| //===--- Decl.cpp - Declaration AST Node Implementation -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Decl subclasses. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTMutationListener.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/PrettyPrinter.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Basic/Module.h" |
| #include "clang/Basic/Specifiers.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/type_traits.h" |
| #include <algorithm> |
| |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // NamedDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Visibility rules aren't rigorously externally specified, but here |
| // are the basic principles behind what we implement: |
| // |
| // 1. An explicit visibility attribute is generally a direct expression |
| // of the user's intent and should be honored. Only the innermost |
| // visibility attribute applies. If no visibility attribute applies, |
| // global visibility settings are considered. |
| // |
| // 2. There is one caveat to the above: on or in a template pattern, |
| // an explicit visibility attribute is just a default rule, and |
| // visibility can be decreased by the visibility of template |
| // arguments. But this, too, has an exception: an attribute on an |
| // explicit specialization or instantiation causes all the visibility |
| // restrictions of the template arguments to be ignored. |
| // |
| // 3. A variable that does not otherwise have explicit visibility can |
| // be restricted by the visibility of its type. |
| // |
| // 4. A visibility restriction is explicit if it comes from an |
| // attribute (or something like it), not a global visibility setting. |
| // When emitting a reference to an external symbol, visibility |
| // restrictions are ignored unless they are explicit. |
| // |
| // 5. When computing the visibility of a non-type, including a |
| // non-type member of a class, only non-type visibility restrictions |
| // are considered: the 'visibility' attribute, global value-visibility |
| // settings, and a few special cases like __private_extern. |
| // |
| // 6. When computing the visibility of a type, including a type member |
| // of a class, only type visibility restrictions are considered: |
| // the 'type_visibility' attribute and global type-visibility settings. |
| // However, a 'visibility' attribute counts as a 'type_visibility' |
| // attribute on any declaration that only has the former. |
| // |
| // The visibility of a "secondary" entity, like a template argument, |
| // is computed using the kind of that entity, not the kind of the |
| // primary entity for which we are computing visibility. For example, |
| // the visibility of a specialization of either of these templates: |
| // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); |
| // template <class T, bool (&compare)(T, X)> class matcher; |
| // is restricted according to the type visibility of the argument 'T', |
| // the type visibility of 'bool(&)(T,X)', and the value visibility of |
| // the argument function 'compare'. That 'has_match' is a value |
| // and 'matcher' is a type only matters when looking for attributes |
| // and settings from the immediate context. |
| |
| const unsigned IgnoreExplicitVisibilityBit = 2; |
| const unsigned IgnoreAllVisibilityBit = 4; |
| |
| /// Kinds of LV computation. The linkage side of the computation is |
| /// always the same, but different things can change how visibility is |
| /// computed. |
| enum LVComputationKind { |
| /// Do an LV computation for, ultimately, a type. |
| /// Visibility may be restricted by type visibility settings and |
| /// the visibility of template arguments. |
| LVForType = NamedDecl::VisibilityForType, |
| |
| /// Do an LV computation for, ultimately, a non-type declaration. |
| /// Visibility may be restricted by value visibility settings and |
| /// the visibility of template arguments. |
| LVForValue = NamedDecl::VisibilityForValue, |
| |
| /// Do an LV computation for, ultimately, a type that already has |
| /// some sort of explicit visibility. Visibility may only be |
| /// restricted by the visibility of template arguments. |
| LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit), |
| |
| /// Do an LV computation for, ultimately, a non-type declaration |
| /// that already has some sort of explicit visibility. Visibility |
| /// may only be restricted by the visibility of template arguments. |
| LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit), |
| |
| /// Do an LV computation when we only care about the linkage. |
| LVForLinkageOnly = |
| LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit |
| }; |
| |
| /// Does this computation kind permit us to consider additional |
| /// visibility settings from attributes and the like? |
| static bool hasExplicitVisibilityAlready(LVComputationKind computation) { |
| return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0); |
| } |
| |
| /// Given an LVComputationKind, return one of the same type/value sort |
| /// that records that it already has explicit visibility. |
| static LVComputationKind |
| withExplicitVisibilityAlready(LVComputationKind oldKind) { |
| LVComputationKind newKind = |
| static_cast<LVComputationKind>(unsigned(oldKind) | |
| IgnoreExplicitVisibilityBit); |
| assert(oldKind != LVForType || newKind == LVForExplicitType); |
| assert(oldKind != LVForValue || newKind == LVForExplicitValue); |
| assert(oldKind != LVForExplicitType || newKind == LVForExplicitType); |
| assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue); |
| return newKind; |
| } |
| |
| static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, |
| LVComputationKind kind) { |
| assert(!hasExplicitVisibilityAlready(kind) && |
| "asking for explicit visibility when we shouldn't be"); |
| return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind); |
| } |
| |
| /// Is the given declaration a "type" or a "value" for the purposes of |
| /// visibility computation? |
| static bool usesTypeVisibility(const NamedDecl *D) { |
| return isa<TypeDecl>(D) || |
| isa<ClassTemplateDecl>(D) || |
| isa<ObjCInterfaceDecl>(D); |
| } |
| |
| /// Does the given declaration have member specialization information, |
| /// and if so, is it an explicit specialization? |
| template <class T> static typename |
| llvm::enable_if_c<!llvm::is_base_of<RedeclarableTemplateDecl, T>::value, |
| bool>::type |
| isExplicitMemberSpecialization(const T *D) { |
| if (const MemberSpecializationInfo *member = |
| D->getMemberSpecializationInfo()) { |
| return member->isExplicitSpecialization(); |
| } |
| return false; |
| } |
| |
| /// For templates, this question is easier: a member template can't be |
| /// explicitly instantiated, so there's a single bit indicating whether |
| /// or not this is an explicit member specialization. |
| static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { |
| return D->isMemberSpecialization(); |
| } |
| |
| /// Given a visibility attribute, return the explicit visibility |
| /// associated with it. |
| template <class T> |
| static Visibility getVisibilityFromAttr(const T *attr) { |
| switch (attr->getVisibility()) { |
| case T::Default: |
| return DefaultVisibility; |
| case T::Hidden: |
| return HiddenVisibility; |
| case T::Protected: |
| return ProtectedVisibility; |
| } |
| llvm_unreachable("bad visibility kind"); |
| } |
| |
| /// Return the explicit visibility of the given declaration. |
| static Optional<Visibility> getVisibilityOf(const NamedDecl *D, |
| NamedDecl::ExplicitVisibilityKind kind) { |
| // If we're ultimately computing the visibility of a type, look for |
| // a 'type_visibility' attribute before looking for 'visibility'. |
| if (kind == NamedDecl::VisibilityForType) { |
| if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) { |
| return getVisibilityFromAttr(A); |
| } |
| } |
| |
| // If this declaration has an explicit visibility attribute, use it. |
| if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) { |
| return getVisibilityFromAttr(A); |
| } |
| |
| // If we're on Mac OS X, an 'availability' for Mac OS X attribute |
| // implies visibility(default). |
| if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) { |
| for (specific_attr_iterator<AvailabilityAttr> |
| A = D->specific_attr_begin<AvailabilityAttr>(), |
| AEnd = D->specific_attr_end<AvailabilityAttr>(); |
| A != AEnd; ++A) |
| if ((*A)->getPlatform()->getName().equals("macosx")) |
| return DefaultVisibility; |
| } |
| |
| return None; |
| } |
| |
| static LinkageInfo |
| getLVForType(const Type &T, LVComputationKind computation) { |
| if (computation == LVForLinkageOnly) |
| return LinkageInfo(T.getLinkage(), DefaultVisibility, true); |
| return T.getLinkageAndVisibility(); |
| } |
| |
| /// \brief Get the most restrictive linkage for the types in the given |
| /// template parameter list. For visibility purposes, template |
| /// parameters are part of the signature of a template. |
| static LinkageInfo |
| getLVForTemplateParameterList(const TemplateParameterList *params, |
| LVComputationKind computation) { |
| LinkageInfo LV; |
| for (TemplateParameterList::const_iterator P = params->begin(), |
| PEnd = params->end(); |
| P != PEnd; ++P) { |
| |
| // Template type parameters are the most common and never |
| // contribute to visibility, pack or not. |
| if (isa<TemplateTypeParmDecl>(*P)) |
| continue; |
| |
| // Non-type template parameters can be restricted by the value type, e.g. |
| // template <enum X> class A { ... }; |
| // We have to be careful here, though, because we can be dealing with |
| // dependent types. |
| if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { |
| // Handle the non-pack case first. |
| if (!NTTP->isExpandedParameterPack()) { |
| if (!NTTP->getType()->isDependentType()) { |
| LV.merge(getLVForType(*NTTP->getType(), computation)); |
| } |
| continue; |
| } |
| |
| // Look at all the types in an expanded pack. |
| for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { |
| QualType type = NTTP->getExpansionType(i); |
| if (!type->isDependentType()) |
| LV.merge(type->getLinkageAndVisibility()); |
| } |
| continue; |
| } |
| |
| // Template template parameters can be restricted by their |
| // template parameters, recursively. |
| TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P); |
| |
| // Handle the non-pack case first. |
| if (!TTP->isExpandedParameterPack()) { |
| LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), |
| computation)); |
| continue; |
| } |
| |
| // Look at all expansions in an expanded pack. |
| for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); |
| i != n; ++i) { |
| LV.merge(getLVForTemplateParameterList( |
| TTP->getExpansionTemplateParameters(i), computation)); |
| } |
| } |
| |
| return LV; |
| } |
| |
| /// getLVForDecl - Get the linkage and visibility for the given declaration. |
| static LinkageInfo getLVForDecl(const NamedDecl *D, |
| LVComputationKind computation); |
| |
| static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { |
| const Decl *Ret = NULL; |
| const DeclContext *DC = D->getDeclContext(); |
| while (DC->getDeclKind() != Decl::TranslationUnit) { |
| if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) |
| Ret = cast<Decl>(DC); |
| DC = DC->getParent(); |
| } |
| return Ret; |
| } |
| |
| /// \brief Get the most restrictive linkage for the types and |
| /// declarations in the given template argument list. |
| /// |
| /// Note that we don't take an LVComputationKind because we always |
| /// want to honor the visibility of template arguments in the same way. |
| static LinkageInfo |
| getLVForTemplateArgumentList(ArrayRef<TemplateArgument> args, |
| LVComputationKind computation) { |
| LinkageInfo LV; |
| |
| for (unsigned i = 0, e = args.size(); i != e; ++i) { |
| const TemplateArgument &arg = args[i]; |
| switch (arg.getKind()) { |
| case TemplateArgument::Null: |
| case TemplateArgument::Integral: |
| case TemplateArgument::Expression: |
| continue; |
| |
| case TemplateArgument::Type: |
| LV.merge(getLVForType(*arg.getAsType(), computation)); |
| continue; |
| |
| case TemplateArgument::Declaration: |
| if (NamedDecl *ND = dyn_cast<NamedDecl>(arg.getAsDecl())) { |
| assert(!usesTypeVisibility(ND)); |
| LV.merge(getLVForDecl(ND, computation)); |
| } |
| continue; |
| |
| case TemplateArgument::NullPtr: |
| LV.merge(arg.getNullPtrType()->getLinkageAndVisibility()); |
| continue; |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: |
| if (TemplateDecl *Template |
| = arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) |
| LV.merge(getLVForDecl(Template, computation)); |
| continue; |
| |
| case TemplateArgument::Pack: |
| LV.merge(getLVForTemplateArgumentList(arg.getPackAsArray(), computation)); |
| continue; |
| } |
| llvm_unreachable("bad template argument kind"); |
| } |
| |
| return LV; |
| } |
| |
| static LinkageInfo |
| getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, |
| LVComputationKind computation) { |
| return getLVForTemplateArgumentList(TArgs.asArray(), computation); |
| } |
| |
| static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, |
| const FunctionTemplateSpecializationInfo *specInfo) { |
| // Include visibility from the template parameters and arguments |
| // only if this is not an explicit instantiation or specialization |
| // with direct explicit visibility. (Implicit instantiations won't |
| // have a direct attribute.) |
| if (!specInfo->isExplicitInstantiationOrSpecialization()) |
| return true; |
| |
| return !fn->hasAttr<VisibilityAttr>(); |
| } |
| |
| /// Merge in template-related linkage and visibility for the given |
| /// function template specialization. |
| /// |
| /// We don't need a computation kind here because we can assume |
| /// LVForValue. |
| /// |
| /// \param[out] LV the computation to use for the parent |
| static void |
| mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn, |
| const FunctionTemplateSpecializationInfo *specInfo, |
| LVComputationKind computation) { |
| bool considerVisibility = |
| shouldConsiderTemplateVisibility(fn, specInfo); |
| |
| // Merge information from the template parameters. |
| FunctionTemplateDecl *temp = specInfo->getTemplate(); |
| LinkageInfo tempLV = |
| getLVForTemplateParameterList(temp->getTemplateParameters(), computation); |
| LV.mergeMaybeWithVisibility(tempLV, considerVisibility); |
| |
| // Merge information from the template arguments. |
| const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; |
| LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); |
| LV.mergeMaybeWithVisibility(argsLV, considerVisibility); |
| } |
| |
| /// Does the given declaration have a direct visibility attribute |
| /// that would match the given rules? |
| static bool hasDirectVisibilityAttribute(const NamedDecl *D, |
| LVComputationKind computation) { |
| switch (computation) { |
| case LVForType: |
| case LVForExplicitType: |
| if (D->hasAttr<TypeVisibilityAttr>()) |
| return true; |
| // fallthrough |
| case LVForValue: |
| case LVForExplicitValue: |
| if (D->hasAttr<VisibilityAttr>()) |
| return true; |
| return false; |
| case LVForLinkageOnly: |
| return false; |
| } |
| llvm_unreachable("bad visibility computation kind"); |
| } |
| |
| /// Should we consider visibility associated with the template |
| /// arguments and parameters of the given class template specialization? |
| static bool shouldConsiderTemplateVisibility( |
| const ClassTemplateSpecializationDecl *spec, |
| LVComputationKind computation) { |
| // Include visibility from the template parameters and arguments |
| // only if this is not an explicit instantiation or specialization |
| // with direct explicit visibility (and note that implicit |
| // instantiations won't have a direct attribute). |
| // |
| // Furthermore, we want to ignore template parameters and arguments |
| // for an explicit specialization when computing the visibility of a |
| // member thereof with explicit visibility. |
| // |
| // This is a bit complex; let's unpack it. |
| // |
| // An explicit class specialization is an independent, top-level |
| // declaration. As such, if it or any of its members has an |
| // explicit visibility attribute, that must directly express the |
| // user's intent, and we should honor it. The same logic applies to |
| // an explicit instantiation of a member of such a thing. |
| |
| // Fast path: if this is not an explicit instantiation or |
| // specialization, we always want to consider template-related |
| // visibility restrictions. |
| if (!spec->isExplicitInstantiationOrSpecialization()) |
| return true; |
| |
| // This is the 'member thereof' check. |
| if (spec->isExplicitSpecialization() && |
| hasExplicitVisibilityAlready(computation)) |
| return false; |
| |
| return !hasDirectVisibilityAttribute(spec, computation); |
| } |
| |
| /// Merge in template-related linkage and visibility for the given |
| /// class template specialization. |
| static void mergeTemplateLV(LinkageInfo &LV, |
| const ClassTemplateSpecializationDecl *spec, |
| LVComputationKind computation) { |
| bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); |
| |
| // Merge information from the template parameters, but ignore |
| // visibility if we're only considering template arguments. |
| |
| ClassTemplateDecl *temp = spec->getSpecializedTemplate(); |
| LinkageInfo tempLV = |
| getLVForTemplateParameterList(temp->getTemplateParameters(), computation); |
| LV.mergeMaybeWithVisibility(tempLV, |
| considerVisibility && !hasExplicitVisibilityAlready(computation)); |
| |
| // Merge information from the template arguments. We ignore |
| // template-argument visibility if we've got an explicit |
| // instantiation with a visibility attribute. |
| const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); |
| LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); |
| if (considerVisibility) |
| LV.mergeVisibility(argsLV); |
| LV.mergeExternalVisibility(argsLV); |
| } |
| |
| static bool useInlineVisibilityHidden(const NamedDecl *D) { |
| // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. |
| const LangOptions &Opts = D->getASTContext().getLangOpts(); |
| if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) |
| return false; |
| |
| const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); |
| if (!FD) |
| return false; |
| |
| TemplateSpecializationKind TSK = TSK_Undeclared; |
| if (FunctionTemplateSpecializationInfo *spec |
| = FD->getTemplateSpecializationInfo()) { |
| TSK = spec->getTemplateSpecializationKind(); |
| } else if (MemberSpecializationInfo *MSI = |
| FD->getMemberSpecializationInfo()) { |
| TSK = MSI->getTemplateSpecializationKind(); |
| } |
| |
| const FunctionDecl *Def = 0; |
| // InlineVisibilityHidden only applies to definitions, and |
| // isInlined() only gives meaningful answers on definitions |
| // anyway. |
| return TSK != TSK_ExplicitInstantiationDeclaration && |
| TSK != TSK_ExplicitInstantiationDefinition && |
| FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); |
| } |
| |
| template <typename T> static bool isFirstInExternCContext(T *D) { |
| const T *First = D->getFirstDeclaration(); |
| return First->isInExternCContext(); |
| } |
| |
| static bool isSingleLineExternC(const Decl &D) { |
| if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) |
| if (SD->getLanguage() == LinkageSpecDecl::lang_c && !SD->hasBraces()) |
| return true; |
| return false; |
| } |
| |
| static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D, |
| LVComputationKind computation) { |
| assert(D->getDeclContext()->getRedeclContext()->isFileContext() && |
| "Not a name having namespace scope"); |
| ASTContext &Context = D->getASTContext(); |
| |
| // C++ [basic.link]p3: |
| // A name having namespace scope (3.3.6) has internal linkage if it |
| // is the name of |
| // - an object, reference, function or function template that is |
| // explicitly declared static; or, |
| // (This bullet corresponds to C99 6.2.2p3.) |
| if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { |
| // Explicitly declared static. |
| if (Var->getStorageClass() == SC_Static) |
| return LinkageInfo::internal(); |
| |
| // - a non-volatile object or reference that is explicitly declared const |
| // or constexpr and neither explicitly declared extern nor previously |
| // declared to have external linkage; or (there is no equivalent in C99) |
| if (Context.getLangOpts().CPlusPlus && |
| Var->getType().isConstQualified() && |
| !Var->getType().isVolatileQualified()) { |
| const VarDecl *PrevVar = Var->getPreviousDecl(); |
| if (PrevVar) |
| return getLVForDecl(PrevVar, computation); |
| |
| if (Var->getStorageClass() != SC_Extern && |
| Var->getStorageClass() != SC_PrivateExtern && |
| !isSingleLineExternC(*Var)) |
| return LinkageInfo::internal(); |
| } |
| |
| for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; |
| PrevVar = PrevVar->getPreviousDecl()) { |
| if (PrevVar->getStorageClass() == SC_PrivateExtern && |
| Var->getStorageClass() == SC_None) |
| return PrevVar->getLinkageAndVisibility(); |
| // Explicitly declared static. |
| if (PrevVar->getStorageClass() == SC_Static) |
| return LinkageInfo::internal(); |
| } |
| } else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) { |
| // C++ [temp]p4: |
| // A non-member function template can have internal linkage; any |
| // other template name shall have external linkage. |
| const FunctionDecl *Function = 0; |
| if (const FunctionTemplateDecl *FunTmpl |
| = dyn_cast<FunctionTemplateDecl>(D)) |
| Function = FunTmpl->getTemplatedDecl(); |
| else |
| Function = cast<FunctionDecl>(D); |
| |
| // Explicitly declared static. |
| if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) |
| return LinkageInfo(InternalLinkage, DefaultVisibility, false); |
| } else if (const FieldDecl *Field = dyn_cast<FieldDecl>(D)) { |
| // - a data member of an anonymous union. |
| if (cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()) |
| return LinkageInfo::internal(); |
| } |
| |
| if (D->isInAnonymousNamespace()) { |
| const VarDecl *Var = dyn_cast<VarDecl>(D); |
| const FunctionDecl *Func = dyn_cast<FunctionDecl>(D); |
| if ((!Var || !isFirstInExternCContext(Var)) && |
| (!Func || !isFirstInExternCContext(Func))) |
| return LinkageInfo::uniqueExternal(); |
| } |
| |
| // Set up the defaults. |
| |
| // C99 6.2.2p5: |
| // If the declaration of an identifier for an object has file |
| // scope and no storage-class specifier, its linkage is |
| // external. |
| LinkageInfo LV; |
| |
| if (!hasExplicitVisibilityAlready(computation)) { |
| if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { |
| LV.mergeVisibility(*Vis, true); |
| } else { |
| // If we're declared in a namespace with a visibility attribute, |
| // use that namespace's visibility, and it still counts as explicit. |
| for (const DeclContext *DC = D->getDeclContext(); |
| !isa<TranslationUnitDecl>(DC); |
| DC = DC->getParent()) { |
| const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC); |
| if (!ND) continue; |
| if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { |
| LV.mergeVisibility(*Vis, true); |
| break; |
| } |
| } |
| } |
| |
| // Add in global settings if the above didn't give us direct visibility. |
| if (!LV.isVisibilityExplicit()) { |
| // Use global type/value visibility as appropriate. |
| Visibility globalVisibility; |
| if (computation == LVForValue) { |
| globalVisibility = Context.getLangOpts().getValueVisibilityMode(); |
| } else { |
| assert(computation == LVForType); |
| globalVisibility = Context.getLangOpts().getTypeVisibilityMode(); |
| } |
| LV.mergeVisibility(globalVisibility, /*explicit*/ false); |
| |
| // If we're paying attention to global visibility, apply |
| // -finline-visibility-hidden if this is an inline method. |
| if (useInlineVisibilityHidden(D)) |
| LV.mergeVisibility(HiddenVisibility, true); |
| } |
| } |
| |
| // C++ [basic.link]p4: |
| |
| // A name having namespace scope has external linkage if it is the |
| // name of |
| // |
| // - an object or reference, unless it has internal linkage; or |
| if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { |
| // GCC applies the following optimization to variables and static |
| // data members, but not to functions: |
| // |
| // Modify the variable's LV by the LV of its type unless this is |
| // C or extern "C". This follows from [basic.link]p9: |
| // A type without linkage shall not be used as the type of a |
| // variable or function with external linkage unless |
| // - the entity has C language linkage, or |
| // - the entity is declared within an unnamed namespace, or |
| // - the entity is not used or is defined in the same |
| // translation unit. |
| // and [basic.link]p10: |
| // ...the types specified by all declarations referring to a |
| // given variable or function shall be identical... |
| // C does not have an equivalent rule. |
| // |
| // Ignore this if we've got an explicit attribute; the user |
| // probably knows what they're doing. |
| // |
| // Note that we don't want to make the variable non-external |
| // because of this, but unique-external linkage suits us. |
| if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) { |
| LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); |
| if (TypeLV.getLinkage() != ExternalLinkage) |
| return LinkageInfo::uniqueExternal(); |
| if (!LV.isVisibilityExplicit()) |
| LV.mergeVisibility(TypeLV); |
| } |
| |
| if (Var->getStorageClass() == SC_PrivateExtern) |
| LV.mergeVisibility(HiddenVisibility, true); |
| |
| // Note that Sema::MergeVarDecl already takes care of implementing |
| // C99 6.2.2p4 and propagating the visibility attribute, so we don't have |
| // to do it here. |
| |
| // - a function, unless it has internal linkage; or |
| } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { |
| // In theory, we can modify the function's LV by the LV of its |
| // type unless it has C linkage (see comment above about variables |
| // for justification). In practice, GCC doesn't do this, so it's |
| // just too painful to make work. |
| |
| if (Function->getStorageClass() == SC_PrivateExtern) |
| LV.mergeVisibility(HiddenVisibility, true); |
| |
| // Note that Sema::MergeCompatibleFunctionDecls already takes care of |
| // merging storage classes and visibility attributes, so we don't have to |
| // look at previous decls in here. |
| |
| // In C++, then if the type of the function uses a type with |
| // unique-external linkage, it's not legally usable from outside |
| // this translation unit. However, we should use the C linkage |
| // rules instead for extern "C" declarations. |
| if (Context.getLangOpts().CPlusPlus && |
| !Function->isInExternCContext()) { |
| // Only look at the type-as-written. If this function has an auto-deduced |
| // return type, we can't compute the linkage of that type because it could |
| // require looking at the linkage of this function, and we don't need this |
| // for correctness because the type is not part of the function's |
| // signature. |
| // FIXME: This is a hack. We should be able to solve this circularity some |
| // other way. |
| QualType TypeAsWritten = Function->getType(); |
| if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) |
| TypeAsWritten = TSI->getType(); |
| if (TypeAsWritten->getLinkage() == UniqueExternalLinkage) |
| return LinkageInfo::uniqueExternal(); |
| } |
| |
| // Consider LV from the template and the template arguments. |
| // We're at file scope, so we do not need to worry about nested |
| // specializations. |
| if (FunctionTemplateSpecializationInfo *specInfo |
| = Function->getTemplateSpecializationInfo()) { |
| mergeTemplateLV(LV, Function, specInfo, computation); |
| } |
| |
| // - a named class (Clause 9), or an unnamed class defined in a |
| // typedef declaration in which the class has the typedef name |
| // for linkage purposes (7.1.3); or |
| // - a named enumeration (7.2), or an unnamed enumeration |
| // defined in a typedef declaration in which the enumeration |
| // has the typedef name for linkage purposes (7.1.3); or |
| } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) { |
| // Unnamed tags have no linkage. |
| if (!Tag->hasNameForLinkage()) |
| return LinkageInfo::none(); |
| |
| // If this is a class template specialization, consider the |
| // linkage of the template and template arguments. We're at file |
| // scope, so we do not need to worry about nested specializations. |
| if (const ClassTemplateSpecializationDecl *spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { |
| mergeTemplateLV(LV, spec, computation); |
| } |
| |
| // - an enumerator belonging to an enumeration with external linkage; |
| } else if (isa<EnumConstantDecl>(D)) { |
| LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), |
| computation); |
| if (!isExternalFormalLinkage(EnumLV.getLinkage())) |
| return LinkageInfo::none(); |
| LV.merge(EnumLV); |
| |
| // - a template, unless it is a function template that has |
| // internal linkage (Clause 14); |
| } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) { |
| bool considerVisibility = !hasExplicitVisibilityAlready(computation); |
| LinkageInfo tempLV = |
| getLVForTemplateParameterList(temp->getTemplateParameters(), computation); |
| LV.mergeMaybeWithVisibility(tempLV, considerVisibility); |
| |
| // - a namespace (7.3), unless it is declared within an unnamed |
| // namespace. |
| } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) { |
| return LV; |
| |
| // By extension, we assign external linkage to Objective-C |
| // interfaces. |
| } else if (isa<ObjCInterfaceDecl>(D)) { |
| // fallout |
| |
| // Everything not covered here has no linkage. |
| } else { |
| return LinkageInfo::none(); |
| } |
| |
| // If we ended up with non-external linkage, visibility should |
| // always be default. |
| if (LV.getLinkage() != ExternalLinkage) |
| return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); |
| |
| return LV; |
| } |
| |
| static LinkageInfo getLVForClassMember(const NamedDecl *D, |
| LVComputationKind computation) { |
| // Only certain class members have linkage. Note that fields don't |
| // really have linkage, but it's convenient to say they do for the |
| // purposes of calculating linkage of pointer-to-data-member |
| // template arguments. |
| if (!(isa<CXXMethodDecl>(D) || |
| isa<VarDecl>(D) || |
| isa<FieldDecl>(D) || |
| isa<TagDecl>(D))) |
| return LinkageInfo::none(); |
| |
| LinkageInfo LV; |
| |
| // If we have an explicit visibility attribute, merge that in. |
| if (!hasExplicitVisibilityAlready(computation)) { |
| if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) |
| LV.mergeVisibility(*Vis, true); |
| // If we're paying attention to global visibility, apply |
| // -finline-visibility-hidden if this is an inline method. |
| // |
| // Note that we do this before merging information about |
| // the class visibility. |
| if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) |
| LV.mergeVisibility(HiddenVisibility, true); |
| } |
| |
| // If this class member has an explicit visibility attribute, the only |
| // thing that can change its visibility is the template arguments, so |
| // only look for them when processing the class. |
| LVComputationKind classComputation = computation; |
| if (LV.isVisibilityExplicit()) |
| classComputation = withExplicitVisibilityAlready(computation); |
| |
| LinkageInfo classLV = |
| getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); |
| // If the class already has unique-external linkage, we can't improve. |
| if (classLV.getLinkage() == UniqueExternalLinkage) |
| return LinkageInfo::uniqueExternal(); |
| |
| if (!isExternallyVisible(classLV.getLinkage())) |
| return LinkageInfo::none(); |
| |
| |
| // Otherwise, don't merge in classLV yet, because in certain cases |
| // we need to completely ignore the visibility from it. |
| |
| // Specifically, if this decl exists and has an explicit attribute. |
| const NamedDecl *explicitSpecSuppressor = 0; |
| |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { |
| // If the type of the function uses a type with unique-external |
| // linkage, it's not legally usable from outside this translation unit. |
| if (MD->getType()->getLinkage() == UniqueExternalLinkage) |
| return LinkageInfo::uniqueExternal(); |
| |
| // If this is a method template specialization, use the linkage for |
| // the template parameters and arguments. |
| if (FunctionTemplateSpecializationInfo *spec |
| = MD->getTemplateSpecializationInfo()) { |
| mergeTemplateLV(LV, MD, spec, computation); |
| if (spec->isExplicitSpecialization()) { |
| explicitSpecSuppressor = MD; |
| } else if (isExplicitMemberSpecialization(spec->getTemplate())) { |
| explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); |
| } |
| } else if (isExplicitMemberSpecialization(MD)) { |
| explicitSpecSuppressor = MD; |
| } |
| |
| } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { |
| if (const ClassTemplateSpecializationDecl *spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { |
| mergeTemplateLV(LV, spec, computation); |
| if (spec->isExplicitSpecialization()) { |
| explicitSpecSuppressor = spec; |
| } else { |
| const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); |
| if (isExplicitMemberSpecialization(temp)) { |
| explicitSpecSuppressor = temp->getTemplatedDecl(); |
| } |
| } |
| } else if (isExplicitMemberSpecialization(RD)) { |
| explicitSpecSuppressor = RD; |
| } |
| |
| // Static data members. |
| } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| // Modify the variable's linkage by its type, but ignore the |
| // type's visibility unless it's a definition. |
| LinkageInfo typeLV = getLVForType(*VD->getType(), computation); |
| if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) |
| LV.mergeVisibility(typeLV); |
| LV.mergeExternalVisibility(typeLV); |
| |
| if (isExplicitMemberSpecialization(VD)) { |
| explicitSpecSuppressor = VD; |
| } |
| |
| // Template members. |
| } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) { |
| bool considerVisibility = |
| (!LV.isVisibilityExplicit() && |
| !classLV.isVisibilityExplicit() && |
| !hasExplicitVisibilityAlready(computation)); |
| LinkageInfo tempLV = |
| getLVForTemplateParameterList(temp->getTemplateParameters(), computation); |
| LV.mergeMaybeWithVisibility(tempLV, considerVisibility); |
| |
| if (const RedeclarableTemplateDecl *redeclTemp = |
| dyn_cast<RedeclarableTemplateDecl>(temp)) { |
| if (isExplicitMemberSpecialization(redeclTemp)) { |
| explicitSpecSuppressor = temp->getTemplatedDecl(); |
| } |
| } |
| } |
| |
| // We should never be looking for an attribute directly on a template. |
| assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); |
| |
| // If this member is an explicit member specialization, and it has |
| // an explicit attribute, ignore visibility from the parent. |
| bool considerClassVisibility = true; |
| if (explicitSpecSuppressor && |
| // optimization: hasDVA() is true only with explicit visibility. |
| LV.isVisibilityExplicit() && |
| classLV.getVisibility() != DefaultVisibility && |
| hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { |
| considerClassVisibility = false; |
| } |
| |
| // Finally, merge in information from the class. |
| LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); |
| return LV; |
| } |
| |
| void NamedDecl::anchor() { } |
| |
| static LinkageInfo computeLVForDecl(const NamedDecl *D, |
| LVComputationKind computation); |
| |
| bool NamedDecl::isLinkageValid() const { |
| if (!hasCachedLinkage()) |
| return true; |
| |
| return computeLVForDecl(this, LVForLinkageOnly).getLinkage() == |
| getCachedLinkage(); |
| } |
| |
| Linkage NamedDecl::getLinkageInternal() const { |
| // We don't care about visibility here, so ask for the cheapest |
| // possible visibility analysis. |
| return getLVForDecl(this, LVForLinkageOnly).getLinkage(); |
| } |
| |
| LinkageInfo NamedDecl::getLinkageAndVisibility() const { |
| LVComputationKind computation = |
| (usesTypeVisibility(this) ? LVForType : LVForValue); |
| return getLVForDecl(this, computation); |
| } |
| |
| Optional<Visibility> |
| NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { |
| // Check the declaration itself first. |
| if (Optional<Visibility> V = getVisibilityOf(this, kind)) |
| return V; |
| |
| // If this is a member class of a specialization of a class template |
| // and the corresponding decl has explicit visibility, use that. |
| if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(this)) { |
| CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); |
| if (InstantiatedFrom) |
| return getVisibilityOf(InstantiatedFrom, kind); |
| } |
| |
| // If there wasn't explicit visibility there, and this is a |
| // specialization of a class template, check for visibility |
| // on the pattern. |
| if (const ClassTemplateSpecializationDecl *spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(this)) |
| return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(), |
| kind); |
| |
| // Use the most recent declaration. |
| const NamedDecl *MostRecent = cast<NamedDecl>(this->getMostRecentDecl()); |
| if (MostRecent != this) |
| return MostRecent->getExplicitVisibility(kind); |
| |
| if (const VarDecl *Var = dyn_cast<VarDecl>(this)) { |
| if (Var->isStaticDataMember()) { |
| VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); |
| if (InstantiatedFrom) |
| return getVisibilityOf(InstantiatedFrom, kind); |
| } |
| |
| return None; |
| } |
| // Also handle function template specializations. |
| if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(this)) { |
| // If the function is a specialization of a template with an |
| // explicit visibility attribute, use that. |
| if (FunctionTemplateSpecializationInfo *templateInfo |
| = fn->getTemplateSpecializationInfo()) |
| return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), |
| kind); |
| |
| // If the function is a member of a specialization of a class template |
| // and the corresponding decl has explicit visibility, use that. |
| FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); |
| if (InstantiatedFrom) |
| return getVisibilityOf(InstantiatedFrom, kind); |
| |
| return None; |
| } |
| |
| // The visibility of a template is stored in the templated decl. |
| if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(this)) |
| return getVisibilityOf(TD->getTemplatedDecl(), kind); |
| |
| return None; |
| } |
| |
| static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl, |
| LVComputationKind computation) { |
| // This lambda has its linkage/visibility determined by its owner. |
| if (ContextDecl) { |
| if (isa<ParmVarDecl>(ContextDecl)) |
| DC = ContextDecl->getDeclContext()->getRedeclContext(); |
| else |
| return getLVForDecl(cast<NamedDecl>(ContextDecl), computation); |
| } |
| |
| if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC)) |
| return getLVForDecl(ND, computation); |
| |
| return LinkageInfo::external(); |
| } |
| |
| static LinkageInfo getLVForLocalDecl(const NamedDecl *D, |
| LVComputationKind computation) { |
| if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { |
| if (Function->isInAnonymousNamespace() && |
| !Function->isInExternCContext()) |
| return LinkageInfo::uniqueExternal(); |
| |
| // This is a "void f();" which got merged with a file static. |
| if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) |
| return LinkageInfo::internal(); |
| |
| LinkageInfo LV; |
| if (!hasExplicitVisibilityAlready(computation)) { |
| if (Optional<Visibility> Vis = |
| getExplicitVisibility(Function, computation)) |
| LV.mergeVisibility(*Vis, true); |
| } |
| |
| // Note that Sema::MergeCompatibleFunctionDecls already takes care of |
| // merging storage classes and visibility attributes, so we don't have to |
| // look at previous decls in here. |
| |
| return LV; |
| } |
| |
| if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { |
| if (Var->hasExternalStorage()) { |
| if (Var->isInAnonymousNamespace() && !Var->isInExternCContext()) |
| return LinkageInfo::uniqueExternal(); |
| |
| LinkageInfo LV; |
| if (Var->getStorageClass() == SC_PrivateExtern) |
| LV.mergeVisibility(HiddenVisibility, true); |
| else if (!hasExplicitVisibilityAlready(computation)) { |
| if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) |
| LV.mergeVisibility(*Vis, true); |
| } |
| |
| if (const VarDecl *Prev = Var->getPreviousDecl()) { |
| LinkageInfo PrevLV = getLVForDecl(Prev, computation); |
| if (PrevLV.getLinkage()) |
| LV.setLinkage(PrevLV.getLinkage()); |
| LV.mergeVisibility(PrevLV); |
| } |
| |
| return LV; |
| } |
| |
| if (!Var->isStaticLocal()) |
| return LinkageInfo::none(); |
| } |
| |
| ASTContext &Context = D->getASTContext(); |
| if (!Context.getLangOpts().CPlusPlus) |
| return LinkageInfo::none(); |
| |
| const Decl *OuterD = getOutermostFuncOrBlockContext(D); |
| if (!OuterD) |
| return LinkageInfo::none(); |
| |
| LinkageInfo LV; |
| if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) { |
| if (!BD->getBlockManglingNumber()) |
| return LinkageInfo::none(); |
| |
| LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), |
| BD->getBlockManglingContextDecl(), computation); |
| } else { |
| const FunctionDecl *FD = cast<FunctionDecl>(OuterD); |
| if (!FD->isInlined() && |
| FD->getTemplateSpecializationKind() == TSK_Undeclared) |
| return LinkageInfo::none(); |
| |
| LV = getLVForDecl(FD, computation); |
| } |
| if (!isExternallyVisible(LV.getLinkage())) |
| return LinkageInfo::none(); |
| return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), |
| LV.isVisibilityExplicit()); |
| } |
| |
| static LinkageInfo computeLVForDecl(const NamedDecl *D, |
| LVComputationKind computation) { |
| // Objective-C: treat all Objective-C declarations as having external |
| // linkage. |
| switch (D->getKind()) { |
| default: |
| break; |
| case Decl::ParmVar: |
| return LinkageInfo::none(); |
| case Decl::TemplateTemplateParm: // count these as external |
| case Decl::NonTypeTemplateParm: |
| case Decl::ObjCAtDefsField: |
| case Decl::ObjCCategory: |
| case Decl::ObjCCategoryImpl: |
| case Decl::ObjCCompatibleAlias: |
| case Decl::ObjCImplementation: |
| case Decl::ObjCMethod: |
| case Decl::ObjCProperty: |
| case Decl::ObjCPropertyImpl: |
| case Decl::ObjCProtocol: |
| return LinkageInfo::external(); |
| |
| case Decl::CXXRecord: { |
| const CXXRecordDecl *Record = cast<CXXRecordDecl>(D); |
| if (Record->isLambda()) { |
| if (!Record->getLambdaManglingNumber()) { |
| // This lambda has no mangling number, so it's internal. |
| return LinkageInfo::internal(); |
| } |
| |
| // This lambda has its linkage/visibility determined by its owner. |
| return getLVForClosure(D->getDeclContext()->getRedeclContext(), |
| Record->getLambdaContextDecl(), computation); |
| } |
| |
| break; |
| } |
| } |
| |
| // Handle linkage for namespace-scope names. |
| if (D->getDeclContext()->getRedeclContext()->isFileContext()) |
| return getLVForNamespaceScopeDecl(D, computation); |
| |
| // C++ [basic.link]p5: |
| // In addition, a member function, static data member, a named |
| // class or enumeration of class scope, or an unnamed class or |
| // enumeration defined in a class-scope typedef declaration such |
| // that the class or enumeration has the typedef name for linkage |
| // purposes (7.1.3), has external linkage if the name of the class |
| // has external linkage. |
| if (D->getDeclContext()->isRecord()) |
| return getLVForClassMember(D, computation); |
| |
| // C++ [basic.link]p6: |
| // The name of a function declared in block scope and the name of |
| // an object declared by a block scope extern declaration have |
| // linkage. If there is a visible declaration of an entity with |
| // linkage having the same name and type, ignoring entities |
| // declared outside the innermost enclosing namespace scope, the |
| // block scope declaration declares that same entity and receives |
| // the linkage of the previous declaration. If there is more than |
| // one such matching entity, the program is ill-formed. Otherwise, |
| // if no matching entity is found, the block scope entity receives |
| // external linkage. |
| if (D->getDeclContext()->isFunctionOrMethod()) |
| return getLVForLocalDecl(D, computation); |
| |
| // C++ [basic.link]p6: |
| // Names not covered by these rules have no linkage. |
| return LinkageInfo::none(); |
| } |
| |
| namespace clang { |
| class LinkageComputer { |
| public: |
| static LinkageInfo getLVForDecl(const NamedDecl *D, |
| LVComputationKind computation) { |
| if (computation == LVForLinkageOnly && D->hasCachedLinkage()) |
| return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); |
| |
| LinkageInfo LV = computeLVForDecl(D, computation); |
| if (D->hasCachedLinkage()) |
| assert(D->getCachedLinkage() == LV.getLinkage()); |
| |
| D->setCachedLinkage(LV.getLinkage()); |
| |
| #ifndef NDEBUG |
| // In C (because of gnu inline) and in c++ with microsoft extensions an |
| // static can follow an extern, so we can have two decls with different |
| // linkages. |
| const LangOptions &Opts = D->getASTContext().getLangOpts(); |
| if (!Opts.CPlusPlus || Opts.MicrosoftExt) |
| return LV; |
| |
| // We have just computed the linkage for this decl. By induction we know |
| // that all other computed linkages match, check that the one we just |
| // computed |
| // also does. |
| NamedDecl *Old = NULL; |
| for (NamedDecl::redecl_iterator I = D->redecls_begin(), |
| E = D->redecls_end(); |
| I != E; ++I) { |
| NamedDecl *T = cast<NamedDecl>(*I); |
| if (T == D) |
| continue; |
| if (T->hasCachedLinkage()) { |
| Old = T; |
| break; |
| } |
| } |
| assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); |
| #endif |
| |
| return LV; |
| } |
| }; |
| } |
| |
| static LinkageInfo getLVForDecl(const NamedDecl *D, |
| LVComputationKind computation) { |
| return clang::LinkageComputer::getLVForDecl(D, computation); |
| } |
| |
| std::string NamedDecl::getQualifiedNameAsString() const { |
| return getQualifiedNameAsString(getASTContext().getPrintingPolicy()); |
| } |
| |
| std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const { |
| std::string QualName; |
| llvm::raw_string_ostream OS(QualName); |
| printQualifiedName(OS, P); |
| return OS.str(); |
| } |
| |
| void NamedDecl::printQualifiedName(raw_ostream &OS) const { |
| printQualifiedName(OS, getASTContext().getPrintingPolicy()); |
| } |
| |
| void NamedDecl::printQualifiedName(raw_ostream &OS, |
| const PrintingPolicy &P) const { |
| const DeclContext *Ctx = getDeclContext(); |
| |
| if (Ctx->isFunctionOrMethod()) { |
| printName(OS); |
| return; |
| } |
| |
| typedef SmallVector<const DeclContext *, 8> ContextsTy; |
| ContextsTy Contexts; |
| |
| // Collect contexts. |
| while (Ctx && isa<NamedDecl>(Ctx)) { |
| Contexts.push_back(Ctx); |
| Ctx = Ctx->getParent(); |
| } |
| |
| for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend(); |
| I != E; ++I) { |
| if (const ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(*I)) { |
| OS << Spec->getName(); |
| const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); |
| TemplateSpecializationType::PrintTemplateArgumentList(OS, |
| TemplateArgs.data(), |
| TemplateArgs.size(), |
| P); |
| } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) { |
| if (ND->isAnonymousNamespace()) |
| OS << "<anonymous namespace>"; |
| else |
| OS << *ND; |
| } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) { |
| if (!RD->getIdentifier()) |
| OS << "<anonymous " << RD->getKindName() << '>'; |
| else |
| OS << *RD; |
| } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { |
| const FunctionProtoType *FT = 0; |
| if (FD->hasWrittenPrototype()) |
| FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); |
| |
| OS << *FD << '('; |
| if (FT) { |
| unsigned NumParams = FD->getNumParams(); |
| for (unsigned i = 0; i < NumParams; ++i) { |
| if (i) |
| OS << ", "; |
| OS << FD->getParamDecl(i)->getType().stream(P); |
| } |
| |
| if (FT->isVariadic()) { |
| if (NumParams > 0) |
| OS << ", "; |
| OS << "..."; |
| } |
| } |
| OS << ')'; |
| } else { |
| OS << *cast<NamedDecl>(*I); |
| } |
| OS << "::"; |
| } |
| |
| if (getDeclName()) |
| OS << *this; |
| else |
| OS << "<anonymous>"; |
| } |
| |
| void NamedDecl::getNameForDiagnostic(raw_ostream &OS, |
| const PrintingPolicy &Policy, |
| bool Qualified) const { |
| if (Qualified) |
| printQualifiedName(OS, Policy); |
| else |
| printName(OS); |
| } |
| |
| bool NamedDecl::declarationReplaces(NamedDecl *OldD) const { |
| assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); |
| |
| // UsingDirectiveDecl's are not really NamedDecl's, and all have same name. |
| // We want to keep it, unless it nominates same namespace. |
| if (getKind() == Decl::UsingDirective) { |
| return cast<UsingDirectiveDecl>(this)->getNominatedNamespace() |
| ->getOriginalNamespace() == |
| cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace() |
| ->getOriginalNamespace(); |
| } |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this)) |
| // For function declarations, we keep track of redeclarations. |
| return FD->getPreviousDecl() == OldD; |
| |
| // For function templates, the underlying function declarations are linked. |
| if (const FunctionTemplateDecl *FunctionTemplate |
| = dyn_cast<FunctionTemplateDecl>(this)) |
| if (const FunctionTemplateDecl *OldFunctionTemplate |
| = dyn_cast<FunctionTemplateDecl>(OldD)) |
| return FunctionTemplate->getTemplatedDecl() |
| ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl()); |
| |
| // For method declarations, we keep track of redeclarations. |
| if (isa<ObjCMethodDecl>(this)) |
| return false; |
| |
| if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD)) |
| return true; |
| |
| if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD)) |
| return cast<UsingShadowDecl>(this)->getTargetDecl() == |
| cast<UsingShadowDecl>(OldD)->getTargetDecl(); |
| |
| if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) { |
| ASTContext &Context = getASTContext(); |
| return Context.getCanonicalNestedNameSpecifier( |
| cast<UsingDecl>(this)->getQualifier()) == |
| Context.getCanonicalNestedNameSpecifier( |
| cast<UsingDecl>(OldD)->getQualifier()); |
| } |
| |
| if (isa<UnresolvedUsingValueDecl>(this) && |
| isa<UnresolvedUsingValueDecl>(OldD)) { |
| ASTContext &Context = getASTContext(); |
| return Context.getCanonicalNestedNameSpecifier( |
| cast<UnresolvedUsingValueDecl>(this)->getQualifier()) == |
| Context.getCanonicalNestedNameSpecifier( |
| cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); |
| } |
| |
| // A typedef of an Objective-C class type can replace an Objective-C class |
| // declaration or definition, and vice versa. |
| if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) || |
| (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD))) |
| return true; |
| |
| // For non-function declarations, if the declarations are of the |
| // same kind then this must be a redeclaration, or semantic analysis |
| // would not have given us the new declaration. |
| return this->getKind() == OldD->getKind(); |
| } |
| |
| bool NamedDecl::hasLinkage() const { |
| return getFormalLinkage() != NoLinkage; |
| } |
| |
| NamedDecl *NamedDecl::getUnderlyingDeclImpl() { |
| NamedDecl *ND = this; |
| while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND)) |
| ND = UD->getTargetDecl(); |
| |
| if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) |
| return AD->getClassInterface(); |
| |
| return ND; |
| } |
| |
| bool NamedDecl::isCXXInstanceMember() const { |
| if (!isCXXClassMember()) |
| return false; |
| |
| const NamedDecl *D = this; |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) |
| return true; |
| if (isa<CXXMethodDecl>(D)) |
| return cast<CXXMethodDecl>(D)->isInstance(); |
| if (isa<FunctionTemplateDecl>(D)) |
| return cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D) |
| ->getTemplatedDecl())->isInstance(); |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DeclaratorDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| template <typename DeclT> |
| static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { |
| if (decl->getNumTemplateParameterLists() > 0) |
| return decl->getTemplateParameterList(0)->getTemplateLoc(); |
| else |
| return decl->getInnerLocStart(); |
| } |
| |
| SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { |
| TypeSourceInfo *TSI = getTypeSourceInfo(); |
| if (TSI) return TSI->getTypeLoc().getBeginLoc(); |
| return SourceLocation(); |
| } |
| |
| void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { |
| if (QualifierLoc) { |
| // Make sure the extended decl info is allocated. |
| if (!hasExtInfo()) { |
| // Save (non-extended) type source info pointer. |
| TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); |
| // Allocate external info struct. |
| DeclInfo = new (getASTContext()) ExtInfo; |
| // Restore savedTInfo into (extended) decl info. |
| getExtInfo()->TInfo = savedTInfo; |
| } |
| // Set qualifier info. |
| getExtInfo()->QualifierLoc = QualifierLoc; |
| } else { |
| // Here Qualifier == 0, i.e., we are removing the qualifier (if any). |
| if (hasExtInfo()) { |
| if (getExtInfo()->NumTemplParamLists == 0) { |
| // Save type source info pointer. |
| TypeSourceInfo *savedTInfo = getExtInfo()->TInfo; |
| // Deallocate the extended decl info. |
| getASTContext().Deallocate(getExtInfo()); |
| // Restore savedTInfo into (non-extended) decl info. |
| DeclInfo = savedTInfo; |
| } |
| else |
| getExtInfo()->QualifierLoc = QualifierLoc; |
| } |
| } |
| } |
| |
| void |
| DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context, |
| unsigned NumTPLists, |
| TemplateParameterList **TPLists) { |
| assert(NumTPLists > 0); |
| // Make sure the extended decl info is allocated. |
| if (!hasExtInfo()) { |
| // Save (non-extended) type source info pointer. |
| TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); |
| // Allocate external info struct. |
| DeclInfo = new (getASTContext()) ExtInfo; |
| // Restore savedTInfo into (extended) decl info. |
| getExtInfo()->TInfo = savedTInfo; |
| } |
| // Set the template parameter lists info. |
| getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists); |
| } |
| |
| SourceLocation DeclaratorDecl::getOuterLocStart() const { |
| return getTemplateOrInnerLocStart(this); |
| } |
| |
| namespace { |
| |
| // Helper function: returns true if QT is or contains a type |
| // having a postfix component. |
| bool typeIsPostfix(clang::QualType QT) { |
| while (true) { |
| const Type* T = QT.getTypePtr(); |
| switch (T->getTypeClass()) { |
| default: |
| return false; |
| case Type::Pointer: |
| QT = cast<PointerType>(T)->getPointeeType(); |
| break; |
| case Type::BlockPointer: |
| QT = cast<BlockPointerType>(T)->getPointeeType(); |
| break; |
| case Type::MemberPointer: |
| QT = cast<MemberPointerType>(T)->getPointeeType(); |
| break; |
| case Type::LValueReference: |
| case Type::RValueReference: |
| QT = cast<ReferenceType>(T)->getPointeeType(); |
| break; |
| case Type::PackExpansion: |
| QT = cast<PackExpansionType>(T)->getPattern(); |
| break; |
| case Type::Paren: |
| case Type::ConstantArray: |
| case Type::DependentSizedArray: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| case Type::FunctionProto: |
| case Type::FunctionNoProto: |
| return true; |
| } |
| } |
| } |
| |
| } // namespace |
| |
| SourceRange DeclaratorDecl::getSourceRange() const { |
| SourceLocation RangeEnd = getLocation(); |
| if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { |
| if (typeIsPostfix(TInfo->getType())) |
| RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); |
| } |
| return SourceRange(getOuterLocStart(), RangeEnd); |
| } |
| |
| void |
| QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context, |
| unsigned NumTPLists, |
| TemplateParameterList **TPLists) { |
| assert((NumTPLists == 0 || TPLists != 0) && |
| "Empty array of template parameters with positive size!"); |
| |
| // Free previous template parameters (if any). |
| if (NumTemplParamLists > 0) { |
| Context.Deallocate(TemplParamLists); |
| TemplParamLists = 0; |
| NumTemplParamLists = 0; |
| } |
| // Set info on matched template parameter lists (if any). |
| if (NumTPLists > 0) { |
| TemplParamLists = new (Context) TemplateParameterList*[NumTPLists]; |
| NumTemplParamLists = NumTPLists; |
| for (unsigned i = NumTPLists; i-- > 0; ) |
| TemplParamLists[i] = TPLists[i]; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // VarDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { |
| switch (SC) { |
| case SC_None: break; |
| case SC_Auto: return "auto"; |
| case SC_Extern: return "extern"; |
| case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>"; |
| case SC_PrivateExtern: return "__private_extern__"; |
| case SC_Register: return "register"; |
| case SC_Static: return "static"; |
| } |
| |
| llvm_unreachable("Invalid storage class"); |
| } |
| |
| VarDecl::VarDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc, |
| SourceLocation IdLoc, IdentifierInfo *Id, QualType T, |
| TypeSourceInfo *TInfo, StorageClass SC) |
| : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), Init() { |
| assert(sizeof(VarDeclBitfields) <= sizeof(unsigned)); |
| assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned)); |
| AllBits = 0; |
| VarDeclBits.SClass = SC; |
| // Everything else is implicitly initialized to false. |
| } |
| |
| VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation StartL, SourceLocation IdL, |
| IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, |
| StorageClass S) { |
| return new (C) VarDecl(Var, DC, StartL, IdL, Id, T, TInfo, S); |
| } |
| |
| VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(VarDecl)); |
| return new (Mem) VarDecl(Var, 0, SourceLocation(), SourceLocation(), 0, |
| QualType(), 0, SC_None); |
| } |
| |
| void VarDecl::setStorageClass(StorageClass SC) { |
| assert(isLegalForVariable(SC)); |
| VarDeclBits.SClass = SC; |
| } |
| |
| SourceRange VarDecl::getSourceRange() const { |
| if (const Expr *Init = getInit()) { |
| SourceLocation InitEnd = Init->getLocEnd(); |
| // If Init is implicit, ignore its source range and fallback on |
| // DeclaratorDecl::getSourceRange() to handle postfix elements. |
| if (InitEnd.isValid() && InitEnd != getLocation()) |
| return SourceRange(getOuterLocStart(), InitEnd); |
| } |
| return DeclaratorDecl::getSourceRange(); |
| } |
| |
| template<typename T> |
| static LanguageLinkage getLanguageLinkageTemplate(const T &D) { |
| // C++ [dcl.link]p1: All function types, function names with external linkage, |
| // and variable names with external linkage have a language linkage. |
| if (!D.hasExternalFormalLinkage()) |
| return NoLanguageLinkage; |
| |
| // Language linkage is a C++ concept, but saying that everything else in C has |
| // C language linkage fits the implementation nicely. |
| ASTContext &Context = D.getASTContext(); |
| if (!Context.getLangOpts().CPlusPlus) |
| return CLanguageLinkage; |
| |
| // C++ [dcl.link]p4: A C language linkage is ignored in determining the |
| // language linkage of the names of class members and the function type of |
| // class member functions. |
| const DeclContext *DC = D.getDeclContext(); |
| if (DC->isRecord()) |
| return CXXLanguageLinkage; |
| |
| // If the first decl is in an extern "C" context, any other redeclaration |
| // will have C language linkage. If the first one is not in an extern "C" |
| // context, we would have reported an error for any other decl being in one. |
| if (isFirstInExternCContext(&D)) |
| return CLanguageLinkage; |
| return CXXLanguageLinkage; |
| } |
| |
| template<typename T> |
| static bool isExternCTemplate(const T &D) { |
| // Since the context is ignored for class members, they can only have C++ |
| // language linkage or no language linkage. |
| const DeclContext *DC = D.getDeclContext(); |
| if (DC->isRecord()) { |
| assert(D.getASTContext().getLangOpts().CPlusPlus); |
| return false; |
| } |
| |
| return D.getLanguageLinkage() == CLanguageLinkage; |
| } |
| |
| LanguageLinkage VarDecl::getLanguageLinkage() const { |
| return getLanguageLinkageTemplate(*this); |
| } |
| |
| bool VarDecl::isExternC() const { |
| return isExternCTemplate(*this); |
| } |
| |
| static bool isLinkageSpecContext(const DeclContext *DC, |
| LinkageSpecDecl::LanguageIDs ID) { |
| while (DC->getDeclKind() != Decl::TranslationUnit) { |
| if (DC->getDeclKind() == Decl::LinkageSpec) |
| return cast<LinkageSpecDecl>(DC)->getLanguage() == ID; |
| DC = DC->getParent(); |
| } |
| return false; |
| } |
| |
| template <typename T> |
| static bool isInLanguageSpecContext(T *D, LinkageSpecDecl::LanguageIDs ID) { |
| return isLinkageSpecContext(D->getLexicalDeclContext(), ID); |
| } |
| |
| bool VarDecl::isInExternCContext() const { |
| return isInLanguageSpecContext(this, LinkageSpecDecl::lang_c); |
| } |
| |
| bool VarDecl::isInExternCXXContext() const { |
| return isInLanguageSpecContext(this, LinkageSpecDecl::lang_cxx); |
| } |
| |
| VarDecl *VarDecl::getCanonicalDecl() { |
| return getFirstDeclaration(); |
| } |
| |
| VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition( |
| ASTContext &C) const |
| { |
| // C++ [basic.def]p2: |
| // A declaration is a definition unless [...] it contains the 'extern' |
| // specifier or a linkage-specification and neither an initializer [...], |
| // it declares a static data member in a class declaration [...]. |
| // C++1y [temp.expl.spec]p15: |
| // An explicit specialization of a static data member or an explicit |
| // specialization of a static data member template is a definition if the |
| // declaration includes an initializer; otherwise, it is a declaration. |
| // |
| // FIXME: How do you declare (but not define) a partial specialization of |
| // a static data member template outside the containing class? |
| if (isStaticDataMember()) { |
| if (isOutOfLine() && |
| (hasInit() || |
| // If the first declaration is out-of-line, this may be an |
| // instantiation of an out-of-line partial specialization of a variable |
| // template for which we have not yet instantiated the initializer. |
| (getFirstDeclaration()->isOutOfLine() |
| ? getTemplateSpecializationKind() == TSK_Undeclared |
| : getTemplateSpecializationKind() != |
| TSK_ExplicitSpecialization) || |
| isa<VarTemplatePartialSpecializationDecl>(this))) |
| return Definition; |
| else |
| return DeclarationOnly; |
| } |
| // C99 6.7p5: |
| // A definition of an identifier is a declaration for that identifier that |
| // [...] causes storage to be reserved for that object. |
| // Note: that applies for all non-file-scope objects. |
| // C99 6.9.2p1: |
| // If the declaration of an identifier for an object has file scope and an |
| // initializer, the declaration is an external definition for the identifier |
| if (hasInit()) |
| return Definition; |
| |
| // A variable template specialization (other than a static data member |
| // template or an explicit specialization) is a declaration until we |
| // instantiate its initializer. |
| if (isa<VarTemplateSpecializationDecl>(this) && |
| getTemplateSpecializationKind() != TSK_ExplicitSpecialization) |
| return DeclarationOnly; |
| |
| if (hasExternalStorage()) |
| return DeclarationOnly; |
| |
| // [dcl.link] p7: |
| // A declaration directly contained in a linkage-specification is treated |
| // as if it contains the extern specifier for the purpose of determining |
| // the linkage of the declared name and whether it is a definition. |
| if (isSingleLineExternC(*this)) |
| return DeclarationOnly; |
| |
| // C99 6.9.2p2: |
| // A declaration of an object that has file scope without an initializer, |
| // and without a storage class specifier or the scs 'static', constitutes |
| // a tentative definition. |
| // No such thing in C++. |
| if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) |
| return TentativeDefinition; |
| |
| // What's left is (in C, block-scope) declarations without initializers or |
| // external storage. These are definitions. |
| return Definition; |
| } |
| |
| VarDecl *VarDecl::getActingDefinition() { |
| DefinitionKind Kind = isThisDeclarationADefinition(); |
| if (Kind != TentativeDefinition) |
| return 0; |
| |
| VarDecl *LastTentative = 0; |
| VarDecl *First = getFirstDeclaration(); |
| for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end(); |
| I != E; ++I) { |
| Kind = (*I)->isThisDeclarationADefinition(); |
| if (Kind == Definition) |
| return 0; |
| else if (Kind == TentativeDefinition) |
| LastTentative = *I; |
| } |
| return LastTentative; |
| } |
| |
| VarDecl *VarDecl::getDefinition(ASTContext &C) { |
| VarDecl *First = getFirstDeclaration(); |
| for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end(); |
| I != E; ++I) { |
| if ((*I)->isThisDeclarationADefinition(C) == Definition) |
| return *I; |
| } |
| return 0; |
| } |
| |
| VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { |
| DefinitionKind Kind = DeclarationOnly; |
| |
| const VarDecl *First = getFirstDeclaration(); |
| for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end(); |
| I != E; ++I) { |
| Kind = std::max(Kind, (*I)->isThisDeclarationADefinition(C)); |
| if (Kind == Definition) |
| break; |
| } |
| |
| return Kind; |
| } |
| |
| const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { |
| redecl_iterator I = redecls_begin(), E = redecls_end(); |
| while (I != E && !I->getInit()) |
| ++I; |
| |
| if (I != E) { |
| D = *I; |
| return I->getInit(); |
| } |
| return 0; |
| } |
| |
| bool VarDecl::isOutOfLine() const { |
| if (Decl::isOutOfLine()) |
| return true; |
| |
| if (!isStaticDataMember()) |
| return false; |
| |
| // If this static data member was instantiated from a static data member of |
| // a class template, check whether that static data member was defined |
| // out-of-line. |
| if (VarDecl *VD = getInstantiatedFromStaticDataMember()) |
| return VD->isOutOfLine(); |
| |
| return false; |
| } |
| |
| VarDecl *VarDecl::getOutOfLineDefinition() { |
| if (!isStaticDataMember()) |
| return 0; |
| |
| for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end(); |
| RD != RDEnd; ++RD) { |
| if (RD->getLexicalDeclContext()->isFileContext()) |
| return *RD; |
| } |
| |
| return 0; |
| } |
| |
| void VarDecl::setInit(Expr *I) { |
| if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) { |
| Eval->~EvaluatedStmt(); |
| getASTContext().Deallocate(Eval); |
| } |
| |
| Init = I; |
| } |
| |
| bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const { |
| const LangOptions &Lang = C.getLangOpts(); |
| |
| if (!Lang.CPlusPlus) |
| return false; |
| |
| // In C++11, any variable of reference type can be used in a constant |
| // expression if it is initialized by a constant expression. |
| if (Lang.CPlusPlus11 && getType()->isReferenceType()) |
| return true; |
| |
| // Only const objects can be used in constant expressions in C++. C++98 does |
| // not require the variable to be non-volatile, but we consider this to be a |
| // defect. |
| if (!getType().isConstQualified() || getType().isVolatileQualified()) |
| return false; |
| |
| // In C++, const, non-volatile variables of integral or enumeration types |
| // can be used in constant expressions. |
| if (getType()->isIntegralOrEnumerationType()) |
| return true; |
| |
| // Additionally, in C++11, non-volatile constexpr variables can be used in |
| // constant expressions. |
| return Lang.CPlusPlus11 && isConstexpr(); |
| } |
| |
| /// Convert the initializer for this declaration to the elaborated EvaluatedStmt |
| /// form, which contains extra information on the evaluated value of the |
| /// initializer. |
| EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { |
| EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>(); |
| if (!Eval) { |
| Stmt *S = Init.get<Stmt *>(); |
| // Note: EvaluatedStmt contains an APValue, which usually holds |
| // resources not allocated from the ASTContext. We need to do some |
| // work to avoid leaking those, but we do so in VarDecl::evaluateValue |
| // where we can detect whether there's anything to clean up or not. |
| Eval = new (getASTContext()) EvaluatedStmt; |
| Eval->Value = S; |
| Init = Eval; |
| } |
| return Eval; |
| } |
| |
| APValue *VarDecl::evaluateValue() const { |
| SmallVector<PartialDiagnosticAt, 8> Notes; |
| return evaluateValue(Notes); |
| } |
| |
| namespace { |
| // Destroy an APValue that was allocated in an ASTContext. |
| void DestroyAPValue(void* UntypedValue) { |
| static_cast<APValue*>(UntypedValue)->~APValue(); |
| } |
| } // namespace |
| |
| APValue *VarDecl::evaluateValue( |
| SmallVectorImpl<PartialDiagnosticAt> &Notes) const { |
| EvaluatedStmt *Eval = ensureEvaluatedStmt(); |
| |
| // We only produce notes indicating why an initializer is non-constant the |
| // first time it is evaluated. FIXME: The notes won't always be emitted the |
| // first time we try evaluation, so might not be produced at all. |
| if (Eval->WasEvaluated) |
| return Eval->Evaluated.isUninit() ? 0 : &Eval->Evaluated; |
| |
| const Expr *Init = cast<Expr>(Eval->Value); |
| assert(!Init->isValueDependent()); |
| |
| if (Eval->IsEvaluating) { |
| // FIXME: Produce a diagnostic for self-initialization. |
| Eval->CheckedICE = true; |
| Eval->IsICE = false; |
| return 0; |
| } |
| |
| Eval->IsEvaluating = true; |
| |
| bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), |
| this, Notes); |
| |
| // Ensure the computed APValue is cleaned up later if evaluation succeeded, |
| // or that it's empty (so that there's nothing to clean up) if evaluation |
| // failed. |
| if (!Result) |
| Eval->Evaluated = APValue(); |
| else if (Eval->Evaluated.needsCleanup()) |
| getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated); |
| |
| Eval->IsEvaluating = false; |
| Eval->WasEvaluated = true; |
| |
| // In C++11, we have determined whether the initializer was a constant |
| // expression as a side-effect. |
| if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) { |
| Eval->CheckedICE = true; |
| Eval->IsICE = Result && Notes.empty(); |
| } |
| |
| return Result ? &Eval->Evaluated : 0; |
| } |
| |
| bool VarDecl::checkInitIsICE() const { |
| // Initializers of weak variables are never ICEs. |
| if (isWeak()) |
| return false; |
| |
| EvaluatedStmt *Eval = ensureEvaluatedStmt(); |
| if (Eval->CheckedICE) |
| // We have already checked whether this subexpression is an |
| // integral constant expression. |
| return Eval->IsICE; |
| |
| const Expr *Init = cast<Expr>(Eval->Value); |
| assert(!Init->isValueDependent()); |
| |
| // In C++11, evaluate the initializer to check whether it's a constant |
| // expression. |
| if (getASTContext().getLangOpts().CPlusPlus11) { |
| SmallVector<PartialDiagnosticAt, 8> Notes; |
| evaluateValue(Notes); |
| return Eval->IsICE; |
| } |
| |
| // It's an ICE whether or not the definition we found is |
| // out-of-line. See DR 721 and the discussion in Clang PR |
| // 6206 for details. |
| |
| if (Eval->CheckingICE) |
| return false; |
| Eval->CheckingICE = true; |
| |
| Eval->IsICE = Init->isIntegerConstantExpr(getASTContext()); |
| Eval->CheckingICE = false; |
| Eval->CheckedICE = true; |
| return Eval->IsICE; |
| } |
| |
| VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { |
| if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) |
| return cast<VarDecl>(MSI->getInstantiatedFrom()); |
| |
| return 0; |
| } |
| |
| TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { |
| if (const VarTemplateSpecializationDecl *Spec = |
| dyn_cast<VarTemplateSpecializationDecl>(this)) |
| return Spec->getSpecializationKind(); |
| |
| if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) |
| return MSI->getTemplateSpecializationKind(); |
| |
| return TSK_Undeclared; |
| } |
| |
| SourceLocation VarDecl::getPointOfInstantiation() const { |
| if (const VarTemplateSpecializationDecl *Spec = |
| dyn_cast<VarTemplateSpecializationDecl>(this)) |
| return Spec->getPointOfInstantiation(); |
| |
| if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) |
| return MSI->getPointOfInstantiation(); |
| |
| return SourceLocation(); |
| } |
| |
| VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { |
| return getASTContext().getTemplateOrSpecializationInfo(this) |
| .dyn_cast<VarTemplateDecl *>(); |
| } |
| |
| void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { |
| getASTContext().setTemplateOrSpecializationInfo(this, Template); |
| } |
| |
| MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { |
| if (isStaticDataMember()) |
| // FIXME: Remove ? |
| // return getASTContext().getInstantiatedFromStaticDataMember(this); |
| return getASTContext().getTemplateOrSpecializationInfo(this) |
| .dyn_cast<MemberSpecializationInfo *>(); |
| return 0; |
| } |
| |
| void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, |
| SourceLocation PointOfInstantiation) { |
| assert((isa<VarTemplateSpecializationDecl>(this) || |
| getMemberSpecializationInfo()) && |
| "not a variable or static data member template specialization"); |
| |
| if (VarTemplateSpecializationDecl *Spec = |
| dyn_cast<VarTemplateSpecializationDecl>(this)) { |
| Spec->setSpecializationKind(TSK); |
| if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && |
| Spec->getPointOfInstantiation().isInvalid()) |
| Spec->setPointOfInstantiation(PointOfInstantiation); |
| } |
| |
| if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { |
| MSI->setTemplateSpecializationKind(TSK); |
| if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && |
| MSI->getPointOfInstantiation().isInvalid()) |
| MSI->setPointOfInstantiation(PointOfInstantiation); |
| } |
| } |
| |
| void |
| VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, |
| TemplateSpecializationKind TSK) { |
| assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && |
| "Previous template or instantiation?"); |
| getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ParmVarDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation StartLoc, |
| SourceLocation IdLoc, IdentifierInfo *Id, |
| QualType T, TypeSourceInfo *TInfo, |
| StorageClass S, Expr *DefArg) { |
| return new (C) ParmVarDecl(ParmVar, DC, StartLoc, IdLoc, Id, T, TInfo, |
| S, DefArg); |
| } |
| |
| QualType ParmVarDecl::getOriginalType() const { |
| TypeSourceInfo *TSI = getTypeSourceInfo(); |
| QualType T = TSI ? TSI->getType() : getType(); |
| if (const DecayedType *DT = dyn_cast<DecayedType>(T)) |
| return DT->getOriginalType(); |
| return T; |
| } |
| |
| ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ParmVarDecl)); |
| return new (Mem) ParmVarDecl(ParmVar, 0, SourceLocation(), SourceLocation(), |
| 0, QualType(), 0, SC_None, 0); |
| } |
| |
| SourceRange ParmVarDecl::getSourceRange() const { |
| if (!hasInheritedDefaultArg()) { |
| SourceRange ArgRange = getDefaultArgRange(); |
| if (ArgRange.isValid()) |
| return SourceRange(getOuterLocStart(), ArgRange.getEnd()); |
| } |
| |
| // DeclaratorDecl considers the range of postfix types as overlapping with the |
| // declaration name, but this is not the case with parameters in ObjC methods. |
| if (isa<ObjCMethodDecl>(getDeclContext())) |
| return SourceRange(DeclaratorDecl::getLocStart(), getLocation()); |
| |
| return DeclaratorDecl::getSourceRange(); |
| } |
| |
| Expr *ParmVarDecl::getDefaultArg() { |
| assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); |
| assert(!hasUninstantiatedDefaultArg() && |
| "Default argument is not yet instantiated!"); |
| |
| Expr *Arg = getInit(); |
| if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg)) |
| return E->getSubExpr(); |
| |
| return Arg; |
| } |
| |
| SourceRange ParmVarDecl::getDefaultArgRange() const { |
| if (const Expr *E = getInit()) |
| return E->getSourceRange(); |
| |
| if (hasUninstantiatedDefaultArg()) |
| return getUninstantiatedDefaultArg()->getSourceRange(); |
| |
| return SourceRange(); |
| } |
| |
| bool ParmVarDecl::isParameterPack() const { |
| return isa<PackExpansionType>(getType()); |
| } |
| |
| void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { |
| getASTContext().setParameterIndex(this, parameterIndex); |
| ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; |
| } |
| |
| unsigned ParmVarDecl::getParameterIndexLarge() const { |
| return getASTContext().getParameterIndex(this); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FunctionDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void FunctionDecl::getNameForDiagnostic( |
| raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { |
| NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); |
| const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); |
| if (TemplateArgs) |
| TemplateSpecializationType::PrintTemplateArgumentList( |
| OS, TemplateArgs->data(), TemplateArgs->size(), Policy); |
| } |
| |
| bool FunctionDecl::isVariadic() const { |
| if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>()) |
| return FT->isVariadic(); |
| return false; |
| } |
| |
| bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { |
| for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) { |
| if (I->Body || I->IsLateTemplateParsed) { |
| Definition = *I; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool FunctionDecl::hasTrivialBody() const |
| { |
| Stmt *S = getBody(); |
| if (!S) { |
| // Since we don't have a body for this function, we don't know if it's |
| // trivial or not. |
| return false; |
| } |
| |
| if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) |
| return true; |
| return false; |
| } |
| |
| bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const { |
| for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) { |
| if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed) { |
| Definition = I->IsDeleted ? I->getCanonicalDecl() : *I; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { |
| for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) { |
| if (I->Body) { |
| Definition = *I; |
| return I->Body.get(getASTContext().getExternalSource()); |
| } else if (I->IsLateTemplateParsed) { |
| Definition = *I; |
| return 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void FunctionDecl::setBody(Stmt *B) { |
| Body = B; |
| if (B) |
| EndRangeLoc = B->getLocEnd(); |
| } |
| |
| void FunctionDecl::setPure(bool P) { |
| IsPure = P; |
| if (P) |
| if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) |
| Parent->markedVirtualFunctionPure(); |
| } |
| |
| template<std::size_t Len> |
| static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { |
| IdentifierInfo *II = ND->getIdentifier(); |
| return II && II->isStr(Str); |
| } |
| |
| bool FunctionDecl::isMain() const { |
| const TranslationUnitDecl *tunit = |
| dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); |
| return tunit && |
| !tunit->getASTContext().getLangOpts().Freestanding && |
| isNamed(this, "main"); |
| } |
| |
| bool FunctionDecl::isMSVCRTEntryPoint() const { |
| const TranslationUnitDecl *TUnit = |
| dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); |
| if (!TUnit) |
| return false; |
| |
| // Even though we aren't really targeting MSVCRT if we are freestanding, |
| // semantic analysis for these functions remains the same. |
| |
| // MSVCRT entry points only exist on MSVCRT targets. |
| if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) |
| return false; |
| |
| // Nameless functions like constructors cannot be entry points. |
| if (!getIdentifier()) |
| return false; |
| |
| return llvm::StringSwitch<bool>(getName()) |
| .Cases("main", // an ANSI console app |
| "wmain", // a Unicode console App |
| "WinMain", // an ANSI GUI app |
| "wWinMain", // a Unicode GUI app |
| "DllMain", // a DLL |
| true) |
| .Default(false); |
| } |
| |
| bool FunctionDecl::isReservedGlobalPlacementOperator() const { |
| assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); |
| assert(getDeclName().getCXXOverloadedOperator() == OO_New || |
| getDeclName().getCXXOverloadedOperator() == OO_Delete || |
| getDeclName().getCXXOverloadedOperator() == OO_Array_New || |
| getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); |
| |
| if (isa<CXXRecordDecl>(getDeclContext())) return false; |
| assert(getDeclContext()->getRedeclContext()->isTranslationUnit()); |
| |
| const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>(); |
| if (proto->getNumArgs() != 2 || proto->isVariadic()) return false; |
| |
| ASTContext &Context = |
| cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) |
| ->getASTContext(); |
| |
| // The result type and first argument type are constant across all |
| // these operators. The second argument must be exactly void*. |
| return (proto->getArgType(1).getCanonicalType() == Context.VoidPtrTy); |
| } |
| |
| static bool isNamespaceStd(const DeclContext *DC) { |
| const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC->getRedeclContext()); |
| return ND && isNamed(ND, "std") && |
| ND->getParent()->getRedeclContext()->isTranslationUnit(); |
| } |
| |
| bool FunctionDecl::isReplaceableGlobalAllocationFunction() const { |
| if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) |
| return false; |
| if (getDeclName().getCXXOverloadedOperator() != OO_New && |
| getDeclName().getCXXOverloadedOperator() != OO_Delete && |
| getDeclName().getCXXOverloadedOperator() != OO_Array_New && |
| getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) |
| return false; |
| |
| if (isa<CXXRecordDecl>(getDeclContext())) |
| return false; |
| assert(getDeclContext()->getRedeclContext()->isTranslationUnit()); |
| |
| const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>(); |
| if (FPT->getNumArgs() > 2 || FPT->isVariadic()) |
| return false; |
| |
| // If this is a single-parameter function, it must be a replaceable global |
| // allocation or deallocation function. |
| if (FPT->getNumArgs() == 1) |
| return true; |
| |
| // Otherwise, we're looking for a second parameter whose type is |
| // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'. |
| QualType Ty = FPT->getArgType(1); |
| ASTContext &Ctx = getASTContext(); |
| if (Ctx.getLangOpts().SizedDeallocation && Ty == Ctx.getSizeType()) |
| return true; |
| if (!Ty->isReferenceType()) |
| return false; |
| Ty = Ty->getPointeeType(); |
| if (Ty.getCVRQualifiers() != Qualifiers::Const) |
| return false; |
| // FIXME: Recognise nothrow_t in an inline namespace inside std? |
| const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
| return RD && isNamed(RD, "nothrow_t") && isNamespaceStd(RD->getDeclContext()); |
| } |
| |
| LanguageLinkage FunctionDecl::getLanguageLinkage() const { |
| // Users expect to be able to write |
| // extern "C" void *__builtin_alloca (size_t); |
| // so consider builtins as having C language linkage. |
| if (getBuiltinID()) |
| return CLanguageLinkage; |
| |
| return getLanguageLinkageTemplate(*this); |
| } |
| |
| bool FunctionDecl::isExternC() const { |
| return isExternCTemplate(*this); |
| } |
| |
| bool FunctionDecl::isInExternCContext() const { |
| return isInLanguageSpecContext(this, LinkageSpecDecl::lang_c); |
| } |
| |
| bool FunctionDecl::isInExternCXXContext() const { |
| return isInLanguageSpecContext(this, LinkageSpecDecl::lang_cxx); |
| } |
| |
| bool FunctionDecl::isGlobal() const { |
| if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this)) |
| return Method->isStatic(); |
| |
| if (getCanonicalDecl()->getStorageClass() == SC_Static) |
| return false; |
| |
| for (const DeclContext *DC = getDeclContext(); |
| DC->isNamespace(); |
| DC = DC->getParent()) { |
| if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) { |
| if (!Namespace->getDeclName()) |
| return false; |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool FunctionDecl::isNoReturn() const { |
| return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || |
| hasAttr<C11NoReturnAttr>() || |
| getType()->getAs<FunctionType>()->getNoReturnAttr(); |
| } |
| |
| void |
| FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { |
| redeclarable_base::setPreviousDeclaration(PrevDecl); |
| |
| if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { |
| FunctionTemplateDecl *PrevFunTmpl |
| = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0; |
| assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); |
| FunTmpl->setPreviousDeclaration(PrevFunTmpl); |
| } |
| |
| if (PrevDecl && PrevDecl->IsInline) |
| IsInline = true; |
| } |
| |
| const FunctionDecl *FunctionDecl::getCanonicalDecl() const { |
| return getFirstDeclaration(); |
| } |
| |
| FunctionDecl *FunctionDecl::getCanonicalDecl() { |
| return getFirstDeclaration(); |
| } |
| |
| /// \brief Returns a value indicating whether this function |
| /// corresponds to a builtin function. |
| /// |
| /// The function corresponds to a built-in function if it is |
| /// declared at translation scope or within an extern "C" block and |
| /// its name matches with the name of a builtin. The returned value |
| /// will be 0 for functions that do not correspond to a builtin, a |
| /// value of type \c Builtin::ID if in the target-independent range |
| /// \c [1,Builtin::First), or a target-specific builtin value. |
| unsigned FunctionDecl::getBuiltinID() const { |
| if (!getIdentifier()) |
| return 0; |
| |
| unsigned BuiltinID = getIdentifier()->getBuiltinID(); |
| if (!BuiltinID) |
| return 0; |
| |
| ASTContext &Context = getASTContext(); |
| if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) |
| return BuiltinID; |
| |
| // This function has the name of a known C library |
| // function. Determine whether it actually refers to the C library |
| // function or whether it just has the same name. |
| |
| // If this is a static function, it's not a builtin. |
| if (getStorageClass() == SC_Static) |
| return 0; |
| |
| // If this function is at translation-unit scope and we're not in |
| // C++, it refers to the C library function. |
| if (!Context.getLangOpts().CPlusPlus && |
| getDeclContext()->isTranslationUnit()) |
| return BuiltinID; |
| |
| // If the function is in an extern "C" linkage specification and is |
| // not marked "overloadable", it's the real function. |
| if (isa<LinkageSpecDecl>(getDeclContext()) && |
| cast<LinkageSpecDecl>(getDeclContext())->getLanguage() |
| == LinkageSpecDecl::lang_c && |
| !getAttr<OverloadableAttr>()) |
| return BuiltinID; |
| |
| // Not a builtin |
| return 0; |
| } |
| |
| |
| /// getNumParams - Return the number of parameters this function must have |
| /// based on its FunctionType. This is the length of the ParamInfo array |
| /// after it has been created. |
| unsigned FunctionDecl::getNumParams() const { |
| const FunctionType *FT = getType()->castAs<FunctionType>(); |
| if (isa<FunctionNoProtoType>(FT)) |
| return 0; |
| return cast<FunctionProtoType>(FT)->getNumArgs(); |
| |
| } |
| |
| void FunctionDecl::setParams(ASTContext &C, |
| ArrayRef<ParmVarDecl *> NewParamInfo) { |
| assert(ParamInfo == 0 && "Already has param info!"); |
| assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); |
| |
| // Zero params -> null pointer. |
| if (!NewParamInfo.empty()) { |
| ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; |
| std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); |
| } |
| } |
| |
| void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) { |
| assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!"); |
| |
| if (!NewDecls.empty()) { |
| NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()]; |
| std::copy(NewDecls.begin(), NewDecls.end(), A); |
| DeclsInPrototypeScope = ArrayRef<NamedDecl *>(A, NewDecls.size()); |
| } |
| } |
| |
| /// getMinRequiredArguments - Returns the minimum number of arguments |
| /// needed to call this function. This may be fewer than the number of |
| /// function parameters, if some of the parameters have default |
| /// arguments (in C++) or the last parameter is a parameter pack. |
| unsigned FunctionDecl::getMinRequiredArguments() const { |
| if (!getASTContext().getLangOpts().CPlusPlus) |
| return getNumParams(); |
| |
| unsigned NumRequiredArgs = getNumParams(); |
| |
| // If the last parameter is a parameter pack, we don't need an argument for |
| // it. |
| if (NumRequiredArgs > 0 && |
| getParamDecl(NumRequiredArgs - 1)->isParameterPack()) |
| --NumRequiredArgs; |
| |
| // If this parameter has a default argument, we don't need an argument for |
| // it. |
| while (NumRequiredArgs > 0 && |
| getParamDecl(NumRequiredArgs-1)->hasDefaultArg()) |
| --NumRequiredArgs; |
| |
| // We might have parameter packs before the end. These can't be deduced, |
| // but they can still handle multiple arguments. |
| unsigned ArgIdx = NumRequiredArgs; |
| while (ArgIdx > 0) { |
| if (getParamDecl(ArgIdx - 1)->isParameterPack()) |
| NumRequiredArgs = ArgIdx; |
| |
| --ArgIdx; |
| } |
| |
| return NumRequiredArgs; |
| } |
| |
| static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { |
| // Only consider file-scope declarations in this test. |
| if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) |
| return false; |
| |
| // Only consider explicit declarations; the presence of a builtin for a |
| // libcall shouldn't affect whether a definition is externally visible. |
| if (Redecl->isImplicit()) |
| return false; |
| |
| if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) |
| return true; // Not an inline definition |
| |
| return false; |
| } |
| |
| /// \brief For a function declaration in C or C++, determine whether this |
| /// declaration causes the definition to be externally visible. |
| /// |
| /// Specifically, this determines if adding the current declaration to the set |
| /// of redeclarations of the given functions causes |
| /// isInlineDefinitionExternallyVisible to change from false to true. |
| bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { |
| assert(!doesThisDeclarationHaveABody() && |
| "Must have a declaration without a body."); |
| |
| ASTContext &Context = getASTContext(); |
| |
| if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { |
| // With GNU inlining, a declaration with 'inline' but not 'extern', forces |
| // an externally visible definition. |
| // |
| // FIXME: What happens if gnu_inline gets added on after the first |
| // declaration? |
| if (!isInlineSpecified() || getStorageClass() == SC_Extern) |
| return false; |
| |
| const FunctionDecl *Prev = this; |
| bool FoundBody = false; |
| while ((Prev = Prev->getPreviousDecl())) { |
| FoundBody |= Prev->Body.isValid(); |
| |
| if (Prev->Body) { |
| // If it's not the case that both 'inline' and 'extern' are |
| // specified on the definition, then it is always externally visible. |
| if (!Prev->isInlineSpecified() || |
| Prev->getStorageClass() != SC_Extern) |
| return false; |
| } else if (Prev->isInlineSpecified() && |
| Prev->getStorageClass() != SC_Extern) { |
| return false; |
| } |
| } |
| return FoundBody; |
| } |
| |
| if (Context.getLangOpts().CPlusPlus) |
| return false; |
| |
| // C99 6.7.4p6: |
| // [...] If all of the file scope declarations for a function in a |
| // translation unit include the inline function specifier without extern, |
| // then the definition in that translation unit is an inline definition. |
| if (isInlineSpecified() && getStorageClass() != SC_Extern) |
| return false; |
| const FunctionDecl *Prev = this; |
| bool FoundBody = false; |
| while ((Prev = Prev->getPreviousDecl())) { |
| FoundBody |= Prev->Body.isValid(); |
| if (RedeclForcesDefC99(Prev)) |
| return false; |
| } |
| return FoundBody; |
| } |
| |
| /// \brief For an inline function definition in C, or for a gnu_inline function |
| /// in C++, determine whether the definition will be externally visible. |
| /// |
| /// Inline function definitions are always available for inlining optimizations. |
| /// However, depending on the language dialect, declaration specifiers, and |
| /// attributes, the definition of an inline function may or may not be |
| /// "externally" visible to other translation units in the program. |
| /// |
| /// In C99, inline definitions are not externally visible by default. However, |
| /// if even one of the global-scope declarations is marked "extern inline", the |
| /// inline definition becomes externally visible (C99 6.7.4p6). |
| /// |
| /// In GNU89 mode, or if the gnu_inline attribute is attached to the function |
| /// definition, we use the GNU semantics for inline, which are nearly the |
| /// opposite of C99 semantics. In particular, "inline" by itself will create |
| /// an externally visible symbol, but "extern inline" will not create an |
| /// externally visible symbol. |
| bool FunctionDecl::isInlineDefinitionExternallyVisible() const { |
| assert(doesThisDeclarationHaveABody() && "Must have the function definition"); |
| assert(isInlined() && "Function must be inline"); |
| ASTContext &Context = getASTContext(); |
| |
| if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { |
| // Note: If you change the logic here, please change |
| // doesDeclarationForceExternallyVisibleDefinition as well. |
| // |
| // If it's not the case that both 'inline' and 'extern' are |
| // specified on the definition, then this inline definition is |
| // externally visible. |
| if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) |
| return true; |
| |
| // If any declaration is 'inline' but not 'extern', then this definition |
| // is externally visible. |
| for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end(); |
| Redecl != RedeclEnd; |
| ++Redecl) { |
| if (Redecl->isInlineSpecified() && |
| Redecl->getStorageClass() != SC_Extern) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // The rest of this function is C-only. |
| assert(!Context.getLangOpts().CPlusPlus && |
| "should not use C inline rules in C++"); |
| |
| // C99 6.7.4p6: |
| // [...] If all of the file scope declarations for a function in a |
| // translation unit include the inline function specifier without extern, |
| // then the definition in that translation unit is an inline definition. |
| for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end(); |
| Redecl != RedeclEnd; |
| ++Redecl) { |
| if (RedeclForcesDefC99(*Redecl)) |
| return true; |
| } |
| |
| // C99 6.7.4p6: |
| // An inline definition does not provide an external definition for the |
| // function, and does not forbid an external definition in another |
| // translation unit. |
| return false; |
| } |
| |
| /// getOverloadedOperator - Which C++ overloaded operator this |
| /// function represents, if any. |
| OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { |
| if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) |
| return getDeclName().getCXXOverloadedOperator(); |
| else |
| return OO_None; |
| } |
| |
| /// getLiteralIdentifier - The literal suffix identifier this function |
| /// represents, if any. |
| const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { |
| if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) |
| return getDeclName().getCXXLiteralIdentifier(); |
| else |
| return 0; |
| } |
| |
| FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { |
| if (TemplateOrSpecialization.isNull()) |
| return TK_NonTemplate; |
| if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) |
| return TK_FunctionTemplate; |
| if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) |
| return TK_MemberSpecialization; |
| if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) |
| return TK_FunctionTemplateSpecialization; |
| if (TemplateOrSpecialization.is |
| <DependentFunctionTemplateSpecializationInfo*>()) |
| return TK_DependentFunctionTemplateSpecialization; |
| |
| llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); |
| } |
| |
| FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { |
| if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) |
| return cast<FunctionDecl>(Info->getInstantiatedFrom()); |
| |
| return 0; |
| } |
| |
| void |
| FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, |
| FunctionDecl *FD, |
| TemplateSpecializationKind TSK) { |
| assert(TemplateOrSpecialization.isNull() && |
| "Member function is already a specialization"); |
| MemberSpecializationInfo *Info |
| = new (C) MemberSpecializationInfo(FD, TSK); |
| TemplateOrSpecialization = Info; |
| } |
| |
| bool FunctionDecl::isImplicitlyInstantiable() const { |
| // If the function is invalid, it can't be implicitly instantiated. |
| if (isInvalidDecl()) |
| return false; |
| |
| switch (getTemplateSpecializationKind()) { |
| case TSK_Undeclared: |
| case TSK_ExplicitInstantiationDefinition: |
| return false; |
| |
| case TSK_ImplicitInstantiation: |
| return true; |
| |
| // It is possible to instantiate TSK_ExplicitSpecialization kind |
| // if the FunctionDecl has a class scope specialization pattern. |
| case TSK_ExplicitSpecialization: |
| return getClassScopeSpecializationPattern() != 0; |
| |
| case TSK_ExplicitInstantiationDeclaration: |
| // Handled below. |
| break; |
| } |
| |
| // Find the actual template from which we will instantiate. |
| const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); |
| bool HasPattern = false; |
| if (PatternDecl) |
| HasPattern = PatternDecl->hasBody(PatternDecl); |
| |
| // C++0x [temp.explicit]p9: |
| // Except for inline functions, other explicit instantiation declarations |
| // have the effect of suppressing the implicit instantiation of the entity |
| // to which they refer. |
| if (!HasPattern || !PatternDecl) |
| return true; |
| |
| return PatternDecl->isInlined(); |
| } |
| |
| bool FunctionDecl::isTemplateInstantiation() const { |
| switch (getTemplateSpecializationKind()) { |
| case TSK_Undeclared: |
| case TSK_ExplicitSpecialization: |
| return false; |
| case TSK_ImplicitInstantiation: |
| case TSK_ExplicitInstantiationDeclaration: |
| case TSK_ExplicitInstantiationDefinition: |
| return true; |
| } |
| llvm_unreachable("All TSK values handled."); |
| } |
| |
| FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const { |
| // Handle class scope explicit specialization special case. |
| if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization) |
| return getClassScopeSpecializationPattern(); |
| |
| if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { |
| while (Primary->getInstantiatedFromMemberTemplate()) { |
| // If we have hit a point where the user provided a specialization of |
| // this template, we're done looking. |
| if (Primary->isMemberSpecialization()) |
| break; |
| |
| Primary = Primary->getInstantiatedFromMemberTemplate(); |
| } |
| |
| return Primary->getTemplatedDecl(); |
| } |
| |
| return getInstantiatedFromMemberFunction(); |
| } |
| |
| FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { |
| if (FunctionTemplateSpecializationInfo *Info |
| = TemplateOrSpecialization |
| .dyn_cast<FunctionTemplateSpecializationInfo*>()) { |
| return Info->Template.getPointer(); |
| } |
| return 0; |
| } |
| |
| FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const { |
| return getASTContext().getClassScopeSpecializationPattern(this); |
| } |
| |
| const TemplateArgumentList * |
| FunctionDecl::getTemplateSpecializationArgs() const { |
| if (FunctionTemplateSpecializationInfo *Info |
| = TemplateOrSpecialization |
| .dyn_cast<FunctionTemplateSpecializationInfo*>()) { |
| return Info->TemplateArguments; |
| } |
| return 0; |
| } |
| |
| const ASTTemplateArgumentListInfo * |
| FunctionDecl::getTemplateSpecializationArgsAsWritten() const { |
| if (FunctionTemplateSpecializationInfo *Info |
| = TemplateOrSpecialization |
| .dyn_cast<FunctionTemplateSpecializationInfo*>()) { |
| return Info->TemplateArgumentsAsWritten; |
| } |
| return 0; |
| } |
| |
| void |
| FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, |
| FunctionTemplateDecl *Template, |
| const TemplateArgumentList *TemplateArgs, |
| void *InsertPos, |
| TemplateSpecializationKind TSK, |
| const TemplateArgumentListInfo *TemplateArgsAsWritten, |
| SourceLocation PointOfInstantiation) { |
| assert(TSK != TSK_Undeclared && |
| "Must specify the type of function template specialization"); |
| FunctionTemplateSpecializationInfo *Info |
| = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); |
| if (!Info) |
| Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK, |
| TemplateArgs, |
| TemplateArgsAsWritten, |
| PointOfInstantiation); |
| TemplateOrSpecialization = Info; |
| Template->addSpecialization(Info, InsertPos); |
| } |
| |
| void |
| FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, |
| const UnresolvedSetImpl &Templates, |
| const TemplateArgumentListInfo &TemplateArgs) { |
| assert(TemplateOrSpecialization.isNull()); |
| size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo); |
| Size += Templates.size() * sizeof(FunctionTemplateDecl*); |
| Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc); |
| void *Buffer = Context.Allocate(Size); |
| DependentFunctionTemplateSpecializationInfo *Info = |
| new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates, |
| TemplateArgs); |
| TemplateOrSpecialization = Info; |
| } |
| |
| DependentFunctionTemplateSpecializationInfo:: |
| DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, |
| const TemplateArgumentListInfo &TArgs) |
| : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { |
| |
| d.NumTemplates = Ts.size(); |
| d.NumArgs = TArgs.size(); |
| |
| FunctionTemplateDecl **TsArray = |
| const_cast<FunctionTemplateDecl**>(getTemplates()); |
| for (unsigned I = 0, E = Ts.size(); I != E; ++I) |
| TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); |
| |
| TemplateArgumentLoc *ArgsArray = |
| const_cast<TemplateArgumentLoc*>(getTemplateArgs()); |
| for (unsigned I = 0, E = TArgs.size(); I != E; ++I) |
| new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); |
| } |
| |
| TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { |
| // For a function template specialization, query the specialization |
| // information object. |
| FunctionTemplateSpecializationInfo *FTSInfo |
| = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); |
| if (FTSInfo) |
| return FTSInfo->getTemplateSpecializationKind(); |
| |
| MemberSpecializationInfo *MSInfo |
| = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>(); |
| if (MSInfo) |
| return MSInfo->getTemplateSpecializationKind(); |
| |
| return TSK_Undeclared; |
| } |
| |
| void |
| FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, |
| SourceLocation PointOfInstantiation) { |
| if (FunctionTemplateSpecializationInfo *FTSInfo |
| = TemplateOrSpecialization.dyn_cast< |
| FunctionTemplateSpecializationInfo*>()) { |
| FTSInfo->setTemplateSpecializationKind(TSK); |
| if (TSK != TSK_ExplicitSpecialization && |
| PointOfInstantiation.isValid() && |
| FTSInfo->getPointOfInstantiation().isInvalid()) |
| FTSInfo->setPointOfInstantiation(PointOfInstantiation); |
| } else if (MemberSpecializationInfo *MSInfo |
| = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { |
| MSInfo->setTemplateSpecializationKind(TSK); |
| if (TSK != TSK_ExplicitSpecialization && |
| PointOfInstantiation.isValid() && |
| MSInfo->getPointOfInstantiation().isInvalid()) |
| MSInfo->setPointOfInstantiation(PointOfInstantiation); |
| } else |
| llvm_unreachable("Function cannot have a template specialization kind"); |
| } |
| |
| SourceLocation FunctionDecl::getPointOfInstantiation() const { |
| if (FunctionTemplateSpecializationInfo *FTSInfo |
| = TemplateOrSpecialization.dyn_cast< |
| FunctionTemplateSpecializationInfo*>()) |
| return FTSInfo->getPointOfInstantiation(); |
| else if (MemberSpecializationInfo *MSInfo |
| = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) |
| return MSInfo->getPointOfInstantiation(); |
| |
| return SourceLocation(); |
| } |
| |
| bool FunctionDecl::isOutOfLine() const { |
| if (Decl::isOutOfLine()) |
| return true; |
| |
| // If this function was instantiated from a member function of a |
| // class template, check whether that member function was defined out-of-line. |
| if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { |
| const FunctionDecl *Definition; |
| if (FD->hasBody(Definition)) |
| return Definition->isOutOfLine(); |
| } |
| |
| // If this function was instantiated from a function template, |
| // check whether that function template was defined out-of-line. |
| if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { |
| const FunctionDecl *Definition; |
| if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) |
| return Definition->isOutOfLine(); |
| } |
| |
| return false; |
| } |
| |
| SourceRange FunctionDecl::getSourceRange() const { |
| return SourceRange(getOuterLocStart(), EndRangeLoc); |
| } |
| |
| unsigned FunctionDecl::getMemoryFunctionKind() const { |
| IdentifierInfo *FnInfo = getIdentifier(); |
| |
| if (!FnInfo) |
| return 0; |
| |
| // Builtin handling. |
| switch (getBuiltinID()) { |
| case Builtin::BI__builtin_memset: |
| case Builtin::BI__builtin___memset_chk: |
| case Builtin::BImemset: |
| return Builtin::BImemset; |
| |
| case Builtin::BI__builtin_memcpy: |
| case Builtin::BI__builtin___memcpy_chk: |
| case Builtin::BImemcpy: |
| return Builtin::BImemcpy; |
| |
| case Builtin::BI__builtin_memmove: |
| case Builtin::BI__builtin___memmove_chk: |
| case Builtin::BImemmove: |
| return Builtin::BImemmove; |
| |
| case Builtin::BIstrlcpy: |
| return Builtin::BIstrlcpy; |
| case Builtin::BIstrlcat: |
| return Builtin::BIstrlcat; |
| |
| case Builtin::BI__builtin_memcmp: |
| case Builtin::BImemcmp: |
| return Builtin::BImemcmp; |
| |
| case Builtin::BI__builtin_strncpy: |
| case Builtin::BI__builtin___strncpy_chk: |
| case Builtin::BIstrncpy: |
| return Builtin::BIstrncpy; |
| |
| case Builtin::BI__builtin_strncmp: |
| case Builtin::BIstrncmp: |
| return Builtin::BIstrncmp; |
| |
| case Builtin::BI__builtin_strncasecmp: |
| case Builtin::BIstrncasecmp: |
| return Builtin::BIstrncasecmp; |
| |
| case Builtin::BI__builtin_strncat: |
| case Builtin::BI__builtin___strncat_chk: |
| case Builtin::BIstrncat: |
| return Builtin::BIstrncat; |
| |
| case Builtin::BI__builtin_strndup: |
| case Builtin::BIstrndup: |
| return Builtin::BIstrndup; |
| |
| case Builtin::BI__builtin_strlen: |
| case Builtin::BIstrlen: |
| return Builtin::BIstrlen; |
| |
| default: |
| if (isExternC()) { |
| if (FnInfo->isStr("memset")) |
| return Builtin::BImemset; |
| else if (FnInfo->isStr("memcpy")) |
| return Builtin::BImemcpy; |
| else if (FnInfo->isStr("memmove")) |
| return Builtin::BImemmove; |
| else if (FnInfo->isStr("memcmp")) |
| return Builtin::BImemcmp; |
| else if (FnInfo->isStr("strncpy")) |
| return Builtin::BIstrncpy; |
| else if (FnInfo->isStr("strncmp")) |
| return Builtin::BIstrncmp; |
| else if (FnInfo->isStr("strncasecmp")) |
| return Builtin::BIstrncasecmp; |
| else if (FnInfo->isStr("strncat")) |
| return Builtin::BIstrncat; |
| else if (FnInfo->isStr("strndup")) |
| return Builtin::BIstrndup; |
| else if (FnInfo->isStr("strlen")) |
| return Builtin::BIstrlen; |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FieldDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, |
| SourceLocation StartLoc, SourceLocation IdLoc, |
| IdentifierInfo *Id, QualType T, |
| TypeSourceInfo *TInfo, Expr *BW, bool Mutable, |
| InClassInitStyle InitStyle) { |
| return new (C) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, |
| BW, Mutable, InitStyle); |
| } |
| |
| FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FieldDecl)); |
| return new (Mem) FieldDecl(Field, 0, SourceLocation(), SourceLocation(), |
| 0, QualType(), 0, 0, false, ICIS_NoInit); |
| } |
| |
| bool FieldDecl::isAnonymousStructOrUnion() const { |
| if (!isImplicit() || getDeclName()) |
| return false; |
| |
| if (const RecordType *Record = getType()->getAs<RecordType>()) |
| return Record->getDecl()->isAnonymousStructOrUnion(); |
| |
| return false; |
| } |
| |
| unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { |
| assert(isBitField() && "not a bitfield"); |
| Expr *BitWidth = InitializerOrBitWidth.getPointer(); |
| return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue(); |
| } |
| |
| unsigned FieldDecl::getFieldIndex() const { |
| if (CachedFieldIndex) return CachedFieldIndex - 1; |
| |
| unsigned Index = 0; |
| const RecordDecl *RD = getParent(); |
| |
| for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); |
| I != E; ++I, ++Index) |
| I->CachedFieldIndex = Index + 1; |
| |
| assert(CachedFieldIndex && "failed to find field in parent"); |
| return CachedFieldIndex - 1; |
| } |
| |
| SourceRange FieldDecl::getSourceRange() const { |
| if (const Expr *E = InitializerOrBitWidth.getPointer()) |
| return SourceRange(getInnerLocStart(), E->getLocEnd()); |
| return DeclaratorDecl::getSourceRange(); |
| } |
| |
| void FieldDecl::setBitWidth(Expr *Width) { |
| assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() && |
| "bit width or initializer already set"); |
| InitializerOrBitWidth.setPointer(Width); |
| } |
| |
| void FieldDecl::setInClassInitializer(Expr *Init) { |
| assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() && |
| "bit width or initializer already set"); |
| InitializerOrBitWidth.setPointer(Init); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TagDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| SourceLocation TagDecl::getOuterLocStart() const { |
| return getTemplateOrInnerLocStart(this); |
| } |
| |
| SourceRange TagDecl::getSourceRange() const { |
| SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); |
| return SourceRange(getOuterLocStart(), E); |
| } |
| |
| TagDecl* TagDecl::getCanonicalDecl() { |
| return getFirstDeclaration(); |
| } |
| |
| void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { |
| NamedDeclOrQualifier = TDD; |
| if (TypeForDecl) |
| assert(TypeForDecl->isLinkageValid()); |
| assert(isLinkageValid()); |
| } |
| |
| void TagDecl::startDefinition() { |
| IsBeingDefined = true; |
| |
| if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) { |
| struct CXXRecordDecl::DefinitionData *Data = |
| new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); |
| for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) |
| cast<CXXRecordDecl>(*I)->DefinitionData = Data; |
| } |
| } |
| |
| void TagDecl::completeDefinition() { |
| assert((!isa<CXXRecordDecl>(this) || |
| cast<CXXRecordDecl>(this)->hasDefinition()) && |
| "definition completed but not started"); |
| |
| IsCompleteDefinition = true; |
| IsBeingDefined = false; |
| |
| if (ASTMutationListener *L = getASTMutationListener()) |
| L->CompletedTagDefinition(this); |
| } |
| |
| TagDecl *TagDecl::getDefinition() const { |
| if (isCompleteDefinition()) |
| return const_cast<TagDecl *>(this); |
| |
| // If it's possible for us to have an out-of-date definition, check now. |
| if (MayHaveOutOfDateDef) { |
| if (IdentifierInfo *II = getIdentifier()) { |
| if (II->isOutOfDate()) { |
| updateOutOfDate(*II); |
| } |
| } |
| } |
| |
| if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this)) |
| return CXXRD->getDefinition(); |
| |
| for (redecl_iterator R = redecls_begin(), REnd = redecls_end(); |
| R != REnd; ++R) |
| if (R->isCompleteDefinition()) |
| return *R; |
| |
| return 0; |
| } |
| |
| void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { |
| if (QualifierLoc) { |
| // Make sure the extended qualifier info is allocated. |
| if (!hasExtInfo()) |
| NamedDeclOrQualifier = new (getASTContext()) ExtInfo; |
| // Set qualifier info. |
| getExtInfo()->QualifierLoc = QualifierLoc; |
| } else { |
| // Here Qualifier == 0, i.e., we are removing the qualifier (if any). |
| if (hasExtInfo()) { |
| if (getExtInfo()->NumTemplParamLists == 0) { |
| getASTContext().Deallocate(getExtInfo()); |
| NamedDeclOrQualifier = (TypedefNameDecl*) 0; |
| } |
| else |
| getExtInfo()->QualifierLoc = QualifierLoc; |
| } |
| } |
| } |
| |
| void TagDecl::setTemplateParameterListsInfo(ASTContext &Context, |
| unsigned NumTPLists, |
| TemplateParameterList **TPLists) { |
| assert(NumTPLists > 0); |
| // Make sure the extended decl info is allocated. |
| if (!hasExtInfo()) |
| // Allocate external info struct. |
| NamedDeclOrQualifier = new (getASTContext()) ExtInfo; |
| // Set the template parameter lists info. |
| getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // EnumDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void EnumDecl::anchor() { } |
| |
| EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation StartLoc, SourceLocation IdLoc, |
| IdentifierInfo *Id, |
| EnumDecl *PrevDecl, bool IsScoped, |
| bool IsScopedUsingClassTag, bool IsFixed) { |
| EnumDecl *Enum = new (C) EnumDecl(DC, StartLoc, IdLoc, Id, PrevDecl, |
| IsScoped, IsScopedUsingClassTag, IsFixed); |
| Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; |
| C.getTypeDeclType(Enum, PrevDecl); |
| return Enum; |
| } |
| |
| EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumDecl)); |
| EnumDecl *Enum = new (Mem) EnumDecl(0, SourceLocation(), SourceLocation(), |
| 0, 0, false, false, false); |
| Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; |
| return Enum; |
| } |
| |
| void EnumDecl::completeDefinition(QualType NewType, |
| QualType NewPromotionType, |
| unsigned NumPositiveBits, |
| unsigned NumNegativeBits) { |
| assert(!isCompleteDefinition() && "Cannot redefine enums!"); |
| if (!IntegerType) |
| IntegerType = NewType.getTypePtr(); |
| PromotionType = NewPromotionType; |
| setNumPositiveBits(NumPositiveBits); |
| setNumNegativeBits(NumNegativeBits); |
| TagDecl::completeDefinition(); |
| } |
| |
| TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { |
| if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) |
| return MSI->getTemplateSpecializationKind(); |
| |
| return TSK_Undeclared; |
| } |
| |
| void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, |
| SourceLocation PointOfInstantiation) { |
| MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); |
| assert(MSI && "Not an instantiated member enumeration?"); |
| MSI->setTemplateSpecializationKind(TSK); |
| if (TSK != TSK_ExplicitSpecialization && |
| PointOfInstantiation.isValid() && |
| MSI->getPointOfInstantiation().isInvalid()) |
| MSI->setPointOfInstantiation(PointOfInstantiation); |
| } |
| |
| EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { |
| if (SpecializationInfo) |
| return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); |
| |
| return 0; |
| } |
| |
| void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, |
| TemplateSpecializationKind TSK) { |
| assert(!SpecializationInfo && "Member enum is already a specialization"); |
| SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RecordDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC, |
| SourceLocation StartLoc, SourceLocation IdLoc, |
| IdentifierInfo *Id, RecordDecl *PrevDecl) |
| : TagDecl(DK, TK, DC, IdLoc, Id, PrevDecl, StartLoc) { |
| HasFlexibleArrayMember = false; |
| AnonymousStructOrUnion = false; |
| HasObjectMember = false; |
| HasVolatileMember = false; |
| LoadedFieldsFromExternalStorage = false; |
| assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!"); |
| } |
| |
| RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, |
| SourceLocation StartLoc, SourceLocation IdLoc, |
| IdentifierInfo *Id, RecordDecl* PrevDecl) { |
| RecordDecl* R = new (C) RecordDecl(Record, TK, DC, StartLoc, IdLoc, Id, |
| PrevDecl); |
| R->MayHaveOutOfDateDef = C.getLangOpts().Modules; |
| |
| C.getTypeDeclType(R, PrevDecl); |
| return R; |
| } |
| |
| RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(RecordDecl)); |
| RecordDecl *R = new (Mem) RecordDecl(Record, TTK_Struct, 0, SourceLocation(), |
| SourceLocation(), 0, 0); |
| R->MayHaveOutOfDateDef = C.getLangOpts().Modules; |
| return R; |
| } |
| |
| bool RecordDecl::isInjectedClassName() const { |
| return isImplicit() && getDeclName() && getDeclContext()->isRecord() && |
| cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); |
| } |
| |
| RecordDecl::field_iterator RecordDecl::field_begin() const { |
| if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage) |
| LoadFieldsFromExternalStorage(); |
| |
| return field_iterator(decl_iterator(FirstDecl)); |
| } |
| |
| /// completeDefinition - Notes that the definition of this type is now |
| /// complete. |
| void RecordDecl::completeDefinition() { |
| assert(!isCompleteDefinition() && "Cannot redefine record!"); |
| TagDecl::completeDefinition(); |
| } |
| |
| /// isMsStruct - Get whether or not this record uses ms_struct layout. |
| /// This which can be turned on with an attribute, pragma, or the |
| /// -mms-bitfields command-line option. |
| bool RecordDecl::isMsStruct(const ASTContext &C) const { |
| return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1; |
| } |
| |
| static bool isFieldOrIndirectField(Decl::Kind K) { |
| return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); |
| } |
| |
| void RecordDecl::LoadFieldsFromExternalStorage() const { |
| ExternalASTSource *Source = getASTContext().getExternalSource(); |
| assert(hasExternalLexicalStorage() && Source && "No external storage?"); |
| |
| // Notify that we have a RecordDecl doing some initialization. |
| ExternalASTSource::Deserializing TheFields(Source); |
| |
| SmallVector<Decl*, 64> Decls; |
| LoadedFieldsFromExternalStorage = true; |
| switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField, |
| Decls)) { |
| case ELR_Success: |
| break; |
| |
| case ELR_AlreadyLoaded: |
| case ELR_Failure: |
| return; |
| } |
| |
| #ifndef NDEBUG |
| // Check that all decls we got were FieldDecls. |
| for (unsigned i=0, e=Decls.size(); i != e; ++i) |
| assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); |
| #endif |
| |
| if (Decls.empty()) |
| return; |
| |
| llvm::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, |
| /*FieldsAlreadyLoaded=*/false); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // BlockDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { |
| assert(ParamInfo == 0 && "Already has param info!"); |
| |
| // Zero params -> null pointer. |
| if (!NewParamInfo.empty()) { |
| NumParams = NewParamInfo.size(); |
| ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; |
| std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); |
| } |
| } |
| |
| void BlockDecl::setCaptures(ASTContext &Context, |
| const Capture *begin, |
| const Capture *end, |
| bool capturesCXXThis) { |
| CapturesCXXThis = capturesCXXThis; |
| |
| if (begin == end) { |
| NumCaptures = 0; |
| Captures = 0; |
| return; |
| } |
| |
| NumCaptures = end - begin; |
| |
| // Avoid new Capture[] because we don't want to provide a default |
| // constructor. |
| size_t allocationSize = NumCaptures * sizeof(Capture); |
| void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*)); |
| memcpy(buffer, begin, allocationSize); |
| Captures = static_cast<Capture*>(buffer); |
| } |
| |
| bool BlockDecl::capturesVariable(const VarDecl *variable) const { |
| for (capture_const_iterator |
| i = capture_begin(), e = capture_end(); i != e; ++i) |
| // Only auto vars can be captured, so no redeclaration worries. |
| if (i->getVariable() == variable) |
| return true; |
| |
| return false; |
| } |
| |
| SourceRange BlockDecl::getSourceRange() const { |
| return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Other Decl Allocation/Deallocation Method Implementations |
| //===----------------------------------------------------------------------===// |
| |
| void TranslationUnitDecl::anchor() { } |
| |
| TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { |
| return new (C) TranslationUnitDecl(C); |
| } |
| |
| void LabelDecl::anchor() { } |
| |
| LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation IdentL, IdentifierInfo *II) { |
| return new (C) LabelDecl(DC, IdentL, II, 0, IdentL); |
| } |
| |
| LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation IdentL, IdentifierInfo *II, |
| SourceLocation GnuLabelL) { |
| assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); |
| return new (C) LabelDecl(DC, IdentL, II, 0, GnuLabelL); |
| } |
| |
| LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LabelDecl)); |
| return new (Mem) LabelDecl(0, SourceLocation(), 0, 0, SourceLocation()); |
| } |
| |
| void ValueDecl::anchor() { } |
| |
| bool ValueDecl::isWeak() const { |
| for (attr_iterator I = attr_begin(), E = attr_end(); I != E; ++I) |
| if (isa<WeakAttr>(*I) || isa<WeakRefAttr>(*I)) |
| return true; |
| |
| return isWeakImported(); |
| } |
| |
| void ImplicitParamDecl::anchor() { } |
| |
| ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation IdLoc, |
| IdentifierInfo *Id, |
| QualType Type) { |
| return new (C) ImplicitParamDecl(DC, IdLoc, Id, Type); |
| } |
| |
| ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, |
| unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ImplicitParamDecl)); |
| return new (Mem) ImplicitParamDecl(0, SourceLocation(), 0, QualType()); |
| } |
| |
| FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation StartLoc, |
| const DeclarationNameInfo &NameInfo, |
| QualType T, TypeSourceInfo *TInfo, |
| StorageClass SC, |
| bool isInlineSpecified, |
| bool hasWrittenPrototype, |
| bool isConstexprSpecified) { |
| FunctionDecl *New = new (C) FunctionDecl(Function, DC, StartLoc, NameInfo, |
| T, TInfo, SC, |
| isInlineSpecified, |
| isConstexprSpecified); |
| New->HasWrittenPrototype = hasWrittenPrototype; |
| return New; |
| } |
| |
| FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FunctionDecl)); |
| return new (Mem) FunctionDecl(Function, 0, SourceLocation(), |
| DeclarationNameInfo(), QualType(), 0, |
| SC_None, false, false); |
| } |
| |
| BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { |
| return new (C) BlockDecl(DC, L); |
| } |
| |
| BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(BlockDecl)); |
| return new (Mem) BlockDecl(0, SourceLocation()); |
| } |
| |
| MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C, |
| unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(MSPropertyDecl)); |
| return new (Mem) MSPropertyDecl(0, SourceLocation(), DeclarationName(), |
| QualType(), 0, SourceLocation(), |
| 0, 0); |
| } |
| |
| CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, |
| unsigned NumParams) { |
| unsigned Size = sizeof(CapturedDecl) + NumParams * sizeof(ImplicitParamDecl*); |
| return new (C.Allocate(Size)) CapturedDecl(DC, NumParams); |
| } |
| |
| CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, |
| unsigned NumParams) { |
| unsigned Size = sizeof(CapturedDecl) + NumParams * sizeof(ImplicitParamDecl*); |
| void *Mem = AllocateDeserializedDecl(C, ID, Size); |
| return new (Mem) CapturedDecl(0, NumParams); |
| } |
| |
| EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, |
| SourceLocation L, |
| IdentifierInfo *Id, QualType T, |
| Expr *E, const llvm::APSInt &V) { |
| return new (C) EnumConstantDecl(CD, L, Id, T, E, V); |
| } |
| |
| EnumConstantDecl * |
| EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumConstantDecl)); |
| return new (Mem) EnumConstantDecl(0, SourceLocation(), 0, QualType(), 0, |
| llvm::APSInt()); |
| } |
| |
| void IndirectFieldDecl::anchor() { } |
| |
| IndirectFieldDecl * |
| IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, |
| IdentifierInfo *Id, QualType T, NamedDecl **CH, |
| unsigned CHS) { |
| return new (C) IndirectFieldDecl(DC, L, Id, T, CH, CHS); |
| } |
| |
| IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, |
| unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(IndirectFieldDecl)); |
| return new (Mem) IndirectFieldDecl(0, SourceLocation(), DeclarationName(), |
| QualType(), 0, 0); |
| } |
| |
| SourceRange EnumConstantDecl::getSourceRange() const { |
| SourceLocation End = getLocation(); |
| if (Init) |
| End = Init->getLocEnd(); |
| return SourceRange(getLocation(), End); |
| } |
| |
| void TypeDecl::anchor() { } |
| |
| TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation StartLoc, SourceLocation IdLoc, |
| IdentifierInfo *Id, TypeSourceInfo *TInfo) { |
| return new (C) TypedefDecl(DC, StartLoc, IdLoc, Id, TInfo); |
| } |
| |
| void TypedefNameDecl::anchor() { } |
| |
| TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypedefDecl)); |
| return new (Mem) TypedefDecl(0, SourceLocation(), SourceLocation(), 0, 0); |
| } |
| |
| TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation StartLoc, |
| SourceLocation IdLoc, IdentifierInfo *Id, |
| TypeSourceInfo *TInfo) { |
| return new (C) TypeAliasDecl(DC, StartLoc, IdLoc, Id, TInfo); |
| } |
| |
| TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypeAliasDecl)); |
| return new (Mem) TypeAliasDecl(0, SourceLocation(), SourceLocation(), 0, 0); |
| } |
| |
| SourceRange TypedefDecl::getSourceRange() const { |
| SourceLocation RangeEnd = getLocation(); |
| if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { |
| if (typeIsPostfix(TInfo->getType())) |
| RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); |
| } |
| return SourceRange(getLocStart(), RangeEnd); |
| } |
| |
| SourceRange TypeAliasDecl::getSourceRange() const { |
| SourceLocation RangeEnd = getLocStart(); |
| if (TypeSourceInfo *TInfo = getTypeSourceInfo()) |
| RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); |
| return SourceRange(getLocStart(), RangeEnd); |
| } |
| |
| void FileScopeAsmDecl::anchor() { } |
| |
| FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, |
| StringLiteral *Str, |
| SourceLocation AsmLoc, |
| SourceLocation RParenLoc) { |
| return new (C) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); |
| } |
| |
| FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, |
| unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FileScopeAsmDecl)); |
| return new (Mem) FileScopeAsmDecl(0, 0, SourceLocation(), SourceLocation()); |
| } |
| |
| void EmptyDecl::anchor() {} |
| |
| EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { |
| return new (C) EmptyDecl(DC, L); |
| } |
| |
| EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EmptyDecl)); |
| return new (Mem) EmptyDecl(0, SourceLocation()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ImportDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// \brief Retrieve the number of module identifiers needed to name the given |
| /// module. |
| static unsigned getNumModuleIdentifiers(Module *Mod) { |
| unsigned Result = 1; |
| while (Mod->Parent) { |
| Mod = Mod->Parent; |
| ++Result; |
| } |
| return Result; |
| } |
| |
| ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, |
| Module *Imported, |
| ArrayRef<SourceLocation> IdentifierLocs) |
| : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true), |
| NextLocalImport() |
| { |
| assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); |
| SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1); |
| memcpy(StoredLocs, IdentifierLocs.data(), |
| IdentifierLocs.size() * sizeof(SourceLocation)); |
| } |
| |
| ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, |
| Module *Imported, SourceLocation EndLoc) |
| : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false), |
| NextLocalImport() |
| { |
| *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc; |
| } |
| |
| ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation StartLoc, Module *Imported, |
| ArrayRef<SourceLocation> IdentifierLocs) { |
| void *Mem = C.Allocate(sizeof(ImportDecl) + |
| IdentifierLocs.size() * sizeof(SourceLocation)); |
| return new (Mem) ImportDecl(DC, StartLoc, Imported, IdentifierLocs); |
| } |
| |
| ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, |
| SourceLocation StartLoc, |
| Module *Imported, |
| SourceLocation EndLoc) { |
| void *Mem = C.Allocate(sizeof(ImportDecl) + sizeof(SourceLocation)); |
| ImportDecl *Import = new (Mem) ImportDecl(DC, StartLoc, Imported, EndLoc); |
| Import->setImplicit(); |
| return Import; |
| } |
| |
| ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, |
| unsigned NumLocations) { |
| void *Mem = AllocateDeserializedDecl(C, ID, |
| (sizeof(ImportDecl) + |
| NumLocations * sizeof(SourceLocation))); |
| return new (Mem) ImportDecl(EmptyShell()); |
| } |
| |
| ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { |
| if (!ImportedAndComplete.getInt()) |
| return None; |
| |
| const SourceLocation *StoredLocs |
| = reinterpret_cast<const SourceLocation *>(this + 1); |
| return ArrayRef<SourceLocation>(StoredLocs, |
| getNumModuleIdentifiers(getImportedModule())); |
| } |
| |
| SourceRange ImportDecl::getSourceRange() const { |
| if (!ImportedAndComplete.getInt()) |
| return SourceRange(getLocation(), |
| *reinterpret_cast<const SourceLocation *>(this + 1)); |
| |
| return SourceRange(getLocation(), getIdentifierLocs().back()); |
| } |