieve the depth and index of a template parameter. |
| static std::pair<unsigned, unsigned> |
| getDepthAndIndex(NamedDecl *ND) { |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND)) |
| return std::make_pair(TTP->getDepth(), TTP->getIndex()); |
| |
| if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND)) |
| return std::make_pair(NTTP->getDepth(), NTTP->getIndex()); |
| |
| TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND); |
| return std::make_pair(TTP->getDepth(), TTP->getIndex()); |
| } |
| |
| /// \brief Retrieve the depth and index of an unexpanded parameter pack. |
| static std::pair<unsigned, unsigned> |
| getDepthAndIndex(UnexpandedParameterPack UPP) { |
| if (const TemplateTypeParmType *TTP |
| = UPP.first.dyn_cast<const TemplateTypeParmType *>()) |
| return std::make_pair(TTP->getDepth(), TTP->getIndex()); |
| |
| return getDepthAndIndex(UPP.first.get<NamedDecl *>()); |
| } |
| |
| /// \brief Helper function to build a TemplateParameter when we don't |
| /// know its type statically. |
| static TemplateParameter makeTemplateParameter(Decl *D) { |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D)) |
| return TemplateParameter(TTP); |
| else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) |
| return TemplateParameter(NTTP); |
| |
| return TemplateParameter(cast<TemplateTemplateParmDecl>(D)); |
| } |
| |
| /// \brief Prepare to perform template argument deduction for all of the |
| /// arguments in a set of argument packs. |
| static void PrepareArgumentPackDeduction(Sema &S, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| ArrayRef<unsigned> PackIndices, |
| SmallVectorImpl<DeducedTemplateArgument> &SavedPacks, |
| SmallVectorImpl< |
| SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) { |
| // Save the deduced template arguments for each parameter pack expanded |
| // by this pack expansion, then clear out the deduction. |
| for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) { |
| // Save the previously-deduced argument pack, then clear it out so that we |
| // can deduce a new argument pack. |
| SavedPacks[I] = Deduced[PackIndices[I]]; |
| Deduced[PackIndices[I]] = TemplateArgument(); |
| |
| if (!S.CurrentInstantiationScope) |
| continue; |
| |
| // If the template argument pack was explicitly specified, add that to |
| // the set of deduced arguments. |
| const TemplateArgument *ExplicitArgs; |
| unsigned NumExplicitArgs; |
| if (NamedDecl *PartiallySubstitutedPack |
| = S.CurrentInstantiationScope->getPartiallySubstitutedPack( |
| &ExplicitArgs, |
| &NumExplicitArgs)) { |
| if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I]) |
| NewlyDeducedPacks[I].append(ExplicitArgs, |
| ExplicitArgs + NumExplicitArgs); |
| } |
| } |
| } |
| |
| /// \brief Finish template argument deduction for a set of argument packs, |
| /// producing the argument packs and checking for consistency with prior |
| /// deductions. |
| static Sema::TemplateDeductionResult |
| FinishArgumentPackDeduction(Sema &S, |
| TemplateParameterList *TemplateParams, |
| bool HasAnyArguments, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| ArrayRef<unsigned> PackIndices, |
| SmallVectorImpl<DeducedTemplateArgument> &SavedPacks, |
| SmallVectorImpl< |
| SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks, |
| TemplateDeductionInfo &Info) { |
| // Build argument packs for each of the parameter packs expanded by this |
| // pack expansion. |
| for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) { |
| if (HasAnyArguments && NewlyDeducedPacks[I].empty()) { |
| // We were not able to deduce anything for this parameter pack, |
| // so just restore the saved argument pack. |
| Deduced[PackIndices[I]] = SavedPacks[I]; |
| continue; |
| } |
| |
| DeducedTemplateArgument NewPack; |
| |
| if (NewlyDeducedPacks[I].empty()) { |
| // If we deduced an empty argument pack, create it now. |
| NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack()); |
| } else { |
| TemplateArgument *ArgumentPack |
| = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()]; |
| std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(), |
| ArgumentPack); |
| NewPack |
| = DeducedTemplateArgument(TemplateArgument(ArgumentPack, |
| NewlyDeducedPacks[I].size()), |
| NewlyDeducedPacks[I][0].wasDeducedFromArrayBound()); |
| } |
| |
| DeducedTemplateArgument Result |
| = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack); |
| if (Result.isNull()) { |
| Info.Param |
| = makeTemplateParameter(TemplateParams->getParam(PackIndices[I])); |
| Info.FirstArg = SavedPacks[I]; |
| Info.SecondArg = NewPack; |
| return Sema::TDK_Inconsistent; |
| } |
| |
| Deduced[PackIndices[I]] = Result; |
| } |
| |
| return Sema::TDK_Success; |
| } |
| |
| /// \brief Deduce the template arguments by comparing the list of parameter |
| /// types to the list of argument types, as in the parameter-type-lists of |
| /// function types (C++ [temp.deduct.type]p10). |
| /// |
| /// \param S The semantic analysis object within which we are deducing |
| /// |
| /// \param TemplateParams The template parameters that we are deducing |
| /// |
| /// \param Params The list of parameter types |
| /// |
| /// \param NumParams The number of types in \c Params |
| /// |
| /// \param Args The list of argument types |
| /// |
| /// \param NumArgs The number of types in \c Args |
| /// |
| /// \param Info information about the template argument deduction itself |
| /// |
| /// \param Deduced the deduced template arguments |
| /// |
| /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe |
| /// how template argument deduction is performed. |
| /// |
| /// \param PartialOrdering If true, we are performing template argument |
| /// deduction for during partial ordering for a call |
| /// (C++0x [temp.deduct.partial]). |
| /// |
| /// \param RefParamComparisons If we're performing template argument deduction |
| /// in the context of partial ordering, the set of qualifier comparisons. |
| /// |
| /// \returns the result of template argument deduction so far. Note that a |
| /// "success" result means that template argument deduction has not yet failed, |
| /// but it may still fail, later, for other reasons. |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| const QualType *Params, unsigned NumParams, |
| const QualType *Args, unsigned NumArgs, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| unsigned TDF, |
| bool PartialOrdering = false, |
| SmallVectorImpl<RefParamPartialOrderingComparison> * |
| RefParamComparisons = 0) { |
| // Fast-path check to see if we have too many/too few arguments. |
| if (NumParams != NumArgs && |
| !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) && |
| !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1]))) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // C++0x [temp.deduct.type]p10: |
| // Similarly, if P has a form that contains (T), then each parameter type |
| // Pi of the respective parameter-type- list of P is compared with the |
| // corresponding parameter type Ai of the corresponding parameter-type-list |
| // of A. [...] |
| unsigned ArgIdx = 0, ParamIdx = 0; |
| for (; ParamIdx != NumParams; ++ParamIdx) { |
| // Check argument types. |
| const PackExpansionType *Expansion |
| = dyn_cast<PackExpansionType>(Params[ParamIdx]); |
| if (!Expansion) { |
| // Simple case: compare the parameter and argument types at this point. |
| |
| // Make sure we have an argument. |
| if (ArgIdx >= NumArgs) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| if (isa<PackExpansionType>(Args[ArgIdx])) { |
| // C++0x [temp.deduct.type]p22: |
| // If the original function parameter associated with A is a function |
| // parameter pack and the function parameter associated with P is not |
| // a function parameter pack, then template argument deduction fails. |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| Params[ParamIdx], Args[ArgIdx], |
| Info, Deduced, TDF, |
| PartialOrdering, |
| RefParamComparisons)) |
| return Result; |
| |
| ++ArgIdx; |
| continue; |
| } |
| |
| // C++0x [temp.deduct.type]p5: |
| // The non-deduced contexts are: |
| // - A function parameter pack that does not occur at the end of the |
| // parameter-declaration-clause. |
| if (ParamIdx + 1 < NumParams) |
| return Sema::TDK_Success; |
| |
| // C++0x [temp.deduct.type]p10: |
| // If the parameter-declaration corresponding to Pi is a function |
| // parameter pack, then the type of its declarator- id is compared with |
| // each remaining parameter type in the parameter-type-list of A. Each |
| // comparison deduces template arguments for subsequent positions in the |
| // template parameter packs expanded by the function parameter pack. |
| |
| // Compute the set of template parameter indices that correspond to |
| // parameter packs expanded by the pack expansion. |
| SmallVector<unsigned, 2> PackIndices; |
| QualType Pattern = Expansion->getPattern(); |
| { |
| llvm::SmallBitVector SawIndices(TemplateParams->size()); |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| S.collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { |
| unsigned Depth, Index; |
| llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); |
| if (Depth == 0 && !SawIndices[Index]) { |
| SawIndices[Index] = true; |
| PackIndices.push_back(Index); |
| } |
| } |
| } |
| assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?"); |
| |
| // Keep track of the deduced template arguments for each parameter pack |
| // expanded by this pack expansion (the outer index) and for each |
| // template argument (the inner SmallVectors). |
| SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2> |
| NewlyDeducedPacks(PackIndices.size()); |
| SmallVector<DeducedTemplateArgument, 2> |
| SavedPacks(PackIndices.size()); |
| PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks, |
| NewlyDeducedPacks); |
| |
| bool HasAnyArguments = false; |
| for (; ArgIdx < NumArgs; ++ArgIdx) { |
| HasAnyArguments = true; |
| |
| // Deduce template arguments from the pattern. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern, |
| Args[ArgIdx], Info, Deduced, |
| TDF, PartialOrdering, |
| RefParamComparisons)) |
| return Result; |
| |
| // Capture the deduced template arguments for each parameter pack expanded |
| // by this pack expansion, add them to the list of arguments we've deduced |
| // for that pack, then clear out the deduced argument. |
| for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) { |
| DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]]; |
| if (!DeducedArg.isNull()) { |
| NewlyDeducedPacks[I].push_back(DeducedArg); |
| DeducedArg = DeducedTemplateArgument(); |
| } |
| } |
| } |
| |
| // Build argument packs for each of the parameter packs expanded by this |
| // pack expansion. |
| if (Sema::TemplateDeductionResult Result |
| = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments, |
| Deduced, PackIndices, SavedPacks, |
| NewlyDeducedPacks, Info)) |
| return Result; |
| } |
| |
| // Make sure we don't have any extra arguments. |
| if (ArgIdx < NumArgs) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return Sema::TDK_Success; |
| } |
| |
| /// \brief Determine whether the parameter has qualifiers that are either |
| /// inconsistent with or a superset of the argument's qualifiers. |
| static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, |
| QualType ArgType) { |
| Qualifiers ParamQs = ParamType.getQualifiers(); |
| Qualifiers ArgQs = ArgType.getQualifiers(); |
| |
| if (ParamQs == ArgQs) |
| return false; |
| |
| // Mismatched (but not missing) Objective-C GC attributes. |
| if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && |
| ParamQs.hasObjCGCAttr()) |
| return true; |
| |
| // Mismatched (but not missing) address spaces. |
| if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && |
| ParamQs.hasAddressSpace()) |
| return true; |
| |
| // Mismatched (but not missing) Objective-C lifetime qualifiers. |
| if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && |
| ParamQs.hasObjCLifetime()) |
| return true; |
| |
| // CVR qualifier superset. |
| return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) && |
| ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers()) |
| == ParamQs.getCVRQualifiers()); |
| } |
| |
| /// \brief Deduce the template arguments by comparing the parameter type and |
| /// the argument type (C++ [temp.deduct.type]). |
| /// |
| /// \param S the semantic analysis object within which we are deducing |
| /// |
| /// \param TemplateParams the template parameters that we are deducing |
| /// |
| /// \param ParamIn the parameter type |
| /// |
| /// \param ArgIn the argument type |
| /// |
| /// \param Info information about the template argument deduction itself |
| /// |
| /// \param Deduced the deduced template arguments |
| /// |
| /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe |
| /// how template argument deduction is performed. |
| /// |
| /// \param PartialOrdering Whether we're performing template argument deduction |
| /// in the context of partial ordering (C++0x [temp.deduct.partial]). |
| /// |
| /// \param RefParamComparisons If we're performing template argument deduction |
| /// in the context of partial ordering, the set of qualifier comparisons. |
| /// |
| /// \returns the result of template argument deduction so far. Note that a |
| /// "success" result means that template argument deduction has not yet failed, |
| /// but it may still fail, later, for other reasons. |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArgumentsByTypeMatch(Sema &S, |
| TemplateParameterList *TemplateParams, |
| QualType ParamIn, QualType ArgIn, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| unsigned TDF, |
| bool PartialOrdering, |
| SmallVectorImpl<RefParamPartialOrderingComparison> * |
| RefParamComparisons) { |
| // We only want to look at the canonical types, since typedefs and |
| // sugar are not part of template argument deduction. |
| QualType Param = S.Context.getCanonicalType(ParamIn); |
| QualType Arg = S.Context.getCanonicalType(ArgIn); |
| |
| // If the argument type is a pack expansion, look at its pattern. |
| // This isn't explicitly called out |
| if (const PackExpansionType *ArgExpansion |
| = dyn_cast<PackExpansionType>(Arg)) |
| Arg = ArgExpansion->getPattern(); |
| |
| if (PartialOrdering) { |
| // C++0x [temp.deduct.partial]p5: |
| // Before the partial ordering is done, certain transformations are |
| // performed on the types used for partial ordering: |
| // - If P is a reference type, P is replaced by the type referred to. |
| const ReferenceType *ParamRef = Param->getAs<ReferenceType>(); |
| if (ParamRef) |
| Param = ParamRef->getPointeeType(); |
| |
| // - If A is a reference type, A is replaced by the type referred to. |
| const ReferenceType *ArgRef = Arg->getAs<ReferenceType>(); |
| if (ArgRef) |
| Arg = ArgRef->getPointeeType(); |
| |
| if (RefParamComparisons && ParamRef && ArgRef) { |
| // C++0x [temp.deduct.partial]p6: |
| // If both P and A were reference types (before being replaced with the |
| // type referred to above), determine which of the two types (if any) is |
| // more cv-qualified than the other; otherwise the types are considered |
| // to be equally cv-qualified for partial ordering purposes. The result |
| // of this determination will be used below. |
| // |
| // We save this information for later, using it only when deduction |
| // succeeds in both directions. |
| RefParamPartialOrderingComparison Comparison; |
| Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>(); |
| Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>(); |
| Comparison.Qualifiers = NeitherMoreQualified; |
| |
| Qualifiers ParamQuals = Param.getQualifiers(); |
| Qualifiers ArgQuals = Arg.getQualifiers(); |
| if (ParamQuals.isStrictSupersetOf(ArgQuals)) |
| Comparison.Qualifiers = ParamMoreQualified; |
| else if (ArgQuals.isStrictSupersetOf(ParamQuals)) |
| Comparison.Qualifiers = ArgMoreQualified; |
| RefParamComparisons->push_back(Comparison); |
| } |
| |
| // C++0x [temp.deduct.partial]p7: |
| // Remove any top-level cv-qualifiers: |
| // - If P is a cv-qualified type, P is replaced by the cv-unqualified |
| // version of P. |
| Param = Param.getUnqualifiedType(); |
| // - If A is a cv-qualified type, A is replaced by the cv-unqualified |
| // version of A. |
| Arg = Arg.getUnqualifiedType(); |
| } else { |
| // C++0x [temp.deduct.call]p4 bullet 1: |
| // - If the original P is a reference type, the deduced A (i.e., the type |
| // referred to by the reference) can be more cv-qualified than the |
| // transformed A. |
| if (TDF & TDF_ParamWithReferenceType) { |
| Qualifiers Quals; |
| QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals); |
| Quals.setCVRQualifiers(Quals.getCVRQualifiers() & |
| Arg.getCVRQualifiers()); |
| Param = S.Context.getQualifiedType(UnqualParam, Quals); |
| } |
| |
| if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) { |
| // C++0x [temp.deduct.type]p10: |
| // If P and A are function types that originated from deduction when |
| // taking the address of a function template (14.8.2.2) or when deducing |
| // template arguments from a function declaration (14.8.2.6) and Pi and |
| // Ai are parameters of the top-level parameter-type-list of P and A, |
| // respectively, Pi is adjusted if it is an rvalue reference to a |
| // cv-unqualified template parameter and Ai is an lvalue reference, in |
| // which case the type of Pi is changed to be the template parameter |
| // type (i.e., T&& is changed to simply T). [ Note: As a result, when |
| // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be |
| // deduced as X&. - end note ] |
| TDF &= ~TDF_TopLevelParameterTypeList; |
| |
| if (const RValueReferenceType *ParamRef |
| = Param->getAs<RValueReferenceType>()) { |
| if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) && |
| !ParamRef->getPointeeType().getQualifiers()) |
| if (Arg->isLValueReferenceType()) |
| Param = ParamRef->getPointeeType(); |
| } |
| } |
| } |
| |
| // C++ [temp.deduct.type]p9: |
| // A template type argument T, a template template argument TT or a |
| // template non-type argument i can be deduced if P and A have one of |
| // the following forms: |
| // |
| // T |
| // cv-list T |
| if (const TemplateTypeParmType *TemplateTypeParm |
| = Param->getAs<TemplateTypeParmType>()) { |
| // Just skip any attempts to deduce from a placeholder type. |
| if (Arg->isPlaceholderType()) |
| return Sema::TDK_Success; |
| |
| unsigned Index = TemplateTypeParm->getIndex(); |
| bool RecanonicalizeArg = false; |
| |
| // If the argument type is an array type, move the qualifiers up to the |
| // top level, so they can be matched with the qualifiers on the parameter. |
| if (isa<ArrayType>(Arg)) { |
| Qualifiers Quals; |
| Arg = S.Context.getUnqualifiedArrayType(Arg, Quals); |
| if (Quals) { |
| Arg = S.Context.getQualifiedType(Arg, Quals); |
| RecanonicalizeArg = true; |
| } |
| } |
| |
| // The argument type can not be less qualified than the parameter |
| // type. |
| if (!(TDF & TDF_IgnoreQualifiers) && |
| hasInconsistentOrSupersetQualifiersOf(Param, Arg)) { |
| Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); |
| Info.FirstArg = TemplateArgument(Param); |
| Info.SecondArg = TemplateArgument(Arg); |
| return Sema::TDK_Underqualified; |
| } |
| |
| assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0"); |
| assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function"); |
| QualType DeducedType = Arg; |
| |
| // Remove any qualifiers on the parameter from the deduced type. |
| // We checked the qualifiers for consistency above. |
| Qualifiers DeducedQs = DeducedType.getQualifiers(); |
| Qualifiers ParamQs = Param.getQualifiers(); |
| DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers()); |
| if (ParamQs.hasObjCGCAttr()) |
| DeducedQs.removeObjCGCAttr(); |
| if (ParamQs.hasAddressSpace()) |
| DeducedQs.removeAddressSpace(); |
| if (ParamQs.hasObjCLifetime()) |
| DeducedQs.removeObjCLifetime(); |
| |
| // Objective-C ARC: |
| // If template deduction would produce a lifetime qualifier on a type |
| // that is not a lifetime type, template argument deduction fails. |
| if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() && |
| !DeducedType->isDependentType()) { |
| Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); |
| Info.FirstArg = TemplateArgument(Param); |
| Info.SecondArg = TemplateArgument(Arg); |
| return Sema::TDK_Underqualified; |
| } |
| |
| // Objective-C ARC: |
| // If template deduction would produce an argument type with lifetime type |
| // but no lifetime qualifier, the __strong lifetime qualifier is inferred. |
| if (S.getLangOpts().ObjCAutoRefCount && |
| DeducedType->isObjCLifetimeType() && |
| !DeducedQs.hasObjCLifetime()) |
| DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); |
| |
| DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), |
| DeducedQs); |
| |
| if (RecanonicalizeArg) |
| DeducedType = S.Context.getCanonicalType(DeducedType); |
| |
| DeducedTemplateArgument NewDeduced(DeducedType); |
| DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, |
| Deduced[Index], |
| NewDeduced); |
| if (Result.isNull()) { |
| Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); |
| Info.FirstArg = Deduced[Index]; |
| Info.SecondArg = NewDeduced; |
| return Sema::TDK_Inconsistent; |
| } |
| |
| Deduced[Index] = Result; |
| return Sema::TDK_Success; |
| } |
| |
| // Set up the template argument deduction information for a failure. |
| Info.FirstArg = TemplateArgument(ParamIn); |
| Info.SecondArg = TemplateArgument(ArgIn); |
| |
| // If the parameter is an already-substituted template parameter |
| // pack, do nothing: we don't know which of its arguments to look |
| // at, so we have to wait until all of the parameter packs in this |
| // expansion have arguments. |
| if (isa<SubstTemplateTypeParmPackType>(Param)) |
| return Sema::TDK_Success; |
| |
| // Check the cv-qualifiers on the parameter and argument types. |
| if (!(TDF & TDF_IgnoreQualifiers)) { |
| if (TDF & TDF_ParamWithReferenceType) { |
| if (hasInconsistentOrSupersetQualifiersOf(Param, Arg)) |
| return Sema::TDK_NonDeducedMismatch; |
| } else if (!IsPossiblyOpaquelyQualifiedType(Param)) { |
| if (Param.getCVRQualifiers() != Arg.getCVRQualifiers()) |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // If the parameter type is not dependent, there is nothing to deduce. |
| if (!Param->isDependentType()) { |
| if (!(TDF & TDF_SkipNonDependent) && Param != Arg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return Sema::TDK_Success; |
| } |
| } else if (!Param->isDependentType() && |
| Param.getUnqualifiedType() == Arg.getUnqualifiedType()) { |
| return Sema::TDK_Success; |
| } |
| |
| switch (Param->getTypeClass()) { |
| // Non-canonical types cannot appear here. |
| #define NON_CANONICAL_TYPE(Class, Base) \ |
| case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); |
| #define TYPE(Class, Base) |
| #include "clang/AST/TypeNodes.def" |
| |
| case Type::TemplateTypeParm: |
| case Type::SubstTemplateTypeParmPack: |
| llvm_unreachable("Type nodes handled above"); |
| |
| // These types cannot be dependent, so simply check whether the types are |
| // the same. |
| case Type::Builtin: |
| case Type::VariableArray: |
| case Type::Vector: |
| case Type::FunctionNoProto: |
| case Type::Record: |
| case Type::Enum: |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: { |
| if (TDF & TDF_SkipNonDependent) |
| return Sema::TDK_Success; |
| |
| if (TDF & TDF_IgnoreQualifiers) { |
| Param = Param.getUnqualifiedType(); |
| Arg = Arg.getUnqualifiedType(); |
| } |
| |
| return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // _Complex T [placeholder extension] |
| case Type::Complex: |
| if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>()) |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| cast<ComplexType>(Param)->getElementType(), |
| ComplexArg->getElementType(), |
| Info, Deduced, TDF); |
| |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // _Atomic T [extension] |
| case Type::Atomic: |
| if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>()) |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| cast<AtomicType>(Param)->getValueType(), |
| AtomicArg->getValueType(), |
| Info, Deduced, TDF); |
| |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // T * |
| case Type::Pointer: { |
| QualType PointeeType; |
| if (const PointerType *PointerArg = Arg->getAs<PointerType>()) { |
| PointeeType = PointerArg->getPointeeType(); |
| } else if (const ObjCObjectPointerType *PointerArg |
| = Arg->getAs<ObjCObjectPointerType>()) { |
| PointeeType = PointerArg->getPointeeType(); |
| } else { |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass); |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| cast<PointerType>(Param)->getPointeeType(), |
| PointeeType, |
| Info, Deduced, SubTDF); |
| } |
| |
| // T & |
| case Type::LValueReference: { |
| const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>(); |
| if (!ReferenceArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| cast<LValueReferenceType>(Param)->getPointeeType(), |
| ReferenceArg->getPointeeType(), Info, Deduced, 0); |
| } |
| |
| // T && [C++0x] |
| case Type::RValueReference: { |
| const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>(); |
| if (!ReferenceArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| cast<RValueReferenceType>(Param)->getPointeeType(), |
| ReferenceArg->getPointeeType(), |
| Info, Deduced, 0); |
| } |
| |
| // T [] (implied, but not stated explicitly) |
| case Type::IncompleteArray: { |
| const IncompleteArrayType *IncompleteArrayArg = |
| S.Context.getAsIncompleteArrayType(Arg); |
| if (!IncompleteArrayArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| unsigned SubTDF = TDF & TDF_IgnoreQualifiers; |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| S.Context.getAsIncompleteArrayType(Param)->getElementType(), |
| IncompleteArrayArg->getElementType(), |
| Info, Deduced, SubTDF); |
| } |
| |
| // T [integer-constant] |
| case Type::ConstantArray: { |
| const ConstantArrayType *ConstantArrayArg = |
| S.Context.getAsConstantArrayType(Arg); |
| if (!ConstantArrayArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| const ConstantArrayType *ConstantArrayParm = |
| S.Context.getAsConstantArrayType(Param); |
| if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize()) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| unsigned SubTDF = TDF & TDF_IgnoreQualifiers; |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| ConstantArrayParm->getElementType(), |
| ConstantArrayArg->getElementType(), |
| Info, Deduced, SubTDF); |
| } |
| |
| // type [i] |
| case Type::DependentSizedArray: { |
| const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg); |
| if (!ArrayArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| unsigned SubTDF = TDF & TDF_IgnoreQualifiers; |
| |
| // Check the element type of the arrays |
| const DependentSizedArrayType *DependentArrayParm |
| = S.Context.getAsDependentSizedArrayType(Param); |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| DependentArrayParm->getElementType(), |
| ArrayArg->getElementType(), |
| Info, Deduced, SubTDF)) |
| return Result; |
| |
| // Determine the array bound is something we can deduce. |
| NonTypeTemplateParmDecl *NTTP |
| = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| // We can perform template argument deduction for the given non-type |
| // template parameter. |
| assert(NTTP->getDepth() == 0 && |
| "Cannot deduce non-type template argument at depth > 0"); |
| if (const ConstantArrayType *ConstantArrayArg |
| = dyn_cast<ConstantArrayType>(ArrayArg)) { |
| llvm::APSInt Size(ConstantArrayArg->getSize()); |
| return DeduceNonTypeTemplateArgument(S, NTTP, Size, |
| S.Context.getSizeType(), |
| /*ArrayBound=*/true, |
| Info, Deduced); |
| } |
| if (const DependentSizedArrayType *DependentArrayArg |
| = dyn_cast<DependentSizedArrayType>(ArrayArg)) |
| if (DependentArrayArg->getSizeExpr()) |
| return DeduceNonTypeTemplateArgument(S, NTTP, |
| DependentArrayArg->getSizeExpr(), |
| Info, Deduced); |
| |
| // Incomplete type does not match a dependently-sized array type |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // type(*)(T) |
| // T(*)() |
| // T(*)(T) |
| case Type::FunctionProto: { |
| unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList; |
| const FunctionProtoType *FunctionProtoArg = |
| dyn_cast<FunctionProtoType>(Arg); |
| if (!FunctionProtoArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| const FunctionProtoType *FunctionProtoParam = |
| cast<FunctionProtoType>(Param); |
| |
| if (FunctionProtoParam->getTypeQuals() |
| != FunctionProtoArg->getTypeQuals() || |
| FunctionProtoParam->getRefQualifier() |
| != FunctionProtoArg->getRefQualifier() || |
| FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic()) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // Check return types. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| FunctionProtoParam->getResultType(), |
| FunctionProtoArg->getResultType(), |
| Info, Deduced, 0)) |
| return Result; |
| |
| return DeduceTemplateArguments(S, TemplateParams, |
| FunctionProtoParam->arg_type_begin(), |
| FunctionProtoParam->getNumArgs(), |
| FunctionProtoArg->arg_type_begin(), |
| FunctionProtoArg->getNumArgs(), |
| Info, Deduced, SubTDF); |
| } |
| |
| case Type::InjectedClassName: { |
| // Treat a template's injected-class-name as if the template |
| // specialization type had been used. |
| Param = cast<InjectedClassNameType>(Param) |
| ->getInjectedSpecializationType(); |
| assert(isa<TemplateSpecializationType>(Param) && |
| "injected class name is not a template specialization type"); |
| // fall through |
| } |
| |
| // template-name<T> (where template-name refers to a class template) |
| // template-name<i> |
| // TT<T> |
| // TT<i> |
| // TT<> |
| case Type::TemplateSpecialization: { |
| const TemplateSpecializationType *SpecParam |
| = cast<TemplateSpecializationType>(Param); |
| |
| // Try to deduce template arguments from the template-id. |
| Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, |
| Info, Deduced); |
| |
| if (Result && (TDF & TDF_DerivedClass)) { |
| // C++ [temp.deduct.call]p3b3: |
| // If P is a class, and P has the form template-id, then A can be a |
| // derived class of the deduced A. Likewise, if P is a pointer to a |
| // class of the form template-id, A can be a pointer to a derived |
| // class pointed to by the deduced A. |
| // |
| // More importantly: |
| // These alternatives are considered only if type deduction would |
| // otherwise fail. |
| if (const RecordType *RecordT = Arg->getAs<RecordType>()) { |
| // We cannot inspect base classes as part of deduction when the type |
| // is incomplete, so either instantiate any templates necessary to |
| // complete the type, or skip over it if it cannot be completed. |
| if (S.RequireCompleteType(Info.getLocation(), Arg, 0)) |
| return Result; |
| |
| // Use data recursion to crawl through the list of base classes. |
| // Visited contains the set of nodes we have already visited, while |
| // ToVisit is our stack of records that we still need to visit. |
| llvm::SmallPtrSet<const RecordType *, 8> Visited; |
| SmallVector<const RecordType *, 8> ToVisit; |
| ToVisit.push_back(RecordT); |
| bool Successful = false; |
| SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(), |
| Deduced.end()); |
| while (!ToVisit.empty()) { |
| // Retrieve the next class in the inheritance hierarchy. |
| const RecordType *NextT = ToVisit.back(); |
| ToVisit.pop_back(); |
| |
| // If we have already seen this type, skip it. |
| if (!Visited.insert(NextT)) |
| continue; |
| |
| // If this is a base class, try to perform template argument |
| // deduction from it. |
| if (NextT != RecordT) { |
| Sema::TemplateDeductionResult BaseResult |
| = DeduceTemplateArguments(S, TemplateParams, SpecParam, |
| QualType(NextT, 0), Info, Deduced); |
| |
| // If template argument deduction for this base was successful, |
| // note that we had some success. Otherwise, ignore any deductions |
| // from this base class. |
| if (BaseResult == Sema::TDK_Success) { |
| Successful = true; |
| DeducedOrig.clear(); |
| DeducedOrig.append(Deduced.begin(), Deduced.end()); |
| } |
| else |
| Deduced = DeducedOrig; |
| } |
| |
| // Visit base classes |
| CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl()); |
| for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(), |
| BaseEnd = Next->bases_end(); |
| Base != BaseEnd; ++Base) { |
| assert(Base->getType()->isRecordType() && |
| "Base class that isn't a record?"); |
| ToVisit.push_back(Base->getType()->getAs<RecordType>()); |
| } |
| } |
| |
| if (Successful) |
| return Sema::TDK_Success; |
| } |
| |
| } |
| |
| return Result; |
| } |
| |
| // T type::* |
| // T T::* |
| // T (type::*)() |
| // type (T::*)() |
| // type (type::*)(T) |
| // type (T::*)(T) |
| // T (type::*)(T) |
| // T (T::*)() |
| // T (T::*)(T) |
| case Type::MemberPointer: { |
| const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param); |
| const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg); |
| if (!MemPtrArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| MemPtrParam->getPointeeType(), |
| MemPtrArg->getPointeeType(), |
| Info, Deduced, |
| TDF & TDF_IgnoreQualifiers)) |
| return Result; |
| |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| QualType(MemPtrParam->getClass(), 0), |
| QualType(MemPtrArg->getClass(), 0), |
| Info, Deduced, |
| TDF & TDF_IgnoreQualifiers); |
| } |
| |
| // (clang extension) |
| // |
| // type(^)(T) |
| // T(^)() |
| // T(^)(T) |
| case Type::BlockPointer: { |
| const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param); |
| const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg); |
| |
| if (!BlockPtrArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| BlockPtrParam->getPointeeType(), |
| BlockPtrArg->getPointeeType(), |
| Info, Deduced, 0); |
| } |
| |
| // (clang extension) |
| // |
| // T __attribute__(((ext_vector_type(<integral constant>)))) |
| case Type::ExtVector: { |
| const ExtVectorType *VectorParam = cast<ExtVectorType>(Param); |
| if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { |
| // Make sure that the vectors have the same number of elements. |
| if (VectorParam->getNumElements() != VectorArg->getNumElements()) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // Perform deduction on the element types. |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| VectorParam->getElementType(), |
| VectorArg->getElementType(), |
| Info, Deduced, TDF); |
| } |
| |
| if (const DependentSizedExtVectorType *VectorArg |
| = dyn_cast<DependentSizedExtVectorType>(Arg)) { |
| // We can't check the number of elements, since the argument has a |
| // dependent number of elements. This can only occur during partial |
| // ordering. |
| |
| // Perform deduction on the element types. |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| VectorParam->getElementType(), |
| VectorArg->getElementType(), |
| Info, Deduced, TDF); |
| } |
| |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // (clang extension) |
| // |
| // T __attribute__(((ext_vector_type(N)))) |
| case Type::DependentSizedExtVector: { |
| const DependentSizedExtVectorType *VectorParam |
| = cast<DependentSizedExtVectorType>(Param); |
| |
| if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { |
| // Perform deduction on the element types. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| VectorParam->getElementType(), |
| VectorArg->getElementType(), |
| Info, Deduced, TDF)) |
| return Result; |
| |
| // Perform deduction on the vector size, if we can. |
| NonTypeTemplateParmDecl *NTTP |
| = getDeducedParameterFromExpr(VectorParam->getSizeExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); |
| ArgSize = VectorArg->getNumElements(); |
| return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy, |
| false, Info, Deduced); |
| } |
| |
| if (const DependentSizedExtVectorType *VectorArg |
| = dyn_cast<DependentSizedExtVectorType>(Arg)) { |
| // Perform deduction on the element types. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| VectorParam->getElementType(), |
| VectorArg->getElementType(), |
| Info, Deduced, TDF)) |
| return Result; |
| |
| // Perform deduction on the vector size, if we can. |
| NonTypeTemplateParmDecl *NTTP |
| = getDeducedParameterFromExpr(VectorParam->getSizeExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(), |
| Info, Deduced); |
| } |
| |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| case Type::TypeOfExpr: |
| case Type::TypeOf: |
| case Type::DependentName: |
| case Type::UnresolvedUsing: |
| case Type::Decltype: |
| case Type::UnaryTransform: |
| case Type::Auto: |
| case Type::DependentTemplateSpecialization: |
| case Type::PackExpansion: |
| // No template argument deduction for these types |
| return Sema::TDK_Success; |
| } |
| |
| llvm_unreachable("Invalid Type Class!"); |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| const TemplateArgument &Param, |
| TemplateArgument Arg, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| // If the template argument is a pack expansion, perform template argument |
| // deduction against the pattern of that expansion. This only occurs during |
| // partial ordering. |
| if (Arg.isPackExpansion()) |
| Arg = Arg.getPackExpansionPattern(); |
| |
| switch (Param.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Null template argument in parameter list"); |
| |
| case TemplateArgument::Type: |
| if (Arg.getKind() == TemplateArgument::Type) |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| Param.getAsType(), |
| Arg.getAsType(), |
| Info, Deduced, 0); |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::Template: |
| if (Arg.getKind() == TemplateArgument::Template) |
| return DeduceTemplateArguments(S, TemplateParams, |
| Param.getAsTemplate(), |
| Arg.getAsTemplate(), Info, Deduced); |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::TemplateExpansion: |
| llvm_unreachable("caller should handle pack expansions"); |
| |
| case TemplateArgument::Declaration: |
| if (Arg.getKind() == TemplateArgument::Declaration && |
| isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()) && |
| Param.isDeclForReferenceParam() == Arg.isDeclForReferenceParam()) |
| return Sema::TDK_Success; |
| |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::NullPtr: |
| if (Arg.getKind() == TemplateArgument::NullPtr && |
| S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType())) |
| return Sema::TDK_Success; |
| |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::Integral: |
| if (Arg.getKind() == TemplateArgument::Integral) { |
| if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral())) |
| return Sema::TDK_Success; |
| |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| if (Arg.getKind() == TemplateArgument::Expression) { |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::Expression: { |
| if (NonTypeTemplateParmDecl *NTTP |
| = getDeducedParameterFromExpr(Param.getAsExpr())) { |
| if (Arg.getKind() == TemplateArgument::Integral) |
| return DeduceNonTypeTemplateArgument(S, NTTP, |
| Arg.getAsIntegral(), |
| Arg.getIntegralType(), |
| /*ArrayBound=*/false, |
| Info, Deduced); |
| if (Arg.getKind() == TemplateArgument::Expression) |
| return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(), |
| Info, Deduced); |
| if (Arg.getKind() == TemplateArgument::Declaration) |
| return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(), |
| Info, Deduced); |
| |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // Can't deduce anything, but that's okay. |
| return Sema::TDK_Success; |
| } |
| case TemplateArgument::Pack: |
| llvm_unreachable("Argument packs should be expanded by the caller!"); |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| /// \brief Determine whether there is a template argument to be used for |
| /// deduction. |
| /// |
| /// This routine "expands" argument packs in-place, overriding its input |
| /// parameters so that \c Args[ArgIdx] will be the available template argument. |
| /// |
| /// \returns true if there is another template argument (which will be at |
| /// \c Args[ArgIdx]), false otherwise. |
| static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args, |
| unsigned &ArgIdx, |
| unsigned &NumArgs) { |
| if (ArgIdx == NumArgs) |
| return false; |
| |
| const TemplateArgument &Arg = Args[ArgIdx]; |
| if (Arg.getKind() != TemplateArgument::Pack) |
| return true; |
| |
| assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?"); |
| Args = Arg.pack_begin(); |
| NumArgs = Arg.pack_size(); |
| ArgIdx = 0; |
| return ArgIdx < NumArgs; |
| } |
| |
| /// \brief Determine whether the given set of template arguments has a pack |
| /// expansion that is not the last template argument. |
| static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args, |
| unsigned NumArgs) { |
| unsigned ArgIdx = 0; |
| while (ArgIdx < NumArgs) { |
| const TemplateArgument &Arg = Args[ArgIdx]; |
| |
| // Unwrap argument packs. |
| if (Args[ArgIdx].getKind() == TemplateArgument::Pack) { |
| Args = Arg.pack_begin(); |
| NumArgs = Arg.pack_size(); |
| ArgIdx = 0; |
| continue; |
| } |
| |
| ++ArgIdx; |
| if (ArgIdx == NumArgs) |
| return false; |
| |
| if (Arg.isPackExpansion()) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| const TemplateArgument *Params, unsigned NumParams, |
| const TemplateArgument *Args, unsigned NumArgs, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool NumberOfArgumentsMustMatch) { |
| // C++0x [temp.deduct.type]p9: |
| // If the template argument list of P contains a pack expansion that is not |
| // the last template argument, the entire template argument list is a |
| // non-deduced context. |
| if (hasPackExpansionBeforeEnd(Params, NumParams)) |
| return Sema::TDK_Success; |
| |
| // C++0x [temp.deduct.type]p9: |
| // If P has a form that contains <T> or <i>, then each argument Pi of the |
| // respective template argument list P is compared with the corresponding |
| // argument Ai of the corresponding template argument list of A. |
| unsigned ArgIdx = 0, ParamIdx = 0; |
| for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams); |
| ++ParamIdx) { |
| if (!Params[ParamIdx].isPackExpansion()) { |
| // The simple case: deduce template arguments by matching Pi and Ai. |
| |
| // Check whether we have enough arguments. |
| if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) |
| return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch |
| : Sema::TDK_Success; |
| |
| if (Args[ArgIdx].isPackExpansion()) { |
| // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here, |
| // but applied to pack expansions that are template arguments. |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // Perform deduction for this Pi/Ai pair. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(S, TemplateParams, |
| Params[ParamIdx], Args[ArgIdx], |
| Info, Deduced)) |
| return Result; |
| |
| // Move to the next argument. |
| ++ArgIdx; |
| continue; |
| } |
| |
| // The parameter is a pack expansion. |
| |
| // C++0x [temp.deduct.type]p9: |
| // If Pi is a pack expansion, then the pattern of Pi is compared with |
| // each remaining argument in the template argument list of A. Each |
| // comparison deduces template arguments for subsequent positions in the |
| // template parameter packs expanded by Pi. |
| TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern(); |
| |
| // Compute the set of template parameter indices that correspond to |
| // parameter packs expanded by the pack expansion. |
| SmallVector<unsigned, 2> PackIndices; |
| { |
| llvm::SmallBitVector SawIndices(TemplateParams->size()); |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| S.collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { |
| unsigned Depth, Index; |
| llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); |
| if (Depth == 0 && !SawIndices[Index]) { |
| SawIndices[Index] = true; |
| PackIndices.push_back(Index); |
| } |
| } |
| } |
| assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?"); |
| |
| // FIXME: If there are no remaining arguments, we can bail out early |
| // and set any deduced parameter packs to an empty argument pack. |
| // The latter part of this is a (minor) correctness issue. |
| |
| // Save the deduced template arguments for each parameter pack expanded |
| // by this pack expansion, then clear out the deduction. |
| SmallVector<DeducedTemplateArgument, 2> |
| SavedPacks(PackIndices.size()); |
| SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2> |
| NewlyDeducedPacks(PackIndices.size()); |
| PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks, |
| NewlyDeducedPacks); |
| |
| // Keep track of the deduced template arguments for each parameter pack |
| // expanded by this pack expansion (the outer index) and for each |
| // template argument (the inner SmallVectors). |
| bool HasAnyArguments = false; |
| while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) { |
| HasAnyArguments = true; |
| |
| // Deduce template arguments from the pattern. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx], |
| Info, Deduced)) |
| return Result; |
| |
| // Capture the deduced template arguments for each parameter pack expanded |
| // by this pack expansion, add them to the list of arguments we've deduced |
| // for that pack, then clear out the deduced argument. |
| for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) { |
| DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]]; |
| if (!DeducedArg.isNull()) { |
| NewlyDeducedPacks[I].push_back(DeducedArg); |
| DeducedArg = DeducedTemplateArgument(); |
| } |
| } |
| |
| ++ArgIdx; |
| } |
| |
| // Build argument packs for each of the parameter packs expanded by this |
| // pack expansion. |
| if (Sema::TemplateDeductionResult Result |
| = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments, |
| Deduced, PackIndices, SavedPacks, |
| NewlyDeducedPacks, Info)) |
| return Result; |
| } |
| |
| // If there is an argument remaining, then we had too many arguments. |
| if (NumberOfArgumentsMustMatch && |
| hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return Sema::TDK_Success; |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| const TemplateArgumentList &ParamList, |
| const TemplateArgumentList &ArgList, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| return DeduceTemplateArguments(S, TemplateParams, |
| ParamList.data(), ParamList.size(), |
| ArgList.data(), ArgList.size(), |
| Info, Deduced); |
| } |
| |
| /// \brief Determine whether two template arguments are the same. |
| static bool isSameTemplateArg(ASTContext &Context, |
| const TemplateArgument &X, |
| const TemplateArgument &Y) { |
| if (X.getKind() != Y.getKind()) |
| return false; |
| |
| switch (X.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Comparing NULL template argument"); |
| |
| case TemplateArgument::Type: |
| return Context.getCanonicalType(X.getAsType()) == |
| Context.getCanonicalType(Y.getAsType()); |
| |
| case TemplateArgument::Declaration: |
| return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) && |
| X.isDeclForReferenceParam() == Y.isDeclForReferenceParam(); |
| |
| case TemplateArgument::NullPtr: |
| return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()); |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: |
| return Context.getCanonicalTemplateName( |
| X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() == |
| Context.getCanonicalTemplateName( |
| Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer(); |
| |
| case TemplateArgument::Integral: |
| return X.getAsIntegral() == Y.getAsIntegral(); |
| |
| case TemplateArgument::Expression: { |
| llvm::FoldingSetNodeID XID, YID; |
| X.getAsExpr()->Profile(XID, Context, true); |
| Y.getAsExpr()->Profile(YID, Context, true); |
| return XID == YID; |
| } |
| |
| case TemplateArgument::Pack: |
| if (X.pack_size() != Y.pack_size()) |
| return false; |
| |
| for (TemplateArgument::pack_iterator XP = X.pack_begin(), |
| XPEnd = X.pack_end(), |
| YP = Y.pack_begin(); |
| XP != XPEnd; ++XP, ++YP) |
| if (!isSameTemplateArg(Context, *XP, *YP)) |
| return false; |
| |
| return true; |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| /// \brief Allocate a TemplateArgumentLoc where all locations have |
| /// been initialized to the given location. |
| /// |
| /// \param S The semantic analysis object. |
| /// |
| /// \param Arg The template argument we are producing template argument |
| /// location information for. |
| /// |
| /// \param NTTPType For a declaration template argument, the type of |
| /// the non-type template parameter that corresponds to this template |
| /// argument. |
| /// |
| /// \param Loc The source location to use for the resulting template |
| /// argument. |
| static TemplateArgumentLoc |
| getTrivialTemplateArgumentLoc(Sema &S, |
| const TemplateArgument &Arg, |
| QualType NTTPType, |
| SourceLocation Loc) { |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Can't get a NULL template argument here"); |
| |
| case TemplateArgument::Type: |
| return TemplateArgumentLoc(Arg, |
| S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); |
| |
| case TemplateArgument::Declaration: { |
| Expr *E |
| = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) |
| .takeAs<Expr>(); |
| return TemplateArgumentLoc(TemplateArgument(E), E); |
| } |
| |
| case TemplateArgument::NullPtr: { |
| Expr *E |
| = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) |
| .takeAs<Expr>(); |
| return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true), |
| E); |
| } |
| |
| case TemplateArgument::Integral: { |
| Expr *E |
| = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>(); |
| return TemplateArgumentLoc(TemplateArgument(E), E); |
| } |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: { |
| NestedNameSpecifierLocBuilder Builder; |
| TemplateName Template = Arg.getAsTemplate(); |
| if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) |
| Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc); |
| else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) |
| Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc); |
| |
| if (Arg.getKind() == TemplateArgument::Template) |
| return TemplateArgumentLoc(Arg, |
| Builder.getWithLocInContext(S.Context), |
| Loc); |
| |
| |
| return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context), |
| Loc, Loc); |
| } |
| |
| case TemplateArgument::Expression: |
| return TemplateArgumentLoc(Arg, Arg.getAsExpr()); |
| |
| case TemplateArgument::Pack: |
| return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| |
| /// \brief Convert the given deduced template argument and add it to the set of |
| /// fully-converted template arguments. |
| static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param, |
| DeducedTemplateArgument Arg, |
| NamedDecl *Template, |
| QualType NTTPType, |
| unsigned ArgumentPackIndex, |
| TemplateDeductionInfo &Info, |
| bool InFunctionTemplate, |
| SmallVectorImpl<TemplateArgument> &Output) { |
| if (Arg.getKind() == TemplateArgument::Pack) { |
| // This is a template argument pack, so check each of its arguments against |
| // the template parameter. |
| SmallVector<TemplateArgument, 2> PackedArgsBuilder; |
| for (TemplateArgument::pack_iterator PA = Arg.pack_begin(), |
| PAEnd = Arg.pack_end(); |
| PA != PAEnd; ++PA) { |
| // When converting the deduced template argument, append it to the |
| // general output list. We need to do this so that the template argument |
| // checking logic has all of the prior template arguments available. |
| DeducedTemplateArgument InnerArg(*PA); |
| InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); |
| if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template, |
| NTTPType, PackedArgsBuilder.size(), |
| Info, InFunctionTemplate, Output)) |
| return true; |
| |
| // Move the converted template argument into our argument pack. |
| PackedArgsBuilder.push_back(Output.back()); |
| Output.pop_back(); |
| } |
| |
| // Create the resulting argument pack. |
| Output.push_back(TemplateArgument::CreatePackCopy(S.Context, |
| PackedArgsBuilder.data(), |
| PackedArgsBuilder.size())); |
| return false; |
| } |
| |
| // Convert the deduced template argument into a template |
| // argument that we can check, almost as if the user had written |
| // the template argument explicitly. |
| TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType, |
| Info.getLocation()); |
| |
| // Check the template argument, converting it as necessary. |
| return S.CheckTemplateArgument(Param, ArgLoc, |
| Template, |
| Template->getLocation(), |
| Template->getSourceRange().getEnd(), |
| ArgumentPackIndex, |
| Output, |
| InFunctionTemplate |
| ? (Arg.wasDeducedFromArrayBound() |
| ? Sema::CTAK_DeducedFromArrayBound |
| : Sema::CTAK_Deduced) |
| : Sema::CTAK_Specified); |
| } |
| |
| /// Complete template argument deduction for a class template partial |
| /// specialization. |
| static Sema::TemplateDeductionResult |
| FinishTemplateArgumentDeduction(Sema &S, |
| ClassTemplatePartialSpecializationDecl *Partial, |
| const TemplateArgumentList &TemplateArgs, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info) { |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated); |
| Sema::SFINAETrap Trap(S); |
| |
| Sema::ContextRAII SavedContext(S, Partial); |
| |
| // C++ [temp.deduct.type]p2: |
| // [...] or if any template argument remains neither deduced nor |
| // explicitly specified, template argument deduction fails. |
| SmallVector<TemplateArgument, 4> Builder; |
| TemplateParameterList *PartialParams = Partial->getTemplateParameters(); |
| for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) { |
| NamedDecl *Param = PartialParams->getParam(I); |
| if (Deduced[I].isNull()) { |
| Info.Param = makeTemplateParameter(Param); |
| return Sema::TDK_Incomplete; |
| } |
| |
| // We have deduced this argument, so it still needs to be |
| // checked and converted. |
| |
| // First, for a non-type template parameter type that is |
| // initialized by a declaration, we need the type of the |
| // corresponding non-type template parameter. |
| QualType NTTPType; |
| if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
| NTTPType = NTTP->getType(); |
| if (NTTPType->isDependentType()) { |
| TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, |
| Builder.data(), Builder.size()); |
| NTTPType = S.SubstType(NTTPType, |
| MultiLevelTemplateArgumentList(TemplateArgs), |
| NTTP->getLocation(), |
| NTTP->getDeclName()); |
| if (NTTPType.isNull()) { |
| Info.Param = makeTemplateParameter(Param); |
| // FIXME: These template arguments are temporary. Free them! |
| Info.reset(TemplateArgumentList::CreateCopy(S.Context, |
| Builder.data(), |
| Builder.size())); |
| return Sema::TDK_SubstitutionFailure; |
| } |
| } |
| } |
| |
| if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], |
| Partial, NTTPType, 0, Info, false, |
| Builder)) { |
| Info.Param = makeTemplateParameter(Param); |
| // FIXME: These template arguments are temporary. Free them! |
| Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(), |
| Builder.size())); |
| return Sema::TDK_SubstitutionFailure; |
| } |
| } |
| |
| // Form the template argument list from the deduced template arguments. |
| TemplateArgumentList *DeducedArgumentList |
| = TemplateArgumentList::CreateCopy(S.Context, Builder.data(), |
| Builder.size()); |
| |
| Info.reset(DeducedArgumentList); |
| |
| // Substitute the deduced template arguments into the template |
| // arguments of the class template partial specialization, and |
| // verify that the instantiated template arguments are both valid |
| // and are equivalent to the template arguments originally provided |
| // to the class template. |
| LocalInstantiationScope InstScope(S); |
| ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate(); |
| const TemplateArgumentLoc *PartialTemplateArgs |
| = Partial->getTemplateArgsAsWritten(); |
| |
| // Note that we don't provide the langle and rangle locations. |
| TemplateArgumentListInfo InstArgs; |
| |
| if (S.Subst(PartialTemplateArgs, |
| Partial->getNumTemplateArgsAsWritten(), |
| InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) { |
| unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; |
| if (ParamIdx >= Partial->getTemplateParameters()->size()) |
| ParamIdx = Partial->getTemplateParameters()->size() - 1; |
| |
| Decl *Param |
| = const_cast<NamedDecl *>( |
| Partial->getTemplateParameters()->getParam(ParamIdx)); |
| Info.Param = makeTemplateParameter(Param); |
| Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument(); |
| return Sema::TDK_SubstitutionFailure; |
| } |
| |
| SmallVector<TemplateArgument, 4> ConvertedInstArgs; |
| if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(), |
| InstArgs, false, ConvertedInstArgs)) |
| return Sema::TDK_SubstitutionFailure; |
| |
| TemplateParameterList *TemplateParams |
| = ClassTemplate->getTemplateParameters(); |
| for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { |
| TemplateArgument InstArg = ConvertedInstArgs.data()[I]; |
| if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) { |
| Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); |
| Info.FirstArg = TemplateArgs[I]; |
| Info.SecondArg = InstArg; |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| } |
| |
| if (Trap.hasErrorOccurred()) |
| return Sema::TDK_SubstitutionFailure; |
| |
| return Sema::TDK_Success; |
| } |
| |
| /// \brief Perform template argument deduction to determine whether |
| /// the given template arguments match the given class template |
| /// partial specialization per C++ [temp.class.spec.match]. |
| Sema::TemplateDeductionResult |
| Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, |
| const TemplateArgumentList &TemplateArgs, |
| TemplateDeductionInfo &Info) { |
| if (Partial->isInvalidDecl()) |
| return TDK_Invalid; |
| |
| // C++ [temp.class.spec.match]p2: |
| // A partial specialization matches a given actual template |
| // argument list if the template arguments of the partial |
| // specialization can be deduced from the actual template argument |
| // list (14.8.2). |
| |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| Deduced.resize(Partial->getTemplateParameters()->size()); |
| if (TemplateDeductionResult Result |
| = ::DeduceTemplateArguments(*this, |
| Partial->getTemplateParameters(), |
| Partial->getTemplateArgs(), |
| TemplateArgs, Info, Deduced)) |
| return Result; |
| |
| SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); |
| InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial, |
| DeducedArgs, Info); |
| if (Inst) |
| return TDK_InstantiationDepth; |
| |
| if (Trap.hasErrorOccurred()) |
| return Sema::TDK_SubstitutionFailure; |
| |
| return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs, |
| Deduced, Info); |
| } |
| |
| /// \brief Determine whether the given type T is a simple-template-id type. |
| static bool isSimpleTemplateIdType(QualType T) { |
| if (const TemplateSpecializationType *Spec |
| = T->getAs<TemplateSpecializationType>()) |
| return Spec->getTemplateName().getAsTemplateDecl() != 0; |
| |
| return false; |
| } |
| |
| /// \brief Substitute the explicitly-provided template arguments into the |
| /// given function template according to C++ [temp.arg.explicit]. |
| /// |
| /// \param FunctionTemplate the function template into which the explicit |
| /// template arguments will be substituted. |
| /// |
| /// \param ExplicitTemplateArgs the explicitly-specified template |
| /// arguments. |
| /// |
| /// \param Deduced the deduced template arguments, which will be populated |
| /// with the converted and checked explicit template arguments. |
| /// |
| /// \param ParamTypes will be populated with the instantiated function |
| /// parameters. |
| /// |
| /// \param FunctionType if non-NULL, the result type of the function template |
| /// will also be instantiated and the pointed-to value will be updated with |
| /// the instantiated function type. |
| /// |
| /// \param Info if substitution fails for any reason, this object will be |
| /// populated with more information about the failure. |
| /// |
| /// \returns TDK_Success if substitution was successful, or some failure |
| /// condition. |
| Sema::TemplateDeductionResult |
| Sema::SubstituteExplicitTemplateArguments( |
| FunctionTemplateDecl *FunctionTemplate, |
| TemplateArgumentListInfo &ExplicitTemplateArgs, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| SmallVectorImpl<QualType> &ParamTypes, |
| QualType *FunctionType, |
| TemplateDeductionInfo &Info) { |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| |
| if (ExplicitTemplateArgs.size() == 0) { |
| // No arguments to substitute; just copy over the parameter types and |
| // fill in the function type. |
| for (FunctionDecl::param_iterator P = Function->param_begin(), |
| PEnd = Function->param_end(); |
| P != PEnd; |
| ++P) |
| ParamTypes.push_back((*P)->getType()); |
| |
| if (FunctionType) |
| *FunctionType = Function->getType(); |
| return TDK_Success; |
| } |
| |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| // C++ [temp.arg.explicit]p3: |
| // Template arguments that are present shall be specified in the |
| // declaration order of their corresponding template-parameters. The |
| // template argument list shall not specify more template-arguments than |
| // there are corresponding template-parameters. |
| SmallVector<TemplateArgument, 4> Builder; |
| |
| // Enter a new template instantiation context where we check the |
| // explicitly-specified template arguments against this function template, |
| // and then substitute them into the function parameter types. |
| SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); |
| InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(), |
| FunctionTemplate, DeducedArgs, |
| ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution, |
| Info); |
| if (Inst) |
| return TDK_InstantiationDepth; |
| |
| if (CheckTemplateArgumentList(FunctionTemplate, |
| SourceLocation(), |
| ExplicitTemplateArgs, |
| true, |
| Builder) || Trap.hasErrorOccurred()) { |
| unsigned Index = Builder.size(); |
| if (Index >= TemplateParams->size()) |
| Index = TemplateParams->size() - 1; |
| Info.Param = makeTemplateParameter(TemplateParams->getParam(Index)); |
| return TDK_InvalidExplicitArguments; |
| } |
| |
| // Form the template argument list from the explicitly-specified |
| // template arguments. |
| TemplateArgumentList *ExplicitArgumentList |
| = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size()); |
| Info.reset(ExplicitArgumentList); |
| |
| // Template argument deduction and the final substitution should be |
| // done in the context of the templated declaration. Explicit |
| // argument substitution, on the other hand, needs to happen in the |
| // calling context. |
| ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); |
| |
| // If we deduced template arguments for a template parameter pack, |
| // note that the template argument pack is partially substituted and record |
| // the explicit template arguments. They'll be used as part of deduction |
| // for this template parameter pack. |
| for (unsigned I = 0, N = Builder.size(); I != N; ++I) { |
| const TemplateArgument &Arg = Builder[I]; |
| if (Arg.getKind() == TemplateArgument::Pack) { |
| CurrentInstantiationScope->SetPartiallySubstitutedPack( |
| TemplateParams->getParam(I), |
| Arg.pack_begin(), |
| Arg.pack_size()); |
| break; |
| } |
| } |
| |
| const FunctionProtoType *Proto |
| = Function->getType()->getAs<FunctionProtoType>(); |
| assert(Proto && "Function template does not have a prototype?"); |
| |
| // Instantiate the types of each of the function parameters given the |
| // explicitly-specified template arguments. If the function has a trailing |
| // return type, substitute it after the arguments to ensure we substitute |
| // in lexical order. |
| if (Proto->hasTrailingReturn()) { |
| if (SubstParmTypes(Function->getLocation(), |
| Function->param_begin(), Function->getNumParams(), |
| MultiLevelTemplateArgumentList(*ExplicitArgumentList), |
| ParamTypes)) |
| return TDK_SubstitutionFailure; |
| } |
| |
| // Instantiate the return type. |
| // FIXME: exception-specifications? |
| QualType ResultType; |
| { |
| // C++11 [expr.prim.general]p3: |
| // If a declaration declares a member function or member function |
| // template of a class X, the expression this is a prvalue of type |
| // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq |
| // and the end of the function-definition, member-declarator, or |
| // declarator. |
| unsigned ThisTypeQuals = 0; |
| CXXRecordDecl *ThisContext = 0; |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { |
| ThisContext = Method->getParent(); |
| ThisTypeQuals = Method->getTypeQualifiers(); |
| } |
| |
| CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals, |
| getLangOpts().CPlusPlus0x); |
| |
| ResultType = SubstType(Proto->getResultType(), |
| MultiLevelTemplateArgumentList(*ExplicitArgumentList), |
| Function->getTypeSpecStartLoc(), |
| Function->getDeclName()); |
| if (ResultType.isNull() || Trap.hasErrorOccurred()) |
| return TDK_SubstitutionFailure; |
| } |
| |
| // Instantiate the types of each of the function parameters given the |
| // explicitly-specified template arguments if we didn't do so earlier. |
| if (!Proto->hasTrailingReturn() && |
| SubstParmTypes(Function->getLocation(), |
| Function->param_begin(), Function->getNumParams(), |
| MultiLevelTemplateArgumentList(*ExplicitArgumentList), |
| ParamTypes)) |
| return TDK_SubstitutionFailure; |
| |
| if (FunctionType) { |
| *FunctionType = BuildFunctionType(ResultType, |
| ParamTypes.data(), ParamTypes.size(), |
| Proto->isVariadic(), |
| Proto->hasTrailingReturn(), |
| Proto->getTypeQuals(), |
| Proto->getRefQualifier(), |
| Function->getLocation(), |
| Function->getDeclName(), |
| Proto->getExtInfo()); |
| if (FunctionType->isNull() || Trap.hasErrorOccurred()) |
| return TDK_SubstitutionFailure; |
| } |
| |
| // C++ [temp.arg.explicit]p2: |
| // Trailing template arguments that can be deduced (14.8.2) may be |
| // omitted from the list of explicit template-arguments. If all of the |
| // template arguments can be deduced, they may all be omitted; in this |
| // case, the empty template argument list <> itself may also be omitted. |
| // |
| // Take all of the explicitly-specified arguments and put them into |
| // the set of deduced template arguments. Explicitly-specified |
| // parameter packs, however, will be set to NULL since the deduction |
| // mechanisms handle explicitly-specified argument packs directly. |
| Deduced.reserve(TemplateParams->size()); |
| for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) { |
| const TemplateArgument &Arg = ExplicitArgumentList->get(I); |
| if (Arg.getKind() == TemplateArgument::Pack) |
| Deduced.push_back(DeducedTemplateArgument()); |
| else |
| Deduced.push_back(Arg); |
| } |
| |
| return TDK_Success; |
| } |
| |
| /// \brief Check whether the deduced argument type for a call to a function |
| /// template matches the actual argument type per C++ [temp.deduct.call]p4. |
| static bool |
| CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg, |
| QualType DeducedA) { |
| ASTContext &Context = S.Context; |
| |
| QualType A = OriginalArg.OriginalArgType; |
| QualType OriginalParamType = OriginalArg.OriginalParamType; |
| |
| // Check for type equality (top-level cv-qualifiers are ignored). |
| if (Context.hasSameUnqualifiedType(A, DeducedA)) |
| return false; |
| |
| // Strip off references on the argument types; they aren't needed for |
| // the following checks. |
| if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>()) |
| DeducedA = DeducedARef->getPointeeType(); |
| if (const ReferenceType *ARef = A->getAs<ReferenceType>()) |
| A = ARef->getPointeeType(); |
| |
| // C++ [temp.deduct.call]p4: |
| // [...] However, there are three cases that allow a difference: |
| // - If the original P is a reference type, the deduced A (i.e., the |
| // type referred to by the reference) can be more cv-qualified than |
| // the transformed A. |
| if (const ReferenceType *OriginalParamRef |
| = OriginalParamType->getAs<ReferenceType>()) { |
| // We don't want to keep the reference around any more. |
| OriginalParamType = OriginalParamRef->getPointeeType(); |
| |
| Qualifiers AQuals = A.getQualifiers(); |
| Qualifiers DeducedAQuals = DeducedA.getQualifiers(); |
| |
| // Under Objective-C++ ARC, the deduced type may have implicitly been |
| // given strong lifetime. If so, update the original qualifiers to |
| // include this strong lifetime. |
| if (S.getLangOpts().ObjCAutoRefCount && |
| DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong && |
| AQuals.getObjCLifetime() == Qualifiers::OCL_None) { |
| AQuals.setObjCLifetime(Qualifiers::OCL_Strong); |
| } |
| |
| if (AQuals == DeducedAQuals) { |
| // Qualifiers match; there's nothing to do. |
| } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) { |
| return true; |
| } else { |
| // Qualifiers are compatible, so have the argument type adopt the |
| // deduced argument type's qualifiers as if we had performed the |
| // qualification conversion. |
| A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals); |
| } |
| } |
| |
| // - The transformed A can be another pointer or pointer to member |
| // type that can be converted to the deduced A via a qualification |
| // conversion. |
| // |
| // Also allow conversions which merely strip [[noreturn]] from function types |
| // (recursively) as an extension. |
| // FIXME: Currently, this doesn't place nicely with qualfication conversions. |
| bool ObjCLifetimeConversion = false; |
| QualType ResultTy; |
| if ((A->isAnyPointerType() || A->isMemberPointerType()) && |
| (S.IsQualificationConversion(A, DeducedA, false, |
| ObjCLifetimeConversion) || |
| S.IsNoReturnConversion(A, DeducedA, ResultTy))) |
| return false; |
| |
| |
| // - If P is a class and P has the form simple-template-id, then the |
| // transformed A can be a derived class of the deduced A. [...] |
| // [...] Likewise, if P is a pointer to a class of the form |
| // simple-template-id, the transformed A can be a pointer to a |
| // derived class pointed to by the deduced A. |
| if (const PointerType *OriginalParamPtr |
| = OriginalParamType->getAs<PointerType>()) { |
| if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) { |
| if (const PointerType *APtr = A->getAs<PointerType>()) { |
| if (A->getPointeeType()->isRecordType()) { |
| OriginalParamType = OriginalParamPtr->getPointeeType(); |
| DeducedA = DeducedAPtr->getPointeeType(); |
| A = APtr->getPointeeType(); |
| } |
| } |
| } |
| } |
| |
| if (Context.hasSameUnqualifiedType(A, DeducedA)) |
| return false; |
| |
| if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) && |
| S.IsDerivedFrom(A, DeducedA)) |
| return false; |
| |
| return true; |
| } |
| |
| /// \brief Finish template argument deduction for a function template, |
| /// checking the deduced template arguments for completeness and forming |
| /// the function template specialization. |
| /// |
| /// \param OriginalCallArgs If non-NULL, the original call arguments against |
| /// which the deduced argument types should be compared. |
| Sema::TemplateDeductionResult |
| Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| unsigned NumExplicitlySpecified, |
| FunctionDecl *&Specialization, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) { |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| // Enter a new template instantiation context while we instantiate the |
| // actual function declaration. |
| SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); |
| InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(), |
| FunctionTemplate, DeducedArgs, |
| ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution, |
| Info); |
| if (Inst) |
| return TDK_InstantiationDepth; |
| |
| ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); |
| |
| // C++ [temp.deduct.type]p2: |
| // [...] or if any template argument remains neither deduced nor |
| // explicitly specified, template argument deduction fails. |
| SmallVector<TemplateArgument, 4> Builder; |
| for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { |
| NamedDecl *Param = TemplateParams->getParam(I); |
| |
| if (!Deduced[I].isNull()) { |
| if (I < NumExplicitlySpecified) { |
| // We have already fully type-checked and converted this |
| // argument, because it was explicitly-specified. Just record the |
| // presence of this argument. |
| Builder.push_back(Deduced[I]); |
| continue; |
| } |
| |
| // We have deduced this argument, so it still needs to be |
| // checked and converted. |
| |
| // First, for a non-type template parameter type that is |
| // initialized by a declaration, we need the type of the |
| // corresponding non-type template parameter. |
| QualType NTTPType; |
| if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
| NTTPType = NTTP->getType(); |
| if (NTTPType->isDependentType()) { |
| TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, |
| Builder.data(), Builder.size()); |
| NTTPType = SubstType(NTTPType, |
| MultiLevelTemplateArgumentList(TemplateArgs), |
| NTTP->getLocation(), |
| NTTP->getDeclName()); |
| if (NTTPType.isNull()) { |
| Info.Param = makeTemplateParameter(Param); |
| // FIXME: These template arguments are temporary. Free them! |
| Info.reset(TemplateArgumentList::CreateCopy(Context, |
| Builder.data(), |
| Builder.size())); |
| return TDK_SubstitutionFailure; |
| } |
| } |
| } |
| |
| if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I], |
| FunctionTemplate, NTTPType, 0, Info, |
| true, Builder)) { |
| Info.Param = makeTemplateParameter(Param); |
| // FIXME: These template arguments are temporary. Free them! |
| Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(), |
| Builder.size())); |
| return TDK_SubstitutionFailure; |
| } |
| |
| continue; |
| } |
| |
| // C++0x [temp.arg.explicit]p3: |
| // A trailing template parameter pack (14.5.3) not otherwise deduced will |
| // be deduced to an empty sequence of template arguments. |
| // FIXME: Where did the word "trailing" come from? |
| if (Param->isTemplateParameterPack()) { |
| // We may have had explicitly-specified template arguments for this |
| // template parameter pack. If so, our empty deduction extends the |
| // explicitly-specified set (C++0x [temp.arg.explicit]p9). |
| const TemplateArgument *ExplicitArgs; |
| unsigned NumExplicitArgs; |
| if (CurrentInstantiationScope && |
| CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs, |
| &NumExplicitArgs) |
| == Param) |
| Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs)); |
| else |
| Builder.push_back(TemplateArgument::getEmptyPack()); |
| |
| continue; |
| } |
| |
| // Substitute into the default template argument, if available. |
| TemplateArgumentLoc DefArg |
| = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate, |
| FunctionTemplate->getLocation(), |
| FunctionTemplate->getSourceRange().getEnd(), |
| Param, |
| Builder); |
| |
| // If there was no default argument, deduction is incomplete. |
| if (DefArg.getArgument().isNull()) { |
| Info.Param = makeTemplateParameter( |
| const_cast<NamedDecl *>(TemplateParams->getParam(I))); |
| return TDK_Incomplete; |
| } |
| |
| // Check whether we can actually use the default argument. |
| if (CheckTemplateArgument(Param, DefArg, |
| FunctionTemplate, |
| FunctionTemplate->getLocation(), |
| FunctionTemplate->getSourceRange().getEnd(), |
| 0, Builder, |
| CTAK_Specified)) { |
| Info.Param = makeTemplateParameter( |
| const_cast<NamedDecl *>(TemplateParams->getParam(I))); |
| // FIXME: These template arguments are temporary. Free them! |
| Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(), |
| Builder.size())); |
| return TDK_SubstitutionFailure; |
| } |
| |
| // If we get here, we successfully used the default template argument. |
| } |
| |
| // Form the template argument list from the deduced template arguments. |
| TemplateArgumentList *DeducedArgumentList |
| = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size()); |
| Info.reset(DeducedArgumentList); |
| |
| // Substitute the deduced template arguments into the function template |
| // declaration to produce the function template specialization. |
| DeclContext *Owner = FunctionTemplate->getDeclContext(); |
| if (FunctionTemplate->getFriendObjectKind()) |
| Owner = FunctionTemplate->getLexicalDeclContext(); |
| Specialization = cast_or_null<FunctionDecl>( |
| SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, |
| MultiLevelTemplateArgumentList(*DeducedArgumentList))); |
| if (!Specialization || Specialization->isInvalidDecl()) |
| return TDK_SubstitutionFailure; |
| |
| assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() == |
| FunctionTemplate->getCanonicalDecl()); |
| |
| // If the template argument list is owned by the function template |
| // specialization, release it. |
| if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList && |
| !Trap.hasErrorOccurred()) |
| Info.take(); |
| |
| // There may have been an error that did not prevent us from constructing a |
| // declaration. Mark the declaration invalid and return with a substitution |
| // failure. |
| if (Trap.hasErrorOccurred()) { |
| Specialization->setInvalidDecl(true); |
| return TDK_SubstitutionFailure; |
| } |
| |
| if (OriginalCallArgs) { |
| // C++ [temp.deduct.call]p4: |
| // In general, the deduction process attempts to find template argument |
| // values that will make the deduced A identical to A (after the type A |
| // is transformed as described above). [...] |
| for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) { |
| OriginalCallArg OriginalArg = (*OriginalCallArgs)[I]; |
| unsigned ParamIdx = OriginalArg.ArgIdx; |
| |
| if (ParamIdx >= Specialization->getNumParams()) |
| continue; |
| |
| QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType(); |
| if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA)) |
| return Sema::TDK_SubstitutionFailure; |
| } |
| } |
| |
| // If we suppressed any diagnostics while performing template argument |
| // deduction, and if we haven't already instantiated this declaration, |
| // keep track of these diagnostics. They'll be emitted if this specialization |
| // is actually used. |
| if (Info.diag_begin() != Info.diag_end()) { |
| llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator |
| Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl()); |
| if (Pos == SuppressedDiagnostics.end()) |
| SuppressedDiagnostics[Specialization->getCanonicalDecl()] |
| .append(Info.diag_begin(), Info.diag_end()); |
| } |
| |
| return TDK_Success; |
| } |
| |
| /// Gets the type of a function for template-argument-deducton |
| /// purposes when it's considered as part of an overload set. |
| static QualType GetTypeOfFunction(ASTContext &Context, |
| const OverloadExpr::FindResult &R, |
| FunctionDecl *Fn) { |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) |
| if (Method->isInstance()) { |
| // An instance method that's referenced in a form that doesn't |
| // look like a member pointer is just invalid. |
| if (!R.HasFormOfMemberPointer) return QualType(); |
| |
| return Context.getMemberPointerType(Fn->getType(), |
| Context.getTypeDeclType(Method->getParent()).getTypePtr()); |
| } |
| |
| if (!R.IsAddressOfOperand) return Fn->getType(); |
| return Context.getPointerType(Fn->getType()); |
| } |
| |
| /// Apply the deduction rules for overload sets. |
| /// |
| /// \return the null type if this argument should be treated as an |
| /// undeduced context |
| static QualType |
| ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, |
| Expr *Arg, QualType ParamType, |
| bool ParamWasReference) { |
| |
| OverloadExpr::FindResult R = OverloadExpr::find(Arg); |
| |
| OverloadExpr *Ovl = R.Expression; |
| |
| // C++0x [temp.deduct.call]p4 |
| unsigned TDF = 0; |
| if (ParamWasReference) |
| TDF |= TDF_ParamWithReferenceType; |
| if (R.IsAddressOfOperand) |
| TDF |= TDF_IgnoreQualifiers; |
| |
| // C++0x [temp.deduct.call]p6: |
| // When P is a function type, pointer to function type, or pointer |
| // to member function type: |
| |
| if (!ParamType->isFunctionType() && |
| !ParamType->isFunctionPointerType() && |
| !ParamType->isMemberFunctionPointerType()) { |
| if (Ovl->hasExplicitTemplateArgs()) { |
| // But we can still look for an explicit specialization. |
| if (FunctionDecl *ExplicitSpec |
| = S.ResolveSingleFunctionTemplateSpecialization(Ovl)) |
| return GetTypeOfFunction(S.Context, R, ExplicitSpec); |
| } |
| |
| return QualType(); |
| } |
| |
| // Gather the explicit template arguments, if any. |
| TemplateArgumentListInfo ExplicitTemplateArgs; |
| if (Ovl->hasExplicitTemplateArgs()) |
| Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); |
| QualType Match; |
| for (UnresolvedSetIterator I = Ovl->decls_begin(), |
| E = Ovl->decls_end(); I != E; ++I) { |
| NamedDecl *D = (*I)->getUnderlyingDecl(); |
| |
| if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) { |
| // - If the argument is an overload set containing one or more |
| // function templates, the parameter is treated as a |
| // non-deduced context. |
| if (!Ovl->hasExplicitTemplateArgs()) |
| return QualType(); |
| |
| // Otherwise, see if we can resolve a function type |
| FunctionDecl *Specialization = 0; |
| TemplateDeductionInfo Info(Ovl->getNameLoc()); |
| if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs, |
| Specialization, Info)) |
| continue; |
| |
| D = Specialization; |
| } |
| |
| FunctionDecl *Fn = cast<FunctionDecl>(D); |
| QualType ArgType = GetTypeOfFunction(S.Context, R, Fn); |
| if (ArgType.isNull()) continue; |
| |
| // Function-to-pointer conversion. |
| if (!ParamWasReference && ParamType->isPointerType() && |
| ArgType->isFunctionType()) |
| ArgType = S.Context.getPointerType(ArgType); |
| |
| // - If the argument is an overload set (not containing function |
| // templates), trial argument deduction is attempted using each |
| // of the members of the set. If deduction succeeds for only one |
| // of the overload set members, that member is used as the |
| // argument value for the deduction. If deduction succeeds for |
| // more than one member of the overload set the parameter is |
| // treated as a non-deduced context. |
| |
| // We do all of this in a fresh context per C++0x [temp.deduct.type]p2: |
| // Type deduction is done independently for each P/A pair, and |
| // the deduced template argument values are then combined. |
| // So we do not reject deductions which were made elsewhere. |
| SmallVector<DeducedTemplateArgument, 8> |
| Deduced(TemplateParams->size()); |
| TemplateDeductionInfo Info(Ovl->getNameLoc()); |
| Sema::TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, |
| ArgType, Info, Deduced, TDF); |
| if (Result) continue; |
| if (!Match.isNull()) return QualType(); |
| Match = ArgType; |
| } |
| |
| return Match; |
| } |
| |
| /// \brief Perform the adjustments to the parameter and argument types |
| /// described in C++ [temp.deduct.call]. |
| /// |
| /// \returns true if the caller should not attempt to perform any template |
| /// argument deduction based on this P/A pair. |
| static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S, |
| TemplateParameterList *TemplateParams, |
| QualType &ParamType, |
| QualType &ArgType, |
| Expr *Arg, |
| unsigned &TDF) { |
| // C++0x [temp.deduct.call]p3: |
| // If P is a cv-qualified type, the top level cv-qualifiers of P's type |
| // are ignored for type deduction. |
| if (ParamType.hasQualifiers()) |
| ParamType = ParamType.getUnqualifiedType(); |
| const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>(); |
| if (ParamRefType) { |
| QualType PointeeType = ParamRefType->getPointeeType(); |
| |
| // If the argument has incomplete array type, try to complete it's type. |
| if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0)) |
| ArgType = Arg->getType(); |
| |
| // [C++0x] If P is an rvalue reference to a cv-unqualified |
| // template parameter and the argument is an lvalue, the type |
| // "lvalue reference to A" is used in place of A for type |
| // deduction. |
| if (isa<RValueReferenceType>(ParamType)) { |
| if (!PointeeType.getQualifiers() && |
| isa<TemplateTypeParmType>(PointeeType) && |
| Arg->Classify(S.Context).isLValue() && |
| Arg->getType() != S.Context.OverloadTy && |
| Arg->getType() != S.Context.BoundMemberTy) |
| ArgType = S.Context.getLValueReferenceType(ArgType); |
| } |
| |
| // [...] If P is a reference type, the type referred to by P is used |
| // for type deduction. |
| ParamType = PointeeType; |
| } |
| |
| // Overload sets usually make this parameter an undeduced |
| // context, but there are sometimes special circumstances. |
| if (ArgType == S.Context.OverloadTy) { |
| ArgType = ResolveOverloadForDeduction(S, TemplateParams, |
| Arg, ParamType, |
| ParamRefType != 0); |
| if (ArgType.isNull()) |
| return true; |
| } |
| |
| if (ParamRefType) { |
| // C++0x [temp.deduct.call]p3: |
| // [...] If P is of the form T&&, where T is a template parameter, and |
| // the argument is an lvalue, the type A& is used in place of A for |
| // type deduction. |
| if (ParamRefType->isRValueReferenceType() && |
| ParamRefType->getAs<TemplateTypeParmType>() && |
| Arg->isLValue()) |
| ArgType = S.Context.getLValueReferenceType(ArgType); |
| } else { |
| // C++ [temp.deduct.call]p2: |
| // If P is not a reference type: |
| // - If A is an array type, the pointer type produced by the |
| // array-to-pointer standard conversion (4.2) is used in place of |
| // A for type deduction; otherwise, |
| if (ArgType->isArrayType()) |
| ArgType = S.Context.getArrayDecayedType(ArgType); |
| // - If A is a function type, the pointer type produced by the |
| // function-to-pointer standard conversion (4.3) is used in place |
| // of A for type deduction; otherwise, |
| else if (ArgType->isFunctionType()) |
| ArgType = S.Context.getPointerType(ArgType); |
| else { |
| // - If A is a cv-qualified type, the top level cv-qualifiers of A's |
| // type are ignored for type deduction. |
| ArgType = ArgType.getUnqualifiedType(); |
| } |
| } |
| |
| // C++0x [temp.deduct.call]p4: |
| // In general, the deduction process attempts to find template argument |
| // values that will make the deduced A identical to A (after the type A |
| // is transformed as described above). [...] |
| TDF = TDF_SkipNonDependent; |
| |
| // - If the original P is a reference type, the deduced A (i.e., the |
| // type referred to by the reference) can be more cv-qualified than |
| // the transformed A. |
| if (ParamRefType) |
| TDF |= TDF_ParamWithReferenceType; |
| // - The transformed A can be another pointer or pointer to member |
| // type that can be converted to the deduced A via a qualification |
| // conversion (4.4). |
| if (ArgType->isPointerType() || ArgType->isMemberPointerType() || |
| ArgType->isObjCObjectPointerType()) |
| TDF |= TDF_IgnoreQualifiers; |
| // - If P is a class and P has the form simple-template-id, then the |
| // transformed A can be a derived class of the deduced A. Likewise, |
| // if P is a pointer to a class of the form simple-template-id, the |
| // transformed A can be a pointer to a derived class pointed to by |
| // the deduced A. |
| if (isSimpleTemplateIdType(ParamType) || |
| (isa<PointerType>(ParamType) && |
| isSimpleTemplateIdType( |
| ParamType->getAs<PointerType>()->getPointeeType()))) |
| TDF |= TDF_DerivedClass; |
| |
| return false; |
| } |
| |
| static bool hasDeducibleTemplateParameters(Sema &S, |
| FunctionTemplateDecl *FunctionTemplate, |
| QualType T); |
| |
| /// \brief Perform template argument deduction by matching a parameter type |
| /// against a single expression, where the expression is an element of |
| /// an initializer list that was originally matched against the argument |
| /// type. |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArgumentByListElement(Sema &S, |
| TemplateParameterList *TemplateParams, |
| QualType ParamType, Expr *Arg, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| unsigned TDF) { |
| // Handle the case where an init list contains another init list as the |
| // element. |
| if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) { |
| QualType X; |
| if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X)) |
| return Sema::TDK_Success; // Just ignore this expression. |
| |
| // Recurse down into the init list. |
| for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) { |
| if (Sema::TemplateDeductionResult Result = |
| DeduceTemplateArgumentByListElement(S, TemplateParams, X, |
| ILE->getInit(i), |
| Info, Deduced, TDF)) |
| return Result; |
| } |
| return Sema::TDK_Success; |
| } |
| |
| // For all other cases, just match by type. |
| QualType ArgType = Arg->getType(); |
| if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType, |
| ArgType, Arg, TDF)) |
| return Sema::TDK_FailedOverloadResolution; |
| return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, |
| ArgType, Info, Deduced, TDF); |
| } |
| |
| /// \brief Perform template argument deduction from a function call |
| /// (C++ [temp.deduct.call]). |
| /// |
| /// \param FunctionTemplate the function template for which we are performing |
| /// template argument deduction. |
| /// |
| /// \param ExplicitTemplateArgs the explicit template arguments provided |
| /// for this call. |
| /// |
| /// \param Args the function call arguments |
| /// |
| /// \param Name the name of the function being called. This is only significant |
| /// when the function template is a conversion function template, in which |
| /// case this routine will also perform template argument deduction based on |
| /// the function to which |
| /// |
| /// \param Specialization if template argument deduction was successful, |
| /// this will be set to the function template specialization produced by |
| /// template argument deduction. |
| /// |
| /// \param Info the argument will be updated to provide additional information |
| /// about template argument deduction. |
| /// |
| /// \returns the result of template argument deduction. |
| Sema::TemplateDeductionResult |
| Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, |
| llvm::ArrayRef<Expr *> Args, |
| FunctionDecl *&Specialization, |
| TemplateDeductionInfo &Info) { |
| if (FunctionTemplate->isInvalidDecl()) |
| return TDK_Invalid; |
| |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| |
| // C++ [temp.deduct.call]p1: |
| // Template argument deduction is done by comparing each function template |
| // parameter type (call it P) with the type of the corresponding argument |
| // of the call (call it A) as described below. |
| unsigned CheckArgs = Args.size(); |
| if (Args.size() < Function->getMinRequiredArguments()) |
| return TDK_TooFewArguments; |
| else if (Args.size() > Function->getNumParams()) { |
| const FunctionProtoType *Proto |
| = Function->getType()->getAs<FunctionProtoType>(); |
| if (Proto->isTemplateVariadic()) |
| /* Do nothing */; |
| else if (Proto->isVariadic()) |
| CheckArgs = Function->getNumParams(); |
| else |
| return TDK_TooManyArguments; |
| } |
| |
| // The types of the parameters from which we will perform template argument |
| // deduction. |
| LocalInstantiationScope InstScope(*this); |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| SmallVector<QualType, 4> ParamTypes; |
| unsigned NumExplicitlySpecified = 0; |
| if (ExplicitTemplateArgs) { |
| TemplateDeductionResult Result = |
| SubstituteExplicitTemplateArguments(FunctionTemplate, |
| *ExplicitTemplateArgs, |
| Deduced, |
| ParamTypes, |
| 0, |
| Info); |
| if (Result) |
| return Result; |
| |
| NumExplicitlySpecified = Deduced.size(); |
| } else { |
| // Just fill in the parameter types from the function declaration. |
| for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) |
| ParamTypes.push_back(Function->getParamDecl(I)->getType()); |
| } |
| |
| // Deduce template arguments from the function parameters. |
| Deduced.resize(TemplateParams->size()); |
| unsigned ArgIdx = 0; |
| SmallVector<OriginalCallArg, 4> OriginalCallArgs; |
| for (unsigned ParamIdx = 0, NumParams = ParamTypes.size(); |
| ParamIdx != NumParams; ++ParamIdx) { |
| QualType OrigParamType = ParamTypes[ParamIdx]; |
| QualType ParamType = OrigParamType; |
| |
| const PackExpansionType *ParamExpansion |
| = dyn_cast<PackExpansionType>(ParamType); |
| if (!ParamExpansion) { |
| // Simple case: matching a function parameter to a function argument. |
| if (ArgIdx >= CheckArgs) |
| break; |
| |
| Expr *Arg = Args[ArgIdx++]; |
| QualType ArgType = Arg->getType(); |
| |
| unsigned TDF = 0; |
| if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams, |
| ParamType, ArgType, Arg, |
| TDF)) |
| continue; |
| |
| // If we have nothing to deduce, we're done. |
| if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) |
| continue; |
| |
| // If the argument is an initializer list ... |
| if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) { |
| // ... then the parameter is an undeduced context, unless the parameter |
| // type is (reference to cv) std::initializer_list<P'>, in which case |
| // deduction is done for each element of the initializer list, and the |
| // result is the deduced type if it's the same for all elements. |
| QualType X; |
| // Removing references was already done. |
| if (!isStdInitializerList(ParamType, &X)) |
| continue; |
| |
| for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) { |
| if (TemplateDeductionResult Result = |
| DeduceTemplateArgumentByListElement(*this, TemplateParams, X, |
| ILE->getInit(i), |
| Info, Deduced, TDF)) |
| return Result; |
| } |
| // Don't track the argument type, since an initializer list has none. |
| continue; |
| } |
| |
| // Keep track of the argument type and corresponding parameter index, |
| // so we can check for compatibility between the deduced A and A. |
| OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1, |
| ArgType)); |
| |
| if (TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, |
| ParamType, ArgType, |
| Info, Deduced, TDF)) |
| return Result; |
| |
| continue; |
| } |
| |
| // C++0x [temp.deduct.call]p1: |
| // For a function parameter pack that occurs at the end of the |
| // parameter-declaration-list, the type A of each remaining argument of |
| // the call is compared with the type P of the declarator-id of the |
| // function parameter pack. Each comparison deduces template arguments |
| // for subsequent positions in the template parameter packs expanded by |
| // the function parameter pack. For a function parameter pack that does |
| // not occur at the end of the parameter-declaration-list, the type of |
| // the parameter pack is a non-deduced context. |
| if (ParamIdx + 1 < NumParams) |
| break; |
| |
| QualType ParamPattern = ParamExpansion->getPattern(); |
| SmallVector<unsigned, 2> PackIndices; |
| { |
| llvm::SmallBitVector SawIndices(TemplateParams->size()); |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| collectUnexpandedParameterPacks(ParamPattern, Unexpanded); |
| for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { |
| unsigned Depth, Index; |
| llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); |
| if (Depth == 0 && !SawIndices[Index]) { |
| SawIndices[Index] = true; |
| PackIndices.push_back(Index); |
| } |
| } |
| } |
| assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?"); |
| |
| // Keep track of the deduced template arguments for each parameter pack |
| // expanded by this pack expansion (the outer index) and for each |
| // template argument (the inner SmallVectors). |
| SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2> |
| NewlyDeducedPacks(PackIndices.size()); |
| SmallVector<DeducedTemplateArgument, 2> |
| SavedPacks(PackIndices.size()); |
| PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks, |
| NewlyDeducedPacks); |
| bool HasAnyArguments = false; |
| for (; ArgIdx < Args.size(); ++ArgIdx) { |
| HasAnyArguments = true; |
| |
| QualType OrigParamType = ParamPattern; |
| ParamType = OrigParamType; |
| Expr *Arg = Args[ArgIdx]; |
| QualType ArgType = Arg->getType(); |
| |
| unsigned TDF = 0; |
| if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams, |
| ParamType, ArgType, Arg, |
| TDF)) { |
| // We can't actually perform any deduction for this argument, so stop |
| // deduction at this point. |
| ++ArgIdx; |
| break; |
| } |
| |
| // As above, initializer lists need special handling. |
| if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) { |
| QualType X; |
| if (!isStdInitializerList(ParamType, &X)) { |
| ++ArgIdx; |
| break; |
| } |
| |
| for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) { |
| if (TemplateDeductionResult Result = |
| DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X, |
| ILE->getInit(i)->getType(), |
| Info, Deduced, TDF)) |
| return Result; |
| } |
| } else { |
| |
| // Keep track of the argument type and corresponding argument index, |
| // so we can check for compatibility between the deduced A and A. |
| if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) |
| OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx, |
| ArgType)); |
| |
| if (TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, |
| ParamType, ArgType, Info, |
| Deduced, TDF)) |
| return Result; |
| } |
| |
| // Capture the deduced template arguments for each parameter pack expanded |
| // by this pack expansion, add them to the list of arguments we've deduced |
| // for that pack, then clear out the deduced argument. |
| for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) { |
| DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]]; |
| if (!DeducedArg.isNull()) { |
| NewlyDeducedPacks[I].push_back(DeducedArg); |
| DeducedArg = DeducedTemplateArgument(); |
| } |
| } |
| } |
| |
| // Build argument packs for each of the parameter packs expanded by this |
| // pack expansion. |
| if (Sema::TemplateDeductionResult Result |
| = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments, |
| Deduced, PackIndices, SavedPacks, |
| NewlyDeducedPacks, Info)) |
| return Result; |
| |
| // After we've matching against a parameter pack, we're done. |
| break; |
| } |
| |
| return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, |
| NumExplicitlySpecified, |
| Specialization, Info, &OriginalCallArgs); |
| } |
| |
| /// \brief Deduce template arguments when taking the address of a function |
| /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to |
| /// a template. |
| /// |
| /// \param FunctionTemplate the function template for which we are performing |
| /// template argument deduction. |
| /// |
| /// \param ExplicitTemplateArgs the explicitly-specified template |
| /// arguments. |
| /// |
| /// \param ArgFunctionType the function type that will be used as the |
| /// "argument" type (A) when performing template argument deduction from the |
| /// function template's function type. This type may be NULL, if there is no |
| /// argument type to compare against, in C++0x [temp.arg.explicit]p3. |
| /// |
| /// \param Specialization if template argument deduction was successful, |
| /// this will be set to the function template specialization produced by |
| /// template argument deduction. |
| /// |
| /// \param Info the argument will be updated to provide additional information |
| /// about template argument deduction. |
| /// |
| /// \returns the result of template argument deduction. |
| Sema::TemplateDeductionResult |
| Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, |
| QualType ArgFunctionType, |
| FunctionDecl *&Specialization, |
| TemplateDeductionInfo &Info) { |
| if (FunctionTemplate->isInvalidDecl()) |
| return TDK_Invalid; |
| |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| QualType FunctionType = Function->getType(); |
| |
| // Substitute any explicit template arguments. |
| LocalInstantiationScope InstScope(*this); |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| unsigned NumExplicitlySpecified = 0; |
| SmallVector<QualType, 4> ParamTypes; |
| if (ExplicitTemplateArgs) { |
| if (TemplateDeductionResult Result |
| = SubstituteExplicitTemplateArguments(FunctionTemplate, |
| *ExplicitTemplateArgs, |
| Deduced, ParamTypes, |
| &FunctionType, Info)) |
| return Result; |
| |
| NumExplicitlySpecified = Deduced.size(); |
| } |
| |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| Deduced.resize(TemplateParams->size()); |
| |
| if (!ArgFunctionType.isNull()) { |
| // Deduce template arguments from the function type. |
| if (TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, |
| FunctionType, ArgFunctionType, Info, |
| Deduced, TDF_TopLevelParameterTypeList)) |
| return Result; |
| } |
| |
| if (TemplateDeductionResult Result |
| = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, |
| NumExplicitlySpecified, |
| Specialization, Info)) |
| return Result; |
| |
| // If the requested function type does not match the actual type of the |
| // specialization, template argument deduction fails. |
| if (!ArgFunctionType.isNull() && |
| !Context.hasSameType(ArgFunctionType, Specialization->getType())) |
| return TDK_NonDeducedMismatch; |
| |
| return TDK_Success; |
| } |
| |
| /// \brief Deduce template arguments for a templated conversion |
| /// function (C++ [temp.deduct.conv]) and, if successful, produce a |
| /// conversion function template specialization. |
| Sema::TemplateDeductionResult |
| Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, |
| QualType ToType, |
| CXXConversionDecl *&Specialization, |
| TemplateDeductionInfo &Info) { |
| if (FunctionTemplate->isInvalidDecl()) |
| return TDK_Invalid; |
| |
| CXXConversionDecl *Conv |
| = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()); |
| QualType FromType = Conv->getConversionType(); |
| |
| // Canonicalize the types for deduction. |
| QualType P = Context.getCanonicalType(FromType); |
| QualType A = Context.getCanonicalType(ToType); |
| |
| // C++0x [temp.deduct.conv]p2: |
| // If P is a reference type, the type referred to by P is used for |
| // type deduction. |
| if (const ReferenceType *PRef = P->getAs<ReferenceType>()) |
| P = PRef->getPointeeType(); |
| |
| // C++0x [temp.deduct.conv]p4: |
| // [...] If A is a reference type, the type referred to by A is used |
| // for type deduction. |
| if (const ReferenceType *ARef = A->getAs<ReferenceType>()) |
| A = ARef->getPointeeType().getUnqualifiedType(); |
| // C++ [temp.deduct.conv]p3: |
| // |
| // If A is not a reference type: |
| else { |
| assert(!A->isReferenceType() && "Reference types were handled above"); |
| |
| // - If P is an array type, the pointer type produced by the |
| // array-to-pointer standard conversion (4.2) is used in place |
| // of P for type deduction; otherwise, |
| if (P->isArrayType()) |
| P = Context.getArrayDecayedType(P); |
| // - If P is a function type, the pointer type produced by the |
| // function-to-pointer standard conversion (4.3) is used in |
| // place of P for type deduction; otherwise, |
| else if (P->isFunctionType()) |
| P = Context.getPointerType(P); |
| // - If P is a cv-qualified type, the top level cv-qualifiers of |
| // P's type are ignored for type deduction. |
| else |
| P = P.getUnqualifiedType(); |
| |
| // C++0x [temp.deduct.conv]p4: |
| // If A is a cv-qualified type, the top level cv-qualifiers of A's |
| // type are ignored for type deduction. If A is a reference type, the type |
| // referred to by A is used for type deduction. |
| A = A.getUnqualifiedType(); |
| } |
| |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| // C++ [temp.deduct.conv]p1: |
| // Template argument deduction is done by comparing the return |
| // type of the template conversion function (call it P) with the |
| // type that is required as the result of the conversion (call it |
| // A) as described in 14.8.2.4. |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| Deduced.resize(TemplateParams->size()); |
| |
| // C++0x [temp.deduct.conv]p4: |
| // In general, the deduction process attempts to find template |
| // argument values that will make the deduced A identical to |
| // A. However, there are two cases that allow a difference: |
| unsigned TDF = 0; |
| // - If the original A is a reference type, A can be more |
| // cv-qualified than the deduced A (i.e., the type referred to |
| // by the reference) |
| if (ToType->isReferenceType()) |
| TDF |= TDF_ParamWithReferenceType; |
| // - The deduced A can be another pointer or pointer to member |
| // type that can be converted to A via a qualification |
| // conversion. |
| // |
| // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when |
| // both P and A are pointers or member pointers. In this case, we |
| // just ignore cv-qualifiers completely). |
| if ((P->isPointerType() && A->isPointerType()) || |
| (P->isMemberPointerType() && A->isMemberPointerType())) |
| TDF |= TDF_IgnoreQualifiers; |
| if (TemplateDeductionResult Result |
| = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, |
| P, A, Info, Deduced, TDF)) |
| return Result; |
| |
| // Finish template argument deduction. |
| LocalInstantiationScope InstScope(*this); |
| FunctionDecl *Spec = 0; |
| TemplateDeductionResult Result |
| = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec, |
| Info); |
| Specialization = cast_or_null<CXXConversionDecl>(Spec); |
| return Result; |
| } |
| |
| /// \brief Deduce template arguments for a function template when there is |
| /// nothing to deduce against (C++0x [temp.arg.explicit]p3). |
| /// |
| /// \param FunctionTemplate the function template for which we are performing |
| /// template argument deduction. |
| /// |
| /// \param ExplicitTemplateArgs the explicitly-specified template |
| /// arguments. |
| /// |
| /// \param Specialization if template argument deduction was successful, |
| /// this will be set to the function template specialization produced by |
| /// template argument deduction. |
| /// |
| /// \param Info the argument will be updated to provide additional information |
| /// about template argument deduction. |
| /// |
| /// \returns the result of template argument deduction. |
| Sema::TemplateDeductionResult |
| Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, |
| FunctionDecl *&Specialization, |
| TemplateDeductionInfo &Info) { |
| return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, |
| QualType(), Specialization, Info); |
| } |
| |
| namespace { |
| /// Substitute the 'auto' type specifier within a type for a given replacement |
| /// type. |
| class SubstituteAutoTransform : |
| public TreeTransform<SubstituteAutoTransform> { |
| QualType Replacement; |
| public: |
| SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) : |
| TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) { |
| } |
| QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { |
| // If we're building the type pattern to deduce against, don't wrap the |
| // substituted type in an AutoType. Certain template deduction rules |
| // apply only when a template type parameter appears directly (and not if |
| // the parameter is found through desugaring). For instance: |
| // auto &&lref = lvalue; |
| // must transform into "rvalue reference to T" not "rvalue reference to |
| // auto type deduced as T" in order for [temp.deduct.call]p3 to apply. |
| if (isa<TemplateTypeParmType>(Replacement)) { |
| QualType Result = Replacement; |
| TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| return Result; |
| } else { |
| QualType Result = RebuildAutoType(Replacement); |
| AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| return Result; |
| } |
| } |
| |
| ExprResult TransformLambdaExpr(LambdaExpr *E) { |
| // Lambdas never need to be transformed. |
| return E; |
| } |
| }; |
| |
| /// Determine whether the specified type (which contains an 'auto' type |
| /// specifier) is dependent. This is not trivial, because the 'auto' specifier |
| /// itself claims to be type-dependent. |
| bool isDependentAutoType(QualType Ty) { |
| while (1) { |
| QualType Pointee = Ty->getPointeeType(); |
| if (!Pointee.isNull()) { |
| Ty = Pointee; |
| } else if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()){ |
| if (MPT->getClass()->isDependentType()) |
| return true; |
| Ty = MPT->getPointeeType(); |
| } else if (const FunctionProtoType *FPT = Ty->getAs<FunctionProtoType>()){ |
| for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(), |
| E = FPT->arg_type_end(); |
| I != E; ++I) |
| if ((*I)->isDependentType()) |
| return true; |
| Ty = FPT->getResultType(); |
| } else if (Ty->isDependentSizedArrayType()) { |
| return true; |
| } else if (const ArrayType *AT = Ty->getAsArrayTypeUnsafe()) { |
| Ty = AT->getElementType(); |
| } else if (Ty->getAs<DependentSizedExtVectorType>()) { |
| return true; |
| } else if (const VectorType *VT = Ty->getAs<VectorType>()) { |
| Ty = VT->getElementType(); |
| } else { |
| break; |
| } |
| } |
| assert(Ty->getAs<AutoType>() && "didn't find 'auto' in auto type"); |
| return false; |
| } |
| } |
| |
| /// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6) |
| /// |
| /// \param Type the type pattern using the auto type-specifier. |
| /// |
| /// \param Init the initializer for the variable whose type is to be deduced. |
| /// |
| /// \param Result if type deduction was successful, this will be set to the |
| /// deduced type. This may still contain undeduced autos if the type is |
| /// dependent. This will be set to null if deduction succeeded, but auto |
| /// substitution failed; the appropriate diagnostic will already have been |
| /// produced in that case. |
| Sema::DeduceAutoResult |
| Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, |
| TypeSourceInfo *&Result) { |
| if (Init->getType()->isNonOverloadPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(Init); |
| if (result.isInvalid()) return DAR_FailedAlreadyDiagnosed; |
| Init = result.take(); |
| } |
| |
| if (Init->isTypeDependent() || isDependentAutoType(Type->getType())) { |
| Result = Type; |
| return DAR_Succeeded; |
| } |
| |
| SourceLocation Loc = Init->getExprLoc(); |
| |
| LocalInstantiationScope InstScope(*this); |
| |
| // Build template<class TemplParam> void Func(FuncParam); |
| TemplateTypeParmDecl *TemplParam = |
| TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0, |
| false, false); |
| QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0); |
| NamedDecl *TemplParamPtr = TemplParam; |
| FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr, |
| Loc); |
| |
| TypeSourceInfo *FuncParamInfo = |
| SubstituteAutoTransform(*this, TemplArg).TransformType(Type); |
| assert(FuncParamInfo && "substituting template parameter for 'auto' failed"); |
| QualType FuncParam = FuncParamInfo->getType(); |
| |
| // Deduce type of TemplParam in Func(Init) |
| SmallVector<DeducedTemplateArgument, 1> Deduced; |
| Deduced.resize(1); |
| QualType InitType = Init->getType(); |
| unsigned TDF = 0; |
| |
| TemplateDeductionInfo Info(Loc); |
| |
| InitListExpr *InitList = dyn_cast<InitListExpr>(Init); |
| if (InitList) { |
| for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) { |
| if (DeduceTemplateArgumentByListElement(*this, &TemplateParams, |
| TemplArg, |
| InitList->getInit(i), |
| Info, Deduced, TDF)) |
| return DAR_Failed; |
| } |
| } else { |
| if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams, |
| FuncParam, InitType, Init, |
| TDF)) |
| return DAR_Failed; |
| |
| if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam, |
| InitType, Info, Deduced, TDF)) |
| return DAR_Failed; |
| } |
| |
| QualType DeducedType = Deduced[0].getAsType(); |
| if (DeducedType.isNull()) |
| return DAR_Failed; |
| |
| if (InitList) { |
| DeducedType = BuildStdInitializerList(DeducedType, Loc); |
| if (DeducedType.isNull()) |
| return DAR_FailedAlreadyDiagnosed; |
| } |
| |
| Result = SubstituteAutoTransform(*this, DeducedType).TransformType(Type); |
| |
| // Check that the deduced argument type is compatible with the original |
| // argument type per C++ [temp.deduct.call]p4. |
| if (!InitList && Result && |
| CheckOriginalCallArgDeduction(*this, |
| Sema::OriginalCallArg(FuncParam,0,InitType), |
| Result->getType())) { |
| Result = 0; |
| return DAR_Failed; |
| } |
| |
| return DAR_Succeeded; |
| } |
| |
| void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) { |
| if (isa<InitListExpr>(Init)) |
| Diag(VDecl->getLocation(), |
| diag::err_auto_var_deduction_failure_from_init_list) |
| << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange(); |
| else |
| Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure) |
| << VDecl->getDeclName() << VDecl->getType() << Init->getType() |
| << Init->getSourceRange(); |
| } |
| |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, |
| bool OnlyDeduced, |
| unsigned Level, |
| llvm::SmallBitVector &Deduced); |
| |
| /// \brief If this is a non-static member function, |
| static void AddImplicitObjectParameterType(ASTContext &Context, |
| CXXMethodDecl *Method, |
| SmallVectorImpl<QualType> &ArgTypes) { |
| // C++11 [temp.func.order]p3: |
| // [...] The new parameter is of type "reference to cv A," where cv are |
| // the cv-qualifiers of the function template (if any) and A is |
| // the class of which the function template is a member. |
| // |
| // The standard doesn't say explicitly, but we pick the appropriate kind of |
| // reference type based on [over.match.funcs]p4. |
| QualType ArgTy = Context.getTypeDeclType(Method->getParent()); |
| ArgTy = Context.getQualifiedType(ArgTy, |
| Qualifiers::fromCVRMask(Method->getTypeQualifiers())); |
| if (Method->getRefQualifier() == RQ_RValue) |
| ArgTy = Context.getRValueReferenceType(ArgTy); |
| else |
| ArgTy = Context.getLValueReferenceType(ArgTy); |
| ArgTypes.push_back(ArgTy); |
| } |
| |
| /// \brief Determine whether the function template \p FT1 is at least as |
| /// specialized as \p FT2. |
| static bool isAtLeastAsSpecializedAs(Sema &S, |
| SourceLocation Loc, |
| FunctionTemplateDecl *FT1, |
| FunctionTemplateDecl *FT2, |
| TemplatePartialOrderingContext TPOC, |
| unsigned NumCallArguments, |
| SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) { |
| FunctionDecl *FD1 = FT1->getTemplatedDecl(); |
| FunctionDecl *FD2 = FT2->getTemplatedDecl(); |
| const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>(); |
| const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>(); |
| |
| assert(Proto1 && Proto2 && "Function templates must have prototypes"); |
| TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| Deduced.resize(TemplateParams->size()); |
| |
| // C++0x [temp.deduct.partial]p3: |
| // The types used to determine the ordering depend on the context in which |
| // the partial ordering is done: |
| TemplateDeductionInfo Info(Loc); |
| CXXMethodDecl *Method1 = 0; |
| CXXMethodDecl *Method2 = 0; |
| bool IsNonStatic2 = false; |
| bool IsNonStatic1 = false; |
| unsigned Skip2 = 0; |
| switch (TPOC) { |
| case TPOC_Call: { |
| // - In the context of a function call, the function parameter types are |
| // used. |
| Method1 = dyn_cast<CXXMethodDecl>(FD1); |
| Method2 = dyn_cast<CXXMethodDecl>(FD2); |
| IsNonStatic1 = Method1 && !Method1->isStatic(); |
| IsNonStatic2 = Method2 && !Method2->isStatic(); |
| |
| // C++11 [temp.func.order]p3: |
| // [...] If only one of the function templates is a non-static |
| // member, that function template is considered to have a new |
| // first parameter inserted in its function parameter list. The |
| // new parameter is of type "reference to cv A," where cv are |
| // the cv-qualifiers of the function template (if any) and A is |
| // the class of which the function template is a member. |
| // |
| // Note that we interpret this to mean "if one of the function |
| // templates is a non-static member and the other is a non-member"; |
| // otherwise, the ordering rules for static functions against non-static |
| // functions don't make any sense. |
| // |
| // C++98/03 doesn't have this provision, so instead we drop the |
| // first argument of the free function, which seems to match |
| // existing practice. |
| SmallVector<QualType, 4> Args1; |
| unsigned Skip1 = !S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !Method1; |
| if (S.getLangOpts().CPlusPlus0x && IsNonStatic1 && !Method2) |
| AddImplicitObjectParameterType(S.Context, Method1, Args1); |
| Args1.insert(Args1.end(), |
| Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end()); |
| |
| SmallVector<QualType, 4> Args2; |
| Skip2 = !S.getLangOpts().CPlusPlus0x && IsNonStatic1 && !Method2; |
| if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !Method1) |
| AddImplicitObjectParameterType(S.Context, Method2, Args2); |
| Args2.insert(Args2.end(), |
| Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end()); |
| |
| // C++ [temp.func.order]p5: |
| // The presence of unused ellipsis and default arguments has no effect on |
| // the partial ordering of function templates. |
| if (Args1.size() > NumCallArguments) |
| Args1.resize(NumCallArguments); |
| if (Args2.size() > NumCallArguments) |
| Args2.resize(NumCallArguments); |
| if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(), |
| Args1.data(), Args1.size(), Info, Deduced, |
| TDF_None, /*PartialOrdering=*/true, |
| RefParamComparisons)) |
| return false; |
| |
| break; |
| } |
| |
| case TPOC_Conversion: |
| // - In the context of a call to a conversion operator, the return types |
| // of the conversion function templates are used. |
| if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| Proto2->getResultType(), |
| Proto1->getResultType(), |
| Info, Deduced, TDF_None, |
| /*PartialOrdering=*/true, |
| RefParamComparisons)) |
| return false; |
| break; |
| |
| case TPOC_Other: |
| // - In other contexts (14.6.6.2) the function template's function type |
| // is used. |
| if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, |
| FD2->getType(), FD1->getType(), |
| Info, Deduced, TDF_None, |
| /*PartialOrdering=*/true, |
| RefParamComparisons)) |
| return false; |
| break; |
| } |
| |
| // C++0x [temp.deduct.partial]p11: |
| // In most cases, all template parameters must have values in order for |
| // deduction to succeed, but for partial ordering purposes a template |
| // parameter may remain without a value provided it is not used in the |
| // types being used for partial ordering. [ Note: a template parameter used |
| // in a non-deduced context is considered used. -end note] |
| unsigned ArgIdx = 0, NumArgs = Deduced.size(); |
| for (; ArgIdx != NumArgs; ++ArgIdx) |
| if (Deduced[ArgIdx].isNull()) |
| break; |
| |
| if (ArgIdx == NumArgs) { |
| // All template arguments were deduced. FT1 is at least as specialized |
| // as FT2. |
| return true; |
| } |
| |
| // Figure out which template parameters were used. |
| llvm::SmallBitVector UsedParameters(TemplateParams->size()); |
| switch (TPOC) { |
| case TPOC_Call: { |
| unsigned NumParams = std::min(NumCallArguments, |
| std::min(Proto1->getNumArgs(), |
| Proto2->getNumArgs())); |
| if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1) |
| ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context), |
| false, |
| TemplateParams->getDepth(), UsedParameters); |
| for (unsigned I = Skip2; I < NumParams; ++I) |
| ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false, |
| TemplateParams->getDepth(), |
| UsedParameters); |
| break; |
| } |
| |
| case TPOC_Conversion: |
| ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false, |
| TemplateParams->getDepth(), |
| UsedParameters); |
| break; |
| |
| case TPOC_Other: |
| ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false, |
| TemplateParams->getDepth(), |
| UsedParameters); |
| break; |
| } |
| |
| for (; ArgIdx != NumArgs; ++ArgIdx) |
| // If this argument had no value deduced but was used in one of the types |
| // used for partial ordering, then deduction fails. |
| if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) |
| return false; |
| |
| return true; |
| } |
| |
| /// \brief Determine whether this a function template whose parameter-type-list |
| /// ends with a function parameter pack. |
| static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) { |
| FunctionDecl *Function = FunTmpl->getTemplatedDecl(); |
| unsigned NumParams = Function->getNumParams(); |
| if (NumParams == 0) |
| return false; |
| |
| ParmVarDecl *Last = Function->getParamDecl(NumParams - 1); |
| if (!Last->isParameterPack()) |
| return false; |
| |
| // Make sure that no previous parameter is a parameter pack. |
| while (--NumParams > 0) { |
| if (Function->getParamDecl(NumParams - 1)->isParameterPack()) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// \brief Returns the more specialized function template according |
| /// to the rules of function template partial ordering (C++ [temp.func.order]). |
| /// |
| /// \param FT1 the first function template |
| /// |
| /// \param FT2 the second function template |
| /// |
| /// \param TPOC the context in which we are performing partial ordering of |
| /// function templates. |
| /// |
| /// \param NumCallArguments The number of arguments in a call, used only |
| /// when \c TPOC is \c TPOC_Call. |
| /// |
| /// \returns the more specialized function template. If neither |
| /// template is more specialized, returns NULL. |
| FunctionTemplateDecl * |
| Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, |
| FunctionTemplateDecl *FT2, |
| SourceLocation Loc, |
| TemplatePartialOrderingContext TPOC, |
| unsigned NumCallArguments) { |
| SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons; |
| bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, |
| NumCallArguments, 0); |
| bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, |
| NumCallArguments, |
| &RefParamComparisons); |
| |
| if (Better1 != Better2) // We have a clear winner |
| return Better1? FT1 : FT2; |
| |
| if (!Better1 && !Better2) // Neither is better than the other |
| return 0; |
| |
| // C++0x [temp.deduct.partial]p10: |
| // If for each type being considered a given template is at least as |
| // specialized for all types and more specialized for some set of types and |
| // the other template is not more specialized for any types or is not at |
| // least as specialized for any types, then the given template is more |
| // specialized than the other template. Otherwise, neither template is more |
| // specialized than the other. |
| Better1 = false; |
| Better2 = false; |
| for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) { |
| // C++0x [temp.deduct.partial]p9: |
| // If, for a given type, deduction succeeds in both directions (i.e., the |
| // types are identical after the transformations above) and both P and A |
| // were reference types (before being replaced with the type referred to |
| // above): |
| |
| // -- if the type from the argument template was an lvalue reference |
| // and the type from the parameter template was not, the argument |
| // type is considered to be more specialized than the other; |
| // otherwise, |
| if (!RefParamComparisons[I].ArgIsRvalueRef && |
| RefParamComparisons[I].ParamIsRvalueRef) { |
| Better2 = true; |
| if (Better1) |
| return 0; |
| continue; |
| } else if (!RefParamComparisons[I].ParamIsRvalueRef && |
| RefParamComparisons[I].ArgIsRvalueRef) { |
| Better1 = true; |
| if (Better2) |
| return 0; |
| continue; |
| } |
| |
| // -- if the type from the argument template is more cv-qualified than |
| // the type from the parameter template (as described above), the |
| // argument type is considered to be more specialized than the |
| // other; otherwise, |
| switch (RefParamComparisons[I].Qualifiers) { |
| case NeitherMoreQualified: |
| break; |
| |
| case ParamMoreQualified: |
| Better1 = true; |
| if (Better2) |
| return 0; |
| continue; |
| |
| case ArgMoreQualified: |
| Better2 = true; |
| if (Better1) |
| return 0; |
| continue; |
| } |
| |
| // -- neither type is more specialized than the other. |
| } |
| |
| assert(!(Better1 && Better2) && "Should have broken out in the loop above"); |
| if (Better1) |
| return FT1; |
| else if (Better2) |
| return FT2; |
| |
| // FIXME: This mimics what GCC implements, but doesn't match up with the |
| // proposed resolution for core issue 692. This area needs to be sorted out, |
| // but for now we attempt to maintain compatibility. |
| bool Variadic1 = isVariadicFunctionTemplate(FT1); |
| bool Variadic2 = isVariadicFunctionTemplate(FT2); |
| if (Variadic1 != Variadic2) |
| return Variadic1? FT2 : FT1; |
| |
| return 0; |
| } |
| |
| /// \brief Determine if the two templates are equivalent. |
| static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) { |
| if (T1 == T2) |
| return true; |
| |
| if (!T1 || !T2) |
| return false; |
| |
| return T1->getCanonicalDecl() == T2->getCanonicalDecl(); |
| } |
| |
| /// \brief Retrieve the most specialized of the given function template |
| /// specializations. |
| /// |
| /// \param SpecBegin the start iterator of the function template |
| /// specializations that we will be comparing. |
| /// |
| /// \param SpecEnd the end iterator of the function template |
| /// specializations, paired with \p SpecBegin. |
| /// |
| /// \param TPOC the partial ordering context to use to compare the function |
| /// template specializations. |
| /// |
| /// \param NumCallArguments The number of arguments in a call, used only |
| /// when \c TPOC is \c TPOC_Call. |
| /// |
| /// \param Loc the location where the ambiguity or no-specializations |
| /// diagnostic should occur. |
| /// |
| /// \param NoneDiag partial diagnostic used to diagnose cases where there are |
| /// no matching candidates. |
| /// |
| /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one |
| /// occurs. |
| /// |
| /// \param CandidateDiag partial diagnostic used for each function template |
| /// specialization that is a candidate in the ambiguous ordering. One parameter |
| /// in this diagnostic should be unbound, which will correspond to the string |
| /// describing the template arguments for the function template specialization. |
| /// |
| /// \param Index if non-NULL and the result of this function is non-nULL, |
| /// receives the index corresponding to the resulting function template |
| /// specialization. |
| /// |
| /// \returns the most specialized function template specialization, if |
| /// found. Otherwise, returns SpecEnd. |
| /// |
| /// \todo FIXME: Consider passing in the "also-ran" candidates that failed |
| /// template argument deduction. |
| UnresolvedSetIterator |
| Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin, |
| UnresolvedSetIterator SpecEnd, |
| TemplatePartialOrderingContext TPOC, |
| unsigned NumCallArguments, |
| SourceLocation Loc, |
| const PartialDiagnostic &NoneDiag, |
| const PartialDiagnostic &AmbigDiag, |
| const PartialDiagnostic &CandidateDiag, |
| bool Complain, |
| QualType TargetType) { |
| if (SpecBegin == SpecEnd) { |
| if (Complain) |
| Diag(Loc, NoneDiag); |
| return SpecEnd; |
| } |
| |
| if (SpecBegin + 1 == SpecEnd) |
| return SpecBegin; |
| |
| // Find the function template that is better than all of the templates it |
| // has been compared to. |
| UnresolvedSetIterator Best = SpecBegin; |
| FunctionTemplateDecl *BestTemplate |
| = cast<FunctionDecl>(*Best)->getPrimaryTemplate(); |
| assert(BestTemplate && "Not a function template specialization?"); |
| for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) { |
| FunctionTemplateDecl *Challenger |
| = cast<FunctionDecl>(*I)->getPrimaryTemplate(); |
| assert(Challenger && "Not a function template specialization?"); |
| if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, |
| Loc, TPOC, NumCallArguments), |
| Challenger)) { |
| Best = I; |
| BestTemplate = Challenger; |
| } |
| } |
| |
| // Make sure that the "best" function template is more specialized than all |
| // of the others. |
| bool Ambiguous = false; |
| for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { |
| FunctionTemplateDecl *Challenger |
| = cast<FunctionDecl>(*I)->getPrimaryTemplate(); |
| if (I != Best && |
| !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, |
| Loc, TPOC, NumCallArguments), |
| BestTemplate)) { |
| Ambiguous = true; |
| break; |
| } |
| } |
| |
| if (!Ambiguous) { |
| // We found an answer. Return it. |
| return Best; |
| } |
| |
| // Diagnose the ambiguity. |
| if (Complain) |
| Diag(Loc, AmbigDiag); |
| |
| if (Complain) |
| // FIXME: Can we order the candidates in some sane way? |
| for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { |
| PartialDiagnostic PD = CandidateDiag; |
| PD << getTemplateArgumentBindingsText( |
| cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(), |
| *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs()); |
| if (!TargetType.isNull()) |
| HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(), |
| TargetType); |
| Diag((*I)->getLocation(), PD); |
| } |
| |
| return SpecEnd; |
| } |
| |
| /// \brief Returns the more specialized class template partial specialization |
| /// according to the rules of partial ordering of class template partial |
| /// specializations (C++ [temp.class.order]). |
| /// |
| /// \param PS1 the first class template partial specialization |
| /// |
| /// \param PS2 the second class template partial specialization |
| /// |
| /// \returns the more specialized class template partial specialization. If |
| /// neither partial specialization is more specialized, returns NULL. |
| ClassTemplatePartialSpecializationDecl * |
| Sema::getMoreSpecializedPartialSpecialization( |
| ClassTemplatePartialSpecializationDecl *PS1, |
| ClassTemplatePartialSpecializationDecl *PS2, |
| SourceLocation Loc) { |
| // C++ [temp.class.order]p1: |
| // For two class template partial specializations, the first is at least as |
| // specialized as the second if, given the following rewrite to two |
| // function templates, the first function template is at least as |
| // specialized as the second according to the ordering rules for function |
| // templates (14.6.6.2): |
| // - the first function template has the same template parameters as the |
| // first partial specialization and has a single function parameter |
| // whose type is a class template specialization with the template |
| // arguments of the first partial specialization, and |
| // - the second function template has the same template parameters as the |
| // second partial specialization and has a single function parameter |
| // whose type is a class template specialization with the template |
| // arguments of the second partial specialization. |
| // |
| // Rather than synthesize function templates, we merely perform the |
| // equivalent partial ordering by performing deduction directly on |
| // the template arguments of the class template partial |
| // specializations. This computation is slightly simpler than the |
| // general problem of function template partial ordering, because |
| // class template partial specializations are more constrained. We |
| // know that every template parameter is deducible from the class |
| // template partial specialization's template arguments, for |
| // example. |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| TemplateDeductionInfo Info(Loc); |
| |
| QualType PT1 = PS1->getInjectedSpecializationType(); |
| QualType PT2 = PS2->getInjectedSpecializationType(); |
| |
| // Determine whether PS1 is at least as specialized as PS2 |
| Deduced.resize(PS2->getTemplateParameters()->size()); |
| bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this, |
| PS2->getTemplateParameters(), |
| PT2, PT1, Info, Deduced, TDF_None, |
| /*PartialOrdering=*/true, |
| /*RefParamComparisons=*/0); |
| if (Better1) { |
| SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end()); |
| InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2, |
| DeducedArgs, Info); |
| Better1 = !::FinishTemplateArgumentDeduction(*this, PS2, |
| PS1->getTemplateArgs(), |
| Deduced, Info); |
| } |
| |
| // Determine whether PS2 is at least as specialized as PS1 |
| Deduced.clear(); |
| Deduced.resize(PS1->getTemplateParameters()->size()); |
| bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this, |
| PS1->getTemplateParameters(), |
| PT1, PT2, Info, Deduced, TDF_None, |
| /*PartialOrdering=*/true, |
| /*RefParamComparisons=*/0); |
| if (Better2) { |
| SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end()); |
| InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1, |
| DeducedArgs, Info); |
| Better2 = !::FinishTemplateArgumentDeduction(*this, PS1, |
| PS2->getTemplateArgs(), |
| Deduced, Info); |
| } |
| |
| if (Better1 == Better2) |
| return 0; |
| |
| return Better1? PS1 : PS2; |
| } |
| |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, |
| const TemplateArgument &TemplateArg, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used); |
| |
| /// \brief Mark the template parameters that are used by the given |
| /// expression. |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, |
| const Expr *E, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| // We can deduce from a pack expansion. |
| if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E)) |
| E = Expansion->getPattern(); |
| |
| // Skip through any implicit casts we added while type-checking, and any |
| // substitutions performed by template alias expansion. |
| while (1) { |
| if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) |
| E = ICE->getSubExpr(); |
| else if (const SubstNonTypeTemplateParmExpr *Subst = |
| dyn_cast<SubstNonTypeTemplateParmExpr>(E)) |
| E = Subst->getReplacement(); |
| else |
| break; |
| } |
| |
| // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to |
| // find other occurrences of template parameters. |
| const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); |
| if (!DRE) |
| return; |
| |
| const NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); |
| if (!NTTP) |
| return; |
| |
| if (NTTP->getDepth() == Depth) |
| Used[NTTP->getIndex()] = true; |
| } |
| |
| /// \brief Mark the template parameters that are used by the given |
| /// nested name specifier. |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, |
| NestedNameSpecifier *NNS, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| if (!NNS) |
| return; |
| |
| MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth, |
| Used); |
| MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0), |
| OnlyDeduced, Depth, Used); |
| } |
| |
| /// \brief Mark the template parameters that are used by the given |
| /// template name. |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, |
| TemplateName Name, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| if (TemplateDecl *Template = Name.getAsTemplateDecl()) { |
| if (TemplateTemplateParmDecl *TTP |
| = dyn_cast<TemplateTemplateParmDecl>(Template)) { |
| if (TTP->getDepth() == Depth) |
| Used[TTP->getIndex()] = true; |
| } |
| return; |
| } |
| |
| if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) |
| MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced, |
| Depth, Used); |
| if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) |
| MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced, |
| Depth, Used); |
| } |
| |
| /// \brief Mark the template parameters that are used by the given |
| /// type. |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| if (T.isNull()) |
| return; |
| |
| // Non-dependent types have nothing deducible |
| if (!T->isDependentType()) |
| return; |
| |
| T = Ctx.getCanonicalType(T); |
| switch (T->getTypeClass()) { |
| case Type::Pointer: |
| MarkUsedTemplateParameters(Ctx, |
| cast<PointerType>(T)->getPointeeType(), |
| OnlyDeduced, |
| Depth, |
| Used); |
| break; |
| |
| case Type::BlockPointer: |
| MarkUsedTemplateParameters(Ctx, |
| cast<BlockPointerType>(T)->getPointeeType(), |
| OnlyDeduced, |
| Depth, |
| Used); |
| break; |
| |
| case Type::LValueReference: |
| case Type::RValueReference: |
| MarkUsedTemplateParameters(Ctx, |
| cast<ReferenceType>(T)->getPointeeType(), |
| OnlyDeduced, |
| Depth, |
| Used); |
| break; |
| |
| case Type::MemberPointer: { |
| const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr()); |
| MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced, |
| Depth, Used); |
| MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0), |
| OnlyDeduced, Depth, Used); |
| break; |
| } |
| |
| case Type::DependentSizedArray: |
| MarkUsedTemplateParameters(Ctx, |
| cast<DependentSizedArrayType>(T)->getSizeExpr(), |
| OnlyDeduced, Depth, Used); |
| // Fall through to check the element type |
| |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| MarkUsedTemplateParameters(Ctx, |
| cast<ArrayType>(T)->getElementType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::Vector: |
| case Type::ExtVector: |
| MarkUsedTemplateParameters(Ctx, |
| cast<VectorType>(T)->getElementType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::DependentSizedExtVector: { |
| const DependentSizedExtVectorType *VecType |
| = cast<DependentSizedExtVectorType>(T); |
| MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, |
| Depth, Used); |
| MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, |
| Depth, Used); |
| break; |
| } |
| |
| case Type::FunctionProto: { |
| const FunctionProtoType *Proto = cast<FunctionProtoType>(T); |
| MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced, |
| Depth, Used); |
| for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I) |
| MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced, |
| Depth, Used); |
| break; |
| } |
| |
| case Type::TemplateTypeParm: { |
| const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T); |
| if (TTP->getDepth() == Depth) |
| Used[TTP->getIndex()] = true; |
| break; |
| } |
| |
| case Type::SubstTemplateTypeParmPack: { |
| const SubstTemplateTypeParmPackType *Subst |
| = cast<SubstTemplateTypeParmPackType>(T); |
| MarkUsedTemplateParameters(Ctx, |
| QualType(Subst->getReplacedParameter(), 0), |
| OnlyDeduced, Depth, Used); |
| MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(), |
| OnlyDeduced, Depth, Used); |
| break; |
| } |
| |
| case Type::InjectedClassName: |
| T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType(); |
| // fall through |
| |
| case Type::TemplateSpecialization: { |
| const TemplateSpecializationType *Spec |
| = cast<TemplateSpecializationType>(T); |
| MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced, |
| Depth, Used); |
| |
| // C++0x [temp.deduct.type]p9: |
| // If the template argument list of P contains a pack expansion that is not |
| // the last template argument, the entire template argument list is a |
| // non-deduced context. |
| if (OnlyDeduced && |
| hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs())) |
| break; |
| |
| for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) |
| MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, |
| Used); |
| break; |
| } |
| |
| case Type::Complex: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<ComplexType>(T)->getElementType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::Atomic: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<AtomicType>(T)->getValueType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::DependentName: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<DependentNameType>(T)->getQualifier(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::DependentTemplateSpecialization: { |
| const DependentTemplateSpecializationType *Spec |
| = cast<DependentTemplateSpecializationType>(T); |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, Spec->getQualifier(), |
| OnlyDeduced, Depth, Used); |
| |
| // C++0x [temp.deduct.type]p9: |
| // If the template argument list of P contains a pack expansion that is not |
| // the last template argument, the entire template argument list is a |
| // non-deduced context. |
| if (OnlyDeduced && |
| hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs())) |
| break; |
| |
| for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) |
| MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, |
| Used); |
| break; |
| } |
| |
| case Type::TypeOf: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<TypeOfType>(T)->getUnderlyingType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::TypeOfExpr: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<TypeOfExprType>(T)->getUnderlyingExpr(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::Decltype: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<DecltypeType>(T)->getUnderlyingExpr(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::UnaryTransform: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<UnaryTransformType>(T)->getUnderlyingType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::PackExpansion: |
| MarkUsedTemplateParameters(Ctx, |
| cast<PackExpansionType>(T)->getPattern(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::Auto: |
| MarkUsedTemplateParameters(Ctx, |
| cast<AutoType>(T)->getDeducedType(), |
| OnlyDeduced, Depth, Used); |
| |
| // None of these types have any template parameters in them. |
| case Type::Builtin: |
| case Type::VariableArray: |
| case Type::FunctionNoProto: |
| case Type::Record: |
| case Type::Enum: |
| case Type::ObjCInterface: |
| case Type::ObjCObject: |
| case Type::ObjCObjectPointer: |
| case Type::UnresolvedUsing: |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define DEPENDENT_TYPE(Class, Base) |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| #include "clang/AST/TypeNodes.def" |
| break; |
| } |
| } |
| |
| /// \brief Mark the template parameters that are used by this |
| /// template argument. |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, |
| const TemplateArgument &TemplateArg, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| switch (TemplateArg.getKind()) { |
| case TemplateArgument::Null: |
| case TemplateArgument::Integral: |
| case TemplateArgument::Declaration: |
| break; |
| |
| case TemplateArgument::NullPtr: |
| MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced, |
| Depth, Used); |
| break; |
| |
| case TemplateArgument::Type: |
| MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced, |
| Depth, Used); |
| break; |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: |
| MarkUsedTemplateParameters(Ctx, |
| TemplateArg.getAsTemplateOrTemplatePattern(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case TemplateArgument::Expression: |
| MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced, |
| Depth, Used); |
| break; |
| |
| case TemplateArgument::Pack: |
| for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(), |
| PEnd = TemplateArg.pack_end(); |
| P != PEnd; ++P) |
| MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used); |
| break; |
| } |
| } |
| |
| /// \brief Mark which template parameters can be deduced from a given |
| /// template argument list. |
| /// |
| /// \param TemplateArgs the template argument list from which template |
| /// parameters will be deduced. |
| /// |
| /// \param Used a bit vector whose elements will be set to \c true |
| /// to indicate when the corresponding template parameter will be |
| /// deduced. |
| void |
| Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, |
| bool OnlyDeduced, unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| // C++0x [temp.deduct.type]p9: |
| // If the template argument list of P contains a pack expansion that is not |
| // the last template argument, the entire template argument list is a |
| // non-deduced context. |
| if (OnlyDeduced && |
| hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size())) |
| return; |
| |
| for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
| ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced, |
| Depth, Used); |
| } |
| |
| /// \brief Marks all of the template parameters that will be deduced by a |
| /// call to the given function template. |
| void |
| Sema::MarkDeducedTemplateParameters(ASTContext &Ctx, |
| FunctionTemplateDecl *FunctionTemplate, |
| llvm::SmallBitVector &Deduced) { |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| Deduced.clear(); |
| Deduced.resize(TemplateParams->size()); |
| |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) |
| ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(), |
| true, TemplateParams->getDepth(), Deduced); |
| } |
| |
| bool hasDeducibleTemplateParameters(Sema &S, |
| FunctionTemplateDecl *FunctionTemplate, |
| QualType T) { |
| if (!T->isDependentType()) |
| return false; |
| |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| llvm::SmallBitVector Deduced(TemplateParams->size()); |
| ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(), |
| Deduced); |
| |
| return Deduced.any(); |
| } |