| //===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the actions class which performs semantic analysis and |
| // builds an AST out of a parse stream. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/TargetInfo.h" |
| using namespace clang; |
| |
| /// Determines whether we should have an a.k.a. clause when |
| /// pretty-printing a type. There are three main criteria: |
| /// |
| /// 1) Some types provide very minimal sugar that doesn't impede the |
| /// user's understanding --- for example, elaborated type |
| /// specifiers. If this is all the sugar we see, we don't want an |
| /// a.k.a. clause. |
| /// 2) Some types are technically sugared but are much more familiar |
| /// when seen in their sugared form --- for example, va_list, |
| /// vector types, and the magic Objective C types. We don't |
| /// want to desugar these, even if we do produce an a.k.a. clause. |
| /// 3) Some types may have already been desugared previously in this diagnostic. |
| /// if this is the case, doing another "aka" would just be clutter. |
| /// |
| static bool ShouldAKA(ASTContext &Context, QualType QT, |
| const Diagnostic::ArgumentValue *PrevArgs, |
| unsigned NumPrevArgs, |
| QualType &DesugaredQT) { |
| QualType InputTy = QT; |
| |
| bool AKA = false; |
| QualifierCollector Qc; |
| |
| while (true) { |
| const Type *Ty = Qc.strip(QT); |
| |
| // Don't aka just because we saw an elaborated type... |
| if (isa<ElaboratedType>(Ty)) { |
| QT = cast<ElaboratedType>(Ty)->desugar(); |
| continue; |
| } |
| |
| // ...or a qualified name type... |
| if (isa<QualifiedNameType>(Ty)) { |
| QT = cast<QualifiedNameType>(Ty)->desugar(); |
| continue; |
| } |
| |
| // ...or a substituted template type parameter. |
| if (isa<SubstTemplateTypeParmType>(Ty)) { |
| QT = cast<SubstTemplateTypeParmType>(Ty)->desugar(); |
| continue; |
| } |
| |
| // Don't desugar template specializations. |
| if (isa<TemplateSpecializationType>(Ty)) |
| break; |
| |
| // Don't desugar magic Objective-C types. |
| if (QualType(Ty,0) == Context.getObjCIdType() || |
| QualType(Ty,0) == Context.getObjCClassType() || |
| QualType(Ty,0) == Context.getObjCSelType() || |
| QualType(Ty,0) == Context.getObjCProtoType()) |
| break; |
| |
| // Don't desugar va_list. |
| if (QualType(Ty,0) == Context.getBuiltinVaListType()) |
| break; |
| |
| // Otherwise, do a single-step desugar. |
| QualType Underlying; |
| bool IsSugar = false; |
| switch (Ty->getTypeClass()) { |
| #define ABSTRACT_TYPE(Class, Base) |
| #define TYPE(Class, Base) \ |
| case Type::Class: { \ |
| const Class##Type *CTy = cast<Class##Type>(Ty); \ |
| if (CTy->isSugared()) { \ |
| IsSugar = true; \ |
| Underlying = CTy->desugar(); \ |
| } \ |
| break; \ |
| } |
| #include "clang/AST/TypeNodes.def" |
| } |
| |
| // If it wasn't sugared, we're done. |
| if (!IsSugar) |
| break; |
| |
| // If the desugared type is a vector type, we don't want to expand |
| // it, it will turn into an attribute mess. People want their "vec4". |
| if (isa<VectorType>(Underlying)) |
| break; |
| |
| // Otherwise, we're tearing through something opaque; note that |
| // we'll eventually need an a.k.a. clause and keep going. |
| AKA = true; |
| QT = Underlying; |
| continue; |
| } |
| |
| // If we never tore through opaque sugar, don't print aka. |
| if (!AKA) return false; |
| |
| // If we did, check to see if we already desugared this type in this |
| // diagnostic. If so, don't do it again. |
| for (unsigned i = 0; i != NumPrevArgs; ++i) { |
| // TODO: Handle ak_declcontext case. |
| if (PrevArgs[i].first == Diagnostic::ak_qualtype) { |
| void *Ptr = (void*)PrevArgs[i].second; |
| QualType PrevTy(QualType::getFromOpaquePtr(Ptr)); |
| if (PrevTy == InputTy) |
| return false; |
| } |
| } |
| |
| DesugaredQT = Qc.apply(QT); |
| return true; |
| } |
| |
| /// \brief Convert the given type to a string suitable for printing as part of |
| /// a diagnostic. |
| /// |
| /// \param Context the context in which the type was allocated |
| /// \param Ty the type to print |
| static std::string |
| ConvertTypeToDiagnosticString(ASTContext &Context, QualType Ty, |
| const Diagnostic::ArgumentValue *PrevArgs, |
| unsigned NumPrevArgs) { |
| // FIXME: Playing with std::string is really slow. |
| std::string S = Ty.getAsString(Context.PrintingPolicy); |
| |
| // Consider producing an a.k.a. clause if removing all the direct |
| // sugar gives us something "significantly different". |
| |
| QualType DesugaredTy; |
| if (ShouldAKA(Context, Ty, PrevArgs, NumPrevArgs, DesugaredTy)) { |
| S = "'"+S+"' (aka '"; |
| S += DesugaredTy.getAsString(Context.PrintingPolicy); |
| S += "')"; |
| return S; |
| } |
| |
| S = "'" + S + "'"; |
| return S; |
| } |
| |
| /// ConvertQualTypeToStringFn - This function is used to pretty print the |
| /// specified QualType as a string in diagnostics. |
| static void ConvertArgToStringFn(Diagnostic::ArgumentKind Kind, intptr_t Val, |
| const char *Modifier, unsigned ModLen, |
| const char *Argument, unsigned ArgLen, |
| const Diagnostic::ArgumentValue *PrevArgs, |
| unsigned NumPrevArgs, |
| llvm::SmallVectorImpl<char> &Output, |
| void *Cookie) { |
| ASTContext &Context = *static_cast<ASTContext*>(Cookie); |
| |
| std::string S; |
| bool NeedQuotes = true; |
| |
| switch (Kind) { |
| default: assert(0 && "unknown ArgumentKind"); |
| case Diagnostic::ak_qualtype: { |
| assert(ModLen == 0 && ArgLen == 0 && |
| "Invalid modifier for QualType argument"); |
| |
| QualType Ty(QualType::getFromOpaquePtr(reinterpret_cast<void*>(Val))); |
| S = ConvertTypeToDiagnosticString(Context, Ty, PrevArgs, NumPrevArgs); |
| NeedQuotes = false; |
| break; |
| } |
| case Diagnostic::ak_declarationname: { |
| DeclarationName N = DeclarationName::getFromOpaqueInteger(Val); |
| S = N.getAsString(); |
| |
| if (ModLen == 9 && !memcmp(Modifier, "objcclass", 9) && ArgLen == 0) |
| S = '+' + S; |
| else if (ModLen == 12 && !memcmp(Modifier, "objcinstance", 12) && ArgLen==0) |
| S = '-' + S; |
| else |
| assert(ModLen == 0 && ArgLen == 0 && |
| "Invalid modifier for DeclarationName argument"); |
| break; |
| } |
| case Diagnostic::ak_nameddecl: { |
| bool Qualified; |
| if (ModLen == 1 && Modifier[0] == 'q' && ArgLen == 0) |
| Qualified = true; |
| else { |
| assert(ModLen == 0 && ArgLen == 0 && |
| "Invalid modifier for NamedDecl* argument"); |
| Qualified = false; |
| } |
| reinterpret_cast<NamedDecl*>(Val)-> |
| getNameForDiagnostic(S, Context.PrintingPolicy, Qualified); |
| break; |
| } |
| case Diagnostic::ak_nestednamespec: { |
| llvm::raw_string_ostream OS(S); |
| reinterpret_cast<NestedNameSpecifier*>(Val)->print(OS, |
| Context.PrintingPolicy); |
| NeedQuotes = false; |
| break; |
| } |
| case Diagnostic::ak_declcontext: { |
| DeclContext *DC = reinterpret_cast<DeclContext *> (Val); |
| assert(DC && "Should never have a null declaration context"); |
| |
| if (DC->isTranslationUnit()) { |
| // FIXME: Get these strings from some localized place |
| if (Context.getLangOptions().CPlusPlus) |
| S = "the global namespace"; |
| else |
| S = "the global scope"; |
| } else if (TypeDecl *Type = dyn_cast<TypeDecl>(DC)) { |
| S = ConvertTypeToDiagnosticString(Context, Context.getTypeDeclType(Type), |
| PrevArgs, NumPrevArgs); |
| } else { |
| // FIXME: Get these strings from some localized place |
| NamedDecl *ND = cast<NamedDecl>(DC); |
| if (isa<NamespaceDecl>(ND)) |
| S += "namespace "; |
| else if (isa<ObjCMethodDecl>(ND)) |
| S += "method "; |
| else if (isa<FunctionDecl>(ND)) |
| S += "function "; |
| |
| S += "'"; |
| ND->getNameForDiagnostic(S, Context.PrintingPolicy, true); |
| S += "'"; |
| } |
| NeedQuotes = false; |
| break; |
| } |
| } |
| |
| if (NeedQuotes) |
| Output.push_back('\''); |
| |
| Output.append(S.begin(), S.end()); |
| |
| if (NeedQuotes) |
| Output.push_back('\''); |
| } |
| |
| |
| static inline RecordDecl *CreateStructDecl(ASTContext &C, const char *Name) { |
| if (C.getLangOptions().CPlusPlus) |
| return CXXRecordDecl::Create(C, TagDecl::TK_struct, |
| C.getTranslationUnitDecl(), |
| SourceLocation(), &C.Idents.get(Name)); |
| |
| return RecordDecl::Create(C, TagDecl::TK_struct, |
| C.getTranslationUnitDecl(), |
| SourceLocation(), &C.Idents.get(Name)); |
| } |
| |
| void Sema::ActOnTranslationUnitScope(SourceLocation Loc, Scope *S) { |
| TUScope = S; |
| PushDeclContext(S, Context.getTranslationUnitDecl()); |
| |
| if (PP.getTargetInfo().getPointerWidth(0) >= 64) { |
| DeclaratorInfo *DInfo; |
| |
| // Install [u]int128_t for 64-bit targets. |
| DInfo = Context.getTrivialDeclaratorInfo(Context.Int128Ty); |
| PushOnScopeChains(TypedefDecl::Create(Context, CurContext, |
| SourceLocation(), |
| &Context.Idents.get("__int128_t"), |
| DInfo), TUScope); |
| |
| DInfo = Context.getTrivialDeclaratorInfo(Context.UnsignedInt128Ty); |
| PushOnScopeChains(TypedefDecl::Create(Context, CurContext, |
| SourceLocation(), |
| &Context.Idents.get("__uint128_t"), |
| DInfo), TUScope); |
| } |
| |
| |
| if (!PP.getLangOptions().ObjC1) return; |
| |
| // Built-in ObjC types may already be set by PCHReader (hence isNull checks). |
| if (Context.getObjCSelType().isNull()) { |
| // Create the built-in typedef for 'SEL'. |
| QualType SelT = Context.getPointerType(Context.ObjCBuiltinSelTy); |
| DeclaratorInfo *SelInfo = Context.getTrivialDeclaratorInfo(SelT); |
| TypedefDecl *SelTypedef |
| = TypedefDecl::Create(Context, CurContext, SourceLocation(), |
| &Context.Idents.get("SEL"), SelInfo); |
| PushOnScopeChains(SelTypedef, TUScope); |
| Context.setObjCSelType(Context.getTypeDeclType(SelTypedef)); |
| Context.ObjCSelRedefinitionType = Context.getObjCSelType(); |
| } |
| |
| // Synthesize "@class Protocol; |
| if (Context.getObjCProtoType().isNull()) { |
| ObjCInterfaceDecl *ProtocolDecl = |
| ObjCInterfaceDecl::Create(Context, CurContext, SourceLocation(), |
| &Context.Idents.get("Protocol"), |
| SourceLocation(), true); |
| Context.setObjCProtoType(Context.getObjCInterfaceType(ProtocolDecl)); |
| PushOnScopeChains(ProtocolDecl, TUScope, false); |
| } |
| // Create the built-in typedef for 'id'. |
| if (Context.getObjCIdType().isNull()) { |
| QualType IdT = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy); |
| DeclaratorInfo *IdInfo = Context.getTrivialDeclaratorInfo(IdT); |
| TypedefDecl *IdTypedef |
| = TypedefDecl::Create(Context, CurContext, SourceLocation(), |
| &Context.Idents.get("id"), IdInfo); |
| PushOnScopeChains(IdTypedef, TUScope); |
| Context.setObjCIdType(Context.getTypeDeclType(IdTypedef)); |
| Context.ObjCIdRedefinitionType = Context.getObjCIdType(); |
| } |
| // Create the built-in typedef for 'Class'. |
| if (Context.getObjCClassType().isNull()) { |
| QualType ClassType |
| = Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy); |
| DeclaratorInfo *ClassInfo = Context.getTrivialDeclaratorInfo(ClassType); |
| TypedefDecl *ClassTypedef |
| = TypedefDecl::Create(Context, CurContext, SourceLocation(), |
| &Context.Idents.get("Class"), ClassInfo); |
| PushOnScopeChains(ClassTypedef, TUScope); |
| Context.setObjCClassType(Context.getTypeDeclType(ClassTypedef)); |
| Context.ObjCClassRedefinitionType = Context.getObjCClassType(); |
| } |
| } |
| |
| Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer, |
| bool CompleteTranslationUnit, |
| CodeCompleteConsumer *CodeCompleter) |
| : LangOpts(pp.getLangOptions()), PP(pp), Context(ctxt), Consumer(consumer), |
| Diags(PP.getDiagnostics()), SourceMgr(PP.getSourceManager()), |
| ExternalSource(0), CodeCompleter(CodeCompleter), CurContext(0), |
| PreDeclaratorDC(0), CurBlock(0), PackContext(0), ParsingDeclDepth(0), |
| IdResolver(pp.getLangOptions()), StdNamespace(0), StdBadAlloc(0), |
| GlobalNewDeleteDeclared(false), |
| CompleteTranslationUnit(CompleteTranslationUnit), |
| NumSFINAEErrors(0), NonInstantiationEntries(0), |
| CurrentInstantiationScope(0) |
| { |
| TUScope = 0; |
| if (getLangOptions().CPlusPlus) |
| FieldCollector.reset(new CXXFieldCollector()); |
| |
| // Tell diagnostics how to render things from the AST library. |
| PP.getDiagnostics().SetArgToStringFn(ConvertArgToStringFn, &Context); |
| |
| ExprEvalContexts.push_back( |
| ExpressionEvaluationContextRecord(PotentiallyEvaluated, 0)); |
| } |
| |
| /// Retrieves the width and signedness of the given integer type, |
| /// or returns false if it is not an integer type. |
| /// |
| /// \param T must be canonical |
| static bool getIntProperties(ASTContext &C, const Type *T, |
| unsigned &BitWidth, bool &Signed) { |
| assert(T->isCanonicalUnqualified()); |
| |
| if (const VectorType *VT = dyn_cast<VectorType>(T)) |
| T = VT->getElementType().getTypePtr(); |
| if (const ComplexType *CT = dyn_cast<ComplexType>(T)) |
| T = CT->getElementType().getTypePtr(); |
| |
| if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) { |
| if (!BT->isInteger()) return false; |
| |
| BitWidth = C.getIntWidth(QualType(T, 0)); |
| Signed = BT->isSignedInteger(); |
| return true; |
| } |
| |
| if (const FixedWidthIntType *FWIT = dyn_cast<FixedWidthIntType>(T)) { |
| BitWidth = FWIT->getWidth(); |
| Signed = FWIT->isSigned(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Checks whether the given value will have the same value if it it |
| /// is truncated to the given width, then extended back to the |
| /// original width. |
| static bool IsSameIntAfterCast(const llvm::APSInt &value, |
| unsigned TargetWidth) { |
| unsigned SourceWidth = value.getBitWidth(); |
| llvm::APSInt truncated = value; |
| truncated.trunc(TargetWidth); |
| truncated.extend(SourceWidth); |
| return (truncated == value); |
| } |
| |
| /// Checks whether the given value will have the same value if it |
| /// is truncated to the given width, then extended back to the original |
| /// width. |
| /// |
| /// The value might be a vector or a complex. |
| static bool IsSameIntAfterCast(const APValue &value, unsigned TargetWidth) { |
| if (value.isInt()) |
| return IsSameIntAfterCast(value.getInt(), TargetWidth); |
| |
| if (value.isVector()) { |
| for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) |
| if (!IsSameIntAfterCast(value.getVectorElt(i), TargetWidth)) |
| return false; |
| return true; |
| } |
| |
| if (value.isComplexInt()) { |
| return IsSameIntAfterCast(value.getComplexIntReal(), TargetWidth) && |
| IsSameIntAfterCast(value.getComplexIntImag(), TargetWidth); |
| } |
| |
| // This can happen with lossless casts to intptr_t of "based" lvalues. |
| // Assume it might use arbitrary bits. |
| assert(value.isLValue()); |
| return false; |
| } |
| |
| |
| /// Checks whether the given value, which currently has the given |
| /// source semantics, has the same value when coerced through the |
| /// target semantics. |
| static bool IsSameFloatAfterCast(const llvm::APFloat &value, |
| const llvm::fltSemantics &Src, |
| const llvm::fltSemantics &Tgt) { |
| llvm::APFloat truncated = value; |
| |
| bool ignored; |
| truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); |
| truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); |
| |
| return truncated.bitwiseIsEqual(value); |
| } |
| |
| /// Checks whether the given value, which currently has the given |
| /// source semantics, has the same value when coerced through the |
| /// target semantics. |
| /// |
| /// The value might be a vector of floats (or a complex number). |
| static bool IsSameFloatAfterCast(const APValue &value, |
| const llvm::fltSemantics &Src, |
| const llvm::fltSemantics &Tgt) { |
| if (value.isFloat()) |
| return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); |
| |
| if (value.isVector()) { |
| for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) |
| if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) |
| return false; |
| return true; |
| } |
| |
| assert(value.isComplexFloat()); |
| return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && |
| IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); |
| } |
| |
| /// Determines if it's reasonable for the given expression to be truncated |
| /// down to the given integer width. |
| /// * Boolean expressions are automatically white-listed. |
| /// * Arithmetic operations on implicitly-promoted operands of the |
| /// target width or less are okay --- not because the results are |
| /// actually guaranteed to fit within the width, but because the |
| /// user is effectively pretending that the operations are closed |
| /// within the implicitly-promoted type. |
| static bool IsExprValueWithinWidth(ASTContext &C, Expr *E, unsigned Width) { |
| E = E->IgnoreParens(); |
| |
| #ifndef NDEBUG |
| { |
| const Type *ETy = E->getType()->getCanonicalTypeInternal().getTypePtr(); |
| unsigned EWidth; |
| bool ESigned; |
| |
| if (!getIntProperties(C, ETy, EWidth, ESigned)) |
| assert(0 && "expression not of integer type"); |
| |
| // The caller should never let this happen. |
| assert(EWidth > Width && "called on expr whose type is too small"); |
| } |
| #endif |
| |
| // Strip implicit casts off. |
| while (isa<ImplicitCastExpr>(E)) { |
| E = cast<ImplicitCastExpr>(E)->getSubExpr(); |
| |
| const Type *ETy = E->getType()->getCanonicalTypeInternal().getTypePtr(); |
| |
| unsigned EWidth; |
| bool ESigned; |
| if (!getIntProperties(C, ETy, EWidth, ESigned)) |
| return false; |
| |
| if (EWidth <= Width) |
| return true; |
| } |
| |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { |
| switch (BO->getOpcode()) { |
| |
| // Boolean-valued operations are white-listed. |
| case BinaryOperator::LAnd: |
| case BinaryOperator::LOr: |
| case BinaryOperator::LT: |
| case BinaryOperator::GT: |
| case BinaryOperator::LE: |
| case BinaryOperator::GE: |
| case BinaryOperator::EQ: |
| case BinaryOperator::NE: |
| return true; |
| |
| // Operations with opaque sources are black-listed. |
| case BinaryOperator::PtrMemD: |
| case BinaryOperator::PtrMemI: |
| return false; |
| |
| // Left shift gets black-listed based on a judgement call. |
| case BinaryOperator::Shl: |
| return false; |
| |
| // Various special cases. |
| case BinaryOperator::Shr: |
| return IsExprValueWithinWidth(C, BO->getLHS(), Width); |
| case BinaryOperator::Comma: |
| return IsExprValueWithinWidth(C, BO->getRHS(), Width); |
| case BinaryOperator::Sub: |
| if (BO->getLHS()->getType()->isPointerType()) |
| return false; |
| // fallthrough |
| |
| // Any other operator is okay if the operands are |
| // promoted from expressions of appropriate size. |
| default: |
| return IsExprValueWithinWidth(C, BO->getLHS(), Width) && |
| IsExprValueWithinWidth(C, BO->getRHS(), Width); |
| } |
| } |
| |
| if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { |
| switch (UO->getOpcode()) { |
| // Boolean-valued operations are white-listed. |
| case UnaryOperator::LNot: |
| return true; |
| |
| // Operations with opaque sources are black-listed. |
| case UnaryOperator::Deref: |
| case UnaryOperator::AddrOf: // should be impossible |
| return false; |
| |
| case UnaryOperator::OffsetOf: |
| return false; |
| |
| default: |
| return IsExprValueWithinWidth(C, UO->getSubExpr(), Width); |
| } |
| } |
| |
| // Don't diagnose if the expression is an integer constant |
| // whose value in the target type is the same as it was |
| // in the original type. |
| Expr::EvalResult result; |
| if (E->Evaluate(result, C)) |
| if (IsSameIntAfterCast(result.Val, Width)) |
| return true; |
| |
| return false; |
| } |
| |
| /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. |
| static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) { |
| S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange(); |
| } |
| |
| /// Implements -Wconversion. |
| static void CheckImplicitConversion(Sema &S, Expr *E, QualType T) { |
| // Don't diagnose in unevaluated contexts. |
| if (S.ExprEvalContexts.back().Context == Sema::Unevaluated) |
| return; |
| |
| // Don't diagnose for value-dependent expressions. |
| if (E->isValueDependent()) |
| return; |
| |
| const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); |
| const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); |
| |
| // Never diagnose implicit casts to bool. |
| if (Target->isSpecificBuiltinType(BuiltinType::Bool)) |
| return; |
| |
| // Strip vector types. |
| if (isa<VectorType>(Source)) { |
| if (!isa<VectorType>(Target)) |
| return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar); |
| |
| Source = cast<VectorType>(Source)->getElementType().getTypePtr(); |
| Target = cast<VectorType>(Target)->getElementType().getTypePtr(); |
| } |
| |
| // Strip complex types. |
| if (isa<ComplexType>(Source)) { |
| if (!isa<ComplexType>(Target)) |
| return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar); |
| |
| Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); |
| Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); |
| } |
| |
| const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); |
| const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); |
| |
| // If the source is floating point... |
| if (SourceBT && SourceBT->isFloatingPoint()) { |
| // ...and the target is floating point... |
| if (TargetBT && TargetBT->isFloatingPoint()) { |
| // ...then warn if we're dropping FP rank. |
| |
| // Builtin FP kinds are ordered by increasing FP rank. |
| if (SourceBT->getKind() > TargetBT->getKind()) { |
| // Don't warn about float constants that are precisely |
| // representable in the target type. |
| Expr::EvalResult result; |
| if (E->Evaluate(result, S.Context)) { |
| // Value might be a float, a float vector, or a float complex. |
| if (IsSameFloatAfterCast(result.Val, |
| S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), |
| S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) |
| return; |
| } |
| |
| DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision); |
| } |
| return; |
| } |
| |
| // If the target is integral, always warn. |
| if ((TargetBT && TargetBT->isInteger()) || |
| isa<FixedWidthIntType>(Target)) |
| // TODO: don't warn for integer values? |
| return DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer); |
| |
| return; |
| } |
| |
| unsigned SourceWidth, TargetWidth; |
| bool SourceSigned, TargetSigned; |
| |
| if (!getIntProperties(S.Context, Source, SourceWidth, SourceSigned) || |
| !getIntProperties(S.Context, Target, TargetWidth, TargetSigned)) |
| return; |
| |
| if (SourceWidth > TargetWidth) { |
| if (IsExprValueWithinWidth(S.Context, E, TargetWidth)) |
| return; |
| |
| // People want to build with -Wshorten-64-to-32 and not -Wconversion |
| // and by god we'll let them. |
| if (SourceWidth == 64 && TargetWidth == 32) |
| return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32); |
| return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision); |
| } |
| |
| return; |
| } |
| |
| /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast. |
| /// If there is already an implicit cast, merge into the existing one. |
| /// If isLvalue, the result of the cast is an lvalue. |
| void Sema::ImpCastExprToType(Expr *&Expr, QualType Ty, |
| CastExpr::CastKind Kind, bool isLvalue) { |
| QualType ExprTy = Context.getCanonicalType(Expr->getType()); |
| QualType TypeTy = Context.getCanonicalType(Ty); |
| |
| if (ExprTy == TypeTy) |
| return; |
| |
| if (Expr->getType()->isPointerType() && Ty->isPointerType()) { |
| QualType ExprBaseType = cast<PointerType>(ExprTy)->getPointeeType(); |
| QualType BaseType = cast<PointerType>(TypeTy)->getPointeeType(); |
| if (ExprBaseType.getAddressSpace() != BaseType.getAddressSpace()) { |
| Diag(Expr->getExprLoc(), diag::err_implicit_pointer_address_space_cast) |
| << Expr->getSourceRange(); |
| } |
| } |
| |
| CheckImplicitConversion(*this, Expr, Ty); |
| |
| if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(Expr)) { |
| if (ImpCast->getCastKind() == Kind) { |
| ImpCast->setType(Ty); |
| ImpCast->setLvalueCast(isLvalue); |
| return; |
| } |
| } |
| |
| Expr = new (Context) ImplicitCastExpr(Ty, Kind, Expr, isLvalue); |
| } |
| |
| void Sema::DeleteExpr(ExprTy *E) { |
| if (E) static_cast<Expr*>(E)->Destroy(Context); |
| } |
| void Sema::DeleteStmt(StmtTy *S) { |
| if (S) static_cast<Stmt*>(S)->Destroy(Context); |
| } |
| |
| /// ActOnEndOfTranslationUnit - This is called at the very end of the |
| /// translation unit when EOF is reached and all but the top-level scope is |
| /// popped. |
| void Sema::ActOnEndOfTranslationUnit() { |
| // C++: Perform implicit template instantiations. |
| // |
| // FIXME: When we perform these implicit instantiations, we do not carefully |
| // keep track of the point of instantiation (C++ [temp.point]). This means |
| // that name lookup that occurs within the template instantiation will |
| // always happen at the end of the translation unit, so it will find |
| // some names that should not be found. Although this is common behavior |
| // for C++ compilers, it is technically wrong. In the future, we either need |
| // to be able to filter the results of name lookup or we need to perform |
| // template instantiations earlier. |
| PerformPendingImplicitInstantiations(); |
| |
| // Check for #pragma weak identifiers that were never declared |
| // FIXME: This will cause diagnostics to be emitted in a non-determinstic |
| // order! Iterating over a densemap like this is bad. |
| for (llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator |
| I = WeakUndeclaredIdentifiers.begin(), |
| E = WeakUndeclaredIdentifiers.end(); I != E; ++I) { |
| if (I->second.getUsed()) continue; |
| |
| Diag(I->second.getLocation(), diag::warn_weak_identifier_undeclared) |
| << I->first; |
| } |
| |
| if (!CompleteTranslationUnit) |
| return; |
| |
| // C99 6.9.2p2: |
| // A declaration of an identifier for an object that has file |
| // scope without an initializer, and without a storage-class |
| // specifier or with the storage-class specifier static, |
| // constitutes a tentative definition. If a translation unit |
| // contains one or more tentative definitions for an identifier, |
| // and the translation unit contains no external definition for |
| // that identifier, then the behavior is exactly as if the |
| // translation unit contains a file scope declaration of that |
| // identifier, with the composite type as of the end of the |
| // translation unit, with an initializer equal to 0. |
| for (unsigned i = 0, e = TentativeDefinitionList.size(); i != e; ++i) { |
| VarDecl *VD = TentativeDefinitions.lookup(TentativeDefinitionList[i]); |
| |
| // If the tentative definition was completed, it will be in the list, but |
| // not the map. |
| if (VD == 0 || VD->isInvalidDecl() || !VD->isTentativeDefinition(Context)) |
| continue; |
| |
| if (const IncompleteArrayType *ArrayT |
| = Context.getAsIncompleteArrayType(VD->getType())) { |
| if (RequireCompleteType(VD->getLocation(), |
| ArrayT->getElementType(), |
| diag::err_tentative_def_incomplete_type_arr)) { |
| VD->setInvalidDecl(); |
| continue; |
| } |
| |
| // Set the length of the array to 1 (C99 6.9.2p5). |
| Diag(VD->getLocation(), diag::warn_tentative_incomplete_array); |
| llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true); |
| QualType T = Context.getConstantArrayType(ArrayT->getElementType(), |
| One, ArrayType::Normal, 0); |
| VD->setType(T); |
| } else if (RequireCompleteType(VD->getLocation(), VD->getType(), |
| diag::err_tentative_def_incomplete_type)) |
| VD->setInvalidDecl(); |
| |
| // Notify the consumer that we've completed a tentative definition. |
| if (!VD->isInvalidDecl()) |
| Consumer.CompleteTentativeDefinition(VD); |
| |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions. |
| //===----------------------------------------------------------------------===// |
| |
| DeclContext *Sema::getFunctionLevelDeclContext() { |
| DeclContext *DC = PreDeclaratorDC ? PreDeclaratorDC : CurContext; |
| |
| while (isa<BlockDecl>(DC)) |
| DC = DC->getParent(); |
| |
| return DC; |
| } |
| |
| /// getCurFunctionDecl - If inside of a function body, this returns a pointer |
| /// to the function decl for the function being parsed. If we're currently |
| /// in a 'block', this returns the containing context. |
| FunctionDecl *Sema::getCurFunctionDecl() { |
| DeclContext *DC = getFunctionLevelDeclContext(); |
| return dyn_cast<FunctionDecl>(DC); |
| } |
| |
| ObjCMethodDecl *Sema::getCurMethodDecl() { |
| DeclContext *DC = getFunctionLevelDeclContext(); |
| return dyn_cast<ObjCMethodDecl>(DC); |
| } |
| |
| NamedDecl *Sema::getCurFunctionOrMethodDecl() { |
| DeclContext *DC = getFunctionLevelDeclContext(); |
| if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC)) |
| return cast<NamedDecl>(DC); |
| return 0; |
| } |
| |
| Sema::SemaDiagnosticBuilder::~SemaDiagnosticBuilder() { |
| if (!this->Emit()) |
| return; |
| |
| // If this is not a note, and we're in a template instantiation |
| // that is different from the last template instantiation where |
| // we emitted an error, print a template instantiation |
| // backtrace. |
| if (!SemaRef.Diags.isBuiltinNote(DiagID) && |
| !SemaRef.ActiveTemplateInstantiations.empty() && |
| SemaRef.ActiveTemplateInstantiations.back() |
| != SemaRef.LastTemplateInstantiationErrorContext) { |
| SemaRef.PrintInstantiationStack(); |
| SemaRef.LastTemplateInstantiationErrorContext |
| = SemaRef.ActiveTemplateInstantiations.back(); |
| } |
| } |
| |
| Sema::SemaDiagnosticBuilder |
| Sema::Diag(SourceLocation Loc, const PartialDiagnostic& PD) { |
| SemaDiagnosticBuilder Builder(Diag(Loc, PD.getDiagID())); |
| PD.Emit(Builder); |
| |
| return Builder; |
| } |
| |
| void Sema::ActOnComment(SourceRange Comment) { |
| Context.Comments.push_back(Comment); |
| } |
| |