blob: 5ca2da505792766f184e3e3ef045cf276783cace [file] [log] [blame]
//== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defined the types Store and StoreManager.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/Store.h"
#include "clang/Analysis/PathSensitive/GRState.h"
using namespace clang;
StoreManager::StoreManager(GRStateManager &stateMgr, bool useNewCastRegion)
: ValMgr(stateMgr.getValueManager()),
StateMgr(stateMgr),
UseNewCastRegion(useNewCastRegion),
MRMgr(ValMgr.getRegionManager()) {}
StoreManager::CastResult
StoreManager::NewCastRegion(const GRState *state, const MemRegion* R,
QualType CastToTy) {
ASTContext& Ctx = StateMgr.getContext();
// We need to know the real type of CastToTy.
QualType ToTy = Ctx.getCanonicalType(CastToTy);
// Check cast to ObjCQualifiedID type.
if (ToTy->isObjCQualifiedIdType()) {
// FIXME: Record the type information aside.
return CastResult(state, R);
}
// CodeTextRegion should be cast to only function pointer type.
if (isa<CodeTextRegion>(R)) {
assert(CastToTy->isFunctionPointerType() || CastToTy->isBlockPointerType()
|| (CastToTy->isPointerType()
&& CastToTy->getAsPointerType()->getPointeeType()->isVoidType()));
return CastResult(state, R);
}
// Now assume we are casting from pointer to pointer. Other cases should
// already be handled.
QualType PointeeTy = cast<PointerType>(ToTy.getTypePtr())->getPointeeType();
// Process region cast according to the kind of the region being cast.
// FIXME: Need to handle arbitrary downcasts.
if (isa<SymbolicRegion>(R) || isa<AllocaRegion>(R)) {
state = setCastType(state, R, ToTy);
return CastResult(state, R);
}
// VarRegion, ElementRegion, and FieldRegion has an inherent type. Normally
// they should not be cast. We only layer an ElementRegion when the cast-to
// pointee type is of smaller size. In other cases, we return the original
// VarRegion.
if (isa<VarRegion>(R) || isa<ElementRegion>(R) || isa<FieldRegion>(R)
|| isa<ObjCIvarRegion>(R) || isa<CompoundLiteralRegion>(R)) {
// If the pointee type is incomplete, do not compute its size, and return
// the original region.
if (const RecordType *RT = dyn_cast<RecordType>(PointeeTy.getTypePtr())) {
const RecordDecl *D = RT->getDecl();
if (!D->getDefinition(Ctx))
return CastResult(state, R);
}
QualType ObjTy = cast<TypedRegion>(R)->getValueType(Ctx);
uint64_t PointeeTySize = Ctx.getTypeSize(PointeeTy);
uint64_t ObjTySize = Ctx.getTypeSize(ObjTy);
if ((PointeeTySize > 0 && PointeeTySize < ObjTySize) ||
(ObjTy->isAggregateType() && PointeeTy->isScalarType()) ||
ObjTySize == 0 /* R has 'void*' type. */) {
// Record the cast type of the region.
state = setCastType(state, R, ToTy);
SVal Idx = ValMgr.makeZeroArrayIndex();
ElementRegion* ER = MRMgr.getElementRegion(PointeeTy, Idx,R, Ctx);
return CastResult(state, ER);
} else {
state = setCastType(state, R, ToTy);
return CastResult(state, R);
}
}
if (isa<ObjCObjectRegion>(R)) {
return CastResult(state, R);
}
assert(0 && "Unprocessed region.");
return 0;
}
StoreManager::CastResult
StoreManager::OldCastRegion(const GRState* state, const MemRegion* R,
QualType CastToTy) {
ASTContext& Ctx = StateMgr.getContext();
// We need to know the real type of CastToTy.
QualType ToTy = Ctx.getCanonicalType(CastToTy);
// Return the same region if the region types are compatible.
if (const TypedRegion* TR = dyn_cast<TypedRegion>(R)) {
QualType Ta = Ctx.getCanonicalType(TR->getLocationType(Ctx));
if (Ta == ToTy)
return CastResult(state, R);
}
if (const PointerType* PTy = dyn_cast<PointerType>(ToTy.getTypePtr())) {
// Check if we are casting to 'void*'.
// FIXME: Handle arbitrary upcasts.
QualType Pointee = PTy->getPointeeType();
if (Pointee->isVoidType()) {
do {
if (const TypedViewRegion *TR = dyn_cast<TypedViewRegion>(R)) {
// Casts to void* removes TypedViewRegion. This happens when:
//
// void foo(void*);
// ...
// void bar() {
// int x;
// foo(&x);
// }
//
R = TR->removeViews();
continue;
}
else if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
// Casts to void* also removes ElementRegions. This happens when:
//
// void foo(void*);
// ...
// void bar() {
// int x;
// foo((char*)&x);
// }
//
R = ER->getSuperRegion();
continue;
}
else
break;
}
while (0);
return CastResult(state, R);
}
else if (Pointee->isIntegerType()) {
// FIXME: At some point, it stands to reason that this 'dyn_cast' should
// become a 'cast' and that 'R' will always be a TypedRegion.
if (const TypedRegion *TR = dyn_cast<TypedRegion>(R)) {
// Check if we are casting to a region with an integer type. We now
// the types aren't the same, so we construct an ElementRegion.
SVal Idx = ValMgr.makeZeroArrayIndex();
// If the super region is an element region, strip it away.
// FIXME: Is this the right thing to do in all cases?
const MemRegion *Base = isa<ElementRegion>(TR) ? TR->getSuperRegion()
: TR;
ElementRegion* ER = MRMgr.getElementRegion(Pointee, Idx, Base,
StateMgr.getContext());
return CastResult(state, ER);
}
}
}
// FIXME: Need to handle arbitrary downcasts.
// FIXME: Handle the case where a TypedViewRegion (layering a SymbolicRegion
// or an AllocaRegion is cast to another view, thus causing the memory
// to be re-used for a different purpose.
if (isa<SymbolicRegion>(R) || isa<AllocaRegion>(R)) {
const MemRegion* ViewR = MRMgr.getTypedViewRegion(CastToTy, R);
return CastResult(AddRegionView(state, ViewR, R), ViewR);
}
return CastResult(state, R);
}
const GRState *StoreManager::InvalidateRegion(const GRState *state,
const MemRegion *R,
const Expr *E, unsigned Count) {
ASTContext& Ctx = StateMgr.getContext();
if (!R->isBoundable())
return state;
if (isa<AllocaRegion>(R) || isa<SymbolicRegion>(R)) {
// Invalidate the alloca region by setting its default value to
// conjured symbol. The type of the symbol is irrelavant.
SVal V = ValMgr.getConjuredSymbolVal(E, Ctx.IntTy, Count);
state = setDefaultValue(state, R, V);
return state;
}
const TypedRegion *TR = cast<TypedRegion>(R);
QualType T = TR->getValueType(Ctx);
if (Loc::IsLocType(T) || (T->isIntegerType() && T->isScalarType())) {
SVal V = ValMgr.getConjuredSymbolVal(E, T, Count);
return Bind(state, ValMgr.makeLoc(TR), V);
}
else if (const RecordType *RT = T->getAsStructureType()) {
// FIXME: handle structs with default region value.
const RecordDecl *RD = RT->getDecl()->getDefinition(Ctx);
// No record definition. There is nothing we can do.
if (!RD)
return state;
// Iterate through the fields and construct new symbols.
for (RecordDecl::field_iterator FI=RD->field_begin(),
FE=RD->field_end(); FI!=FE; ++FI) {
// For now just handle scalar fields.
FieldDecl *FD = *FI;
QualType FT = FD->getType();
const FieldRegion* FR = MRMgr.getFieldRegion(FD, TR);
if (Loc::IsLocType(FT) ||
(FT->isIntegerType() && FT->isScalarType())) {
SVal V = ValMgr.getConjuredSymbolVal(E, FT, Count);
state = state->bindLoc(ValMgr.makeLoc(FR), V);
}
else if (FT->isStructureType()) {
// set the default value of the struct field to conjured
// symbol. Note that the type of the symbol is irrelavant.
// We cannot use the type of the struct otherwise ValMgr won't
// give us the conjured symbol.
SVal V = ValMgr.getConjuredSymbolVal(E, Ctx.IntTy, Count);
state = setDefaultValue(state, FR, V);
}
}
} else if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
// Set the default value of the array to conjured symbol.
SVal V = ValMgr.getConjuredSymbolVal(E, AT->getElementType(),
Count);
state = setDefaultValue(state, TR, V);
} else {
// Just blast away other values.
state = Bind(state, ValMgr.makeLoc(TR), UnknownVal());
}
return state;
}