| //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for C++ expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "Lookup.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "llvm/ADT/STLExtras.h" |
| using namespace clang; |
| |
| /// ActOnCXXTypeidOfType - Parse typeid( type-id ). |
| Action::OwningExprResult |
| Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, |
| bool isType, void *TyOrExpr, SourceLocation RParenLoc) { |
| if (!StdNamespace) |
| return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); |
| |
| if (isType) |
| // FIXME: Preserve type source info. |
| TyOrExpr = GetTypeFromParser(TyOrExpr).getAsOpaquePtr(); |
| |
| IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); |
| LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); |
| LookupQualifiedName(R, StdNamespace); |
| RecordDecl *TypeInfoRecordDecl = R.getAsSingle<RecordDecl>(); |
| if (!TypeInfoRecordDecl) |
| return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); |
| |
| QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl); |
| |
| if (!isType) { |
| // C++0x [expr.typeid]p3: |
| // When typeid is applied to an expression other than an lvalue of a |
| // polymorphic class type [...] [the] expression is an unevaluated |
| // operand. |
| |
| // FIXME: if the type of the expression is a class type, the class |
| // shall be completely defined. |
| bool isUnevaluatedOperand = true; |
| Expr *E = static_cast<Expr *>(TyOrExpr); |
| if (E && !E->isTypeDependent() && E->isLvalue(Context) == Expr::LV_Valid) { |
| QualType T = E->getType(); |
| if (const RecordType *RecordT = T->getAs<RecordType>()) { |
| CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); |
| if (RecordD->isPolymorphic()) |
| isUnevaluatedOperand = false; |
| } |
| } |
| |
| // If this is an unevaluated operand, clear out the set of |
| // declaration references we have been computing and eliminate any |
| // temporaries introduced in its computation. |
| if (isUnevaluatedOperand) |
| ExprEvalContexts.back().Context = Unevaluated; |
| } |
| |
| return Owned(new (Context) CXXTypeidExpr(isType, TyOrExpr, |
| TypeInfoType.withConst(), |
| SourceRange(OpLoc, RParenLoc))); |
| } |
| |
| /// ActOnCXXBoolLiteral - Parse {true,false} literals. |
| Action::OwningExprResult |
| Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { |
| assert((Kind == tok::kw_true || Kind == tok::kw_false) && |
| "Unknown C++ Boolean value!"); |
| return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true, |
| Context.BoolTy, OpLoc)); |
| } |
| |
| /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. |
| Action::OwningExprResult |
| Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { |
| return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); |
| } |
| |
| /// ActOnCXXThrow - Parse throw expressions. |
| Action::OwningExprResult |
| Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprArg E) { |
| Expr *Ex = E.takeAs<Expr>(); |
| if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex)) |
| return ExprError(); |
| return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc)); |
| } |
| |
| /// CheckCXXThrowOperand - Validate the operand of a throw. |
| bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) { |
| // C++ [except.throw]p3: |
| // [...] adjusting the type from "array of T" or "function returning T" |
| // to "pointer to T" or "pointer to function returning T", [...] |
| DefaultFunctionArrayConversion(E); |
| |
| // If the type of the exception would be an incomplete type or a pointer |
| // to an incomplete type other than (cv) void the program is ill-formed. |
| QualType Ty = E->getType(); |
| int isPointer = 0; |
| if (const PointerType* Ptr = Ty->getAs<PointerType>()) { |
| Ty = Ptr->getPointeeType(); |
| isPointer = 1; |
| } |
| if (!isPointer || !Ty->isVoidType()) { |
| if (RequireCompleteType(ThrowLoc, Ty, |
| PDiag(isPointer ? diag::err_throw_incomplete_ptr |
| : diag::err_throw_incomplete) |
| << E->getSourceRange())) |
| return true; |
| } |
| |
| // FIXME: Construct a temporary here. |
| return false; |
| } |
| |
| Action::OwningExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) { |
| /// C++ 9.3.2: In the body of a non-static member function, the keyword this |
| /// is a non-lvalue expression whose value is the address of the object for |
| /// which the function is called. |
| |
| if (!isa<FunctionDecl>(CurContext)) |
| return ExprError(Diag(ThisLoc, diag::err_invalid_this_use)); |
| |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) |
| if (MD->isInstance()) |
| return Owned(new (Context) CXXThisExpr(ThisLoc, |
| MD->getThisType(Context))); |
| |
| return ExprError(Diag(ThisLoc, diag::err_invalid_this_use)); |
| } |
| |
| /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. |
| /// Can be interpreted either as function-style casting ("int(x)") |
| /// or class type construction ("ClassType(x,y,z)") |
| /// or creation of a value-initialized type ("int()"). |
| Action::OwningExprResult |
| Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep, |
| SourceLocation LParenLoc, |
| MultiExprArg exprs, |
| SourceLocation *CommaLocs, |
| SourceLocation RParenLoc) { |
| assert(TypeRep && "Missing type!"); |
| // FIXME: Preserve type source info. |
| QualType Ty = GetTypeFromParser(TypeRep); |
| unsigned NumExprs = exprs.size(); |
| Expr **Exprs = (Expr**)exprs.get(); |
| SourceLocation TyBeginLoc = TypeRange.getBegin(); |
| SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc); |
| |
| if (Ty->isDependentType() || |
| CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) { |
| exprs.release(); |
| |
| return Owned(CXXUnresolvedConstructExpr::Create(Context, |
| TypeRange.getBegin(), Ty, |
| LParenLoc, |
| Exprs, NumExprs, |
| RParenLoc)); |
| } |
| |
| if (Ty->isArrayType()) |
| return ExprError(Diag(TyBeginLoc, |
| diag::err_value_init_for_array_type) << FullRange); |
| if (!Ty->isVoidType() && |
| RequireCompleteType(TyBeginLoc, Ty, |
| PDiag(diag::err_invalid_incomplete_type_use) |
| << FullRange)) |
| return ExprError(); |
| |
| if (RequireNonAbstractType(TyBeginLoc, Ty, |
| diag::err_allocation_of_abstract_type)) |
| return ExprError(); |
| |
| |
| // C++ [expr.type.conv]p1: |
| // If the expression list is a single expression, the type conversion |
| // expression is equivalent (in definedness, and if defined in meaning) to the |
| // corresponding cast expression. |
| // |
| if (NumExprs == 1) { |
| CastExpr::CastKind Kind = CastExpr::CK_Unknown; |
| CXXMethodDecl *Method = 0; |
| if (CheckCastTypes(TypeRange, Ty, Exprs[0], Kind, Method, |
| /*FunctionalStyle=*/true)) |
| return ExprError(); |
| |
| exprs.release(); |
| if (Method) { |
| OwningExprResult CastArg |
| = BuildCXXCastArgument(TypeRange.getBegin(), Ty.getNonReferenceType(), |
| Kind, Method, Owned(Exprs[0])); |
| if (CastArg.isInvalid()) |
| return ExprError(); |
| |
| Exprs[0] = CastArg.takeAs<Expr>(); |
| } |
| |
| return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(), |
| Ty, TyBeginLoc, Kind, |
| Exprs[0], RParenLoc)); |
| } |
| |
| if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); |
| |
| if (NumExprs > 1 || !Record->hasTrivialConstructor() || |
| !Record->hasTrivialDestructor()) { |
| ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); |
| |
| CXXConstructorDecl *Constructor |
| = PerformInitializationByConstructor(Ty, move(exprs), |
| TypeRange.getBegin(), |
| SourceRange(TypeRange.getBegin(), |
| RParenLoc), |
| DeclarationName(), |
| IK_Direct, |
| ConstructorArgs); |
| |
| if (!Constructor) |
| return ExprError(); |
| |
| OwningExprResult Result = |
| BuildCXXTemporaryObjectExpr(Constructor, Ty, TyBeginLoc, |
| move_arg(ConstructorArgs), RParenLoc); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| return MaybeBindToTemporary(Result.takeAs<Expr>()); |
| } |
| |
| // Fall through to value-initialize an object of class type that |
| // doesn't have a user-declared default constructor. |
| } |
| |
| // C++ [expr.type.conv]p1: |
| // If the expression list specifies more than a single value, the type shall |
| // be a class with a suitably declared constructor. |
| // |
| if (NumExprs > 1) |
| return ExprError(Diag(CommaLocs[0], |
| diag::err_builtin_func_cast_more_than_one_arg) |
| << FullRange); |
| |
| assert(NumExprs == 0 && "Expected 0 expressions"); |
| // C++ [expr.type.conv]p2: |
| // The expression T(), where T is a simple-type-specifier for a non-array |
| // complete object type or the (possibly cv-qualified) void type, creates an |
| // rvalue of the specified type, which is value-initialized. |
| // |
| exprs.release(); |
| return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc)); |
| } |
| |
| |
| /// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.: |
| /// @code new (memory) int[size][4] @endcode |
| /// or |
| /// @code ::new Foo(23, "hello") @endcode |
| /// For the interpretation of this heap of arguments, consult the base version. |
| Action::OwningExprResult |
| Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, |
| SourceLocation PlacementLParen, MultiExprArg PlacementArgs, |
| SourceLocation PlacementRParen, bool ParenTypeId, |
| Declarator &D, SourceLocation ConstructorLParen, |
| MultiExprArg ConstructorArgs, |
| SourceLocation ConstructorRParen) { |
| Expr *ArraySize = 0; |
| // If the specified type is an array, unwrap it and save the expression. |
| if (D.getNumTypeObjects() > 0 && |
| D.getTypeObject(0).Kind == DeclaratorChunk::Array) { |
| DeclaratorChunk &Chunk = D.getTypeObject(0); |
| if (Chunk.Arr.hasStatic) |
| return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) |
| << D.getSourceRange()); |
| if (!Chunk.Arr.NumElts) |
| return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) |
| << D.getSourceRange()); |
| |
| if (ParenTypeId) { |
| // Can't have dynamic array size when the type-id is in parentheses. |
| Expr *NumElts = (Expr *)Chunk.Arr.NumElts; |
| if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() && |
| !NumElts->isIntegerConstantExpr(Context)) { |
| Diag(D.getTypeObject(0).Loc, diag::err_new_paren_array_nonconst) |
| << NumElts->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| |
| ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); |
| D.DropFirstTypeObject(); |
| } |
| |
| // Every dimension shall be of constant size. |
| if (ArraySize) { |
| for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { |
| if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) |
| break; |
| |
| DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; |
| if (Expr *NumElts = (Expr *)Array.NumElts) { |
| if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() && |
| !NumElts->isIntegerConstantExpr(Context)) { |
| Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst) |
| << NumElts->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| } |
| } |
| |
| //FIXME: Store DeclaratorInfo in CXXNew expression. |
| DeclaratorInfo *DInfo = 0; |
| QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, &DInfo); |
| if (D.isInvalidType()) |
| return ExprError(); |
| |
| return BuildCXXNew(StartLoc, UseGlobal, |
| PlacementLParen, |
| move(PlacementArgs), |
| PlacementRParen, |
| ParenTypeId, |
| AllocType, |
| D.getSourceRange().getBegin(), |
| D.getSourceRange(), |
| Owned(ArraySize), |
| ConstructorLParen, |
| move(ConstructorArgs), |
| ConstructorRParen); |
| } |
| |
| Sema::OwningExprResult |
| Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal, |
| SourceLocation PlacementLParen, |
| MultiExprArg PlacementArgs, |
| SourceLocation PlacementRParen, |
| bool ParenTypeId, |
| QualType AllocType, |
| SourceLocation TypeLoc, |
| SourceRange TypeRange, |
| ExprArg ArraySizeE, |
| SourceLocation ConstructorLParen, |
| MultiExprArg ConstructorArgs, |
| SourceLocation ConstructorRParen) { |
| if (CheckAllocatedType(AllocType, TypeLoc, TypeRange)) |
| return ExprError(); |
| |
| QualType ResultType = Context.getPointerType(AllocType); |
| |
| // That every array dimension except the first is constant was already |
| // checked by the type check above. |
| |
| // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral |
| // or enumeration type with a non-negative value." |
| Expr *ArraySize = (Expr *)ArraySizeE.get(); |
| if (ArraySize && !ArraySize->isTypeDependent()) { |
| QualType SizeType = ArraySize->getType(); |
| if (!SizeType->isIntegralType() && !SizeType->isEnumeralType()) |
| return ExprError(Diag(ArraySize->getSourceRange().getBegin(), |
| diag::err_array_size_not_integral) |
| << SizeType << ArraySize->getSourceRange()); |
| // Let's see if this is a constant < 0. If so, we reject it out of hand. |
| // We don't care about special rules, so we tell the machinery it's not |
| // evaluated - it gives us a result in more cases. |
| if (!ArraySize->isValueDependent()) { |
| llvm::APSInt Value; |
| if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) { |
| if (Value < llvm::APSInt( |
| llvm::APInt::getNullValue(Value.getBitWidth()), |
| Value.isUnsigned())) |
| return ExprError(Diag(ArraySize->getSourceRange().getBegin(), |
| diag::err_typecheck_negative_array_size) |
| << ArraySize->getSourceRange()); |
| } |
| } |
| |
| ImpCastExprToType(ArraySize, Context.getSizeType(), |
| CastExpr::CK_IntegralCast); |
| } |
| |
| FunctionDecl *OperatorNew = 0; |
| FunctionDecl *OperatorDelete = 0; |
| Expr **PlaceArgs = (Expr**)PlacementArgs.get(); |
| unsigned NumPlaceArgs = PlacementArgs.size(); |
| |
| if (!AllocType->isDependentType() && |
| !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) && |
| FindAllocationFunctions(StartLoc, |
| SourceRange(PlacementLParen, PlacementRParen), |
| UseGlobal, AllocType, ArraySize, PlaceArgs, |
| NumPlaceArgs, OperatorNew, OperatorDelete)) |
| return ExprError(); |
| llvm::SmallVector<Expr *, 8> AllPlaceArgs; |
| if (OperatorNew) { |
| // Add default arguments, if any. |
| const FunctionProtoType *Proto = |
| OperatorNew->getType()->getAs<FunctionProtoType>(); |
| VariadicCallType CallType = |
| Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply; |
| bool Invalid = GatherArgumentsForCall(PlacementLParen, OperatorNew, |
| Proto, 1, PlaceArgs, NumPlaceArgs, |
| AllPlaceArgs, CallType); |
| if (Invalid) |
| return ExprError(); |
| |
| NumPlaceArgs = AllPlaceArgs.size(); |
| if (NumPlaceArgs > 0) |
| PlaceArgs = &AllPlaceArgs[0]; |
| } |
| |
| bool Init = ConstructorLParen.isValid(); |
| // --- Choosing a constructor --- |
| // C++ 5.3.4p15 |
| // 1) If T is a POD and there's no initializer (ConstructorLParen is invalid) |
| // the object is not initialized. If the object, or any part of it, is |
| // const-qualified, it's an error. |
| // 2) If T is a POD and there's an empty initializer, the object is value- |
| // initialized. |
| // 3) If T is a POD and there's one initializer argument, the object is copy- |
| // constructed. |
| // 4) If T is a POD and there's more initializer arguments, it's an error. |
| // 5) If T is not a POD, the initializer arguments are used as constructor |
| // arguments. |
| // |
| // Or by the C++0x formulation: |
| // 1) If there's no initializer, the object is default-initialized according |
| // to C++0x rules. |
| // 2) Otherwise, the object is direct-initialized. |
| CXXConstructorDecl *Constructor = 0; |
| Expr **ConsArgs = (Expr**)ConstructorArgs.get(); |
| const RecordType *RT; |
| unsigned NumConsArgs = ConstructorArgs.size(); |
| ASTOwningVector<&ActionBase::DeleteExpr> ConvertedConstructorArgs(*this); |
| |
| if (AllocType->isDependentType() || |
| Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) { |
| // Skip all the checks. |
| } else if ((RT = AllocType->getAs<RecordType>()) && |
| !AllocType->isAggregateType()) { |
| Constructor = PerformInitializationByConstructor( |
| AllocType, move(ConstructorArgs), |
| TypeLoc, |
| SourceRange(TypeLoc, ConstructorRParen), |
| RT->getDecl()->getDeclName(), |
| NumConsArgs != 0 ? IK_Direct : IK_Default, |
| ConvertedConstructorArgs); |
| if (!Constructor) |
| return ExprError(); |
| |
| // Take the converted constructor arguments and use them for the new |
| // expression. |
| NumConsArgs = ConvertedConstructorArgs.size(); |
| ConsArgs = (Expr **)ConvertedConstructorArgs.take(); |
| } else { |
| if (!Init) { |
| // FIXME: Check that no subpart is const. |
| if (AllocType.isConstQualified()) |
| return ExprError(Diag(StartLoc, diag::err_new_uninitialized_const) |
| << TypeRange); |
| } else if (NumConsArgs == 0) { |
| // Object is value-initialized. Do nothing. |
| } else if (NumConsArgs == 1) { |
| // Object is direct-initialized. |
| // FIXME: What DeclarationName do we pass in here? |
| if (CheckInitializerTypes(ConsArgs[0], AllocType, StartLoc, |
| DeclarationName() /*AllocType.getAsString()*/, |
| /*DirectInit=*/true)) |
| return ExprError(); |
| } else { |
| return ExprError(Diag(StartLoc, |
| diag::err_builtin_direct_init_more_than_one_arg) |
| << SourceRange(ConstructorLParen, ConstructorRParen)); |
| } |
| } |
| |
| // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16) |
| |
| PlacementArgs.release(); |
| ConstructorArgs.release(); |
| ArraySizeE.release(); |
| return Owned(new (Context) CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs, |
| NumPlaceArgs, ParenTypeId, ArraySize, Constructor, Init, |
| ConsArgs, NumConsArgs, OperatorDelete, ResultType, |
| StartLoc, Init ? ConstructorRParen : SourceLocation())); |
| } |
| |
| /// CheckAllocatedType - Checks that a type is suitable as the allocated type |
| /// in a new-expression. |
| /// dimension off and stores the size expression in ArraySize. |
| bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, |
| SourceRange R) { |
| // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an |
| // abstract class type or array thereof. |
| if (AllocType->isFunctionType()) |
| return Diag(Loc, diag::err_bad_new_type) |
| << AllocType << 0 << R; |
| else if (AllocType->isReferenceType()) |
| return Diag(Loc, diag::err_bad_new_type) |
| << AllocType << 1 << R; |
| else if (!AllocType->isDependentType() && |
| RequireCompleteType(Loc, AllocType, |
| PDiag(diag::err_new_incomplete_type) |
| << R)) |
| return true; |
| else if (RequireNonAbstractType(Loc, AllocType, |
| diag::err_allocation_of_abstract_type)) |
| return true; |
| |
| return false; |
| } |
| |
| /// FindAllocationFunctions - Finds the overloads of operator new and delete |
| /// that are appropriate for the allocation. |
| bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, |
| bool UseGlobal, QualType AllocType, |
| bool IsArray, Expr **PlaceArgs, |
| unsigned NumPlaceArgs, |
| FunctionDecl *&OperatorNew, |
| FunctionDecl *&OperatorDelete) { |
| // --- Choosing an allocation function --- |
| // C++ 5.3.4p8 - 14 & 18 |
| // 1) If UseGlobal is true, only look in the global scope. Else, also look |
| // in the scope of the allocated class. |
| // 2) If an array size is given, look for operator new[], else look for |
| // operator new. |
| // 3) The first argument is always size_t. Append the arguments from the |
| // placement form. |
| // FIXME: Also find the appropriate delete operator. |
| |
| llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs); |
| // We don't care about the actual value of this argument. |
| // FIXME: Should the Sema create the expression and embed it in the syntax |
| // tree? Or should the consumer just recalculate the value? |
| IntegerLiteral Size(llvm::APInt::getNullValue( |
| Context.Target.getPointerWidth(0)), |
| Context.getSizeType(), |
| SourceLocation()); |
| AllocArgs[0] = &Size; |
| std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1); |
| |
| DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( |
| IsArray ? OO_Array_New : OO_New); |
| if (AllocType->isRecordType() && !UseGlobal) { |
| CXXRecordDecl *Record |
| = cast<CXXRecordDecl>(AllocType->getAs<RecordType>()->getDecl()); |
| // FIXME: We fail to find inherited overloads. |
| if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], |
| AllocArgs.size(), Record, /*AllowMissing=*/true, |
| OperatorNew)) |
| return true; |
| } |
| if (!OperatorNew) { |
| // Didn't find a member overload. Look for a global one. |
| DeclareGlobalNewDelete(); |
| DeclContext *TUDecl = Context.getTranslationUnitDecl(); |
| if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], |
| AllocArgs.size(), TUDecl, /*AllowMissing=*/false, |
| OperatorNew)) |
| return true; |
| } |
| |
| // FindAllocationOverload can change the passed in arguments, so we need to |
| // copy them back. |
| if (NumPlaceArgs > 0) |
| std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs); |
| |
| return false; |
| } |
| |
| /// FindAllocationOverload - Find an fitting overload for the allocation |
| /// function in the specified scope. |
| bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, |
| DeclarationName Name, Expr** Args, |
| unsigned NumArgs, DeclContext *Ctx, |
| bool AllowMissing, FunctionDecl *&Operator) { |
| LookupResult R(*this, Name, StartLoc, LookupOrdinaryName); |
| LookupQualifiedName(R, Ctx); |
| if (R.empty()) { |
| if (AllowMissing) |
| return false; |
| return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) |
| << Name << Range; |
| } |
| |
| // FIXME: handle ambiguity |
| |
| OverloadCandidateSet Candidates; |
| for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); |
| Alloc != AllocEnd; ++Alloc) { |
| // Even member operator new/delete are implicitly treated as |
| // static, so don't use AddMemberCandidate. |
| if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*Alloc)) { |
| AddOverloadCandidate(Fn, Args, NumArgs, Candidates, |
| /*SuppressUserConversions=*/false); |
| continue; |
| } |
| |
| // FIXME: Handle function templates |
| } |
| |
| // Do the resolution. |
| OverloadCandidateSet::iterator Best; |
| switch(BestViableFunction(Candidates, StartLoc, Best)) { |
| case OR_Success: { |
| // Got one! |
| FunctionDecl *FnDecl = Best->Function; |
| // The first argument is size_t, and the first parameter must be size_t, |
| // too. This is checked on declaration and can be assumed. (It can't be |
| // asserted on, though, since invalid decls are left in there.) |
| // Whatch out for variadic allocator function. |
| unsigned NumArgsInFnDecl = FnDecl->getNumParams(); |
| for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) { |
| // FIXME: Passing word to diagnostic. |
| if (PerformCopyInitialization(Args[i], |
| FnDecl->getParamDecl(i)->getType(), |
| "passing")) |
| return true; |
| } |
| Operator = FnDecl; |
| return false; |
| } |
| |
| case OR_No_Viable_Function: |
| Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) |
| << Name << Range; |
| PrintOverloadCandidates(Candidates, /*OnlyViable=*/false); |
| return true; |
| |
| case OR_Ambiguous: |
| Diag(StartLoc, diag::err_ovl_ambiguous_call) |
| << Name << Range; |
| PrintOverloadCandidates(Candidates, /*OnlyViable=*/true); |
| return true; |
| |
| case OR_Deleted: |
| Diag(StartLoc, diag::err_ovl_deleted_call) |
| << Best->Function->isDeleted() |
| << Name << Range; |
| PrintOverloadCandidates(Candidates, /*OnlyViable=*/true); |
| return true; |
| } |
| assert(false && "Unreachable, bad result from BestViableFunction"); |
| return true; |
| } |
| |
| |
| /// DeclareGlobalNewDelete - Declare the global forms of operator new and |
| /// delete. These are: |
| /// @code |
| /// void* operator new(std::size_t) throw(std::bad_alloc); |
| /// void* operator new[](std::size_t) throw(std::bad_alloc); |
| /// void operator delete(void *) throw(); |
| /// void operator delete[](void *) throw(); |
| /// @endcode |
| /// Note that the placement and nothrow forms of new are *not* implicitly |
| /// declared. Their use requires including \<new\>. |
| void Sema::DeclareGlobalNewDelete() { |
| if (GlobalNewDeleteDeclared) |
| return; |
| |
| // C++ [basic.std.dynamic]p2: |
| // [...] The following allocation and deallocation functions (18.4) are |
| // implicitly declared in global scope in each translation unit of a |
| // program |
| // |
| // void* operator new(std::size_t) throw(std::bad_alloc); |
| // void* operator new[](std::size_t) throw(std::bad_alloc); |
| // void operator delete(void*) throw(); |
| // void operator delete[](void*) throw(); |
| // |
| // These implicit declarations introduce only the function names operator |
| // new, operator new[], operator delete, operator delete[]. |
| // |
| // Here, we need to refer to std::bad_alloc, so we will implicitly declare |
| // "std" or "bad_alloc" as necessary to form the exception specification. |
| // However, we do not make these implicit declarations visible to name |
| // lookup. |
| if (!StdNamespace) { |
| // The "std" namespace has not yet been defined, so build one implicitly. |
| StdNamespace = NamespaceDecl::Create(Context, |
| Context.getTranslationUnitDecl(), |
| SourceLocation(), |
| &PP.getIdentifierTable().get("std")); |
| StdNamespace->setImplicit(true); |
| } |
| |
| if (!StdBadAlloc) { |
| // The "std::bad_alloc" class has not yet been declared, so build it |
| // implicitly. |
| StdBadAlloc = CXXRecordDecl::Create(Context, TagDecl::TK_class, |
| StdNamespace, |
| SourceLocation(), |
| &PP.getIdentifierTable().get("bad_alloc"), |
| SourceLocation(), 0); |
| StdBadAlloc->setImplicit(true); |
| } |
| |
| GlobalNewDeleteDeclared = true; |
| |
| QualType VoidPtr = Context.getPointerType(Context.VoidTy); |
| QualType SizeT = Context.getSizeType(); |
| |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_New), |
| VoidPtr, SizeT); |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_Array_New), |
| VoidPtr, SizeT); |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_Delete), |
| Context.VoidTy, VoidPtr); |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), |
| Context.VoidTy, VoidPtr); |
| } |
| |
| /// DeclareGlobalAllocationFunction - Declares a single implicit global |
| /// allocation function if it doesn't already exist. |
| void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, |
| QualType Return, QualType Argument) { |
| DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); |
| |
| // Check if this function is already declared. |
| { |
| DeclContext::lookup_iterator Alloc, AllocEnd; |
| for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name); |
| Alloc != AllocEnd; ++Alloc) { |
| // FIXME: Do we need to check for default arguments here? |
| FunctionDecl *Func = cast<FunctionDecl>(*Alloc); |
| if (Func->getNumParams() == 1 && |
| Context.getCanonicalType(Func->getParamDecl(0)->getType())==Argument) |
| return; |
| } |
| } |
| |
| QualType BadAllocType; |
| bool HasBadAllocExceptionSpec |
| = (Name.getCXXOverloadedOperator() == OO_New || |
| Name.getCXXOverloadedOperator() == OO_Array_New); |
| if (HasBadAllocExceptionSpec) { |
| assert(StdBadAlloc && "Must have std::bad_alloc declared"); |
| BadAllocType = Context.getTypeDeclType(StdBadAlloc); |
| } |
| |
| QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0, |
| true, false, |
| HasBadAllocExceptionSpec? 1 : 0, |
| &BadAllocType); |
| FunctionDecl *Alloc = |
| FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name, |
| FnType, /*DInfo=*/0, FunctionDecl::None, false, true); |
| Alloc->setImplicit(); |
| ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(), |
| 0, Argument, /*DInfo=*/0, |
| VarDecl::None, 0); |
| Alloc->setParams(Context, &Param, 1); |
| |
| // FIXME: Also add this declaration to the IdentifierResolver, but |
| // make sure it is at the end of the chain to coincide with the |
| // global scope. |
| ((DeclContext *)TUScope->getEntity())->addDecl(Alloc); |
| } |
| |
| bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, |
| DeclarationName Name, |
| FunctionDecl* &Operator) { |
| LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); |
| // Try to find operator delete/operator delete[] in class scope. |
| LookupQualifiedName(Found, RD); |
| |
| if (Found.isAmbiguous()) |
| return true; |
| |
| for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); |
| F != FEnd; ++F) { |
| if (CXXMethodDecl *Delete = dyn_cast<CXXMethodDecl>(*F)) |
| if (Delete->isUsualDeallocationFunction()) { |
| Operator = Delete; |
| return false; |
| } |
| } |
| |
| // We did find operator delete/operator delete[] declarations, but |
| // none of them were suitable. |
| if (!Found.empty()) { |
| Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) |
| << Name << RD; |
| |
| for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); |
| F != FEnd; ++F) { |
| Diag((*F)->getLocation(), |
| diag::note_delete_member_function_declared_here) |
| << Name; |
| } |
| |
| return true; |
| } |
| |
| // Look for a global declaration. |
| DeclareGlobalNewDelete(); |
| DeclContext *TUDecl = Context.getTranslationUnitDecl(); |
| |
| CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation()); |
| Expr* DeallocArgs[1]; |
| DeallocArgs[0] = &Null; |
| if (FindAllocationOverload(StartLoc, SourceRange(), Name, |
| DeallocArgs, 1, TUDecl, /*AllowMissing=*/false, |
| Operator)) |
| return true; |
| |
| assert(Operator && "Did not find a deallocation function!"); |
| return false; |
| } |
| |
| /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: |
| /// @code ::delete ptr; @endcode |
| /// or |
| /// @code delete [] ptr; @endcode |
| Action::OwningExprResult |
| Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, |
| bool ArrayForm, ExprArg Operand) { |
| // C++ [expr.delete]p1: |
| // The operand shall have a pointer type, or a class type having a single |
| // conversion function to a pointer type. The result has type void. |
| // |
| // DR599 amends "pointer type" to "pointer to object type" in both cases. |
| |
| FunctionDecl *OperatorDelete = 0; |
| |
| Expr *Ex = (Expr *)Operand.get(); |
| if (!Ex->isTypeDependent()) { |
| QualType Type = Ex->getType(); |
| |
| if (const RecordType *Record = Type->getAs<RecordType>()) { |
| llvm::SmallVector<CXXConversionDecl *, 4> ObjectPtrConversions; |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); |
| const UnresolvedSet *Conversions = RD->getVisibleConversionFunctions(); |
| |
| for (UnresolvedSet::iterator I = Conversions->begin(), |
| E = Conversions->end(); I != E; ++I) { |
| // Skip over templated conversion functions; they aren't considered. |
| if (isa<FunctionTemplateDecl>(*I)) |
| continue; |
| |
| CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I); |
| |
| QualType ConvType = Conv->getConversionType().getNonReferenceType(); |
| if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) |
| if (ConvPtrType->getPointeeType()->isObjectType()) |
| ObjectPtrConversions.push_back(Conv); |
| } |
| if (ObjectPtrConversions.size() == 1) { |
| // We have a single conversion to a pointer-to-object type. Perform |
| // that conversion. |
| Operand.release(); |
| if (!PerformImplicitConversion(Ex, |
| ObjectPtrConversions.front()->getConversionType(), |
| "converting")) { |
| Operand = Owned(Ex); |
| Type = Ex->getType(); |
| } |
| } |
| else if (ObjectPtrConversions.size() > 1) { |
| Diag(StartLoc, diag::err_ambiguous_delete_operand) |
| << Type << Ex->getSourceRange(); |
| for (unsigned i= 0; i < ObjectPtrConversions.size(); i++) { |
| CXXConversionDecl *Conv = ObjectPtrConversions[i]; |
| Diag(Conv->getLocation(), diag::err_ovl_candidate); |
| } |
| return ExprError(); |
| } |
| } |
| |
| if (!Type->isPointerType()) |
| return ExprError(Diag(StartLoc, diag::err_delete_operand) |
| << Type << Ex->getSourceRange()); |
| |
| QualType Pointee = Type->getAs<PointerType>()->getPointeeType(); |
| if (Pointee->isFunctionType() || Pointee->isVoidType()) |
| return ExprError(Diag(StartLoc, diag::err_delete_operand) |
| << Type << Ex->getSourceRange()); |
| else if (!Pointee->isDependentType() && |
| RequireCompleteType(StartLoc, Pointee, |
| PDiag(diag::warn_delete_incomplete) |
| << Ex->getSourceRange())) |
| return ExprError(); |
| |
| // C++ [expr.delete]p2: |
| // [Note: a pointer to a const type can be the operand of a |
| // delete-expression; it is not necessary to cast away the constness |
| // (5.2.11) of the pointer expression before it is used as the operand |
| // of the delete-expression. ] |
| ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy), |
| CastExpr::CK_NoOp); |
| |
| // Update the operand. |
| Operand.take(); |
| Operand = ExprArg(*this, Ex); |
| |
| DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( |
| ArrayForm ? OO_Array_Delete : OO_Delete); |
| |
| if (const RecordType *RT = Pointee->getAs<RecordType>()) { |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| |
| if (!UseGlobal && |
| FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete)) |
| return ExprError(); |
| |
| if (!RD->hasTrivialDestructor()) |
| if (const CXXDestructorDecl *Dtor = RD->getDestructor(Context)) |
| MarkDeclarationReferenced(StartLoc, |
| const_cast<CXXDestructorDecl*>(Dtor)); |
| } |
| |
| if (!OperatorDelete) { |
| // Look for a global declaration. |
| DeclareGlobalNewDelete(); |
| DeclContext *TUDecl = Context.getTranslationUnitDecl(); |
| if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName, |
| &Ex, 1, TUDecl, /*AllowMissing=*/false, |
| OperatorDelete)) |
| return ExprError(); |
| } |
| |
| // FIXME: Check access and ambiguity of operator delete and destructor. |
| } |
| |
| Operand.release(); |
| return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, |
| OperatorDelete, Ex, StartLoc)); |
| } |
| |
| /// \brief Check the use of the given variable as a C++ condition in an if, |
| /// while, do-while, or switch statement. |
| Action::OwningExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar) { |
| QualType T = ConditionVar->getType(); |
| |
| // C++ [stmt.select]p2: |
| // The declarator shall not specify a function or an array. |
| if (T->isFunctionType()) |
| return ExprError(Diag(ConditionVar->getLocation(), |
| diag::err_invalid_use_of_function_type) |
| << ConditionVar->getSourceRange()); |
| else if (T->isArrayType()) |
| return ExprError(Diag(ConditionVar->getLocation(), |
| diag::err_invalid_use_of_array_type) |
| << ConditionVar->getSourceRange()); |
| |
| return Owned(DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar, |
| ConditionVar->getLocation(), |
| ConditionVar->getType().getNonReferenceType())); |
| } |
| |
| /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. |
| bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) { |
| // C++ 6.4p4: |
| // The value of a condition that is an initialized declaration in a statement |
| // other than a switch statement is the value of the declared variable |
| // implicitly converted to type bool. If that conversion is ill-formed, the |
| // program is ill-formed. |
| // The value of a condition that is an expression is the value of the |
| // expression, implicitly converted to bool. |
| // |
| return PerformContextuallyConvertToBool(CondExpr); |
| } |
| |
| /// Helper function to determine whether this is the (deprecated) C++ |
| /// conversion from a string literal to a pointer to non-const char or |
| /// non-const wchar_t (for narrow and wide string literals, |
| /// respectively). |
| bool |
| Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { |
| // Look inside the implicit cast, if it exists. |
| if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) |
| From = Cast->getSubExpr(); |
| |
| // A string literal (2.13.4) that is not a wide string literal can |
| // be converted to an rvalue of type "pointer to char"; a wide |
| // string literal can be converted to an rvalue of type "pointer |
| // to wchar_t" (C++ 4.2p2). |
| if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From)) |
| if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) |
| if (const BuiltinType *ToPointeeType |
| = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { |
| // This conversion is considered only when there is an |
| // explicit appropriate pointer target type (C++ 4.2p2). |
| if (!ToPtrType->getPointeeType().hasQualifiers() && |
| ((StrLit->isWide() && ToPointeeType->isWideCharType()) || |
| (!StrLit->isWide() && |
| (ToPointeeType->getKind() == BuiltinType::Char_U || |
| ToPointeeType->getKind() == BuiltinType::Char_S)))) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// PerformImplicitConversion - Perform an implicit conversion of the |
| /// expression From to the type ToType. Returns true if there was an |
| /// error, false otherwise. The expression From is replaced with the |
| /// converted expression. Flavor is the kind of conversion we're |
| /// performing, used in the error message. If @p AllowExplicit, |
| /// explicit user-defined conversions are permitted. @p Elidable should be true |
| /// when called for copies which may be elided (C++ 12.8p15). C++0x overload |
| /// resolution works differently in that case. |
| bool |
| Sema::PerformImplicitConversion(Expr *&From, QualType ToType, |
| const char *Flavor, bool AllowExplicit, |
| bool Elidable) { |
| ImplicitConversionSequence ICS; |
| return PerformImplicitConversion(From, ToType, Flavor, AllowExplicit, |
| Elidable, ICS); |
| } |
| |
| bool |
| Sema::PerformImplicitConversion(Expr *&From, QualType ToType, |
| const char *Flavor, bool AllowExplicit, |
| bool Elidable, |
| ImplicitConversionSequence& ICS) { |
| ICS.ConversionKind = ImplicitConversionSequence::BadConversion; |
| if (Elidable && getLangOptions().CPlusPlus0x) { |
| ICS = TryImplicitConversion(From, ToType, |
| /*SuppressUserConversions=*/false, |
| AllowExplicit, |
| /*ForceRValue=*/true, |
| /*InOverloadResolution=*/false); |
| } |
| if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) { |
| ICS = TryImplicitConversion(From, ToType, |
| /*SuppressUserConversions=*/false, |
| AllowExplicit, |
| /*ForceRValue=*/false, |
| /*InOverloadResolution=*/false); |
| } |
| return PerformImplicitConversion(From, ToType, ICS, Flavor); |
| } |
| |
| /// BuildCXXDerivedToBaseExpr - This routine generates the suitable AST |
| /// for the derived to base conversion of the expression 'From'. All |
| /// necessary information is passed in ICS. |
| bool |
| Sema::BuildCXXDerivedToBaseExpr(Expr *&From, CastExpr::CastKind CastKind, |
| const ImplicitConversionSequence& ICS, |
| const char *Flavor) { |
| QualType BaseType = |
| QualType::getFromOpaquePtr(ICS.UserDefined.After.ToTypePtr); |
| // Must do additional defined to base conversion. |
| QualType DerivedType = |
| QualType::getFromOpaquePtr(ICS.UserDefined.After.FromTypePtr); |
| |
| From = new (Context) ImplicitCastExpr( |
| DerivedType.getNonReferenceType(), |
| CastKind, |
| From, |
| DerivedType->isLValueReferenceType()); |
| From = new (Context) ImplicitCastExpr(BaseType.getNonReferenceType(), |
| CastExpr::CK_DerivedToBase, From, |
| BaseType->isLValueReferenceType()); |
| ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); |
| OwningExprResult FromResult = |
| BuildCXXConstructExpr( |
| ICS.UserDefined.After.CopyConstructor->getLocation(), |
| BaseType, |
| ICS.UserDefined.After.CopyConstructor, |
| MultiExprArg(*this, (void **)&From, 1)); |
| if (FromResult.isInvalid()) |
| return true; |
| From = FromResult.takeAs<Expr>(); |
| return false; |
| } |
| |
| /// PerformImplicitConversion - Perform an implicit conversion of the |
| /// expression From to the type ToType using the pre-computed implicit |
| /// conversion sequence ICS. Returns true if there was an error, false |
| /// otherwise. The expression From is replaced with the converted |
| /// expression. Flavor is the kind of conversion we're performing, |
| /// used in the error message. |
| bool |
| Sema::PerformImplicitConversion(Expr *&From, QualType ToType, |
| const ImplicitConversionSequence &ICS, |
| const char* Flavor, bool IgnoreBaseAccess) { |
| switch (ICS.ConversionKind) { |
| case ImplicitConversionSequence::StandardConversion: |
| if (PerformImplicitConversion(From, ToType, ICS.Standard, Flavor, |
| IgnoreBaseAccess)) |
| return true; |
| break; |
| |
| case ImplicitConversionSequence::UserDefinedConversion: { |
| |
| FunctionDecl *FD = ICS.UserDefined.ConversionFunction; |
| CastExpr::CastKind CastKind = CastExpr::CK_Unknown; |
| QualType BeforeToType; |
| if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { |
| CastKind = CastExpr::CK_UserDefinedConversion; |
| |
| // If the user-defined conversion is specified by a conversion function, |
| // the initial standard conversion sequence converts the source type to |
| // the implicit object parameter of the conversion function. |
| BeforeToType = Context.getTagDeclType(Conv->getParent()); |
| } else if (const CXXConstructorDecl *Ctor = |
| dyn_cast<CXXConstructorDecl>(FD)) { |
| CastKind = CastExpr::CK_ConstructorConversion; |
| // Do no conversion if dealing with ... for the first conversion. |
| if (!ICS.UserDefined.EllipsisConversion) { |
| // If the user-defined conversion is specified by a constructor, the |
| // initial standard conversion sequence converts the source type to the |
| // type required by the argument of the constructor |
| BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); |
| } |
| } |
| else |
| assert(0 && "Unknown conversion function kind!"); |
| // Whatch out for elipsis conversion. |
| if (!ICS.UserDefined.EllipsisConversion) { |
| if (PerformImplicitConversion(From, BeforeToType, |
| ICS.UserDefined.Before, "converting", |
| IgnoreBaseAccess)) |
| return true; |
| } |
| |
| OwningExprResult CastArg |
| = BuildCXXCastArgument(From->getLocStart(), |
| ToType.getNonReferenceType(), |
| CastKind, cast<CXXMethodDecl>(FD), |
| Owned(From)); |
| |
| if (CastArg.isInvalid()) |
| return true; |
| |
| From = CastArg.takeAs<Expr>(); |
| |
| // FIXME: This and the following if statement shouldn't be necessary, but |
| // there's some nasty stuff involving MaybeBindToTemporary going on here. |
| if (ICS.UserDefined.After.Second == ICK_Derived_To_Base && |
| ICS.UserDefined.After.CopyConstructor) { |
| return BuildCXXDerivedToBaseExpr(From, CastKind, ICS, Flavor); |
| } |
| |
| if (ICS.UserDefined.After.CopyConstructor) { |
| From = new (Context) ImplicitCastExpr(ToType.getNonReferenceType(), |
| CastKind, From, |
| ToType->isLValueReferenceType()); |
| return false; |
| } |
| |
| return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, |
| "converting", IgnoreBaseAccess); |
| } |
| |
| case ImplicitConversionSequence::EllipsisConversion: |
| assert(false && "Cannot perform an ellipsis conversion"); |
| return false; |
| |
| case ImplicitConversionSequence::BadConversion: |
| return true; |
| } |
| |
| // Everything went well. |
| return false; |
| } |
| |
| /// PerformImplicitConversion - Perform an implicit conversion of the |
| /// expression From to the type ToType by following the standard |
| /// conversion sequence SCS. Returns true if there was an error, false |
| /// otherwise. The expression From is replaced with the converted |
| /// expression. Flavor is the context in which we're performing this |
| /// conversion, for use in error messages. |
| bool |
| Sema::PerformImplicitConversion(Expr *&From, QualType ToType, |
| const StandardConversionSequence& SCS, |
| const char *Flavor, bool IgnoreBaseAccess) { |
| // Overall FIXME: we are recomputing too many types here and doing far too |
| // much extra work. What this means is that we need to keep track of more |
| // information that is computed when we try the implicit conversion initially, |
| // so that we don't need to recompute anything here. |
| QualType FromType = From->getType(); |
| |
| if (SCS.CopyConstructor) { |
| // FIXME: When can ToType be a reference type? |
| assert(!ToType->isReferenceType()); |
| if (SCS.Second == ICK_Derived_To_Base) { |
| ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); |
| if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), |
| MultiExprArg(*this, (void **)&From, 1), |
| /*FIXME:ConstructLoc*/SourceLocation(), |
| ConstructorArgs)) |
| return true; |
| OwningExprResult FromResult = |
| BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), |
| ToType, SCS.CopyConstructor, |
| move_arg(ConstructorArgs)); |
| if (FromResult.isInvalid()) |
| return true; |
| From = FromResult.takeAs<Expr>(); |
| return false; |
| } |
| OwningExprResult FromResult = |
| BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), |
| ToType, SCS.CopyConstructor, |
| MultiExprArg(*this, (void**)&From, 1)); |
| |
| if (FromResult.isInvalid()) |
| return true; |
| |
| From = FromResult.takeAs<Expr>(); |
| return false; |
| } |
| |
| // Perform the first implicit conversion. |
| switch (SCS.First) { |
| case ICK_Identity: |
| case ICK_Lvalue_To_Rvalue: |
| // Nothing to do. |
| break; |
| |
| case ICK_Array_To_Pointer: |
| FromType = Context.getArrayDecayedType(FromType); |
| ImpCastExprToType(From, FromType, CastExpr::CK_ArrayToPointerDecay); |
| break; |
| |
| case ICK_Function_To_Pointer: |
| if (Context.getCanonicalType(FromType) == Context.OverloadTy) { |
| FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true); |
| if (!Fn) |
| return true; |
| |
| if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin())) |
| return true; |
| |
| From = FixOverloadedFunctionReference(From, Fn); |
| FromType = From->getType(); |
| |
| // If there's already an address-of operator in the expression, we have |
| // the right type already, and the code below would just introduce an |
| // invalid additional pointer level. |
| if (FromType->isPointerType() || FromType->isMemberFunctionPointerType()) |
| break; |
| } |
| FromType = Context.getPointerType(FromType); |
| ImpCastExprToType(From, FromType, CastExpr::CK_FunctionToPointerDecay); |
| break; |
| |
| default: |
| assert(false && "Improper first standard conversion"); |
| break; |
| } |
| |
| // Perform the second implicit conversion |
| switch (SCS.Second) { |
| case ICK_Identity: |
| // If both sides are functions (or pointers/references to them), there could |
| // be incompatible exception declarations. |
| if (CheckExceptionSpecCompatibility(From, ToType)) |
| return true; |
| // Nothing else to do. |
| break; |
| |
| case ICK_Integral_Promotion: |
| case ICK_Integral_Conversion: |
| ImpCastExprToType(From, ToType, CastExpr::CK_IntegralCast); |
| break; |
| |
| case ICK_Floating_Promotion: |
| case ICK_Floating_Conversion: |
| ImpCastExprToType(From, ToType, CastExpr::CK_FloatingCast); |
| break; |
| |
| case ICK_Complex_Promotion: |
| case ICK_Complex_Conversion: |
| ImpCastExprToType(From, ToType, CastExpr::CK_Unknown); |
| break; |
| |
| case ICK_Floating_Integral: |
| if (ToType->isFloatingType()) |
| ImpCastExprToType(From, ToType, CastExpr::CK_IntegralToFloating); |
| else |
| ImpCastExprToType(From, ToType, CastExpr::CK_FloatingToIntegral); |
| break; |
| |
| case ICK_Complex_Real: |
| ImpCastExprToType(From, ToType, CastExpr::CK_Unknown); |
| break; |
| |
| case ICK_Compatible_Conversion: |
| ImpCastExprToType(From, ToType, CastExpr::CK_NoOp); |
| break; |
| |
| case ICK_Pointer_Conversion: { |
| if (SCS.IncompatibleObjC) { |
| // Diagnose incompatible Objective-C conversions |
| Diag(From->getSourceRange().getBegin(), |
| diag::ext_typecheck_convert_incompatible_pointer) |
| << From->getType() << ToType << Flavor |
| << From->getSourceRange(); |
| } |
| |
| |
| CastExpr::CastKind Kind = CastExpr::CK_Unknown; |
| if (CheckPointerConversion(From, ToType, Kind, IgnoreBaseAccess)) |
| return true; |
| ImpCastExprToType(From, ToType, Kind); |
| break; |
| } |
| |
| case ICK_Pointer_Member: { |
| CastExpr::CastKind Kind = CastExpr::CK_Unknown; |
| if (CheckMemberPointerConversion(From, ToType, Kind, IgnoreBaseAccess)) |
| return true; |
| if (CheckExceptionSpecCompatibility(From, ToType)) |
| return true; |
| ImpCastExprToType(From, ToType, Kind); |
| break; |
| } |
| case ICK_Boolean_Conversion: { |
| CastExpr::CastKind Kind = CastExpr::CK_Unknown; |
| if (FromType->isMemberPointerType()) |
| Kind = CastExpr::CK_MemberPointerToBoolean; |
| |
| ImpCastExprToType(From, Context.BoolTy, Kind); |
| break; |
| } |
| |
| case ICK_Derived_To_Base: |
| if (CheckDerivedToBaseConversion(From->getType(), |
| ToType.getNonReferenceType(), |
| From->getLocStart(), |
| From->getSourceRange(), |
| IgnoreBaseAccess)) |
| return true; |
| ImpCastExprToType(From, ToType.getNonReferenceType(), |
| CastExpr::CK_DerivedToBase); |
| break; |
| |
| default: |
| assert(false && "Improper second standard conversion"); |
| break; |
| } |
| |
| switch (SCS.Third) { |
| case ICK_Identity: |
| // Nothing to do. |
| break; |
| |
| case ICK_Qualification: |
| // FIXME: Not sure about lvalue vs rvalue here in the presence of rvalue |
| // references. |
| ImpCastExprToType(From, ToType.getNonReferenceType(), |
| CastExpr::CK_NoOp, |
| ToType->isLValueReferenceType()); |
| break; |
| |
| default: |
| assert(false && "Improper second standard conversion"); |
| break; |
| } |
| |
| return false; |
| } |
| |
| Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT, |
| SourceLocation KWLoc, |
| SourceLocation LParen, |
| TypeTy *Ty, |
| SourceLocation RParen) { |
| QualType T = GetTypeFromParser(Ty); |
| |
| // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html |
| // all traits except __is_class, __is_enum and __is_union require a the type |
| // to be complete. |
| if (OTT != UTT_IsClass && OTT != UTT_IsEnum && OTT != UTT_IsUnion) { |
| if (RequireCompleteType(KWLoc, T, |
| diag::err_incomplete_type_used_in_type_trait_expr)) |
| return ExprError(); |
| } |
| |
| // There is no point in eagerly computing the value. The traits are designed |
| // to be used from type trait templates, so Ty will be a template parameter |
| // 99% of the time. |
| return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT, T, |
| RParen, Context.BoolTy)); |
| } |
| |
| QualType Sema::CheckPointerToMemberOperands( |
| Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) { |
| const char *OpSpelling = isIndirect ? "->*" : ".*"; |
| // C++ 5.5p2 |
| // The binary operator .* [p3: ->*] binds its second operand, which shall |
| // be of type "pointer to member of T" (where T is a completely-defined |
| // class type) [...] |
| QualType RType = rex->getType(); |
| const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>(); |
| if (!MemPtr) { |
| Diag(Loc, diag::err_bad_memptr_rhs) |
| << OpSpelling << RType << rex->getSourceRange(); |
| return QualType(); |
| } |
| |
| QualType Class(MemPtr->getClass(), 0); |
| |
| // C++ 5.5p2 |
| // [...] to its first operand, which shall be of class T or of a class of |
| // which T is an unambiguous and accessible base class. [p3: a pointer to |
| // such a class] |
| QualType LType = lex->getType(); |
| if (isIndirect) { |
| if (const PointerType *Ptr = LType->getAs<PointerType>()) |
| LType = Ptr->getPointeeType().getNonReferenceType(); |
| else { |
| Diag(Loc, diag::err_bad_memptr_lhs) |
| << OpSpelling << 1 << LType |
| << CodeModificationHint::CreateReplacement(SourceRange(Loc), ".*"); |
| return QualType(); |
| } |
| } |
| |
| if (!Context.hasSameUnqualifiedType(Class, LType)) { |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, |
| /*DetectVirtual=*/false); |
| // FIXME: Would it be useful to print full ambiguity paths, or is that |
| // overkill? |
| if (!IsDerivedFrom(LType, Class, Paths) || |
| Paths.isAmbiguous(Context.getCanonicalType(Class))) { |
| const char *ReplaceStr = isIndirect ? ".*" : "->*"; |
| Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling |
| << (int)isIndirect << lex->getType() << |
| CodeModificationHint::CreateReplacement(SourceRange(Loc), ReplaceStr); |
| return QualType(); |
| } |
| } |
| |
| if (isa<CXXZeroInitValueExpr>(rex->IgnoreParens())) { |
| // Diagnose use of pointer-to-member type which when used as |
| // the functional cast in a pointer-to-member expression. |
| Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; |
| return QualType(); |
| } |
| // C++ 5.5p2 |
| // The result is an object or a function of the type specified by the |
| // second operand. |
| // The cv qualifiers are the union of those in the pointer and the left side, |
| // in accordance with 5.5p5 and 5.2.5. |
| // FIXME: This returns a dereferenced member function pointer as a normal |
| // function type. However, the only operation valid on such functions is |
| // calling them. There's also a GCC extension to get a function pointer to the |
| // thing, which is another complication, because this type - unlike the type |
| // that is the result of this expression - takes the class as the first |
| // argument. |
| // We probably need a "MemberFunctionClosureType" or something like that. |
| QualType Result = MemPtr->getPointeeType(); |
| Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers()); |
| return Result; |
| } |
| |
| /// \brief Get the target type of a standard or user-defined conversion. |
| static QualType TargetType(const ImplicitConversionSequence &ICS) { |
| assert((ICS.ConversionKind == |
| ImplicitConversionSequence::StandardConversion || |
| ICS.ConversionKind == |
| ImplicitConversionSequence::UserDefinedConversion) && |
| "function only valid for standard or user-defined conversions"); |
| if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion) |
| return QualType::getFromOpaquePtr(ICS.Standard.ToTypePtr); |
| return QualType::getFromOpaquePtr(ICS.UserDefined.After.ToTypePtr); |
| } |
| |
| /// \brief Try to convert a type to another according to C++0x 5.16p3. |
| /// |
| /// This is part of the parameter validation for the ? operator. If either |
| /// value operand is a class type, the two operands are attempted to be |
| /// converted to each other. This function does the conversion in one direction. |
| /// It emits a diagnostic and returns true only if it finds an ambiguous |
| /// conversion. |
| static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, |
| SourceLocation QuestionLoc, |
| ImplicitConversionSequence &ICS) { |
| // C++0x 5.16p3 |
| // The process for determining whether an operand expression E1 of type T1 |
| // can be converted to match an operand expression E2 of type T2 is defined |
| // as follows: |
| // -- If E2 is an lvalue: |
| if (To->isLvalue(Self.Context) == Expr::LV_Valid) { |
| // E1 can be converted to match E2 if E1 can be implicitly converted to |
| // type "lvalue reference to T2", subject to the constraint that in the |
| // conversion the reference must bind directly to E1. |
| if (!Self.CheckReferenceInit(From, |
| Self.Context.getLValueReferenceType(To->getType()), |
| To->getLocStart(), |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/false, |
| /*ForceRValue=*/false, |
| &ICS)) |
| { |
| assert((ICS.ConversionKind == |
| ImplicitConversionSequence::StandardConversion || |
| ICS.ConversionKind == |
| ImplicitConversionSequence::UserDefinedConversion) && |
| "expected a definite conversion"); |
| bool DirectBinding = |
| ICS.ConversionKind == ImplicitConversionSequence::StandardConversion ? |
| ICS.Standard.DirectBinding : ICS.UserDefined.After.DirectBinding; |
| if (DirectBinding) |
| return false; |
| } |
| } |
| ICS.ConversionKind = ImplicitConversionSequence::BadConversion; |
| // -- If E2 is an rvalue, or if the conversion above cannot be done: |
| // -- if E1 and E2 have class type, and the underlying class types are |
| // the same or one is a base class of the other: |
| QualType FTy = From->getType(); |
| QualType TTy = To->getType(); |
| const RecordType *FRec = FTy->getAs<RecordType>(); |
| const RecordType *TRec = TTy->getAs<RecordType>(); |
| bool FDerivedFromT = FRec && TRec && Self.IsDerivedFrom(FTy, TTy); |
| if (FRec && TRec && (FRec == TRec || |
| FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) { |
| // E1 can be converted to match E2 if the class of T2 is the |
| // same type as, or a base class of, the class of T1, and |
| // [cv2 > cv1]. |
| if ((FRec == TRec || FDerivedFromT) && TTy.isAtLeastAsQualifiedAs(FTy)) { |
| // Could still fail if there's no copy constructor. |
| // FIXME: Is this a hard error then, or just a conversion failure? The |
| // standard doesn't say. |
| ICS = Self.TryCopyInitialization(From, TTy, |
| /*SuppressUserConversions=*/false, |
| /*ForceRValue=*/false, |
| /*InOverloadResolution=*/false); |
| } |
| } else { |
| // -- Otherwise: E1 can be converted to match E2 if E1 can be |
| // implicitly converted to the type that expression E2 would have |
| // if E2 were converted to an rvalue. |
| // First find the decayed type. |
| if (TTy->isFunctionType()) |
| TTy = Self.Context.getPointerType(TTy); |
| else if (TTy->isArrayType()) |
| TTy = Self.Context.getArrayDecayedType(TTy); |
| |
| // Now try the implicit conversion. |
| // FIXME: This doesn't detect ambiguities. |
| ICS = Self.TryImplicitConversion(From, TTy, |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/false, |
| /*ForceRValue=*/false, |
| /*InOverloadResolution=*/false); |
| } |
| return false; |
| } |
| |
| /// \brief Try to find a common type for two according to C++0x 5.16p5. |
| /// |
| /// This is part of the parameter validation for the ? operator. If either |
| /// value operand is a class type, overload resolution is used to find a |
| /// conversion to a common type. |
| static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS, |
| SourceLocation Loc) { |
| Expr *Args[2] = { LHS, RHS }; |
| OverloadCandidateSet CandidateSet; |
| Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet); |
| |
| OverloadCandidateSet::iterator Best; |
| switch (Self.BestViableFunction(CandidateSet, Loc, Best)) { |
| case Sema::OR_Success: |
| // We found a match. Perform the conversions on the arguments and move on. |
| if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0], |
| Best->Conversions[0], "converting") || |
| Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1], |
| Best->Conversions[1], "converting")) |
| break; |
| return false; |
| |
| case Sema::OR_No_Viable_Function: |
| Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) |
| << LHS->getType() << RHS->getType() |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| return true; |
| |
| case Sema::OR_Ambiguous: |
| Self.Diag(Loc, diag::err_conditional_ambiguous_ovl) |
| << LHS->getType() << RHS->getType() |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| // FIXME: Print the possible common types by printing the return types of |
| // the viable candidates. |
| break; |
| |
| case Sema::OR_Deleted: |
| assert(false && "Conditional operator has only built-in overloads"); |
| break; |
| } |
| return true; |
| } |
| |
| /// \brief Perform an "extended" implicit conversion as returned by |
| /// TryClassUnification. |
| /// |
| /// TryClassUnification generates ICSs that include reference bindings. |
| /// PerformImplicitConversion is not suitable for this; it chokes if the |
| /// second part of a standard conversion is ICK_DerivedToBase. This function |
| /// handles the reference binding specially. |
| static bool ConvertForConditional(Sema &Self, Expr *&E, |
| const ImplicitConversionSequence &ICS) { |
| if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion && |
| ICS.Standard.ReferenceBinding) { |
| assert(ICS.Standard.DirectBinding && |
| "TryClassUnification should never generate indirect ref bindings"); |
| // FIXME: CheckReferenceInit should be able to reuse the ICS instead of |
| // redoing all the work. |
| return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType( |
| TargetType(ICS)), |
| /*FIXME:*/E->getLocStart(), |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/false, |
| /*ForceRValue=*/false); |
| } |
| if (ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion && |
| ICS.UserDefined.After.ReferenceBinding) { |
| assert(ICS.UserDefined.After.DirectBinding && |
| "TryClassUnification should never generate indirect ref bindings"); |
| return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType( |
| TargetType(ICS)), |
| /*FIXME:*/E->getLocStart(), |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/false, |
| /*ForceRValue=*/false); |
| } |
| if (Self.PerformImplicitConversion(E, TargetType(ICS), ICS, "converting")) |
| return true; |
| return false; |
| } |
| |
| /// \brief Check the operands of ?: under C++ semantics. |
| /// |
| /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y |
| /// extension. In this case, LHS == Cond. (But they're not aliases.) |
| QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, |
| SourceLocation QuestionLoc) { |
| // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ |
| // interface pointers. |
| |
| // C++0x 5.16p1 |
| // The first expression is contextually converted to bool. |
| if (!Cond->isTypeDependent()) { |
| if (CheckCXXBooleanCondition(Cond)) |
| return QualType(); |
| } |
| |
| // Either of the arguments dependent? |
| if (LHS->isTypeDependent() || RHS->isTypeDependent()) |
| return Context.DependentTy; |
| |
| CheckSignCompare(LHS, RHS, QuestionLoc, diag::warn_mixed_sign_conditional); |
| |
| // C++0x 5.16p2 |
| // If either the second or the third operand has type (cv) void, ... |
| QualType LTy = LHS->getType(); |
| QualType RTy = RHS->getType(); |
| bool LVoid = LTy->isVoidType(); |
| bool RVoid = RTy->isVoidType(); |
| if (LVoid || RVoid) { |
| // ... then the [l2r] conversions are performed on the second and third |
| // operands ... |
| DefaultFunctionArrayConversion(LHS); |
| DefaultFunctionArrayConversion(RHS); |
| LTy = LHS->getType(); |
| RTy = RHS->getType(); |
| |
| // ... and one of the following shall hold: |
| // -- The second or the third operand (but not both) is a throw- |
| // expression; the result is of the type of the other and is an rvalue. |
| bool LThrow = isa<CXXThrowExpr>(LHS); |
| bool RThrow = isa<CXXThrowExpr>(RHS); |
| if (LThrow && !RThrow) |
| return RTy; |
| if (RThrow && !LThrow) |
| return LTy; |
| |
| // -- Both the second and third operands have type void; the result is of |
| // type void and is an rvalue. |
| if (LVoid && RVoid) |
| return Context.VoidTy; |
| |
| // Neither holds, error. |
| Diag(QuestionLoc, diag::err_conditional_void_nonvoid) |
| << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| return QualType(); |
| } |
| |
| // Neither is void. |
| |
| // C++0x 5.16p3 |
| // Otherwise, if the second and third operand have different types, and |
| // either has (cv) class type, and attempt is made to convert each of those |
| // operands to the other. |
| if (Context.getCanonicalType(LTy) != Context.getCanonicalType(RTy) && |
| (LTy->isRecordType() || RTy->isRecordType())) { |
| ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft; |
| // These return true if a single direction is already ambiguous. |
| if (TryClassUnification(*this, LHS, RHS, QuestionLoc, ICSLeftToRight)) |
| return QualType(); |
| if (TryClassUnification(*this, RHS, LHS, QuestionLoc, ICSRightToLeft)) |
| return QualType(); |
| |
| bool HaveL2R = ICSLeftToRight.ConversionKind != |
| ImplicitConversionSequence::BadConversion; |
| bool HaveR2L = ICSRightToLeft.ConversionKind != |
| ImplicitConversionSequence::BadConversion; |
| // If both can be converted, [...] the program is ill-formed. |
| if (HaveL2R && HaveR2L) { |
| Diag(QuestionLoc, diag::err_conditional_ambiguous) |
| << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange(); |
| return QualType(); |
| } |
| |
| // If exactly one conversion is possible, that conversion is applied to |
| // the chosen operand and the converted operands are used in place of the |
| // original operands for the remainder of this section. |
| if (HaveL2R) { |
| if (ConvertForConditional(*this, LHS, ICSLeftToRight)) |
| return QualType(); |
| LTy = LHS->getType(); |
| } else if (HaveR2L) { |
| if (ConvertForConditional(*this, RHS, ICSRightToLeft)) |
| return QualType(); |
| RTy = RHS->getType(); |
| } |
| } |
| |
| // C++0x 5.16p4 |
| // If the second and third operands are lvalues and have the same type, |
| // the result is of that type [...] |
| bool Same = Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy); |
| if (Same && LHS->isLvalue(Context) == Expr::LV_Valid && |
| RHS->isLvalue(Context) == Expr::LV_Valid) |
| return LTy; |
| |
| // C++0x 5.16p5 |
| // Otherwise, the result is an rvalue. If the second and third operands |
| // do not have the same type, and either has (cv) class type, ... |
| if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { |
| // ... overload resolution is used to determine the conversions (if any) |
| // to be applied to the operands. If the overload resolution fails, the |
| // program is ill-formed. |
| if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) |
| return QualType(); |
| } |
| |
| // C++0x 5.16p6 |
| // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard |
| // conversions are performed on the second and third operands. |
| DefaultFunctionArrayConversion(LHS); |
| DefaultFunctionArrayConversion(RHS); |
| LTy = LHS->getType(); |
| RTy = RHS->getType(); |
| |
| // After those conversions, one of the following shall hold: |
| // -- The second and third operands have the same type; the result |
| // is of that type. |
| if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) |
| return LTy; |
| |
| // -- The second and third operands have arithmetic or enumeration type; |
| // the usual arithmetic conversions are performed to bring them to a |
| // common type, and the result is of that type. |
| if (LTy->isArithmeticType() && RTy->isArithmeticType()) { |
| UsualArithmeticConversions(LHS, RHS); |
| return LHS->getType(); |
| } |
| |
| // -- The second and third operands have pointer type, or one has pointer |
| // type and the other is a null pointer constant; pointer conversions |
| // and qualification conversions are performed to bring them to their |
| // composite pointer type. The result is of the composite pointer type. |
| QualType Composite = FindCompositePointerType(LHS, RHS); |
| if (!Composite.isNull()) |
| return Composite; |
| |
| // Fourth bullet is same for pointers-to-member. However, the possible |
| // conversions are far more limited: we have null-to-pointer, upcast of |
| // containing class, and second-level cv-ness. |
| // cv-ness is not a union, but must match one of the two operands. (Which, |
| // frankly, is stupid.) |
| const MemberPointerType *LMemPtr = LTy->getAs<MemberPointerType>(); |
| const MemberPointerType *RMemPtr = RTy->getAs<MemberPointerType>(); |
| if (LMemPtr && |
| RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { |
| ImpCastExprToType(RHS, LTy, CastExpr::CK_NullToMemberPointer); |
| return LTy; |
| } |
| if (RMemPtr && |
| LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { |
| ImpCastExprToType(LHS, RTy, CastExpr::CK_NullToMemberPointer); |
| return RTy; |
| } |
| if (LMemPtr && RMemPtr) { |
| QualType LPointee = LMemPtr->getPointeeType(); |
| QualType RPointee = RMemPtr->getPointeeType(); |
| |
| QualifierCollector LPQuals, RPQuals; |
| const Type *LPCan = LPQuals.strip(Context.getCanonicalType(LPointee)); |
| const Type *RPCan = RPQuals.strip(Context.getCanonicalType(RPointee)); |
| |
| // First, we check that the unqualified pointee type is the same. If it's |
| // not, there's no conversion that will unify the two pointers. |
| if (LPCan == RPCan) { |
| |
| // Second, we take the greater of the two qualifications. If neither |
| // is greater than the other, the conversion is not possible. |
| |
| Qualifiers MergedQuals = LPQuals + RPQuals; |
| |
| bool CompatibleQuals = true; |
| if (MergedQuals.getCVRQualifiers() != LPQuals.getCVRQualifiers() && |
| MergedQuals.getCVRQualifiers() != RPQuals.getCVRQualifiers()) |
| CompatibleQuals = false; |
| else if (LPQuals.getAddressSpace() != RPQuals.getAddressSpace()) |
| // FIXME: |
| // C99 6.5.15 as modified by TR 18037: |
| // If the second and third operands are pointers into different |
| // address spaces, the address spaces must overlap. |
| CompatibleQuals = false; |
| // FIXME: GC qualifiers? |
| |
| if (CompatibleQuals) { |
| // Third, we check if either of the container classes is derived from |
| // the other. |
| QualType LContainer(LMemPtr->getClass(), 0); |
| QualType RContainer(RMemPtr->getClass(), 0); |
| QualType MoreDerived; |
| if (Context.getCanonicalType(LContainer) == |
| Context.getCanonicalType(RContainer)) |
| MoreDerived = LContainer; |
| else if (IsDerivedFrom(LContainer, RContainer)) |
| MoreDerived = LContainer; |
| else if (IsDerivedFrom(RContainer, LContainer)) |
| MoreDerived = RContainer; |
| |
| if (!MoreDerived.isNull()) { |
| // The type 'Q Pointee (MoreDerived::*)' is the common type. |
| // We don't use ImpCastExprToType here because this could still fail |
| // for ambiguous or inaccessible conversions. |
| LPointee = Context.getQualifiedType(LPointee, MergedQuals); |
| QualType Common |
| = Context.getMemberPointerType(LPointee, MoreDerived.getTypePtr()); |
| if (PerformImplicitConversion(LHS, Common, "converting")) |
| return QualType(); |
| if (PerformImplicitConversion(RHS, Common, "converting")) |
| return QualType(); |
| return Common; |
| } |
| } |
| } |
| } |
| |
| Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
| << LHS->getType() << RHS->getType() |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| return QualType(); |
| } |
| |
| /// \brief Find a merged pointer type and convert the two expressions to it. |
| /// |
| /// This finds the composite pointer type (or member pointer type) for @p E1 |
| /// and @p E2 according to C++0x 5.9p2. It converts both expressions to this |
| /// type and returns it. |
| /// It does not emit diagnostics. |
| QualType Sema::FindCompositePointerType(Expr *&E1, Expr *&E2) { |
| assert(getLangOptions().CPlusPlus && "This function assumes C++"); |
| QualType T1 = E1->getType(), T2 = E2->getType(); |
| |
| if (!T1->isPointerType() && !T1->isMemberPointerType() && |
| !T2->isPointerType() && !T2->isMemberPointerType()) |
| return QualType(); |
| |
| // C++0x 5.9p2 |
| // Pointer conversions and qualification conversions are performed on |
| // pointer operands to bring them to their composite pointer type. If |
| // one operand is a null pointer constant, the composite pointer type is |
| // the type of the other operand. |
| if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { |
| if (T2->isMemberPointerType()) |
| ImpCastExprToType(E1, T2, CastExpr::CK_NullToMemberPointer); |
| else |
| ImpCastExprToType(E1, T2, CastExpr::CK_IntegralToPointer); |
| return T2; |
| } |
| if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { |
| if (T1->isMemberPointerType()) |
| ImpCastExprToType(E2, T1, CastExpr::CK_NullToMemberPointer); |
| else |
| ImpCastExprToType(E2, T1, CastExpr::CK_IntegralToPointer); |
| return T1; |
| } |
| |
| // Now both have to be pointers or member pointers. |
| if ((!T1->isPointerType() && !T1->isMemberPointerType()) || |
| (!T2->isPointerType() && !T2->isMemberPointerType())) |
| return QualType(); |
| |
| // Otherwise, of one of the operands has type "pointer to cv1 void," then |
| // the other has type "pointer to cv2 T" and the composite pointer type is |
| // "pointer to cv12 void," where cv12 is the union of cv1 and cv2. |
| // Otherwise, the composite pointer type is a pointer type similar to the |
| // type of one of the operands, with a cv-qualification signature that is |
| // the union of the cv-qualification signatures of the operand types. |
| // In practice, the first part here is redundant; it's subsumed by the second. |
| // What we do here is, we build the two possible composite types, and try the |
| // conversions in both directions. If only one works, or if the two composite |
| // types are the same, we have succeeded. |
| // FIXME: extended qualifiers? |
| typedef llvm::SmallVector<unsigned, 4> QualifierVector; |
| QualifierVector QualifierUnion; |
| typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4> |
| ContainingClassVector; |
| ContainingClassVector MemberOfClass; |
| QualType Composite1 = Context.getCanonicalType(T1), |
| Composite2 = Context.getCanonicalType(T2); |
| do { |
| const PointerType *Ptr1, *Ptr2; |
| if ((Ptr1 = Composite1->getAs<PointerType>()) && |
| (Ptr2 = Composite2->getAs<PointerType>())) { |
| Composite1 = Ptr1->getPointeeType(); |
| Composite2 = Ptr2->getPointeeType(); |
| QualifierUnion.push_back( |
| Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); |
| MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0)); |
| continue; |
| } |
| |
| const MemberPointerType *MemPtr1, *MemPtr2; |
| if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && |
| (MemPtr2 = Composite2->getAs<MemberPointerType>())) { |
| Composite1 = MemPtr1->getPointeeType(); |
| Composite2 = MemPtr2->getPointeeType(); |
| QualifierUnion.push_back( |
| Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); |
| MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), |
| MemPtr2->getClass())); |
| continue; |
| } |
| |
| // FIXME: block pointer types? |
| |
| // Cannot unwrap any more types. |
| break; |
| } while (true); |
| |
| // Rewrap the composites as pointers or member pointers with the union CVRs. |
| ContainingClassVector::reverse_iterator MOC |
| = MemberOfClass.rbegin(); |
| for (QualifierVector::reverse_iterator |
| I = QualifierUnion.rbegin(), |
| E = QualifierUnion.rend(); |
| I != E; (void)++I, ++MOC) { |
| Qualifiers Quals = Qualifiers::fromCVRMask(*I); |
| if (MOC->first && MOC->second) { |
| // Rebuild member pointer type |
| Composite1 = Context.getMemberPointerType( |
| Context.getQualifiedType(Composite1, Quals), |
| MOC->first); |
| Composite2 = Context.getMemberPointerType( |
| Context.getQualifiedType(Composite2, Quals), |
| MOC->second); |
| } else { |
| // Rebuild pointer type |
| Composite1 |
| = Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); |
| Composite2 |
| = Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); |
| } |
| } |
| |
| ImplicitConversionSequence E1ToC1 = |
| TryImplicitConversion(E1, Composite1, |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/false, |
| /*ForceRValue=*/false, |
| /*InOverloadResolution=*/false); |
| ImplicitConversionSequence E2ToC1 = |
| TryImplicitConversion(E2, Composite1, |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/false, |
| /*ForceRValue=*/false, |
| /*InOverloadResolution=*/false); |
| |
| ImplicitConversionSequence E1ToC2, E2ToC2; |
| E1ToC2.ConversionKind = ImplicitConversionSequence::BadConversion; |
| E2ToC2.ConversionKind = ImplicitConversionSequence::BadConversion; |
| if (Context.getCanonicalType(Composite1) != |
| Context.getCanonicalType(Composite2)) { |
| E1ToC2 = TryImplicitConversion(E1, Composite2, |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/false, |
| /*ForceRValue=*/false, |
| /*InOverloadResolution=*/false); |
| E2ToC2 = TryImplicitConversion(E2, Composite2, |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/false, |
| /*ForceRValue=*/false, |
| /*InOverloadResolution=*/false); |
| } |
| |
| bool ToC1Viable = E1ToC1.ConversionKind != |
| ImplicitConversionSequence::BadConversion |
| && E2ToC1.ConversionKind != |
| ImplicitConversionSequence::BadConversion; |
| bool ToC2Viable = E1ToC2.ConversionKind != |
| ImplicitConversionSequence::BadConversion |
| && E2ToC2.ConversionKind != |
| ImplicitConversionSequence::BadConversion; |
| if (ToC1Viable && !ToC2Viable) { |
| if (!PerformImplicitConversion(E1, Composite1, E1ToC1, "converting") && |
| !PerformImplicitConversion(E2, Composite1, E2ToC1, "converting")) |
| return Composite1; |
| } |
| if (ToC2Viable && !ToC1Viable) { |
| if (!PerformImplicitConversion(E1, Composite2, E1ToC2, "converting") && |
| !PerformImplicitConversion(E2, Composite2, E2ToC2, "converting")) |
| return Composite2; |
| } |
| return QualType(); |
| } |
| |
| Sema::OwningExprResult Sema::MaybeBindToTemporary(Expr *E) { |
| if (!Context.getLangOptions().CPlusPlus) |
| return Owned(E); |
| |
| const RecordType *RT = E->getType()->getAs<RecordType>(); |
| if (!RT) |
| return Owned(E); |
| |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| if (RD->hasTrivialDestructor()) |
| return Owned(E); |
| |
| if (CallExpr *CE = dyn_cast<CallExpr>(E)) { |
| QualType Ty = CE->getCallee()->getType(); |
| if (const PointerType *PT = Ty->getAs<PointerType>()) |
| Ty = PT->getPointeeType(); |
| |
| const FunctionType *FTy = Ty->getAs<FunctionType>(); |
| if (FTy->getResultType()->isReferenceType()) |
| return Owned(E); |
| } |
| CXXTemporary *Temp = CXXTemporary::Create(Context, |
| RD->getDestructor(Context)); |
| ExprTemporaries.push_back(Temp); |
| if (CXXDestructorDecl *Destructor = |
| const_cast<CXXDestructorDecl*>(RD->getDestructor(Context))) |
| MarkDeclarationReferenced(E->getExprLoc(), Destructor); |
| // FIXME: Add the temporary to the temporaries vector. |
| return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E)); |
| } |
| |
| Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr, |
| bool ShouldDestroyTemps) { |
| assert(SubExpr && "sub expression can't be null!"); |
| |
| if (ExprTemporaries.empty()) |
| return SubExpr; |
| |
| Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr, |
| &ExprTemporaries[0], |
| ExprTemporaries.size(), |
| ShouldDestroyTemps); |
| ExprTemporaries.clear(); |
| |
| return E; |
| } |
| |
| Sema::OwningExprResult |
| Sema::ActOnStartCXXMemberReference(Scope *S, ExprArg Base, SourceLocation OpLoc, |
| tok::TokenKind OpKind, TypeTy *&ObjectType) { |
| // Since this might be a postfix expression, get rid of ParenListExprs. |
| Base = MaybeConvertParenListExprToParenExpr(S, move(Base)); |
| |
| Expr *BaseExpr = (Expr*)Base.get(); |
| assert(BaseExpr && "no record expansion"); |
| |
| QualType BaseType = BaseExpr->getType(); |
| if (BaseType->isDependentType()) { |
| // If we have a pointer to a dependent type and are using the -> operator, |
| // the object type is the type that the pointer points to. We might still |
| // have enough information about that type to do something useful. |
| if (OpKind == tok::arrow) |
| if (const PointerType *Ptr = BaseType->getAs<PointerType>()) |
| BaseType = Ptr->getPointeeType(); |
| |
| ObjectType = BaseType.getAsOpaquePtr(); |
| return move(Base); |
| } |
| |
| // C++ [over.match.oper]p8: |
| // [...] When operator->returns, the operator-> is applied to the value |
| // returned, with the original second operand. |
| if (OpKind == tok::arrow) { |
| // The set of types we've considered so far. |
| llvm::SmallPtrSet<CanQualType,8> CTypes; |
| llvm::SmallVector<SourceLocation, 8> Locations; |
| CTypes.insert(Context.getCanonicalType(BaseType)); |
| |
| while (BaseType->isRecordType()) { |
| Base = BuildOverloadedArrowExpr(S, move(Base), OpLoc); |
| BaseExpr = (Expr*)Base.get(); |
| if (BaseExpr == NULL) |
| return ExprError(); |
| if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(BaseExpr)) |
| Locations.push_back(OpCall->getDirectCallee()->getLocation()); |
| BaseType = BaseExpr->getType(); |
| CanQualType CBaseType = Context.getCanonicalType(BaseType); |
| if (!CTypes.insert(CBaseType)) { |
| Diag(OpLoc, diag::err_operator_arrow_circular); |
| for (unsigned i = 0; i < Locations.size(); i++) |
| Diag(Locations[i], diag::note_declared_at); |
| return ExprError(); |
| } |
| } |
| |
| if (BaseType->isPointerType()) |
| BaseType = BaseType->getPointeeType(); |
| } |
| |
| // We could end up with various non-record types here, such as extended |
| // vector types or Objective-C interfaces. Just return early and let |
| // ActOnMemberReferenceExpr do the work. |
| if (!BaseType->isRecordType()) { |
| // C++ [basic.lookup.classref]p2: |
| // [...] If the type of the object expression is of pointer to scalar |
| // type, the unqualified-id is looked up in the context of the complete |
| // postfix-expression. |
| ObjectType = 0; |
| return move(Base); |
| } |
| |
| // The object type must be complete (or dependent). |
| if (!BaseType->isDependentType() && |
| RequireCompleteType(OpLoc, BaseType, |
| PDiag(diag::err_incomplete_member_access))) |
| return ExprError(); |
| |
| // C++ [basic.lookup.classref]p2: |
| // If the id-expression in a class member access (5.2.5) is an |
| // unqualified-id, and the type of the object expression is of a class |
| // type C (or of pointer to a class type C), the unqualified-id is looked |
| // up in the scope of class C. [...] |
| ObjectType = BaseType.getAsOpaquePtr(); |
| |
| return move(Base); |
| } |
| |
| CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp, |
| CXXMethodDecl *Method) { |
| MemberExpr *ME = |
| new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method, |
| SourceLocation(), Method->getType()); |
| QualType ResultType; |
| if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(Method)) |
| ResultType = Conv->getConversionType().getNonReferenceType(); |
| else |
| ResultType = Method->getResultType().getNonReferenceType(); |
| |
| MarkDeclarationReferenced(Exp->getLocStart(), Method); |
| CXXMemberCallExpr *CE = |
| new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, |
| Exp->getLocEnd()); |
| return CE; |
| } |
| |
| Sema::OwningExprResult Sema::BuildCXXCastArgument(SourceLocation CastLoc, |
| QualType Ty, |
| CastExpr::CastKind Kind, |
| CXXMethodDecl *Method, |
| ExprArg Arg) { |
| Expr *From = Arg.takeAs<Expr>(); |
| |
| switch (Kind) { |
| default: assert(0 && "Unhandled cast kind!"); |
| case CastExpr::CK_ConstructorConversion: { |
| ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); |
| |
| if (CompleteConstructorCall(cast<CXXConstructorDecl>(Method), |
| MultiExprArg(*this, (void **)&From, 1), |
| CastLoc, ConstructorArgs)) |
| return ExprError(); |
| |
| OwningExprResult Result = |
| BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method), |
| move_arg(ConstructorArgs)); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| return MaybeBindToTemporary(Result.takeAs<Expr>()); |
| } |
| |
| case CastExpr::CK_UserDefinedConversion: { |
| assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); |
| |
| // Cast to base if needed. |
| if (PerformObjectArgumentInitialization(From, Method)) |
| return ExprError(); |
| |
| // Create an implicit call expr that calls it. |
| CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(From, Method); |
| return MaybeBindToTemporary(CE); |
| } |
| } |
| } |
| |
| Sema::OwningExprResult Sema::ActOnFinishFullExpr(ExprArg Arg) { |
| Expr *FullExpr = Arg.takeAs<Expr>(); |
| if (FullExpr) |
| FullExpr = MaybeCreateCXXExprWithTemporaries(FullExpr, |
| /*ShouldDestroyTemps=*/true); |
| |
| |
| return Owned(FullExpr); |
| } |
| |
| /// \brief Determine whether a reference to the given declaration in the |
| /// current context is an implicit member access |
| /// (C++ [class.mfct.non-static]p2). |
| /// |
| /// FIXME: Should Objective-C also use this approach? |
| /// |
| /// \param D the declaration being referenced from the current scope. |
| /// |
| /// \param NameLoc the location of the name in the source. |
| /// |
| /// \param ThisType if the reference to this declaration is an implicit member |
| /// access, will be set to the type of the "this" pointer to be used when |
| /// building that implicit member access. |
| /// |
| /// \returns true if this is an implicit member reference (in which case |
| /// \p ThisType and \p MemberType will be set), or false if it is not an |
| /// implicit member reference. |
| bool Sema::isImplicitMemberReference(const LookupResult &R, |
| QualType &ThisType) { |
| // If this isn't a C++ method, then it isn't an implicit member reference. |
| CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext); |
| if (!MD || MD->isStatic()) |
| return false; |
| |
| // C++ [class.mfct.nonstatic]p2: |
| // [...] if name lookup (3.4.1) resolves the name in the |
| // id-expression to a nonstatic nontype member of class X or of |
| // a base class of X, the id-expression is transformed into a |
| // class member access expression (5.2.5) using (*this) (9.3.2) |
| // as the postfix-expression to the left of the '.' operator. |
| DeclContext *Ctx = 0; |
| if (R.isUnresolvableResult()) { |
| // FIXME: this is just picking one at random |
| Ctx = R.getRepresentativeDecl()->getDeclContext(); |
| } else if (FieldDecl *FD = R.getAsSingle<FieldDecl>()) { |
| Ctx = FD->getDeclContext(); |
| } else { |
| for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
| CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*I); |
| FunctionTemplateDecl *FunTmpl = 0; |
| if (!Method && (FunTmpl = dyn_cast<FunctionTemplateDecl>(*I))) |
| Method = dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); |
| |
| // FIXME: Do we have to know if there are explicit template arguments? |
| if (Method && !Method->isStatic()) { |
| Ctx = Method->getParent(); |
| break; |
| } |
| } |
| } |
| |
| if (!Ctx || !Ctx->isRecord()) |
| return false; |
| |
| // Determine whether the declaration(s) we found are actually in a base |
| // class. If not, this isn't an implicit member reference. |
| ThisType = MD->getThisType(Context); |
| |
| // FIXME: this doesn't really work for overloaded lookups. |
| |
| QualType CtxType = Context.getTypeDeclType(cast<CXXRecordDecl>(Ctx)); |
| QualType ClassType |
| = Context.getTypeDeclType(cast<CXXRecordDecl>(MD->getParent())); |
| return Context.hasSameType(CtxType, ClassType) || |
| IsDerivedFrom(ClassType, CtxType); |
| } |
| |