blob: 2c6c7f78448871c036b4c1d3ee152532cc4327a4 [file] [log] [blame]
//===-- GRConstants.cpp - Simple, Path-Sens. Constant Prop. ------*- C++ -*-==//
//
// The LLValM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Constant Propagation via Graph Reachability
//
// This files defines a simple analysis that performs path-sensitive
// constant propagation within a function. An example use of this analysis
// is to perform simple checks for NULL dereferences.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/GREngine.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ASTContext.h"
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Streams.h"
#include <functional>
#ifndef NDEBUG
#include "llvm/Support/GraphWriter.h"
#include <sstream>
#endif
using namespace clang;
using llvm::dyn_cast;
using llvm::cast;
using llvm::APSInt;
//===----------------------------------------------------------------------===//
/// ValueKey - A variant smart pointer that wraps either a ValueDecl* or a
/// Stmt*. Use cast<> or dyn_cast<> to get actual pointer type
//===----------------------------------------------------------------------===//
namespace {
class SymbolID {
unsigned Data;
public:
SymbolID() : Data(~0) {}
SymbolID(unsigned x) : Data(x) {}
bool isInitialized() const { return Data != (unsigned) ~0; }
operator unsigned() const { assert (isInitialized()); return Data; }
};
class VISIBILITY_HIDDEN ValueKey {
uintptr_t Raw;
void operator=(const ValueKey& RHS); // Do not implement.
public:
enum Kind { IsSubExpr=0x0, IsBlkExpr=0x1, IsDecl=0x2, // L-Value Bindings.
IsSymbol=0x3, // Symbol Bindings.
Flags=0x3 };
inline Kind getKind() const {
return (Kind) (Raw & Flags);
}
inline void* getPtr() const {
assert (getKind() != IsSymbol);
return reinterpret_cast<void*>(Raw & ~Flags);
}
inline SymbolID getSymbolID() const {
assert (getKind() == IsSymbol);
return Raw >> 2;
}
ValueKey(const ValueDecl* VD)
: Raw(reinterpret_cast<uintptr_t>(VD) | IsDecl) {
assert(VD && "ValueDecl cannot be NULL.");
}
ValueKey(Stmt* S, bool isBlkExpr = false)
: Raw(reinterpret_cast<uintptr_t>(S) | (isBlkExpr ? IsBlkExpr : IsSubExpr)){
assert(S && "Tracked statement cannot be NULL.");
}
ValueKey(SymbolID V)
: Raw((V << 2) | IsSymbol) {}
bool isSymbol() const { return getKind() == IsSymbol; }
bool isSubExpr() const { return getKind() == IsSubExpr; }
bool isBlkExpr() const { return getKind() == IsBlkExpr; }
bool isDecl() const { return getKind() == IsDecl; }
bool isStmt() const { return getKind() <= IsBlkExpr; }
inline void Profile(llvm::FoldingSetNodeID& ID) const {
ID.AddInteger(isSymbol() ? 1 : 0);
if (isSymbol())
ID.AddInteger(getSymbolID());
else
ID.AddPointer(getPtr());
}
inline bool operator==(const ValueKey& X) const {
return isSymbol() ? getSymbolID() == X.getSymbolID()
: getPtr() == X.getPtr();
}
inline bool operator!=(const ValueKey& X) const {
return !operator==(X);
}
inline bool operator<(const ValueKey& X) const {
if (isSymbol())
return X.isSymbol() ? getSymbolID() < X.getSymbolID() : false;
return getPtr() < X.getPtr();
}
};
} // end anonymous namespace
// Machinery to get cast<> and dyn_cast<> working with ValueKey.
namespace llvm {
template<> inline bool isa<ValueDecl,ValueKey>(const ValueKey& V) {
return V.getKind() == ValueKey::IsDecl;
}
template<> inline bool isa<Stmt,ValueKey>(const ValueKey& V) {
return ((unsigned) V.getKind()) < ValueKey::IsDecl;
}
template<> struct VISIBILITY_HIDDEN cast_retty_impl<ValueDecl,ValueKey> {
typedef const ValueDecl* ret_type;
};
template<> struct VISIBILITY_HIDDEN cast_retty_impl<Stmt,ValueKey> {
typedef const Stmt* ret_type;
};
template<> struct VISIBILITY_HIDDEN simplify_type<ValueKey> {
typedef void* SimpleType;
static inline SimpleType getSimplifiedValue(const ValueKey &V) {
return V.getPtr();
}
};
} // end llvm namespace
//===----------------------------------------------------------------------===//
// SymbolManager.
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN SymbolData {
uintptr_t Data;
public:
enum Kind { ParmKind = 0x0, Mask = 0x3 };
SymbolData(ParmVarDecl* D)
: Data(reinterpret_cast<uintptr_t>(D) | ParmKind) {}
inline Kind getKind() const { return (Kind) (Data & Mask); }
inline void* getPtr() const { return reinterpret_cast<void*>(Data & ~Mask); }
inline bool operator==(const SymbolData& R) const { return Data == R.Data; }
};
}
// Machinery to get cast<> and dyn_cast<> working with SymbolData.
namespace llvm {
template<> inline bool isa<ParmVarDecl,SymbolData>(const SymbolData& V) {
return V.getKind() == SymbolData::ParmKind;
}
template<> struct VISIBILITY_HIDDEN cast_retty_impl<ParmVarDecl,SymbolData> {
typedef const ParmVarDecl* ret_type;
};
template<> struct VISIBILITY_HIDDEN simplify_type<SymbolData> {
typedef void* SimpleType;
static inline SimpleType getSimplifiedValue(const SymbolData &V) {
return V.getPtr();
}
};
} // end llvm namespace
namespace {
class VISIBILITY_HIDDEN SymbolManager {
std::vector<SymbolData> SymbolToData;
typedef llvm::DenseMap<void*,SymbolID> MapTy;
MapTy DataToSymbol;
public:
SymbolData getSymbolData(SymbolID id) const {
assert (id < SymbolToData.size());
return SymbolToData[id];
}
SymbolID getSymbol(ParmVarDecl* D);
};
} // end anonymous namespace
SymbolID SymbolManager::getSymbol(ParmVarDecl* D) {
SymbolID& X = DataToSymbol[D];
if (!X.isInitialized()) {
X = SymbolToData.size();
SymbolToData.push_back(D);
}
return X;
}
//===----------------------------------------------------------------------===//
// ValueManager.
//===----------------------------------------------------------------------===//
namespace {
typedef llvm::ImmutableSet<APSInt > APSIntSetTy;
class VISIBILITY_HIDDEN ValueManager {
ASTContext& Ctx;
typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<APSInt> > APSIntSetTy;
APSIntSetTy APSIntSet;
llvm::BumpPtrAllocator BPAlloc;
public:
ValueManager(ASTContext& ctx) : Ctx(ctx) {}
~ValueManager();
ASTContext& getContext() const { return Ctx; }
APSInt& getValue(const APSInt& X);
APSInt& getValue(uint64_t X, unsigned BitWidth, bool isUnsigned);
APSInt& getValue(uint64_t X, QualType T,
SourceLocation Loc = SourceLocation());
};
} // end anonymous namespace
ValueManager::~ValueManager() {
// Note that the dstor for the contents of APSIntSet will never be called,
// so we iterate over the set and invoke the dstor for each APSInt. This
// frees an aux. memory allocated to represent very large constants.
for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I)
I->getValue().~APSInt();
}
APSInt& ValueManager::getValue(const APSInt& X) {
llvm::FoldingSetNodeID ID;
void* InsertPos;
typedef llvm::FoldingSetNodeWrapper<APSInt> FoldNodeTy;
X.Profile(ID);
FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos);
if (!P) {
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
new (P) FoldNodeTy(X);
APSIntSet.InsertNode(P, InsertPos);
}
return *P;
}
APSInt& ValueManager::getValue(uint64_t X, unsigned BitWidth, bool isUnsigned) {
APSInt V(BitWidth, isUnsigned);
V = X;
return getValue(V);
}
APSInt& ValueManager::getValue(uint64_t X, QualType T, SourceLocation Loc) {
unsigned bits = Ctx.getTypeSize(T, Loc);
APSInt V(bits, T->isUnsignedIntegerType());
V = X;
return getValue(V);
}
//===----------------------------------------------------------------------===//
// Expression Values.
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN RValue {
public:
enum BaseKind { LValueKind=0x0, NonLValueKind=0x1,
UninitializedKind=0x2, InvalidKind=0x3, BaseFlags = 0x3 };
private:
void* Data;
unsigned Kind;
protected:
RValue(const void* d, bool isLValue, unsigned ValKind)
: Data(const_cast<void*>(d)),
Kind((isLValue ? LValueKind : NonLValueKind) | (ValKind << 2)) {}
explicit RValue(BaseKind k)
: Data(0), Kind(k) {}
void* getRawPtr() const {
return reinterpret_cast<void*>(Data);
}
public:
~RValue() {};
RValue Cast(ValueManager& ValMgr, Expr* CastExpr) const;
unsigned getRawKind() const { return Kind; }
BaseKind getBaseKind() const { return (BaseKind) (Kind & 0x3); }
unsigned getSubKind() const { return (Kind & ~0x3) >> 2; }
void Profile(llvm::FoldingSetNodeID& ID) const {
ID.AddInteger((unsigned) getRawKind());
ID.AddPointer(reinterpret_cast<void*>(Data));
}
bool operator==(const RValue& RHS) const {
return getRawKind() == RHS.getRawKind() && Data == RHS.Data;
}
inline bool isValid() const { return getRawKind() != InvalidKind; }
inline bool isInvalid() const { return getRawKind() == InvalidKind; }
void print(std::ostream& OS) const;
void print() const { print(*llvm::cerr.stream()); }
// Implement isa<T> support.
static inline bool classof(const RValue*) { return true; }
};
class VISIBILITY_HIDDEN InvalidValue : public RValue {
public:
InvalidValue() : RValue(InvalidKind) {}
static inline bool classof(const RValue* V) {
return V->getBaseKind() == InvalidKind;
}
};
class VISIBILITY_HIDDEN UninitializedValue : public RValue {
public:
UninitializedValue() : RValue(UninitializedKind) {}
static inline bool classof(const RValue* V) {
return V->getBaseKind() == UninitializedKind;
}
};
class VISIBILITY_HIDDEN NonLValue : public RValue {
protected:
NonLValue(unsigned SubKind, const void* d) : RValue(d, false, SubKind) {}
public:
void print(std::ostream& Out) const;
// Arithmetic operators.
NonLValue Add(ValueManager& ValMgr, const NonLValue& RHS) const;
NonLValue Sub(ValueManager& ValMgr, const NonLValue& RHS) const;
NonLValue Mul(ValueManager& ValMgr, const NonLValue& RHS) const;
NonLValue Div(ValueManager& ValMgr, const NonLValue& RHS) const;
NonLValue Rem(ValueManager& ValMgr, const NonLValue& RHS) const;
NonLValue UnaryMinus(ValueManager& ValMgr, UnaryOperator* U) const;
// Equality operators.
NonLValue EQ(ValueManager& ValMgr, const NonLValue& RHS) const;
NonLValue NE(ValueManager& ValMgr, const NonLValue& RHS) const;
// Utility methods to create NonLValues.
static NonLValue GetValue(ValueManager& ValMgr, uint64_t X, QualType T,
SourceLocation Loc = SourceLocation());
static NonLValue GetValue(ValueManager& ValMgr, IntegerLiteral* I);
static NonLValue GetSymbolValue(SymbolManager& SymMgr, ParmVarDecl *D);
static inline NonLValue GetIntTruthValue(ValueManager& ValMgr, bool X) {
return GetValue(ValMgr, X ? 1U : 0U, ValMgr.getContext().IntTy);
}
// Implement isa<T> support.
static inline bool classof(const RValue* V) {
return V->getBaseKind() >= NonLValueKind;
}
};
class VISIBILITY_HIDDEN LValue : public RValue {
protected:
LValue(unsigned SubKind, void* D) : RValue(D, true, SubKind) {}
public:
// Equality operators.
NonLValue EQ(ValueManager& ValMgr, const LValue& RHS) const;
NonLValue NE(ValueManager& ValMgr, const LValue& RHS) const;
// Implement isa<T> support.
static inline bool classof(const RValue* V) {
return V->getBaseKind() == LValueKind;
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// LValues.
//===----------------------------------------------------------------------===//
namespace {
enum { LValueDeclKind, NumLValueKind };
class VISIBILITY_HIDDEN LValueDecl : public LValue {
public:
LValueDecl(const ValueDecl* vd)
: LValue(LValueDeclKind,const_cast<ValueDecl*>(vd)) {}
ValueDecl* getDecl() const {
return static_cast<ValueDecl*>(getRawPtr());
}
inline bool operator==(const LValueDecl& R) const {
return getDecl() == R.getDecl();
}
inline bool operator!=(const LValueDecl& R) const {
return getDecl() != R.getDecl();
}
// Implement isa<T> support.
static inline bool classof(const RValue* V) {
return V->getSubKind() == LValueDeclKind;
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Non-LValues.
//===----------------------------------------------------------------------===//
namespace {
enum { SymbolicNonLValueKind, ConcreteIntKind, ConstrainedIntegerKind,
NumNonLValueKind };
class VISIBILITY_HIDDEN SymbolicNonLValue : public NonLValue {
public:
SymbolicNonLValue(unsigned SymID)
: NonLValue(SymbolicNonLValueKind,
reinterpret_cast<void*>((uintptr_t) SymID)) {}
SymbolID getSymbolID() const {
return (SymbolID) reinterpret_cast<uintptr_t>(getRawPtr());
}
static inline bool classof(const RValue* V) {
return V->getSubKind() == SymbolicNonLValueKind;
}
};
class VISIBILITY_HIDDEN ConcreteInt : public NonLValue {
public:
ConcreteInt(const APSInt& V) : NonLValue(ConcreteIntKind, &V) {}
const APSInt& getValue() const {
return *static_cast<APSInt*>(getRawPtr());
}
// Arithmetic operators.
ConcreteInt Add(ValueManager& ValMgr, const ConcreteInt& V) const {
return ValMgr.getValue(getValue() + V.getValue());
}
ConcreteInt Sub(ValueManager& ValMgr, const ConcreteInt& V) const {
return ValMgr.getValue(getValue() - V.getValue());
}
ConcreteInt Mul(ValueManager& ValMgr, const ConcreteInt& V) const {
return ValMgr.getValue(getValue() * V.getValue());
}
ConcreteInt Div(ValueManager& ValMgr, const ConcreteInt& V) const {
return ValMgr.getValue(getValue() / V.getValue());
}
ConcreteInt Rem(ValueManager& ValMgr, const ConcreteInt& V) const {
return ValMgr.getValue(getValue() % V.getValue());
}
ConcreteInt UnaryMinus(ValueManager& ValMgr, UnaryOperator* U) const {
assert (U->getType() == U->getSubExpr()->getType());
assert (U->getType()->isIntegerType());
return ValMgr.getValue(-getValue());
}
// Casting.
ConcreteInt Cast(ValueManager& ValMgr, Expr* CastExpr) const {
assert (CastExpr->getType()->isIntegerType());
APSInt X(getValue());
X.extOrTrunc(ValMgr.getContext().getTypeSize(CastExpr->getType(),
CastExpr->getLocStart()));
return ValMgr.getValue(X);
}
// Equality operators.
ConcreteInt EQ(ValueManager& ValMgr, const ConcreteInt& V) const {
const APSInt& Val = getValue();
return ValMgr.getValue(Val == V.getValue() ? 1U : 0U,
Val.getBitWidth(), Val.isUnsigned());
}
ConcreteInt NE(ValueManager& ValMgr, const ConcreteInt& V) const {
const APSInt& Val = getValue();
return ValMgr.getValue(Val != V.getValue() ? 1U : 0U,
Val.getBitWidth(), Val.isUnsigned());
}
// Implement isa<T> support.
static inline bool classof(const RValue* V) {
return V->getSubKind() == ConcreteIntKind;
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Transfer function dispatch for Non-LValues.
//===----------------------------------------------------------------------===//
RValue RValue::Cast(ValueManager& ValMgr, Expr* CastExpr) const {
switch (getSubKind()) {
case ConcreteIntKind:
return cast<ConcreteInt>(this)->Cast(ValMgr, CastExpr);
default:
return InvalidValue();
}
}
NonLValue NonLValue::UnaryMinus(ValueManager& ValMgr, UnaryOperator* U) const {
switch (getSubKind()) {
case ConcreteIntKind:
return cast<ConcreteInt>(this)->UnaryMinus(ValMgr, U);
default:
return cast<NonLValue>(InvalidValue());
}
}
#define NONLVALUE_DISPATCH_CASE(k1,k2,Op)\
case (k1##Kind*NumNonLValueKind+k2##Kind):\
return cast<k1>(*this).Op(ValMgr,cast<k2>(RHS));
#define NONLVALUE_DISPATCH(Op)\
switch (getSubKind()*NumNonLValueKind+RHS.getSubKind()){\
NONLVALUE_DISPATCH_CASE(ConcreteInt,ConcreteInt,Op)\
default:\
if (getBaseKind() == UninitializedKind ||\
RHS.getBaseKind() == UninitializedKind)\
return cast<NonLValue>(UninitializedValue());\
assert (!isValid() || !RHS.isValid() && "Missing case.");\
break;\
}\
return cast<NonLValue>(InvalidValue());
NonLValue NonLValue::Add(ValueManager& ValMgr, const NonLValue& RHS) const {
NONLVALUE_DISPATCH(Add)
}
NonLValue NonLValue::Sub(ValueManager& ValMgr, const NonLValue& RHS) const {
NONLVALUE_DISPATCH(Sub)
}
NonLValue NonLValue::Mul(ValueManager& ValMgr, const NonLValue& RHS) const {
NONLVALUE_DISPATCH(Mul)
}
NonLValue NonLValue::Div(ValueManager& ValMgr, const NonLValue& RHS) const {
NONLVALUE_DISPATCH(Div)
}
NonLValue NonLValue::Rem(ValueManager& ValMgr, const NonLValue& RHS) const {
NONLVALUE_DISPATCH(Rem)
}
NonLValue NonLValue::EQ(ValueManager& ValMgr, const NonLValue& RHS) const {
NONLVALUE_DISPATCH(EQ)
}
NonLValue NonLValue::NE(ValueManager& ValMgr, const NonLValue& RHS) const {
NONLVALUE_DISPATCH(NE)
}
#undef NONLVALUE_DISPATCH_CASE
#undef NONLVALUE_DISPATCH
//===----------------------------------------------------------------------===//
// Transfer function dispatch for LValues.
//===----------------------------------------------------------------------===//
NonLValue LValue::EQ(ValueManager& ValMgr, const LValue& RHS) const {
if (getSubKind() != RHS.getSubKind())
return NonLValue::GetIntTruthValue(ValMgr, false);
switch (getSubKind()) {
default:
assert(false && "EQ not implemented for this LValue.");
return cast<NonLValue>(InvalidValue());
case LValueDeclKind: {
bool b = cast<LValueDecl>(*this) == cast<LValueDecl>(RHS);
return NonLValue::GetIntTruthValue(ValMgr, b);
}
}
}
NonLValue LValue::NE(ValueManager& ValMgr, const LValue& RHS) const {
if (getSubKind() != RHS.getSubKind())
return NonLValue::GetIntTruthValue(ValMgr, true);
switch (getSubKind()) {
default:
assert(false && "EQ not implemented for this LValue.");
return cast<NonLValue>(InvalidValue());
case LValueDeclKind: {
bool b = cast<LValueDecl>(*this) != cast<LValueDecl>(RHS);
return NonLValue::GetIntTruthValue(ValMgr, b);
}
}
}
//===----------------------------------------------------------------------===//
// Utility methods for constructing Non-LValues.
//===----------------------------------------------------------------------===//
NonLValue NonLValue::GetValue(ValueManager& ValMgr, uint64_t X, QualType T,
SourceLocation Loc) {
return ConcreteInt(ValMgr.getValue(X, T, Loc));
}
NonLValue NonLValue::GetValue(ValueManager& ValMgr, IntegerLiteral* I) {
return ConcreteInt(ValMgr.getValue(APSInt(I->getValue(),
I->getType()->isUnsignedIntegerType())));
}
NonLValue NonLValue::GetSymbolValue(SymbolManager& SymMgr, ParmVarDecl* D) {
return SymbolicNonLValue(SymMgr.getSymbol(D));
}
//===----------------------------------------------------------------------===//
// Pretty-Printing.
//===----------------------------------------------------------------------===//
void RValue::print(std::ostream& Out) const {
switch (getBaseKind()) {
case InvalidKind:
Out << "Invalid";
break;
case NonLValueKind:
cast<NonLValue>(this)->print(Out);
break;
case LValueKind:
assert (false && "FIXME: LValue printing not implemented.");
break;
case UninitializedKind:
Out << "Uninitialized";
break;
default:
assert (false && "Invalid RValue.");
}
}
void NonLValue::print(std::ostream& Out) const {
switch (getSubKind()) {
case ConcreteIntKind:
Out << cast<ConcreteInt>(this)->getValue().toString();
break;
case SymbolicNonLValueKind:
Out << "sym-" << cast<SymbolicNonLValue>(this)->getSymbolID();
break;
default:
assert (false && "Pretty-printed not implemented for this NonLValue.");
break;
}
}
//===----------------------------------------------------------------------===//
// ValueMapTy - A ImmutableMap type Stmt*/Decl*/Symbols to RValues.
//===----------------------------------------------------------------------===//
typedef llvm::ImmutableMap<ValueKey,RValue> ValueMapTy;
namespace clang {
template<>
struct VISIBILITY_HIDDEN GRTrait<ValueMapTy> {
static inline void* toPtr(ValueMapTy M) {
return reinterpret_cast<void*>(M.getRoot());
}
static inline ValueMapTy toState(void* P) {
return ValueMapTy(static_cast<ValueMapTy::TreeTy*>(P));
}
};
}
//===----------------------------------------------------------------------===//
// The Checker.
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN GRConstants {
public:
typedef ValueMapTy StateTy;
typedef GRStmtNodeBuilder<GRConstants> StmtNodeBuilder;
typedef GRBranchNodeBuilder<GRConstants> BranchNodeBuilder;
typedef ExplodedGraph<GRConstants> GraphTy;
typedef GraphTy::NodeTy NodeTy;
class NodeSet {
typedef llvm::SmallVector<NodeTy*,3> ImplTy;
ImplTy Impl;
public:
NodeSet() {}
NodeSet(NodeTy* N) { assert (N && !N->isInfeasible()); Impl.push_back(N); }
void Add(NodeTy* N) { if (N && !N->isInfeasible()) Impl.push_back(N); }
typedef ImplTy::iterator iterator;
typedef ImplTy::const_iterator const_iterator;
unsigned size() const { return Impl.size(); }
bool empty() const { return Impl.empty(); }
iterator begin() { return Impl.begin(); }
iterator end() { return Impl.end(); }
const_iterator begin() const { return Impl.begin(); }
const_iterator end() const { return Impl.end(); }
};
protected:
/// G - the simulation graph.
GraphTy& G;
/// Liveness - live-variables information the ValueDecl* and block-level
/// Expr* in the CFG. Used to prune out dead state.
LiveVariables Liveness;
/// Builder - The current GRStmtNodeBuilder which is used when building the nodes
/// for a given statement.
StmtNodeBuilder* Builder;
/// StateMgr - Object that manages the data for all created states.
ValueMapTy::Factory StateMgr;
/// ValueMgr - Object that manages the data for all created RValues.
ValueManager ValMgr;
/// SymMgr - Object that manages the symbol information.
SymbolManager SymMgr;
/// StmtEntryNode - The immediate predecessor node.
NodeTy* StmtEntryNode;
/// CurrentStmt - The current block-level statement.
Stmt* CurrentStmt;
bool StateCleaned;
ASTContext& getContext() const { return G.getContext(); }
public:
GRConstants(GraphTy& g) : G(g), Liveness(G.getCFG(), G.getFunctionDecl()),
Builder(NULL), ValMgr(G.getContext()), StmtEntryNode(NULL),
CurrentStmt(NULL) {
// Compute liveness information.
Liveness.runOnCFG(G.getCFG());
Liveness.runOnAllBlocks(G.getCFG(), NULL, true);
}
/// getCFG - Returns the CFG associated with this analysis.
CFG& getCFG() { return G.getCFG(); }
/// getInitialState - Return the initial state used for the root vertex
/// in the ExplodedGraph.
StateTy getInitialState() {
StateTy St = StateMgr.GetEmptyMap();
// Iterate the parameters.
FunctionDecl& F = G.getFunctionDecl();
for (FunctionDecl::param_iterator I=F.param_begin(), E=F.param_end();
I!=E; ++I) {
// For now we only support symbolic values for non-pointer types.
if ((*I)->getType()->isPointerType() ||
(*I)->getType()->isReferenceType())
continue;
// FIXME: Set these values to a symbol, not Uninitialized.
St = SetValue(St, LValueDecl(*I), NonLValue::GetSymbolValue(SymMgr, *I));
}
return St;
}
/// ProcessStmt - Called by GREngine. Used to generate new successor
/// nodes by processing the 'effects' of a block-level statement.
void ProcessStmt(Stmt* S, StmtNodeBuilder& builder);
/// ProcessBranch - Called by GREngine. Used to generate successor
/// nodes by processing the 'effects' of a branch condition.
void ProcessBranch(Stmt* Condition, Stmt* Term, BranchNodeBuilder& builder)
{}
/// RemoveDeadBindings - Return a new state that is the same as 'M' except
/// that all subexpression mappings are removed and that any
/// block-level expressions that are not live at 'S' also have their
/// mappings removed.
StateTy RemoveDeadBindings(Stmt* S, StateTy M);
StateTy SetValue(StateTy St, Stmt* S, const RValue& V);
StateTy SetValue(StateTy St, const Stmt* S, const RValue& V) {
return SetValue(St, const_cast<Stmt*>(S), V);
}
StateTy SetValue(StateTy St, const LValue& LV, const RValue& V);
RValue GetValue(const StateTy& St, Stmt* S);
inline RValue GetValue(const StateTy& St, const Stmt* S) {
return GetValue(St, const_cast<Stmt*>(S));
}
RValue GetValue(const StateTy& St, const LValue& LV);
LValue GetLValue(const StateTy& St, Stmt* S);
void Nodify(NodeSet& Dst, Stmt* S, NodeTy* Pred, StateTy St);
/// Visit - Transfer function logic for all statements. Dispatches to
/// other functions that handle specific kinds of statements.
void Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst);
/// VisitCast - Transfer function logic for all casts (implicit and explicit).
void VisitCast(Expr* CastE, Expr* E, NodeTy* Pred, NodeSet& Dst);
/// VisitUnaryOperator - Transfer function logic for unary operators.
void VisitUnaryOperator(UnaryOperator* B, NodeTy* Pred, NodeSet& Dst);
/// VisitBinaryOperator - Transfer function logic for binary operators.
void VisitBinaryOperator(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst);
/// VisitDeclStmt - Transfer function logic for DeclStmts.
void VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst);
};
} // end anonymous namespace
void GRConstants::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) {
Builder = &builder;
StmtEntryNode = builder.getLastNode();
CurrentStmt = S;
NodeSet Dst;
StateCleaned = false;
Visit(S, StmtEntryNode, Dst);
// If no nodes were generated, generate a new node that has all the
// dead mappings removed.
if (Dst.size() == 1 && *Dst.begin() == StmtEntryNode) {
StateTy St = RemoveDeadBindings(S, StmtEntryNode->getState());
builder.generateNode(S, St, StmtEntryNode);
}
CurrentStmt = NULL;
StmtEntryNode = NULL;
Builder = NULL;
}
RValue GRConstants::GetValue(const StateTy& St, const LValue& LV) {
switch (LV.getSubKind()) {
case LValueDeclKind: {
StateTy::TreeTy* T = St.SlimFind(cast<LValueDecl>(LV).getDecl());
return T ? T->getValue().second : InvalidValue();
}
default:
assert (false && "Invalid LValue.");
break;
}
return InvalidValue();
}
RValue GRConstants::GetValue(const StateTy& St, Stmt* S) {
for (;;) {
switch (S->getStmtClass()) {
// ParenExprs are no-ops.
case Stmt::ParenExprClass:
S = cast<ParenExpr>(S)->getSubExpr();
continue;
// DeclRefExprs can either evaluate to an LValue or a Non-LValue
// (assuming an implicit "load") depending on the context. In this
// context we assume that we are retrieving the value contained
// within the referenced variables.
case Stmt::DeclRefExprClass:
return GetValue(St, LValueDecl(cast<DeclRefExpr>(S)->getDecl()));
// Integer literals evaluate to an RValue. Simply retrieve the
// RValue for the literal.
case Stmt::IntegerLiteralClass:
return NonLValue::GetValue(ValMgr, cast<IntegerLiteral>(S));
// Casts where the source and target type are the same
// are no-ops. We blast through these to get the descendant
// subexpression that has a value.
case Stmt::ImplicitCastExprClass: {
ImplicitCastExpr* C = cast<ImplicitCastExpr>(S);
if (C->getType() == C->getSubExpr()->getType()) {
S = C->getSubExpr();
continue;
}
break;
}
case Stmt::CastExprClass: {
CastExpr* C = cast<CastExpr>(S);
if (C->getType() == C->getSubExpr()->getType()) {
S = C->getSubExpr();
continue;
}
break;
}
// Handle all other Stmt* using a lookup.
default:
break;
};
break;
}
StateTy::TreeTy* T = St.SlimFind(S);
return T ? T->getValue().second : InvalidValue();
}
LValue GRConstants::GetLValue(const StateTy& St, Stmt* S) {
while (ParenExpr* P = dyn_cast<ParenExpr>(S))
S = P->getSubExpr();
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(S))
return LValueDecl(DR->getDecl());
return cast<LValue>(GetValue(St, S));
}
GRConstants::StateTy GRConstants::SetValue(StateTy St, Stmt* S,
const RValue& V) {
assert (S);
if (!StateCleaned) {
St = RemoveDeadBindings(CurrentStmt, St);
StateCleaned = true;
}
bool isBlkExpr = false;
if (S == CurrentStmt) {
isBlkExpr = getCFG().isBlkExpr(S);
if (!isBlkExpr)
return St;
}
return V.isValid() ? StateMgr.Add(St, ValueKey(S,isBlkExpr), V)
: St;
}
GRConstants::StateTy GRConstants::SetValue(StateTy St, const LValue& LV,
const RValue& V) {
if (!LV.isValid())
return St;
if (!StateCleaned) {
St = RemoveDeadBindings(CurrentStmt, St);
StateCleaned = true;
}
switch (LV.getSubKind()) {
case LValueDeclKind:
return V.isValid() ? StateMgr.Add(St, cast<LValueDecl>(LV).getDecl(), V)
: StateMgr.Remove(St, cast<LValueDecl>(LV).getDecl());
default:
assert ("SetValue for given LValue type not yet implemented.");
return St;
}
}
GRConstants::StateTy GRConstants::RemoveDeadBindings(Stmt* Loc, StateTy M) {
// Note: in the code below, we can assign a new map to M since the
// iterators are iterating over the tree of the *original* map.
StateTy::iterator I = M.begin(), E = M.end();
for (; I!=E && !I.getKey().isSymbol(); ++I) {
// Remove old bindings for subexpressions and "dead"
// block-level expressions.
if (I.getKey().isSubExpr() ||
I.getKey().isBlkExpr() && !Liveness.isLive(Loc,cast<Stmt>(I.getKey()))){
M = StateMgr.Remove(M, I.getKey());
}
else if (I.getKey().isDecl()) { // Remove bindings for "dead" decls.
if (VarDecl* V = dyn_cast<VarDecl>(cast<ValueDecl>(I.getKey())))
if (!Liveness.isLive(Loc, V))
M = StateMgr.Remove(M, I.getKey());
}
}
return M;
}
void GRConstants::Nodify(NodeSet& Dst, Stmt* S, GRConstants::NodeTy* Pred,
GRConstants::StateTy St) {
// If the state hasn't changed, don't generate a new node.
if (St == Pred->getState())
return;
Dst.Add(Builder->generateNode(S, St, Pred));
}
void GRConstants::VisitCast(Expr* CastE, Expr* E, GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
QualType T = CastE->getType();
// Check for redundant casts.
if (E->getType() == T) {
Dst.Add(Pred);
return;
}
NodeSet S1;
Visit(E, Pred, S1);
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N = *I1;
StateTy St = N->getState();
const RValue& V = GetValue(St, E);
Nodify(Dst, CastE, N, SetValue(St, CastE, V.Cast(ValMgr, CastE)));
}
}
void GRConstants::VisitDeclStmt(DeclStmt* DS, GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
StateTy St = Pred->getState();
for (const ScopedDecl* D = DS->getDecl(); D; D = D->getNextDeclarator())
if (const VarDecl* VD = dyn_cast<VarDecl>(D)) {
const Expr* E = VD->getInit();
St = SetValue(St, LValueDecl(VD),
E ? GetValue(St, E) : UninitializedValue());
}
Nodify(Dst, DS, Pred, St);
if (Dst.empty())
Dst.Add(Pred);
}
void GRConstants::VisitUnaryOperator(UnaryOperator* U,
GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
NodeSet S1;
Visit(U->getSubExpr(), Pred, S1);
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N1 = *I1;
StateTy St = N1->getState();
switch (U->getOpcode()) {
case UnaryOperator::PostInc: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(),
U->getLocStart());
NonLValue Result = R1.Add(ValMgr, R2);
Nodify(Dst, U, N1, SetValue(SetValue(St, U, R1), L1, Result));
break;
}
case UnaryOperator::PostDec: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(),
U->getLocStart());
NonLValue Result = R1.Sub(ValMgr, R2);
Nodify(Dst, U, N1, SetValue(SetValue(St, U, R1), L1, Result));
break;
}
case UnaryOperator::PreInc: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(),
U->getLocStart());
NonLValue Result = R1.Add(ValMgr, R2);
Nodify(Dst, U, N1, SetValue(SetValue(St, U, Result), L1, Result));
break;
}
case UnaryOperator::PreDec: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(),
U->getLocStart());
NonLValue Result = R1.Sub(ValMgr, R2);
Nodify(Dst, U, N1, SetValue(SetValue(St, U, Result), L1, Result));
break;
}
case UnaryOperator::Minus: {
const NonLValue& R1 = cast<NonLValue>(GetValue(St, U->getSubExpr()));
Nodify(Dst, U, N1, SetValue(St, U, R1.UnaryMinus(ValMgr, U)));
break;
}
default: ;
assert (false && "Not implemented.");
}
}
}
void GRConstants::VisitBinaryOperator(BinaryOperator* B,
GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
NodeSet S1;
Visit(B->getLHS(), Pred, S1);
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N1 = *I1;
// When getting the value for the LHS, check if we are in an assignment.
// In such cases, we want to (initially) treat the LHS as an LValue,
// so we use GetLValue instead of GetValue so that DeclRefExpr's are
// evaluated to LValueDecl's instead of to an NonLValue.
const RValue& V1 =
B->isAssignmentOp() ? GetLValue(N1->getState(), B->getLHS())
: GetValue(N1->getState(), B->getLHS());
NodeSet S2;
Visit(B->getRHS(), N1, S2);
for (NodeSet::iterator I2=S2.begin(), E2=S2.end(); I2 != E2; ++I2) {
NodeTy* N2 = *I2;
StateTy St = N2->getState();
const RValue& V2 = GetValue(St, B->getRHS());
switch (B->getOpcode()) {
default:
Dst.Add(N2);
break;
// Arithmetic opreators.
case BinaryOperator::Add: {
const NonLValue& R1 = cast<NonLValue>(V1);
const NonLValue& R2 = cast<NonLValue>(V2);
Nodify(Dst, B, N2, SetValue(St, B, R1.Add(ValMgr, R2)));
break;
}
case BinaryOperator::Sub: {
const NonLValue& R1 = cast<NonLValue>(V1);
const NonLValue& R2 = cast<NonLValue>(V2);
Nodify(Dst, B, N2, SetValue(St, B, R1.Sub(ValMgr, R2)));
break;
}
case BinaryOperator::Mul: {
const NonLValue& R1 = cast<NonLValue>(V1);
const NonLValue& R2 = cast<NonLValue>(V2);
Nodify(Dst, B, N2, SetValue(St, B, R1.Mul(ValMgr, R2)));
break;
}
case BinaryOperator::Div: {
const NonLValue& R1 = cast<NonLValue>(V1);
const NonLValue& R2 = cast<NonLValue>(V2);
Nodify(Dst, B, N2, SetValue(St, B, R1.Div(ValMgr, R2)));
break;
}
case BinaryOperator::Rem: {
const NonLValue& R1 = cast<NonLValue>(V1);
const NonLValue& R2 = cast<NonLValue>(V2);
Nodify(Dst, B, N2, SetValue(St, B, R1.Rem(ValMgr, R2)));
break;
}
// Assignment operators.
case BinaryOperator::Assign: {
const LValue& L1 = cast<LValue>(V1);
const NonLValue& R2 = cast<NonLValue>(V2);
Nodify(Dst, B, N2, SetValue(SetValue(St, B, R2), L1, R2));
break;
}
case BinaryOperator::AddAssign: {
const LValue& L1 = cast<LValue>(V1);
NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
NonLValue Result = R1.Add(ValMgr, cast<NonLValue>(V2));
Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
break;
}
case BinaryOperator::SubAssign: {
const LValue& L1 = cast<LValue>(V1);
NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
NonLValue Result = R1.Sub(ValMgr, cast<NonLValue>(V2));
Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
break;
}
case BinaryOperator::MulAssign: {
const LValue& L1 = cast<LValue>(V1);
NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
NonLValue Result = R1.Mul(ValMgr, cast<NonLValue>(V2));
Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
break;
}
case BinaryOperator::DivAssign: {
const LValue& L1 = cast<LValue>(V1);
NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
NonLValue Result = R1.Div(ValMgr, cast<NonLValue>(V2));
Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
break;
}
case BinaryOperator::RemAssign: {
const LValue& L1 = cast<LValue>(V1);
NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
NonLValue Result = R1.Rem(ValMgr, cast<NonLValue>(V2));
Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
break;
}
// Equality operators.
case BinaryOperator::EQ:
// FIXME: should we allow XX.EQ() to return a set of values,
// allowing state bifurcation? In such cases, they will also
// modify the state (meaning that a new state will be returned
// as well).
assert (B->getType() == getContext().IntTy);
if (isa<LValue>(V1)) {
const LValue& L1 = cast<LValue>(V1);
const LValue& L2 = cast<LValue>(V2);
St = SetValue(St, B, L1.EQ(ValMgr, L2));
}
else {
const NonLValue& R1 = cast<NonLValue>(V1);
const NonLValue& R2 = cast<NonLValue>(V2);
St = SetValue(St, B, R1.EQ(ValMgr, R2));
}
Nodify(Dst, B, N2, St);
break;
}
}
}
}
void GRConstants::Visit(Stmt* S, GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
// FIXME: add metadata to the CFG so that we can disable
// this check when we KNOW that there is no block-level subexpression.
// The motivation is that this check requires a hashtable lookup.
if (S != CurrentStmt && getCFG().isBlkExpr(S)) {
Dst.Add(Pred);
return;
}
switch (S->getStmtClass()) {
case Stmt::BinaryOperatorClass:
case Stmt::CompoundAssignOperatorClass:
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
break;
case Stmt::UnaryOperatorClass:
VisitUnaryOperator(cast<UnaryOperator>(S), Pred, Dst);
break;
case Stmt::ParenExprClass:
Visit(cast<ParenExpr>(S)->getSubExpr(), Pred, Dst);
break;
case Stmt::ImplicitCastExprClass: {
ImplicitCastExpr* C = cast<ImplicitCastExpr>(S);
VisitCast(C, C->getSubExpr(), Pred, Dst);
break;
}
case Stmt::CastExprClass: {
CastExpr* C = cast<CastExpr>(S);
VisitCast(C, C->getSubExpr(), Pred, Dst);
break;
}
case Stmt::DeclStmtClass:
VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
break;
default:
Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
break;
}
}
//===----------------------------------------------------------------------===//
// Driver.
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
namespace llvm {
template<>
struct VISIBILITY_HIDDEN DOTGraphTraits<GRConstants::NodeTy*> :
public DefaultDOTGraphTraits {
static void PrintKindLabel(std::ostream& Out, ValueKey::Kind kind) {
switch (kind) {
case ValueKey::IsSubExpr: Out << "Sub-Expressions:\\l"; break;
case ValueKey::IsDecl: Out << "Variables:\\l"; break;
case ValueKey::IsBlkExpr: Out << "Block-level Expressions:\\l"; break;
default: assert (false && "Unknown ValueKey type.");
}
}
static void PrintKind(std::ostream& Out, GRConstants::StateTy M,
ValueKey::Kind kind, bool isFirstGroup = false) {
bool isFirst = true;
for (GRConstants::StateTy::iterator I=M.begin(), E=M.end();I!=E;++I) {
if (I.getKey().getKind() != kind)
continue;
if (isFirst) {
if (!isFirstGroup) Out << "\\l\\l";
PrintKindLabel(Out, kind);
isFirst = false;
}
else
Out << "\\l";
Out << ' ';
if (ValueDecl* V = dyn_cast<ValueDecl>(I.getKey()))
Out << V->getName();
else {
Stmt* E = cast<Stmt>(I.getKey());
Out << " (" << (void*) E << ") ";
E->printPretty(Out);
}
Out << " : ";
I.getData().print(Out);
}
}
static std::string getNodeLabel(const GRConstants::NodeTy* N, void*) {
std::ostringstream Out;
// Program Location.
ProgramPoint Loc = N->getLocation();
switch (Loc.getKind()) {
case ProgramPoint::BlockEntranceKind:
Out << "Block Entrance: B"
<< cast<BlockEntrance>(Loc).getBlock()->getBlockID();
break;
case ProgramPoint::BlockExitKind:
assert (false);
break;
case ProgramPoint::PostStmtKind: {
const PostStmt& L = cast<PostStmt>(Loc);
Out << L.getStmt()->getStmtClassName() << ':'
<< (void*) L.getStmt() << ' ';
L.getStmt()->printPretty(Out);
break;
}
default: {
const BlockEdge& E = cast<BlockEdge>(Loc);
Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
<< E.getDst()->getBlockID() << ')';
}
}
Out << "\\|";
PrintKind(Out, N->getState(), ValueKey::IsDecl, true);
PrintKind(Out, N->getState(), ValueKey::IsBlkExpr);
PrintKind(Out, N->getState(), ValueKey::IsSubExpr);
Out << "\\l";
return Out.str();
}
};
} // end llvm namespace
#endif
namespace clang {
void RunGRConstants(CFG& cfg, FunctionDecl& FD, ASTContext& Ctx) {
GREngine<GRConstants> Engine(cfg, FD, Ctx);
Engine.ExecuteWorkList();
#ifndef NDEBUG
llvm::ViewGraph(*Engine.getGraph().roots_begin(),"GRConstants");
#endif
}
} // end clang namespace