blob: a2b6c95d2f50b2db6dc387f94016532ffc61e520 [file] [log] [blame]
// GRSimpleVals.cpp - Transfer functions for tracking simple values -*- C++ -*--
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This files defines GRSimpleVals, a sub-class of GRTransferFuncs that
// provides transfer functions for performing simple value tracking with
// limited support for symbolics.
//
//===----------------------------------------------------------------------===//
#include "GRSimpleVals.h"
#include "clang/Analysis/PathSensitive/ValueState.h"
#include "clang/Basic/Diagnostic.h"
#include <sstream>
using namespace clang;
namespace clang {
template <typename ITERATOR>
static void EmitWarning(Diagnostic& Diag, SourceManager& SrcMgr,
ITERATOR I, ITERATOR E, const char* msg) {
std::ostringstream Out;
Out << "[CHECKER] " << msg;
msg = Out.str().c_str();
bool isFirst = true;
unsigned ErrorDiag;
llvm::SmallPtrSet<void*,10> CachedErrors;
for (; I != E; ++I) {
if (isFirst) {
isFirst = false;
ErrorDiag = Diag.getCustomDiagID(Diagnostic::Warning, msg);
}
else {
// HACK: Cache the location of the error. Don't emit the same
// warning for the same error type that occurs at the same program
// location but along a different path.
void* p = (*I)->getLocation().getRawData();
if (CachedErrors.count(p))
continue;
CachedErrors.insert(p);
}
const PostStmt& L = cast<PostStmt>((*I)->getLocation());
Expr* Exp = cast<Expr>(L.getStmt());
Diag.Report(FullSourceLoc(Exp->getExprLoc(), SrcMgr), ErrorDiag);
}
}
unsigned RunGRSimpleVals(CFG& cfg, FunctionDecl& FD, ASTContext& Ctx,
Diagnostic& Diag, bool Visualize) {
if (Diag.hasErrorOccurred())
return 0;
GRCoreEngine<GRExprEngine> Engine(cfg, FD, Ctx);
GRExprEngine* CheckerState = &Engine.getCheckerState();
GRSimpleVals GRSV;
CheckerState->setTransferFunctions(GRSV);
// Execute the worklist algorithm.
Engine.ExecuteWorkList(20000);
SourceManager& SrcMgr = Ctx.getSourceManager();
EmitWarning(Diag, SrcMgr,
CheckerState->null_derefs_begin(),
CheckerState->null_derefs_end(),
"NULL pointer is dereferenced after it is checked for NULL.");
EmitWarning(Diag, SrcMgr,
CheckerState->undef_derefs_begin(),
CheckerState->undef_derefs_end(),
"Dereference of undefined value.");
EmitWarning(Diag, SrcMgr,
CheckerState->undef_derefs_begin(),
CheckerState->undef_derefs_end(),
"Dereference of undefined value.");
EmitWarning(Diag, SrcMgr,
CheckerState->bad_divides_begin(),
CheckerState->bad_divides_end(),
"Division by zero/undefined value.");
EmitWarning(Diag, SrcMgr,
CheckerState->undef_results_begin(),
CheckerState->undef_results_end(),
"Result of operation is undefined.");
EmitWarning(Diag, SrcMgr,
CheckerState->bad_calls_begin(),
CheckerState->bad_calls_end(),
"Call using a NULL or undefined function pointer value.");
EmitWarning(Diag, SrcMgr,
CheckerState->undef_arg_begin(),
CheckerState->undef_arg_end(),
"Pass-by-value argument in function or message expression is undefined.");
#ifndef NDEBUG
if (Visualize) CheckerState->ViewGraph();
#endif
return Engine.getGraph().size();
}
} // end clang namespace
//===----------------------------------------------------------------------===//
// Transfer function for Casts.
//===----------------------------------------------------------------------===//
RVal GRSimpleVals::EvalCast(ValueManager& ValMgr, NonLVal X, QualType T) {
if (!isa<nonlval::ConcreteInt>(X))
return UnknownVal();
llvm::APSInt V = cast<nonlval::ConcreteInt>(X).getValue();
V.setIsUnsigned(T->isUnsignedIntegerType() || T->isPointerType());
V.extOrTrunc(ValMgr.getContext().getTypeSize(T, SourceLocation()));
if (T->isPointerType())
return lval::ConcreteInt(ValMgr.getValue(V));
else
return nonlval::ConcreteInt(ValMgr.getValue(V));
}
// Casts.
RVal GRSimpleVals::EvalCast(ValueManager& ValMgr, LVal X, QualType T) {
if (T->isPointerType())
return X;
assert (T->isIntegerType());
if (!isa<lval::ConcreteInt>(X))
return UnknownVal();
llvm::APSInt V = cast<lval::ConcreteInt>(X).getValue();
V.setIsUnsigned(T->isUnsignedIntegerType() || T->isPointerType());
V.extOrTrunc(ValMgr.getContext().getTypeSize(T, SourceLocation()));
return nonlval::ConcreteInt(ValMgr.getValue(V));
}
// Unary operators.
RVal GRSimpleVals::EvalMinus(ValueManager& ValMgr, UnaryOperator* U, NonLVal X){
switch (X.getSubKind()) {
case nonlval::ConcreteIntKind:
return cast<nonlval::ConcreteInt>(X).EvalMinus(ValMgr, U);
default:
return UnknownVal();
}
}
RVal GRSimpleVals::EvalComplement(ValueManager& ValMgr, NonLVal X) {
switch (X.getSubKind()) {
case nonlval::ConcreteIntKind:
return cast<nonlval::ConcreteInt>(X).EvalComplement(ValMgr);
default:
return UnknownVal();
}
}
// Binary operators.
RVal GRSimpleVals::EvalBinOp(ValueManager& ValMgr, BinaryOperator::Opcode Op,
NonLVal L, NonLVal R) {
while (1) {
switch (L.getSubKind()) {
default:
return UnknownVal();
case nonlval::ConcreteIntKind:
if (isa<nonlval::ConcreteInt>(R)) {
const nonlval::ConcreteInt& L_CI = cast<nonlval::ConcreteInt>(L);
const nonlval::ConcreteInt& R_CI = cast<nonlval::ConcreteInt>(R);
return L_CI.EvalBinOp(ValMgr, Op, R_CI);
}
else {
NonLVal tmp = R;
R = L;
L = tmp;
continue;
}
case nonlval::SymbolValKind: {
if (isa<nonlval::ConcreteInt>(R)) {
const SymIntConstraint& C =
ValMgr.getConstraint(cast<nonlval::SymbolVal>(L).getSymbol(), Op,
cast<nonlval::ConcreteInt>(R).getValue());
return nonlval::SymIntConstraintVal(C);
}
else
return UnknownVal();
}
}
}
}
// Binary Operators (except assignments and comma).
RVal GRSimpleVals::EvalBinOp(ValueManager& ValMgr, BinaryOperator::Opcode Op,
LVal L, LVal R) {
switch (Op) {
default:
return UnknownVal();
case BinaryOperator::EQ:
return EvalEQ(ValMgr, L, R);
case BinaryOperator::NE:
return EvalNE(ValMgr, L, R);
}
}
// Pointer arithmetic.
RVal GRSimpleVals::EvalBinOp(ValueManager& ValMgr, BinaryOperator::Opcode Op,
LVal L, NonLVal R) {
return UnknownVal();
}
// Equality operators for LVals.
RVal GRSimpleVals::EvalEQ(ValueManager& ValMgr, LVal L, LVal R) {
switch (L.getSubKind()) {
default:
assert(false && "EQ not implemented for this LVal.");
return UnknownVal();
case lval::ConcreteIntKind:
if (isa<lval::ConcreteInt>(R)) {
bool b = cast<lval::ConcreteInt>(L).getValue() ==
cast<lval::ConcreteInt>(R).getValue();
return NonLVal::MakeIntTruthVal(ValMgr, b);
}
else if (isa<lval::SymbolVal>(R)) {
const SymIntConstraint& C =
ValMgr.getConstraint(cast<lval::SymbolVal>(R).getSymbol(),
BinaryOperator::EQ,
cast<lval::ConcreteInt>(L).getValue());
return nonlval::SymIntConstraintVal(C);
}
break;
case lval::SymbolValKind: {
if (isa<lval::ConcreteInt>(R)) {
const SymIntConstraint& C =
ValMgr.getConstraint(cast<lval::SymbolVal>(L).getSymbol(),
BinaryOperator::EQ,
cast<lval::ConcreteInt>(R).getValue());
return nonlval::SymIntConstraintVal(C);
}
// FIXME: Implement == for lval Symbols. This is mainly useful
// in iterator loops when traversing a buffer, e.g. while(z != zTerm).
// Since this is not useful for many checkers we'll punt on this for
// now.
return UnknownVal();
}
case lval::DeclValKind:
case lval::FuncValKind:
case lval::GotoLabelKind:
return NonLVal::MakeIntTruthVal(ValMgr, L == R);
}
return NonLVal::MakeIntTruthVal(ValMgr, false);
}
RVal GRSimpleVals::EvalNE(ValueManager& ValMgr, LVal L, LVal R) {
switch (L.getSubKind()) {
default:
assert(false && "NE not implemented for this LVal.");
return UnknownVal();
case lval::ConcreteIntKind:
if (isa<lval::ConcreteInt>(R)) {
bool b = cast<lval::ConcreteInt>(L).getValue() !=
cast<lval::ConcreteInt>(R).getValue();
return NonLVal::MakeIntTruthVal(ValMgr, b);
}
else if (isa<lval::SymbolVal>(R)) {
const SymIntConstraint& C =
ValMgr.getConstraint(cast<lval::SymbolVal>(R).getSymbol(),
BinaryOperator::NE,
cast<lval::ConcreteInt>(L).getValue());
return nonlval::SymIntConstraintVal(C);
}
break;
case lval::SymbolValKind: {
if (isa<lval::ConcreteInt>(R)) {
const SymIntConstraint& C =
ValMgr.getConstraint(cast<lval::SymbolVal>(L).getSymbol(),
BinaryOperator::NE,
cast<lval::ConcreteInt>(R).getValue());
return nonlval::SymIntConstraintVal(C);
}
// FIXME: Implement != for lval Symbols. This is mainly useful
// in iterator loops when traversing a buffer, e.g. while(z != zTerm).
// Since this is not useful for many checkers we'll punt on this for
// now.
return UnknownVal();
break;
}
case lval::DeclValKind:
case lval::FuncValKind:
case lval::GotoLabelKind:
return NonLVal::MakeIntTruthVal(ValMgr, L != R);
}
return NonLVal::MakeIntTruthVal(ValMgr, true);
}
//===----------------------------------------------------------------------===//
// Transfer function for Function Calls.
//===----------------------------------------------------------------------===//
ValueState*
GRSimpleVals::EvalCall(ValueStateManager& StateMgr, ValueManager& ValMgr,
CallExpr* CE, LVal L, ValueState* St) {
// Invalidate all arguments passed in by reference (LVals).
for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
I != E; ++I) {
RVal V = StateMgr.GetRVal(St, *I);
if (isa<LVal>(V))
St = StateMgr.SetRVal(St, cast<LVal>(V), UnknownVal());
}
return St;
}