blob: 3fae5c90aaeca1fe4669b2a172dc4908b76d77af [file] [log] [blame]
//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr constant evaluator.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
using llvm::APSInt;
/// EvalInfo - This is a private struct used by the evaluator to capture
/// information about a subexpression as it is folded. It retains information
/// about the AST context, but also maintains information about the folded
/// expression.
///
/// If an expression could be evaluated, it is still possible it is not a C
/// "integer constant expression" or constant expression. If not, this struct
/// captures information about how and why not.
///
/// One bit of information passed *into* the request for constant folding
/// indicates whether the subexpression is "evaluated" or not according to C
/// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
/// evaluate the expression regardless of what the RHS is, but C only allows
/// certain things in certain situations.
struct EvalInfo {
ASTContext &Ctx;
/// isEvaluated - True if the subexpression is required to be evaluated, false
/// if it is short-circuited (according to C rules).
bool isEvaluated;
/// ICEDiag - If the expression is unfoldable, then ICEDiag contains the
/// error diagnostic indicating why it is not foldable and DiagLoc indicates a
/// caret position for the error. If it is foldable, but the expression is
/// not an integer constant expression, ICEDiag contains the extension
/// diagnostic to emit which describes why it isn't an integer constant
/// expression. If this expression *is* an integer-constant-expr, then
/// ICEDiag is zero.
///
/// The caller can choose to emit this diagnostic or not, depending on whether
/// they require an i-c-e or a constant or not. DiagLoc indicates the caret
/// position for the report.
///
/// If ICEDiag is zero, then this expression is an i-c-e.
unsigned ICEDiag;
SourceLocation DiagLoc;
EvalInfo(ASTContext &ctx) : Ctx(ctx), isEvaluated(true), ICEDiag(0) {}
};
static bool EvaluatePointer(const Expr *E, APValue &Result, EvalInfo &Info);
static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
//===----------------------------------------------------------------------===//
// Pointer Evaluation
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN PointerExprEvaluator
: public StmtVisitor<PointerExprEvaluator, APValue> {
EvalInfo &Info;
public:
PointerExprEvaluator(EvalInfo &info) : Info(info) {}
APValue VisitStmt(Stmt *S) {
// FIXME: Remove this when we support more expressions.
printf("Unhandled pointer statement\n");
S->dump();
return APValue();
}
APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
APValue VisitBinaryOperator(const BinaryOperator *E);
APValue VisitCastExpr(const CastExpr* E);
};
} // end anonymous namespace
static bool EvaluatePointer(const Expr* E, APValue& Result, EvalInfo &Info) {
if (!E->getType()->isPointerType())
return false;
Result = PointerExprEvaluator(Info).Visit(const_cast<Expr*>(E));
return Result.isLValue();
}
APValue PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
if (E->getOpcode() != BinaryOperator::Add &&
E->getOpcode() != BinaryOperator::Sub)
return APValue();
const Expr *PExp = E->getLHS();
const Expr *IExp = E->getRHS();
if (IExp->getType()->isPointerType())
std::swap(PExp, IExp);
APValue ResultLValue;
if (!EvaluatePointer(PExp, ResultLValue, Info))
return APValue();
llvm::APSInt AdditionalOffset(32);
if (!EvaluateInteger(IExp, AdditionalOffset, Info))
return APValue();
uint64_t Offset = ResultLValue.getLValueOffset();
if (E->getOpcode() == BinaryOperator::Add)
Offset += AdditionalOffset.getZExtValue();
else
Offset -= AdditionalOffset.getZExtValue();
return APValue(ResultLValue.getLValueBase(), Offset);
}
APValue PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
const Expr* SubExpr = E->getSubExpr();
// Check for pointer->pointer cast
if (SubExpr->getType()->isPointerType()) {
APValue Result;
if (EvaluatePointer(SubExpr, Result, Info))
return Result;
return APValue();
}
if (SubExpr->getType()->isIntegralType()) {
llvm::APSInt Result(32);
if (EvaluateInteger(SubExpr, Result, Info)) {
Result.extOrTrunc((unsigned)Info.Ctx.getTypeSize(E->getType()));
return APValue(0, Result.getZExtValue());
}
}
assert(0 && "Unhandled cast");
return APValue();
}
//===----------------------------------------------------------------------===//
// Integer Evaluation
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN IntExprEvaluator
: public StmtVisitor<IntExprEvaluator, bool> {
EvalInfo &Info;
APSInt &Result;
public:
IntExprEvaluator(EvalInfo &info, APSInt &result)
: Info(info), Result(result) {}
unsigned getIntTypeSizeInBits(QualType T) const {
return (unsigned)Info.Ctx.getIntWidth(T);
}
bool Extension(SourceLocation L, diag::kind D) {
Info.DiagLoc = L;
Info.ICEDiag = D;
return true; // still a constant.
}
bool Error(SourceLocation L, diag::kind D) {
// If this is in an unevaluated portion of the subexpression, ignore the
// error.
if (!Info.isEvaluated)
return true;
Info.DiagLoc = L;
Info.ICEDiag = D;
return false;
}
//===--------------------------------------------------------------------===//
// Visitor Methods
//===--------------------------------------------------------------------===//
bool VisitStmt(Stmt *S) {
return Error(S->getLocStart(), diag::err_expr_not_constant);
}
bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
bool VisitIntegerLiteral(const IntegerLiteral *E) {
Result = E->getValue();
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return true;
}
bool VisitCharacterLiteral(const CharacterLiteral *E) {
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
Result = E->getValue();
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return true;
}
bool VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
Result = Info.Ctx.typesAreCompatible(E->getArgType1(), E->getArgType2());
return true;
}
bool VisitDeclRefExpr(const DeclRefExpr *E);
bool VisitCallExpr(const CallExpr *E);
bool VisitBinaryOperator(const BinaryOperator *E);
bool VisitUnaryOperator(const UnaryOperator *E);
bool VisitCastExpr(CastExpr* E) {
return HandleCast(E->getLParenLoc(), E->getSubExpr(), E->getType());
}
bool VisitImplicitCastExpr(ImplicitCastExpr* E) {
return HandleCast(E->getLocStart(), E->getSubExpr(), E->getType());
}
bool VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
return EvaluateSizeAlignOf(E->isSizeOf(), E->getArgumentType(),
E->getType());
}
private:
bool HandleCast(SourceLocation CastLoc, Expr *SubExpr, QualType DestType);
bool EvaluateSizeAlignOf(bool isSizeOf, QualType SrcTy, QualType DstTy);
};
} // end anonymous namespace
static bool EvaluateInteger(const Expr* E, APSInt &Result, EvalInfo &Info) {
return IntExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E));
}
bool IntExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
// Enums are integer constant exprs.
if (const EnumConstantDecl *D = dyn_cast<EnumConstantDecl>(E->getDecl())) {
Result = D->getInitVal();
return true;
}
// Otherwise, random variable references are not constants.
return Error(E->getLocStart(), diag::err_expr_not_constant);
}
bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
// __builtin_type_compatible_p is a constant.
if (E->isBuiltinClassifyType(Result))
return true;
return Error(E->getLocStart(), diag::err_expr_not_constant);
}
bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
// The LHS of a constant expr is always evaluated and needed.
llvm::APSInt RHS(32);
if (!Visit(E->getLHS()))
return false; // error in subexpression.
bool OldEval = Info.isEvaluated;
// The short-circuiting &&/|| operators don't necessarily evaluate their
// RHS. Make sure to pass isEvaluated down correctly.
if ((E->getOpcode() == BinaryOperator::LAnd && Result == 0) ||
(E->getOpcode() == BinaryOperator::LOr && Result != 0))
Info.isEvaluated = false;
// FIXME: Handle pointer subtraction
// FIXME Maybe we want to succeed even where we can't evaluate the
// right side of LAnd/LOr?
// For example, see http://llvm.org/bugs/show_bug.cgi?id=2525
if (!EvaluateInteger(E->getRHS(), RHS, Info))
return false;
Info.isEvaluated = OldEval;
switch (E->getOpcode()) {
default: return Error(E->getOperatorLoc(), diag::err_expr_not_constant);
case BinaryOperator::Mul: Result *= RHS; return true;
case BinaryOperator::Add: Result += RHS; return true;
case BinaryOperator::Sub: Result -= RHS; return true;
case BinaryOperator::And: Result &= RHS; return true;
case BinaryOperator::Xor: Result ^= RHS; return true;
case BinaryOperator::Or: Result |= RHS; return true;
case BinaryOperator::Div:
if (RHS == 0)
return Error(E->getOperatorLoc(), diag::err_expr_divide_by_zero);
Result /= RHS;
return true;
case BinaryOperator::Rem:
if (RHS == 0)
return Error(E->getOperatorLoc(), diag::err_expr_divide_by_zero);
Result %= RHS;
return true;
case BinaryOperator::Shl:
// FIXME: Warn about out of range shift amounts!
Result <<= (unsigned)RHS.getLimitedValue(Result.getBitWidth()-1);
break;
case BinaryOperator::Shr:
Result >>= (unsigned)RHS.getLimitedValue(Result.getBitWidth()-1);
break;
case BinaryOperator::LT:
Result = Result < RHS;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::GT:
Result = Result > RHS;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::LE:
Result = Result <= RHS;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::GE:
Result = Result >= RHS;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::EQ:
Result = Result == RHS;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::NE:
Result = Result != RHS;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::LAnd:
Result = Result != 0 && RHS != 0;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::LOr:
Result = Result != 0 || RHS != 0;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::Comma:
// Result of the comma is just the result of the RHS.
Result = RHS;
// C99 6.6p3: "shall not contain assignment, ..., or comma operators,
// *except* when they are contained within a subexpression that is not
// evaluated". Note that Assignment can never happen due to constraints
// on the LHS subexpr, so we don't need to check it here.
if (!Info.isEvaluated)
return true;
// If the value is evaluated, we can accept it as an extension.
return Extension(E->getOperatorLoc(), diag::ext_comma_in_constant_expr);
}
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return true;
}
/// EvaluateSizeAlignOf - Evaluate sizeof(SrcTy) or alignof(SrcTy) with a result
/// as a DstTy type.
bool IntExprEvaluator::EvaluateSizeAlignOf(bool isSizeOf, QualType SrcTy,
QualType DstTy) {
// Return the result in the right width.
Result.zextOrTrunc(getIntTypeSizeInBits(DstTy));
Result.setIsUnsigned(DstTy->isUnsignedIntegerType());
// sizeof(void) and __alignof__(void) = 1 as a gcc extension.
if (SrcTy->isVoidType())
Result = 1;
// sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
if (!SrcTy->isConstantSizeType()) {
// FIXME: Should we attempt to evaluate this?
return false;
}
// GCC extension: sizeof(function) = 1.
if (SrcTy->isFunctionType()) {
// FIXME: AlignOf shouldn't be unconditionally 4!
Result = isSizeOf ? 1 : 4;
return true;
}
// Get information about the size or align.
unsigned CharSize = Info.Ctx.Target.getCharWidth();
if (isSizeOf)
Result = getIntTypeSizeInBits(SrcTy) / CharSize;
else
Result = Info.Ctx.getTypeAlign(SrcTy) / CharSize;
return true;
}
bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
// Special case unary operators that do not need their subexpression
// evaluated. offsetof/sizeof/alignof are all special.
if (E->isOffsetOfOp()) {
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
Result = E->evaluateOffsetOf(Info.Ctx);
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return true;
}
if (E->isSizeOfAlignOfOp())
return EvaluateSizeAlignOf(E->getOpcode() == UnaryOperator::SizeOf,
E->getSubExpr()->getType(), E->getType());
// Get the operand value into 'Result'.
if (!Visit(E->getSubExpr()))
return false;
switch (E->getOpcode()) {
default:
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
// See C99 6.6p3.
return Error(E->getOperatorLoc(), diag::err_expr_not_constant);
case UnaryOperator::LNot: {
bool Val = Result == 0;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
Result = Val;
break;
}
case UnaryOperator::Extension:
// FIXME: Should extension allow i-c-e extension expressions in its scope?
// If so, we could clear the diagnostic ID.
case UnaryOperator::Plus:
// The result is always just the subexpr.
break;
case UnaryOperator::Minus:
Result = -Result;
break;
case UnaryOperator::Not:
Result = ~Result;
break;
}
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return true;
}
/// HandleCast - This is used to evaluate implicit or explicit casts where the
/// result type is integer.
bool IntExprEvaluator::HandleCast(SourceLocation CastLoc,
Expr *SubExpr, QualType DestType) {
unsigned DestWidth = getIntTypeSizeInBits(DestType);
// Handle simple integer->integer casts.
if (SubExpr->getType()->isIntegerType()) {
if (!Visit(SubExpr))
return false;
// Figure out if this is a truncate, extend or noop cast.
// If the input is signed, do a sign extend, noop, or truncate.
if (DestType->isBooleanType()) {
// Conversion to bool compares against zero.
Result = Result != 0;
Result.zextOrTrunc(DestWidth);
} else
Result.extOrTrunc(DestWidth);
Result.setIsUnsigned(DestType->isUnsignedIntegerType());
return true;
}
// FIXME: Clean this up!
if (SubExpr->getType()->isPointerType()) {
APValue LV;
if (!EvaluatePointer(SubExpr, LV, Info))
return false;
if (LV.getLValueBase())
return false;
Result.extOrTrunc(DestWidth);
Result = LV.getLValueOffset();
Result.setIsUnsigned(DestType->isUnsignedIntegerType());
return true;
}
if (!SubExpr->getType()->isRealFloatingType())
return Error(CastLoc, diag::err_expr_not_constant);
// FIXME: Generalize floating point constant folding! For now we just permit
// which is allowed by integer constant expressions.
// Allow floating constants that are the immediate operands of casts or that
// are parenthesized.
const Expr *Operand = SubExpr;
while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand))
Operand = PE->getSubExpr();
// If this isn't a floating literal, we can't handle it.
const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand);
if (!FL)
return Error(CastLoc, diag::err_expr_not_constant);
// If the destination is boolean, compare against zero.
if (DestType->isBooleanType()) {
Result = !FL->getValue().isZero();
Result.zextOrTrunc(DestWidth);
Result.setIsUnsigned(DestType->isUnsignedIntegerType());
return true;
}
// Determine whether we are converting to unsigned or signed.
bool DestSigned = DestType->isSignedIntegerType();
// FIXME: Warning for overflow.
uint64_t Space[4];
(void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned,
llvm::APFloat::rmTowardZero);
Result = llvm::APInt(DestWidth, 4, Space);
Result.setIsUnsigned(!DestSigned);
return true;
}
//===----------------------------------------------------------------------===//
// Top level TryEvaluate.
//===----------------------------------------------------------------------===//
bool Expr::tryEvaluate(APValue &Result, ASTContext &Ctx) const {
llvm::APSInt sInt(32);
EvalInfo Info(Ctx);
if (getType()->isIntegerType()) {
if (EvaluateInteger(this, sInt, Info)) {
Result = APValue(sInt);
return true;
}
} else
return false;
return false;
}