| //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This contains code to emit Constant Expr nodes as LLVM code. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CodeGenFunction.h" | 
 | #include "CodeGenModule.h" | 
 | #include "CGObjCRuntime.h" | 
 | #include "clang/AST/APValue.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/RecordLayout.h" | 
 | #include "clang/AST/StmtVisitor.h" | 
 | #include "clang/Basic/Builtins.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/GlobalVariable.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | using namespace clang; | 
 | using namespace CodeGen; | 
 |  | 
 | namespace  { | 
 | class ConstStructBuilder { | 
 |   CodeGenModule &CGM; | 
 |   CodeGenFunction *CGF; | 
 |  | 
 |   bool Packed; | 
 |  | 
 |   unsigned NextFieldOffsetInBytes; | 
 |  | 
 |   unsigned LLVMStructAlignment; | 
 |    | 
 |   std::vector<llvm::Constant *> Elements; | 
 |  | 
 |   ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF) | 
 |     : CGM(CGM), CGF(CGF), Packed(false), NextFieldOffsetInBytes(0), | 
 |     LLVMStructAlignment(1) { } | 
 |  | 
 |   bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, | 
 |                    const Expr *InitExpr) { | 
 |     uint64_t FieldOffsetInBytes = FieldOffset / 8; | 
 |  | 
 |     assert(NextFieldOffsetInBytes <= FieldOffsetInBytes | 
 |            && "Field offset mismatch!"); | 
 |  | 
 |     // Emit the field. | 
 |     llvm::Constant *C = CGM.EmitConstantExpr(InitExpr, Field->getType(), CGF); | 
 |     if (!C) | 
 |       return false; | 
 |  | 
 |     unsigned FieldAlignment = getAlignment(C); | 
 |  | 
 |     // Round up the field offset to the alignment of the field type. | 
 |     uint64_t AlignedNextFieldOffsetInBytes = | 
 |       llvm::RoundUpToAlignment(NextFieldOffsetInBytes, FieldAlignment); | 
 |  | 
 |     if (AlignedNextFieldOffsetInBytes > FieldOffsetInBytes) { | 
 |       assert(!Packed && "Alignment is wrong even with a packed struct!"); | 
 |  | 
 |       // Convert the struct to a packed struct. | 
 |       ConvertStructToPacked(); | 
 |        | 
 |       AlignedNextFieldOffsetInBytes = NextFieldOffsetInBytes; | 
 |     } | 
 |  | 
 |     if (AlignedNextFieldOffsetInBytes < FieldOffsetInBytes) { | 
 |       // We need to append padding. | 
 |       AppendPadding(FieldOffsetInBytes - NextFieldOffsetInBytes); | 
 |  | 
 |       assert(NextFieldOffsetInBytes == FieldOffsetInBytes && | 
 |              "Did not add enough padding!"); | 
 |  | 
 |       AlignedNextFieldOffsetInBytes = NextFieldOffsetInBytes; | 
 |     } | 
 |  | 
 |     // Add the field. | 
 |     Elements.push_back(C); | 
 |     NextFieldOffsetInBytes = AlignedNextFieldOffsetInBytes + getSizeInBytes(C); | 
 |      | 
 |     if (Packed) | 
 |       assert(LLVMStructAlignment == 1 && "Packed struct not byte-aligned!"); | 
 |     else | 
 |       LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment); | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, | 
 |                       const Expr *InitExpr) { | 
 |     llvm::ConstantInt *CI = | 
 |       cast_or_null<llvm::ConstantInt>(CGM.EmitConstantExpr(InitExpr, | 
 |                                                            Field->getType(), | 
 |                                                            CGF)); | 
 |     // FIXME: Can this ever happen? | 
 |     if (!CI) | 
 |       return false; | 
 |  | 
 |     if (FieldOffset > NextFieldOffsetInBytes * 8) { | 
 |       // We need to add padding. | 
 |       uint64_t NumBytes = | 
 |         llvm::RoundUpToAlignment(FieldOffset - | 
 |                                  NextFieldOffsetInBytes * 8, 8) / 8; | 
 |  | 
 |       AppendPadding(NumBytes); | 
 |     } | 
 |  | 
 |     uint64_t FieldSize = | 
 |       Field->getBitWidth()->EvaluateAsInt(CGM.getContext()).getZExtValue(); | 
 |  | 
 |     llvm::APInt FieldValue = CI->getValue(); | 
 |  | 
 |     // Promote the size of FieldValue if necessary | 
 |     // FIXME: This should never occur, but currently it can because initializer | 
 |     // constants are cast to bool, and because clang is not enforcing bitfield | 
 |     // width limits. | 
 |     if (FieldSize > FieldValue.getBitWidth()) | 
 |       FieldValue.zext(FieldSize); | 
 |  | 
 |     // Truncate the size of FieldValue to the bit field size. | 
 |     if (FieldSize < FieldValue.getBitWidth()) | 
 |       FieldValue.trunc(FieldSize); | 
 |  | 
 |     if (FieldOffset < NextFieldOffsetInBytes * 8) { | 
 |       // Either part of the field or the entire field can go into the previous | 
 |       // byte. | 
 |       assert(!Elements.empty() && "Elements can't be empty!"); | 
 |  | 
 |       unsigned BitsInPreviousByte = | 
 |         NextFieldOffsetInBytes * 8 - FieldOffset; | 
 |  | 
 |       bool FitsCompletelyInPreviousByte = | 
 |         BitsInPreviousByte >= FieldValue.getBitWidth(); | 
 |  | 
 |       llvm::APInt Tmp = FieldValue; | 
 |  | 
 |       if (!FitsCompletelyInPreviousByte) { | 
 |         unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; | 
 |  | 
 |         if (CGM.getTargetData().isBigEndian()) { | 
 |           Tmp = Tmp.lshr(NewFieldWidth); | 
 |           Tmp.trunc(BitsInPreviousByte); | 
 |  | 
 |           // We want the remaining high bits. | 
 |           FieldValue.trunc(NewFieldWidth); | 
 |         } else { | 
 |           Tmp.trunc(BitsInPreviousByte); | 
 |  | 
 |           // We want the remaining low bits. | 
 |           FieldValue = FieldValue.lshr(BitsInPreviousByte); | 
 |           FieldValue.trunc(NewFieldWidth); | 
 |         } | 
 |       } | 
 |  | 
 |       Tmp.zext(8); | 
 |       if (CGM.getTargetData().isBigEndian()) { | 
 |         if (FitsCompletelyInPreviousByte) | 
 |           Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); | 
 |       } else { | 
 |         Tmp = Tmp.shl(8 - BitsInPreviousByte); | 
 |       } | 
 |  | 
 |       // Or in the bits that go into the previous byte. | 
 |       if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(Elements.back())) | 
 |         Tmp |= Val->getValue(); | 
 |       else | 
 |         assert(isa<llvm::UndefValue>(Elements.back())); | 
 |  | 
 |       Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); | 
 |  | 
 |       if (FitsCompletelyInPreviousByte) | 
 |         return true; | 
 |     } | 
 |  | 
 |     while (FieldValue.getBitWidth() > 8) { | 
 |       llvm::APInt Tmp; | 
 |  | 
 |       if (CGM.getTargetData().isBigEndian()) { | 
 |         // We want the high bits. | 
 |         Tmp = FieldValue; | 
 |         Tmp = Tmp.lshr(Tmp.getBitWidth() - 8); | 
 |         Tmp.trunc(8); | 
 |       } else { | 
 |         // We want the low bits. | 
 |         Tmp = FieldValue; | 
 |         Tmp.trunc(8); | 
 |  | 
 |         FieldValue = FieldValue.lshr(8); | 
 |       } | 
 |  | 
 |       Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); | 
 |       NextFieldOffsetInBytes++; | 
 |  | 
 |       FieldValue.trunc(FieldValue.getBitWidth() - 8); | 
 |     } | 
 |  | 
 |     assert(FieldValue.getBitWidth() > 0 && | 
 |            "Should have at least one bit left!"); | 
 |     assert(FieldValue.getBitWidth() <= 8 && | 
 |            "Should not have more than a byte left!"); | 
 |  | 
 |     if (FieldValue.getBitWidth() < 8) { | 
 |       if (CGM.getTargetData().isBigEndian()) { | 
 |         unsigned BitWidth = FieldValue.getBitWidth(); | 
 |  | 
 |         FieldValue.zext(8); | 
 |         FieldValue = FieldValue << (8 - BitWidth); | 
 |       } else | 
 |         FieldValue.zext(8); | 
 |     } | 
 |  | 
 |     // Append the last element. | 
 |     Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), | 
 |                                               FieldValue)); | 
 |     NextFieldOffsetInBytes++; | 
 |     return true; | 
 |   } | 
 |  | 
 |   void AppendPadding(uint64_t NumBytes) { | 
 |     if (!NumBytes) | 
 |       return; | 
 |  | 
 |     const llvm::Type *Ty = llvm::Type::getInt8Ty(CGM.getLLVMContext()); | 
 |     if (NumBytes > 1) | 
 |       Ty = llvm::ArrayType::get(Ty, NumBytes); | 
 |  | 
 |     llvm::Constant *C = llvm::UndefValue::get(Ty); | 
 |     Elements.push_back(C); | 
 |     assert(getAlignment(C) == 1 && "Padding must have 1 byte alignment!"); | 
 |  | 
 |     NextFieldOffsetInBytes += getSizeInBytes(C); | 
 |   } | 
 |  | 
 |   void AppendTailPadding(uint64_t RecordSize) { | 
 |     assert(RecordSize % 8 == 0 && "Invalid record size!"); | 
 |  | 
 |     uint64_t RecordSizeInBytes = RecordSize / 8; | 
 |     assert(NextFieldOffsetInBytes <= RecordSizeInBytes && "Size mismatch!"); | 
 |  | 
 |     unsigned NumPadBytes = RecordSizeInBytes - NextFieldOffsetInBytes; | 
 |     AppendPadding(NumPadBytes); | 
 |   } | 
 |  | 
 |   void ConvertStructToPacked() { | 
 |     std::vector<llvm::Constant *> PackedElements; | 
 |     uint64_t ElementOffsetInBytes = 0; | 
 |  | 
 |     for (unsigned i = 0, e = Elements.size(); i != e; ++i) { | 
 |       llvm::Constant *C = Elements[i]; | 
 |  | 
 |       unsigned ElementAlign = | 
 |         CGM.getTargetData().getABITypeAlignment(C->getType()); | 
 |       uint64_t AlignedElementOffsetInBytes = | 
 |         llvm::RoundUpToAlignment(ElementOffsetInBytes, ElementAlign); | 
 |  | 
 |       if (AlignedElementOffsetInBytes > ElementOffsetInBytes) { | 
 |         // We need some padding. | 
 |         uint64_t NumBytes = | 
 |           AlignedElementOffsetInBytes - ElementOffsetInBytes; | 
 |  | 
 |         const llvm::Type *Ty = llvm::Type::getInt8Ty(CGM.getLLVMContext()); | 
 |         if (NumBytes > 1) | 
 |           Ty = llvm::ArrayType::get(Ty, NumBytes); | 
 |  | 
 |         llvm::Constant *Padding = llvm::UndefValue::get(Ty); | 
 |         PackedElements.push_back(Padding); | 
 |         ElementOffsetInBytes += getSizeInBytes(Padding); | 
 |       } | 
 |  | 
 |       PackedElements.push_back(C); | 
 |       ElementOffsetInBytes += getSizeInBytes(C); | 
 |     } | 
 |  | 
 |     assert(ElementOffsetInBytes == NextFieldOffsetInBytes && | 
 |            "Packing the struct changed its size!"); | 
 |  | 
 |     Elements = PackedElements; | 
 |     LLVMStructAlignment = 1; | 
 |     Packed = true; | 
 |   } | 
 |                                | 
 |   bool Build(InitListExpr *ILE) { | 
 |     RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); | 
 |     const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); | 
 |  | 
 |     unsigned FieldNo = 0; | 
 |     unsigned ElementNo = 0; | 
 |     for (RecordDecl::field_iterator Field = RD->field_begin(), | 
 |          FieldEnd = RD->field_end(); | 
 |          ElementNo < ILE->getNumInits() && Field != FieldEnd; | 
 |          ++Field, ++FieldNo) { | 
 |       if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) | 
 |         continue; | 
 |  | 
 |       if (Field->isBitField()) { | 
 |         if (!Field->getIdentifier()) | 
 |           continue; | 
 |  | 
 |         if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo), | 
 |                             ILE->getInit(ElementNo))) | 
 |           return false; | 
 |       } else { | 
 |         if (!AppendField(*Field, Layout.getFieldOffset(FieldNo), | 
 |                          ILE->getInit(ElementNo))) | 
 |           return false; | 
 |       } | 
 |  | 
 |       ElementNo++; | 
 |     } | 
 |  | 
 |     uint64_t LayoutSizeInBytes = Layout.getSize() / 8; | 
 |  | 
 |     if (NextFieldOffsetInBytes > LayoutSizeInBytes) { | 
 |       // If the struct is bigger than the size of the record type, | 
 |       // we must have a flexible array member at the end. | 
 |       assert(RD->hasFlexibleArrayMember() && | 
 |              "Must have flexible array member if struct is bigger than type!"); | 
 |        | 
 |       // No tail padding is necessary. | 
 |       return true; | 
 |     } | 
 |  | 
 |     uint64_t LLVMSizeInBytes = llvm::RoundUpToAlignment(NextFieldOffsetInBytes,  | 
 |                                                         LLVMStructAlignment); | 
 |  | 
 |     // Check if we need to convert the struct to a packed struct. | 
 |     if (NextFieldOffsetInBytes <= LayoutSizeInBytes &&  | 
 |         LLVMSizeInBytes > LayoutSizeInBytes) { | 
 |       assert(!Packed && "Size mismatch!"); | 
 |        | 
 |       ConvertStructToPacked(); | 
 |       assert(NextFieldOffsetInBytes == LayoutSizeInBytes && | 
 |              "Converting to packed did not help!"); | 
 |     } | 
 |  | 
 |     // Append tail padding if necessary. | 
 |     AppendTailPadding(Layout.getSize()); | 
 |  | 
 |     assert(Layout.getSize() / 8 == NextFieldOffsetInBytes && | 
 |            "Tail padding mismatch!"); | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   unsigned getAlignment(const llvm::Constant *C) const { | 
 |     if (Packed) | 
 |       return 1; | 
 |  | 
 |     return CGM.getTargetData().getABITypeAlignment(C->getType()); | 
 |   } | 
 |  | 
 |   uint64_t getSizeInBytes(const llvm::Constant *C) const { | 
 |     return CGM.getTargetData().getTypeAllocSize(C->getType()); | 
 |   } | 
 |  | 
 | public: | 
 |   static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, | 
 |                                      InitListExpr *ILE) { | 
 |     ConstStructBuilder Builder(CGM, CGF); | 
 |  | 
 |     if (!Builder.Build(ILE)) | 
 |       return 0; | 
 |  | 
 |     llvm::Constant *Result = | 
 |       llvm::ConstantStruct::get(CGM.getLLVMContext(), | 
 |                                 Builder.Elements, Builder.Packed); | 
 |  | 
 |     assert(llvm::RoundUpToAlignment(Builder.NextFieldOffsetInBytes, | 
 |                                     Builder.getAlignment(Result)) == | 
 |            Builder.getSizeInBytes(Result) && "Size mismatch!"); | 
 |  | 
 |     return Result; | 
 |   } | 
 | }; | 
 |  | 
 | class ConstExprEmitter : | 
 |   public StmtVisitor<ConstExprEmitter, llvm::Constant*> { | 
 |   CodeGenModule &CGM; | 
 |   CodeGenFunction *CGF; | 
 |   llvm::LLVMContext &VMContext; | 
 | public: | 
 |   ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf) | 
 |     : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) { | 
 |   } | 
 |  | 
 |   //===--------------------------------------------------------------------===// | 
 |   //                            Visitor Methods | 
 |   //===--------------------------------------------------------------------===// | 
 |  | 
 |   llvm::Constant *VisitStmt(Stmt *S) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   llvm::Constant *VisitParenExpr(ParenExpr *PE) { | 
 |     return Visit(PE->getSubExpr()); | 
 |   } | 
 |  | 
 |   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { | 
 |     return Visit(E->getInitializer()); | 
 |   } | 
 |      | 
 |   llvm::Constant *EmitMemberFunctionPointer(CXXMethodDecl *MD) { | 
 |     assert(MD->isInstance() && "Member function must not be static!"); | 
 |      | 
 |     const llvm::Type *PtrDiffTy =  | 
 |       CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); | 
 |      | 
 |     llvm::Constant *Values[2]; | 
 |      | 
 |     // Get the function pointer (or index if this is a virtual function). | 
 |     if (MD->isVirtual()) { | 
 |       uint64_t Index = CGM.getVtableInfo().getMethodVtableIndex(MD); | 
 |        | 
 |       // The pointer is 1 + the virtual table offset in bytes. | 
 |       Values[0] = llvm::ConstantInt::get(PtrDiffTy, (Index * 8) + 1); | 
 |     } else { | 
 |       llvm::Constant *FuncPtr = CGM.GetAddrOfFunction(MD); | 
 |  | 
 |       Values[0] = llvm::ConstantExpr::getPtrToInt(FuncPtr, PtrDiffTy); | 
 |     }  | 
 |      | 
 |     // The adjustment will always be 0. | 
 |     Values[1] = llvm::ConstantInt::get(PtrDiffTy, 0); | 
 |      | 
 |     return llvm::ConstantStruct::get(CGM.getLLVMContext(), | 
 |                                      Values, 2, /*Packed=*/false); | 
 |   } | 
 |  | 
 |   llvm::Constant *VisitUnaryAddrOf(UnaryOperator *E) { | 
 |     if (const MemberPointerType *MPT =  | 
 |         E->getType()->getAs<MemberPointerType>()) { | 
 |       QualType T = MPT->getPointeeType(); | 
 |       if (T->isFunctionProtoType()) { | 
 |         DeclRefExpr *DRE = cast<DeclRefExpr>(E->getSubExpr()); | 
 |          | 
 |         return EmitMemberFunctionPointer(cast<CXXMethodDecl>(DRE->getDecl())); | 
 |       } | 
 |        | 
 |       // FIXME: Should we handle other member pointer types here too, | 
 |       // or should they be handled by Expr::Evaluate? | 
 |     } | 
 |      | 
 |     return 0; | 
 |   } | 
 |      | 
 |   llvm::Constant *VisitBinSub(BinaryOperator *E) { | 
 |     // This must be a pointer/pointer subtraction.  This only happens for | 
 |     // address of label. | 
 |     if (!isa<AddrLabelExpr>(E->getLHS()->IgnoreParenNoopCasts(CGM.getContext())) || | 
 |        !isa<AddrLabelExpr>(E->getRHS()->IgnoreParenNoopCasts(CGM.getContext()))) | 
 |       return 0; | 
 |      | 
 |     llvm::Constant *LHS = CGM.EmitConstantExpr(E->getLHS(), | 
 |                                                E->getLHS()->getType(), CGF); | 
 |     llvm::Constant *RHS = CGM.EmitConstantExpr(E->getRHS(), | 
 |                                                E->getRHS()->getType(), CGF); | 
 |  | 
 |     const llvm::Type *ResultType = ConvertType(E->getType()); | 
 |     LHS = llvm::ConstantExpr::getPtrToInt(LHS, ResultType); | 
 |     RHS = llvm::ConstantExpr::getPtrToInt(RHS, ResultType); | 
 |          | 
 |     // No need to divide by element size, since addr of label is always void*, | 
 |     // which has size 1 in GNUish. | 
 |     return llvm::ConstantExpr::getSub(LHS, RHS); | 
 |   } | 
 |      | 
 |   llvm::Constant *VisitCastExpr(CastExpr* E) { | 
 |     switch (E->getCastKind()) { | 
 |     case CastExpr::CK_ToUnion: { | 
 |       // GCC cast to union extension | 
 |       assert(E->getType()->isUnionType() && | 
 |              "Destination type is not union type!"); | 
 |       const llvm::Type *Ty = ConvertType(E->getType()); | 
 |       Expr *SubExpr = E->getSubExpr(); | 
 |  | 
 |       llvm::Constant *C = | 
 |         CGM.EmitConstantExpr(SubExpr, SubExpr->getType(), CGF); | 
 |       if (!C) | 
 |         return 0; | 
 |  | 
 |       // Build a struct with the union sub-element as the first member, | 
 |       // and padded to the appropriate size | 
 |       std::vector<llvm::Constant*> Elts; | 
 |       std::vector<const llvm::Type*> Types; | 
 |       Elts.push_back(C); | 
 |       Types.push_back(C->getType()); | 
 |       unsigned CurSize = CGM.getTargetData().getTypeAllocSize(C->getType()); | 
 |       unsigned TotalSize = CGM.getTargetData().getTypeAllocSize(Ty); | 
 |  | 
 |       assert(CurSize <= TotalSize && "Union size mismatch!"); | 
 |       if (unsigned NumPadBytes = TotalSize - CurSize) { | 
 |         const llvm::Type *Ty = llvm::Type::getInt8Ty(VMContext); | 
 |         if (NumPadBytes > 1) | 
 |           Ty = llvm::ArrayType::get(Ty, NumPadBytes); | 
 |  | 
 |         Elts.push_back(llvm::UndefValue::get(Ty)); | 
 |         Types.push_back(Ty); | 
 |       } | 
 |  | 
 |       llvm::StructType* STy = | 
 |         llvm::StructType::get(C->getType()->getContext(), Types, false); | 
 |       return llvm::ConstantStruct::get(STy, Elts); | 
 |     } | 
 |     case CastExpr::CK_NullToMemberPointer: | 
 |       return CGM.EmitNullConstant(E->getType()); | 
 |        | 
 |     case CastExpr::CK_BaseToDerivedMemberPointer: { | 
 |       Expr *SubExpr = E->getSubExpr(); | 
 |  | 
 |       const MemberPointerType *SrcTy =  | 
 |         SubExpr->getType()->getAs<MemberPointerType>(); | 
 |       const MemberPointerType *DestTy =  | 
 |         E->getType()->getAs<MemberPointerType>(); | 
 |        | 
 |       const CXXRecordDecl *BaseClass = | 
 |         cast<CXXRecordDecl>(cast<RecordType>(SrcTy->getClass())->getDecl()); | 
 |       const CXXRecordDecl *DerivedClass = | 
 |         cast<CXXRecordDecl>(cast<RecordType>(DestTy->getClass())->getDecl()); | 
 |  | 
 |       if (SrcTy->getPointeeType()->isFunctionProtoType()) { | 
 |         llvm::Constant *C =  | 
 |           CGM.EmitConstantExpr(SubExpr, SubExpr->getType(), CGF); | 
 |         if (!C) | 
 |           return 0; | 
 |          | 
 |         llvm::ConstantStruct *CS = cast<llvm::ConstantStruct>(C); | 
 |          | 
 |         // Check if we need to update the adjustment. | 
 |         if (llvm::Constant *Offset = CGM.GetCXXBaseClassOffset(DerivedClass, | 
 |                                                                BaseClass)) { | 
 |           llvm::Constant *Values[2]; | 
 |          | 
 |           Values[0] = CS->getOperand(0); | 
 |           Values[1] = llvm::ConstantExpr::getAdd(CS->getOperand(1), Offset); | 
 |           return llvm::ConstantStruct::get(CGM.getLLVMContext(), Values, 2,  | 
 |                                            /*Packed=*/false); | 
 |         } | 
 |          | 
 |         return CS; | 
 |       }           | 
 |     } | 
 |  | 
 |     case CastExpr::CK_BitCast:  | 
 |       // This must be a member function pointer cast. | 
 |       return Visit(E->getSubExpr()); | 
 |  | 
 |     default: { | 
 |       // FIXME: This should be handled by the CK_NoOp cast kind. | 
 |       // Explicit and implicit no-op casts | 
 |       QualType Ty = E->getType(), SubTy = E->getSubExpr()->getType(); | 
 |       if (CGM.getContext().hasSameUnqualifiedType(Ty, SubTy)) | 
 |         return Visit(E->getSubExpr()); | 
 |  | 
 |       // Handle integer->integer casts for address-of-label differences. | 
 |       if (Ty->isIntegerType() && SubTy->isIntegerType() && | 
 |           CGF) { | 
 |         llvm::Value *Src = Visit(E->getSubExpr()); | 
 |         if (Src == 0) return 0; | 
 |          | 
 |         // Use EmitScalarConversion to perform the conversion. | 
 |         return cast<llvm::Constant>(CGF->EmitScalarConversion(Src, SubTy, Ty)); | 
 |       } | 
 |        | 
 |       return 0; | 
 |     } | 
 |     } | 
 |   } | 
 |  | 
 |   llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { | 
 |     return Visit(DAE->getExpr()); | 
 |   } | 
 |  | 
 |   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) { | 
 |     std::vector<llvm::Constant*> Elts; | 
 |     const llvm::ArrayType *AType = | 
 |         cast<llvm::ArrayType>(ConvertType(ILE->getType())); | 
 |     unsigned NumInitElements = ILE->getNumInits(); | 
 |     // FIXME: Check for wide strings | 
 |     // FIXME: Check for NumInitElements exactly equal to 1?? | 
 |     if (NumInitElements > 0 && | 
 |         (isa<StringLiteral>(ILE->getInit(0)) || | 
 |          isa<ObjCEncodeExpr>(ILE->getInit(0))) && | 
 |         ILE->getType()->getArrayElementTypeNoTypeQual()->isCharType()) | 
 |       return Visit(ILE->getInit(0)); | 
 |     const llvm::Type *ElemTy = AType->getElementType(); | 
 |     unsigned NumElements = AType->getNumElements(); | 
 |  | 
 |     // Initialising an array requires us to automatically | 
 |     // initialise any elements that have not been initialised explicitly | 
 |     unsigned NumInitableElts = std::min(NumInitElements, NumElements); | 
 |  | 
 |     // Copy initializer elements. | 
 |     unsigned i = 0; | 
 |     bool RewriteType = false; | 
 |     for (; i < NumInitableElts; ++i) { | 
 |       Expr *Init = ILE->getInit(i); | 
 |       llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); | 
 |       if (!C) | 
 |         return 0; | 
 |       RewriteType |= (C->getType() != ElemTy); | 
 |       Elts.push_back(C); | 
 |     } | 
 |  | 
 |     // Initialize remaining array elements. | 
 |     // FIXME: This doesn't handle member pointers correctly! | 
 |     for (; i < NumElements; ++i) | 
 |       Elts.push_back(llvm::Constant::getNullValue(ElemTy)); | 
 |  | 
 |     if (RewriteType) { | 
 |       // FIXME: Try to avoid packing the array | 
 |       std::vector<const llvm::Type*> Types; | 
 |       for (unsigned i = 0; i < Elts.size(); ++i) | 
 |         Types.push_back(Elts[i]->getType()); | 
 |       const llvm::StructType *SType = llvm::StructType::get(AType->getContext(), | 
 |                                                             Types, true); | 
 |       return llvm::ConstantStruct::get(SType, Elts); | 
 |     } | 
 |  | 
 |     return llvm::ConstantArray::get(AType, Elts); | 
 |   } | 
 |  | 
 |   llvm::Constant *EmitStructInitialization(InitListExpr *ILE) { | 
 |     return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); | 
 |   } | 
 |  | 
 |   llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) { | 
 |     return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); | 
 |   } | 
 |  | 
 |   llvm::Constant *EmitVectorInitialization(InitListExpr *ILE) { | 
 |     const llvm::VectorType *VType = | 
 |         cast<llvm::VectorType>(ConvertType(ILE->getType())); | 
 |     const llvm::Type *ElemTy = VType->getElementType(); | 
 |     std::vector<llvm::Constant*> Elts; | 
 |     unsigned NumElements = VType->getNumElements(); | 
 |     unsigned NumInitElements = ILE->getNumInits(); | 
 |  | 
 |     unsigned NumInitableElts = std::min(NumInitElements, NumElements); | 
 |  | 
 |     // Copy initializer elements. | 
 |     unsigned i = 0; | 
 |     for (; i < NumInitableElts; ++i) { | 
 |       Expr *Init = ILE->getInit(i); | 
 |       llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); | 
 |       if (!C) | 
 |         return 0; | 
 |       Elts.push_back(C); | 
 |     } | 
 |  | 
 |     for (; i < NumElements; ++i) | 
 |       Elts.push_back(llvm::Constant::getNullValue(ElemTy)); | 
 |  | 
 |     return llvm::ConstantVector::get(VType, Elts); | 
 |   } | 
 |  | 
 |   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) { | 
 |     return CGM.EmitNullConstant(E->getType()); | 
 |   } | 
 |  | 
 |   llvm::Constant *VisitInitListExpr(InitListExpr *ILE) { | 
 |     if (ILE->getType()->isScalarType()) { | 
 |       // We have a scalar in braces. Just use the first element. | 
 |       if (ILE->getNumInits() > 0) { | 
 |         Expr *Init = ILE->getInit(0); | 
 |         return CGM.EmitConstantExpr(Init, Init->getType(), CGF); | 
 |       } | 
 |       return CGM.EmitNullConstant(ILE->getType()); | 
 |     } | 
 |  | 
 |     if (ILE->getType()->isArrayType()) | 
 |       return EmitArrayInitialization(ILE); | 
 |  | 
 |     if (ILE->getType()->isRecordType()) | 
 |       return EmitStructInitialization(ILE); | 
 |  | 
 |     if (ILE->getType()->isUnionType()) | 
 |       return EmitUnionInitialization(ILE); | 
 |  | 
 |     if (ILE->getType()->isVectorType()) | 
 |       return EmitVectorInitialization(ILE); | 
 |  | 
 |     assert(0 && "Unable to handle InitListExpr"); | 
 |     // Get rid of control reaches end of void function warning. | 
 |     // Not reached. | 
 |     return 0; | 
 |   } | 
 |  | 
 |   llvm::Constant *VisitStringLiteral(StringLiteral *E) { | 
 |     assert(!E->getType()->isPointerType() && "Strings are always arrays"); | 
 |  | 
 |     // This must be a string initializing an array in a static initializer. | 
 |     // Don't emit it as the address of the string, emit the string data itself | 
 |     // as an inline array. | 
 |     return llvm::ConstantArray::get(VMContext, | 
 |                                     CGM.GetStringForStringLiteral(E), false); | 
 |   } | 
 |  | 
 |   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) { | 
 |     // This must be an @encode initializing an array in a static initializer. | 
 |     // Don't emit it as the address of the string, emit the string data itself | 
 |     // as an inline array. | 
 |     std::string Str; | 
 |     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); | 
 |     const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType()); | 
 |  | 
 |     // Resize the string to the right size, adding zeros at the end, or | 
 |     // truncating as needed. | 
 |     Str.resize(CAT->getSize().getZExtValue(), '\0'); | 
 |     return llvm::ConstantArray::get(VMContext, Str, false); | 
 |   } | 
 |  | 
 |   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) { | 
 |     return Visit(E->getSubExpr()); | 
 |   } | 
 |  | 
 |   // Utility methods | 
 |   const llvm::Type *ConvertType(QualType T) { | 
 |     return CGM.getTypes().ConvertType(T); | 
 |   } | 
 |  | 
 | public: | 
 |   llvm::Constant *EmitLValue(Expr *E) { | 
 |     switch (E->getStmtClass()) { | 
 |     default: break; | 
 |     case Expr::CompoundLiteralExprClass: { | 
 |       // Note that due to the nature of compound literals, this is guaranteed | 
 |       // to be the only use of the variable, so we just generate it here. | 
 |       CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); | 
 |       llvm::Constant* C = Visit(CLE->getInitializer()); | 
 |       // FIXME: "Leaked" on failure. | 
 |       if (C) | 
 |         C = new llvm::GlobalVariable(CGM.getModule(), C->getType(), | 
 |                                      E->getType().isConstant(CGM.getContext()), | 
 |                                      llvm::GlobalValue::InternalLinkage, | 
 |                                      C, ".compoundliteral", 0, false, | 
 |                                      E->getType().getAddressSpace()); | 
 |       return C; | 
 |     } | 
 |     case Expr::DeclRefExprClass: { | 
 |       NamedDecl *Decl = cast<DeclRefExpr>(E)->getDecl(); | 
 |       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl)) | 
 |         return CGM.GetAddrOfFunction(FD); | 
 |       if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) { | 
 |         // We can never refer to a variable with local storage. | 
 |         if (!VD->hasLocalStorage()) { | 
 |           if (VD->isFileVarDecl() || VD->hasExternalStorage()) | 
 |             return CGM.GetAddrOfGlobalVar(VD); | 
 |           else if (VD->isBlockVarDecl()) { | 
 |             assert(CGF && "Can't access static local vars without CGF"); | 
 |             return CGF->GetAddrOfStaticLocalVar(VD); | 
 |           } | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |     case Expr::StringLiteralClass: | 
 |       return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E)); | 
 |     case Expr::ObjCEncodeExprClass: | 
 |       return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E)); | 
 |     case Expr::ObjCStringLiteralClass: { | 
 |       ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E); | 
 |       llvm::Constant *C = CGM.getObjCRuntime().GenerateConstantString(SL); | 
 |       return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); | 
 |     } | 
 |     case Expr::PredefinedExprClass: { | 
 |       unsigned Type = cast<PredefinedExpr>(E)->getIdentType(); | 
 |       if (CGF) { | 
 |         LValue Res = CGF->EmitPredefinedFunctionName(Type); | 
 |         return cast<llvm::Constant>(Res.getAddress()); | 
 |       } else if (Type == PredefinedExpr::PrettyFunction) { | 
 |         return CGM.GetAddrOfConstantCString("top level", ".tmp"); | 
 |       } | 
 |  | 
 |       return CGM.GetAddrOfConstantCString("", ".tmp"); | 
 |     } | 
 |     case Expr::AddrLabelExprClass: { | 
 |       assert(CGF && "Invalid address of label expression outside function."); | 
 |       llvm::Constant *Ptr = | 
 |         CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel()); | 
 |       return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType())); | 
 |     } | 
 |     case Expr::CallExprClass: { | 
 |       CallExpr* CE = cast<CallExpr>(E); | 
 |       if (CE->isBuiltinCall(CGM.getContext()) != | 
 |             Builtin::BI__builtin___CFStringMakeConstantString) | 
 |         break; | 
 |       const Expr *Arg = CE->getArg(0)->IgnoreParenCasts(); | 
 |       const StringLiteral *Literal = cast<StringLiteral>(Arg); | 
 |       // FIXME: need to deal with UCN conversion issues. | 
 |       return CGM.GetAddrOfConstantCFString(Literal); | 
 |     } | 
 |     case Expr::BlockExprClass: { | 
 |       std::string FunctionName; | 
 |       if (CGF) | 
 |         FunctionName = CGF->CurFn->getName(); | 
 |       else | 
 |         FunctionName = "global"; | 
 |  | 
 |       return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str()); | 
 |     } | 
 |     } | 
 |  | 
 |     return 0; | 
 |   } | 
 | }; | 
 |  | 
 | }  // end anonymous namespace. | 
 |  | 
 | llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E, | 
 |                                                 QualType DestType, | 
 |                                                 CodeGenFunction *CGF) { | 
 |   Expr::EvalResult Result; | 
 |  | 
 |   bool Success = false; | 
 |  | 
 |   if (DestType->isReferenceType()) | 
 |     Success = E->EvaluateAsLValue(Result, Context); | 
 |   else | 
 |     Success = E->Evaluate(Result, Context); | 
 |  | 
 |   if (Success && !Result.HasSideEffects) { | 
 |     switch (Result.Val.getKind()) { | 
 |     case APValue::Uninitialized: | 
 |       assert(0 && "Constant expressions should be initialized."); | 
 |       return 0; | 
 |     case APValue::LValue: { | 
 |       const llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType); | 
 |       llvm::Constant *Offset = | 
 |         llvm::ConstantInt::get(llvm::Type::getInt64Ty(VMContext), | 
 |                                Result.Val.getLValueOffset()); | 
 |  | 
 |       llvm::Constant *C; | 
 |       if (const Expr *LVBase = Result.Val.getLValueBase()) { | 
 |         C = ConstExprEmitter(*this, CGF).EmitLValue(const_cast<Expr*>(LVBase)); | 
 |  | 
 |         // Apply offset if necessary. | 
 |         if (!Offset->isNullValue()) { | 
 |           const llvm::Type *Type = llvm::Type::getInt8PtrTy(VMContext); | 
 |           llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Type); | 
 |           Casted = llvm::ConstantExpr::getGetElementPtr(Casted, &Offset, 1); | 
 |           C = llvm::ConstantExpr::getBitCast(Casted, C->getType()); | 
 |         } | 
 |  | 
 |         // Convert to the appropriate type; this could be an lvalue for | 
 |         // an integer. | 
 |         if (isa<llvm::PointerType>(DestTy)) | 
 |           return llvm::ConstantExpr::getBitCast(C, DestTy); | 
 |  | 
 |         return llvm::ConstantExpr::getPtrToInt(C, DestTy); | 
 |       } else { | 
 |         C = Offset; | 
 |  | 
 |         // Convert to the appropriate type; this could be an lvalue for | 
 |         // an integer. | 
 |         if (isa<llvm::PointerType>(DestTy)) | 
 |           return llvm::ConstantExpr::getIntToPtr(C, DestTy); | 
 |  | 
 |         // If the types don't match this should only be a truncate. | 
 |         if (C->getType() != DestTy) | 
 |           return llvm::ConstantExpr::getTrunc(C, DestTy); | 
 |  | 
 |         return C; | 
 |       } | 
 |     } | 
 |     case APValue::Int: { | 
 |       llvm::Constant *C = llvm::ConstantInt::get(VMContext, | 
 |                                                  Result.Val.getInt()); | 
 |  | 
 |       if (C->getType() == llvm::Type::getInt1Ty(VMContext)) { | 
 |         const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); | 
 |         C = llvm::ConstantExpr::getZExt(C, BoolTy); | 
 |       } | 
 |       return C; | 
 |     } | 
 |     case APValue::ComplexInt: { | 
 |       llvm::Constant *Complex[2]; | 
 |  | 
 |       Complex[0] = llvm::ConstantInt::get(VMContext, | 
 |                                           Result.Val.getComplexIntReal()); | 
 |       Complex[1] = llvm::ConstantInt::get(VMContext, | 
 |                                           Result.Val.getComplexIntImag()); | 
 |  | 
 |       // FIXME: the target may want to specify that this is packed. | 
 |       return llvm::ConstantStruct::get(VMContext, Complex, 2, false); | 
 |     } | 
 |     case APValue::Float: | 
 |       return llvm::ConstantFP::get(VMContext, Result.Val.getFloat()); | 
 |     case APValue::ComplexFloat: { | 
 |       llvm::Constant *Complex[2]; | 
 |  | 
 |       Complex[0] = llvm::ConstantFP::get(VMContext, | 
 |                                          Result.Val.getComplexFloatReal()); | 
 |       Complex[1] = llvm::ConstantFP::get(VMContext, | 
 |                                          Result.Val.getComplexFloatImag()); | 
 |  | 
 |       // FIXME: the target may want to specify that this is packed. | 
 |       return llvm::ConstantStruct::get(VMContext, Complex, 2, false); | 
 |     } | 
 |     case APValue::Vector: { | 
 |       llvm::SmallVector<llvm::Constant *, 4> Inits; | 
 |       unsigned NumElts = Result.Val.getVectorLength(); | 
 |  | 
 |       for (unsigned i = 0; i != NumElts; ++i) { | 
 |         APValue &Elt = Result.Val.getVectorElt(i); | 
 |         if (Elt.isInt()) | 
 |           Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt())); | 
 |         else | 
 |           Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat())); | 
 |       } | 
 |       return llvm::ConstantVector::get(&Inits[0], Inits.size()); | 
 |     } | 
 |     } | 
 |   } | 
 |  | 
 |   llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E)); | 
 |   if (C && C->getType() == llvm::Type::getInt1Ty(VMContext)) { | 
 |     const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); | 
 |     C = llvm::ConstantExpr::getZExt(C, BoolTy); | 
 |   } | 
 |   return C; | 
 | } | 
 |  | 
 | static inline bool isDataMemberPointerType(QualType T) { | 
 |   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) | 
 |     return !MPT->getPointeeType()->isFunctionType(); | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { | 
 |   // No need to check for member pointers when not compiling C++. | 
 |   if (!getContext().getLangOptions().CPlusPlus) | 
 |     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); | 
 |  | 
 |   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { | 
 |  | 
 |     QualType ElementTy = CAT->getElementType(); | 
 |  | 
 |     // FIXME: Handle arrays of structs that contain member pointers. | 
 |     if (isDataMemberPointerType(Context.getBaseElementType(ElementTy))) { | 
 |       llvm::Constant *Element = EmitNullConstant(ElementTy); | 
 |       uint64_t NumElements = CAT->getSize().getZExtValue(); | 
 |       std::vector<llvm::Constant *> Array(NumElements); | 
 |       for (uint64_t i = 0; i != NumElements; ++i) | 
 |         Array[i] = Element; | 
 |  | 
 |       const llvm::ArrayType *ATy = | 
 |         cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); | 
 |       return llvm::ConstantArray::get(ATy, Array); | 
 |     } | 
 |   } | 
 |  | 
 |   if (const RecordType *RT = T->getAs<RecordType>()) { | 
 |     const RecordDecl *RD = RT->getDecl(); | 
 |     // FIXME: It would be better if there was a way to explicitly compute the | 
 |     // record layout instead of converting to a type. | 
 |     Types.ConvertTagDeclType(RD); | 
 |  | 
 |     const CGRecordLayout &Layout = Types.getCGRecordLayout(RD); | 
 |     if (Layout.containsMemberPointer()) { | 
 |       assert(0 && "FIXME: No support for structs with member pointers yet!"); | 
 |     } | 
 |   } | 
 |  | 
 |   // FIXME: Handle structs that contain member pointers. | 
 |   if (isDataMemberPointerType(T)) | 
 |     return llvm::Constant::getAllOnesValue(getTypes().ConvertTypeForMem(T)); | 
 |  | 
 |   return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); | 
 | } |