blob: fa4cb3db04398c6da3d53feeacb7ca82305a2436 [file] [log] [blame]
//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These classes implement wrappers around llvm::Value in order to
// fully represent the range of values for C L- and R- values.
//
//===----------------------------------------------------------------------===//
#ifndef CLANG_CODEGEN_CGVALUE_H
#define CLANG_CODEGEN_CGVALUE_H
#include "clang/AST/ASTContext.h"
#include "clang/AST/Type.h"
namespace llvm {
class Constant;
class Value;
}
namespace clang {
class ObjCPropertyRefExpr;
class ObjCImplicitSetterGetterRefExpr;
namespace CodeGen {
class CGBitFieldInfo;
/// RValue - This trivial value class is used to represent the result of an
/// expression that is evaluated. It can be one of three things: either a
/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
/// address of an aggregate value in memory.
class RValue {
enum Flavor { Scalar, Complex, Aggregate };
// Stores first value and flavor.
llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
// Stores second value and volatility.
llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
public:
bool isScalar() const { return V1.getInt() == Scalar; }
bool isComplex() const { return V1.getInt() == Complex; }
bool isAggregate() const { return V1.getInt() == Aggregate; }
bool isVolatileQualified() const { return V2.getInt(); }
/// getScalarVal() - Return the Value* of this scalar value.
llvm::Value *getScalarVal() const {
assert(isScalar() && "Not a scalar!");
return V1.getPointer();
}
/// getComplexVal - Return the real/imag components of this complex value.
///
std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
return std::make_pair(V1.getPointer(), V2.getPointer());
}
/// getAggregateAddr() - Return the Value* of the address of the aggregate.
llvm::Value *getAggregateAddr() const {
assert(isAggregate() && "Not an aggregate!");
return V1.getPointer();
}
static RValue get(llvm::Value *V) {
RValue ER;
ER.V1.setPointer(V);
ER.V1.setInt(Scalar);
ER.V2.setInt(false);
return ER;
}
static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
RValue ER;
ER.V1.setPointer(V1);
ER.V2.setPointer(V2);
ER.V1.setInt(Complex);
ER.V2.setInt(false);
return ER;
}
static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
return getComplex(C.first, C.second);
}
// FIXME: Aggregate rvalues need to retain information about whether they are
// volatile or not. Remove default to find all places that probably get this
// wrong.
static RValue getAggregate(llvm::Value *V, bool Volatile = false) {
RValue ER;
ER.V1.setPointer(V);
ER.V1.setInt(Aggregate);
ER.V2.setInt(Volatile);
return ER;
}
};
/// LValue - This represents an lvalue references. Because C/C++ allow
/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
/// bitrange.
class LValue {
// FIXME: alignment?
enum {
Simple, // This is a normal l-value, use getAddress().
VectorElt, // This is a vector element l-value (V[i]), use getVector*
BitField, // This is a bitfield l-value, use getBitfield*.
ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
PropertyRef, // This is an Objective-C property reference, use
// getPropertyRefExpr
KVCRef // This is an objective-c 'implicit' property ref,
// use getKVCRefExpr
} LVType;
llvm::Value *V;
union {
// Index into a vector subscript: V[i]
llvm::Value *VectorIdx;
// ExtVector element subset: V.xyx
llvm::Constant *VectorElts;
// BitField start bit and size
const CGBitFieldInfo *BitFieldInfo;
// Obj-C property reference expression
const ObjCPropertyRefExpr *PropertyRefExpr;
// ObjC 'implicit' property reference expression
const ObjCImplicitSetterGetterRefExpr *KVCRefExpr;
};
// 'const' is unused here
Qualifiers Quals;
/// The alignment to use when accessing this lvalue.
unsigned short Alignment;
// objective-c's ivar
bool Ivar:1;
// objective-c's ivar is an array
bool ObjIsArray:1;
// LValue is non-gc'able for any reason, including being a parameter or local
// variable.
bool NonGC: 1;
// Lvalue is a global reference of an objective-c object
bool GlobalObjCRef : 1;
// Lvalue is a thread local reference
bool ThreadLocalRef : 1;
Expr *BaseIvarExp;
private:
void Initialize(Qualifiers Quals, unsigned Alignment = 0) {
this->Quals = Quals;
this->Alignment = Alignment;
assert(this->Alignment == Alignment && "Alignment exceeds allowed max!");
// Initialize Objective-C flags.
this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
this->ThreadLocalRef = false;
this->BaseIvarExp = 0;
}
public:
bool isSimple() const { return LVType == Simple; }
bool isVectorElt() const { return LVType == VectorElt; }
bool isBitField() const { return LVType == BitField; }
bool isExtVectorElt() const { return LVType == ExtVectorElt; }
bool isPropertyRef() const { return LVType == PropertyRef; }
bool isKVCRef() const { return LVType == KVCRef; }
bool isVolatileQualified() const { return Quals.hasVolatile(); }
bool isRestrictQualified() const { return Quals.hasRestrict(); }
unsigned getVRQualifiers() const {
return Quals.getCVRQualifiers() & ~Qualifiers::Const;
}
bool isObjCIvar() const { return Ivar; }
void setObjCIvar(bool Value) { Ivar = Value; }
bool isObjCArray() const { return ObjIsArray; }
void setObjCArray(bool Value) { ObjIsArray = Value; }
bool isNonGC () const { return NonGC; }
void setNonGC(bool Value) { NonGC = Value; }
bool isGlobalObjCRef() const { return GlobalObjCRef; }
void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
bool isThreadLocalRef() const { return ThreadLocalRef; }
void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
bool isObjCWeak() const {
return Quals.getObjCGCAttr() == Qualifiers::Weak;
}
bool isObjCStrong() const {
return Quals.getObjCGCAttr() == Qualifiers::Strong;
}
Expr *getBaseIvarExp() const { return BaseIvarExp; }
void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
const Qualifiers &getQuals() const { return Quals; }
Qualifiers &getQuals() { return Quals; }
unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
unsigned getAlignment() const { return Alignment; }
// simple lvalue
llvm::Value *getAddress() const { assert(isSimple()); return V; }
// vector elt lvalue
llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; }
llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
// extended vector elements.
llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; }
llvm::Constant *getExtVectorElts() const {
assert(isExtVectorElt());
return VectorElts;
}
// bitfield lvalue
llvm::Value *getBitFieldBaseAddr() const {
assert(isBitField());
return V;
}
const CGBitFieldInfo &getBitFieldInfo() const {
assert(isBitField());
return *BitFieldInfo;
}
// property ref lvalue
const ObjCPropertyRefExpr *getPropertyRefExpr() const {
assert(isPropertyRef());
return PropertyRefExpr;
}
// 'implicit' property ref lvalue
const ObjCImplicitSetterGetterRefExpr *getKVCRefExpr() const {
assert(isKVCRef());
return KVCRefExpr;
}
static LValue MakeAddr(llvm::Value *V, QualType T, unsigned Alignment,
ASTContext &Context) {
Qualifiers Quals = Context.getCanonicalType(T).getQualifiers();
Quals.setObjCGCAttr(Context.getObjCGCAttrKind(T));
LValue R;
R.LVType = Simple;
R.V = V;
R.Initialize(Quals, Alignment);
return R;
}
static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx,
unsigned CVR) {
LValue R;
R.LVType = VectorElt;
R.V = Vec;
R.VectorIdx = Idx;
R.Initialize(Qualifiers::fromCVRMask(CVR));
return R;
}
static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts,
unsigned CVR) {
LValue R;
R.LVType = ExtVectorElt;
R.V = Vec;
R.VectorElts = Elts;
R.Initialize(Qualifiers::fromCVRMask(CVR));
return R;
}
/// \brief Create a new object to represent a bit-field access.
///
/// \param BaseValue - The base address of the structure containing the
/// bit-field.
/// \param Info - The information describing how to perform the bit-field
/// access.
static LValue MakeBitfield(llvm::Value *BaseValue, const CGBitFieldInfo &Info,
unsigned CVR) {
LValue R;
R.LVType = BitField;
R.V = BaseValue;
R.BitFieldInfo = &Info;
R.Initialize(Qualifiers::fromCVRMask(CVR));
return R;
}
// FIXME: It is probably bad that we aren't emitting the target when we build
// the lvalue. However, this complicates the code a bit, and I haven't figured
// out how to make it go wrong yet.
static LValue MakePropertyRef(const ObjCPropertyRefExpr *E,
unsigned CVR) {
LValue R;
R.LVType = PropertyRef;
R.PropertyRefExpr = E;
R.Initialize(Qualifiers::fromCVRMask(CVR));
return R;
}
static LValue MakeKVCRef(const ObjCImplicitSetterGetterRefExpr *E,
unsigned CVR) {
LValue R;
R.LVType = KVCRef;
R.KVCRefExpr = E;
R.Initialize(Qualifiers::fromCVRMask(CVR));
return R;
}
};
/// An aggregate value slot.
class AggValueSlot {
/// The address.
uintptr_t AddrAndFlags;
// Associated flags.
bool VolatileFlag : 1;
bool LifetimeFlag : 1;
bool RequiresGCollection : 1;
public:
/// ignored - Returns an aggregate value slot indicating that the
/// aggregate value is being ignored.
static AggValueSlot ignored() {
AggValueSlot AV;
AV.AddrAndFlags = 0;
AV.VolatileFlag = AV.LifetimeFlag = AV.RequiresGCollection = 0;
return AV;
}
/// forAddr - Make a slot for an aggregate value.
///
/// \param Volatile - true if the slot should be volatile-initialized
/// \param LifetimeExternallyManaged - true if the slot's lifetime
/// is being externally managed; false if a destructor should be
/// registered for any temporaries evaluated into the slot
static AggValueSlot forAddr(llvm::Value *Addr, bool Volatile,
bool LifetimeExternallyManaged,
bool RequiresGCollection=false) {
AggValueSlot AV;
AV.AddrAndFlags = reinterpret_cast<uintptr_t>(Addr);
if (Volatile) AV.VolatileFlag = 1;
if (LifetimeExternallyManaged) AV.LifetimeFlag = 1;
if (RequiresGCollection) AV.RequiresGCollection = 1;
return AV;
}
static AggValueSlot forLValue(LValue LV, bool LifetimeExternallyManaged,
bool RequiresGCollection=false) {
return forAddr(LV.getAddress(), LV.isVolatileQualified(),
LifetimeExternallyManaged, RequiresGCollection);
}
bool isLifetimeExternallyManaged() const {
return LifetimeFlag;
}
void setLifetimeExternallyManaged() {
LifetimeFlag = 1;
}
bool isVolatile() const {
return VolatileFlag;
}
bool isRequiresGCollection() const {
return RequiresGCollection;
}
void setRequiresGCollection() {
RequiresGCollection = 1;
}
llvm::Value *getAddr() const {
return reinterpret_cast<llvm::Value*>(AddrAndFlags);
}
bool isIgnored() const {
return AddrAndFlags == 0;
}
RValue asRValue() const {
return RValue::getAggregate(getAddr(), isVolatile());
}
};
} // end namespace CodeGen
} // end namespace clang
#endif