| //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/AnalysisBasedWarnings.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTMutationListener.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/EvaluatedExprVisitor.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/LiteralSupport.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/Designator.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/ParsedTemplate.h" |
| #include "clang/Sema/SemaFixItUtils.h" |
| #include "clang/Sema/Template.h" |
| using namespace clang; |
| using namespace sema; |
| |
| /// \brief Determine whether the use of this declaration is valid, without |
| /// emitting diagnostics. |
| bool Sema::CanUseDecl(NamedDecl *D) { |
| // See if this is an auto-typed variable whose initializer we are parsing. |
| if (ParsingInitForAutoVars.count(D)) |
| return false; |
| |
| // See if this is a deleted function. |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->isDeleted()) |
| return false; |
| } |
| |
| // See if this function is unavailable. |
| if (D->getAvailability() == AR_Unavailable && |
| cast<Decl>(CurContext)->getAvailability() != AR_Unavailable) |
| return false; |
| |
| return true; |
| } |
| |
| AvailabilityResult |
| Sema::DiagnoseAvailabilityOfDecl( |
| NamedDecl *D, SourceLocation Loc, |
| const ObjCInterfaceDecl *UnknownObjCClass) { |
| // See if this declaration is unavailable or deprecated. |
| std::string Message; |
| AvailabilityResult Result = D->getAvailability(&Message); |
| if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) |
| if (Result == AR_Available) { |
| const DeclContext *DC = ECD->getDeclContext(); |
| if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC)) |
| Result = TheEnumDecl->getAvailability(&Message); |
| } |
| |
| switch (Result) { |
| case AR_Available: |
| case AR_NotYetIntroduced: |
| break; |
| |
| case AR_Deprecated: |
| EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass); |
| break; |
| |
| case AR_Unavailable: |
| if (getCurContextAvailability() != AR_Unavailable) { |
| if (Message.empty()) { |
| if (!UnknownObjCClass) |
| Diag(Loc, diag::err_unavailable) << D->getDeclName(); |
| else |
| Diag(Loc, diag::warn_unavailable_fwdclass_message) |
| << D->getDeclName(); |
| } |
| else |
| Diag(Loc, diag::err_unavailable_message) |
| << D->getDeclName() << Message; |
| Diag(D->getLocation(), diag::note_unavailable_here) |
| << isa<FunctionDecl>(D) << false; |
| } |
| break; |
| } |
| return Result; |
| } |
| |
| /// \brief Determine whether the use of this declaration is valid, and |
| /// emit any corresponding diagnostics. |
| /// |
| /// This routine diagnoses various problems with referencing |
| /// declarations that can occur when using a declaration. For example, |
| /// it might warn if a deprecated or unavailable declaration is being |
| /// used, or produce an error (and return true) if a C++0x deleted |
| /// function is being used. |
| /// |
| /// \returns true if there was an error (this declaration cannot be |
| /// referenced), false otherwise. |
| /// |
| bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc, |
| const ObjCInterfaceDecl *UnknownObjCClass) { |
| if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) { |
| // If there were any diagnostics suppressed by template argument deduction, |
| // emit them now. |
| llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator |
| Pos = SuppressedDiagnostics.find(D->getCanonicalDecl()); |
| if (Pos != SuppressedDiagnostics.end()) { |
| SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second; |
| for (unsigned I = 0, N = Suppressed.size(); I != N; ++I) |
| Diag(Suppressed[I].first, Suppressed[I].second); |
| |
| // Clear out the list of suppressed diagnostics, so that we don't emit |
| // them again for this specialization. However, we don't obsolete this |
| // entry from the table, because we want to avoid ever emitting these |
| // diagnostics again. |
| Suppressed.clear(); |
| } |
| } |
| |
| // See if this is an auto-typed variable whose initializer we are parsing. |
| if (ParsingInitForAutoVars.count(D)) { |
| Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer) |
| << D->getDeclName(); |
| return true; |
| } |
| |
| // See if this is a deleted function. |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->isDeleted()) { |
| Diag(Loc, diag::err_deleted_function_use); |
| Diag(D->getLocation(), diag::note_unavailable_here) << 1 << true; |
| return true; |
| } |
| } |
| DiagnoseAvailabilityOfDecl(D, Loc, UnknownObjCClass); |
| |
| // Warn if this is used but marked unused. |
| if (D->hasAttr<UnusedAttr>()) |
| Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName(); |
| return false; |
| } |
| |
| /// \brief Retrieve the message suffix that should be added to a |
| /// diagnostic complaining about the given function being deleted or |
| /// unavailable. |
| std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) { |
| // FIXME: C++0x implicitly-deleted special member functions could be |
| // detected here so that we could improve diagnostics to say, e.g., |
| // "base class 'A' had a deleted copy constructor". |
| if (FD->isDeleted()) |
| return std::string(); |
| |
| std::string Message; |
| if (FD->getAvailability(&Message)) |
| return ": " + Message; |
| |
| return std::string(); |
| } |
| |
| /// DiagnoseSentinelCalls - This routine checks whether a call or |
| /// message-send is to a declaration with the sentinel attribute, and |
| /// if so, it checks that the requirements of the sentinel are |
| /// satisfied. |
| void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, |
| Expr **args, unsigned numArgs) { |
| const SentinelAttr *attr = D->getAttr<SentinelAttr>(); |
| if (!attr) |
| return; |
| |
| // The number of formal parameters of the declaration. |
| unsigned numFormalParams; |
| |
| // The kind of declaration. This is also an index into a %select in |
| // the diagnostic. |
| enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType; |
| |
| if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { |
| numFormalParams = MD->param_size(); |
| calleeType = CT_Method; |
| } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| numFormalParams = FD->param_size(); |
| calleeType = CT_Function; |
| } else if (isa<VarDecl>(D)) { |
| QualType type = cast<ValueDecl>(D)->getType(); |
| const FunctionType *fn = 0; |
| if (const PointerType *ptr = type->getAs<PointerType>()) { |
| fn = ptr->getPointeeType()->getAs<FunctionType>(); |
| if (!fn) return; |
| calleeType = CT_Function; |
| } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) { |
| fn = ptr->getPointeeType()->castAs<FunctionType>(); |
| calleeType = CT_Block; |
| } else { |
| return; |
| } |
| |
| if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) { |
| numFormalParams = proto->getNumArgs(); |
| } else { |
| numFormalParams = 0; |
| } |
| } else { |
| return; |
| } |
| |
| // "nullPos" is the number of formal parameters at the end which |
| // effectively count as part of the variadic arguments. This is |
| // useful if you would prefer to not have *any* formal parameters, |
| // but the language forces you to have at least one. |
| unsigned nullPos = attr->getNullPos(); |
| assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel"); |
| numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos); |
| |
| // The number of arguments which should follow the sentinel. |
| unsigned numArgsAfterSentinel = attr->getSentinel(); |
| |
| // If there aren't enough arguments for all the formal parameters, |
| // the sentinel, and the args after the sentinel, complain. |
| if (numArgs < numFormalParams + numArgsAfterSentinel + 1) { |
| Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); |
| Diag(D->getLocation(), diag::note_sentinel_here) << calleeType; |
| return; |
| } |
| |
| // Otherwise, find the sentinel expression. |
| Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1]; |
| if (!sentinelExpr) return; |
| if (sentinelExpr->isValueDependent()) return; |
| |
| // nullptr_t is always treated as null. |
| if (sentinelExpr->getType()->isNullPtrType()) return; |
| |
| if (sentinelExpr->getType()->isAnyPointerType() && |
| sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) |
| return; |
| |
| // Unfortunately, __null has type 'int'. |
| if (isa<GNUNullExpr>(sentinelExpr)) return; |
| |
| // Pick a reasonable string to insert. Optimistically use 'nil' or |
| // 'NULL' if those are actually defined in the context. Only use |
| // 'nil' for ObjC methods, where it's much more likely that the |
| // variadic arguments form a list of object pointers. |
| SourceLocation MissingNilLoc |
| = PP.getLocForEndOfToken(sentinelExpr->getLocEnd()); |
| std::string NullValue; |
| if (calleeType == CT_Method && |
| PP.getIdentifierInfo("nil")->hasMacroDefinition()) |
| NullValue = "nil"; |
| else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition()) |
| NullValue = "NULL"; |
| else |
| NullValue = "(void*) 0"; |
| |
| if (MissingNilLoc.isInvalid()) |
| Diag(Loc, diag::warn_missing_sentinel) << calleeType; |
| else |
| Diag(MissingNilLoc, diag::warn_missing_sentinel) |
| << calleeType |
| << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue); |
| Diag(D->getLocation(), diag::note_sentinel_here) << calleeType; |
| } |
| |
| SourceRange Sema::getExprRange(Expr *E) const { |
| return E ? E->getSourceRange() : SourceRange(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Standard Promotions and Conversions |
| //===----------------------------------------------------------------------===// |
| |
| /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). |
| ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) { |
| // Handle any placeholder expressions which made it here. |
| if (E->getType()->isPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(E); |
| if (result.isInvalid()) return ExprError(); |
| E = result.take(); |
| } |
| |
| QualType Ty = E->getType(); |
| assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"); |
| |
| if (Ty->isFunctionType()) |
| E = ImpCastExprToType(E, Context.getPointerType(Ty), |
| CK_FunctionToPointerDecay).take(); |
| else if (Ty->isArrayType()) { |
| // In C90 mode, arrays only promote to pointers if the array expression is |
| // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has |
| // type 'array of type' is converted to an expression that has type 'pointer |
| // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression |
| // that has type 'array of type' ...". The relevant change is "an lvalue" |
| // (C90) to "an expression" (C99). |
| // |
| // C++ 4.2p1: |
| // An lvalue or rvalue of type "array of N T" or "array of unknown bound of |
| // T" can be converted to an rvalue of type "pointer to T". |
| // |
| if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue()) |
| E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty), |
| CK_ArrayToPointerDecay).take(); |
| } |
| return Owned(E); |
| } |
| |
| static void CheckForNullPointerDereference(Sema &S, Expr *E) { |
| // Check to see if we are dereferencing a null pointer. If so, |
| // and if not volatile-qualified, this is undefined behavior that the |
| // optimizer will delete, so warn about it. People sometimes try to use this |
| // to get a deterministic trap and are surprised by clang's behavior. This |
| // only handles the pattern "*null", which is a very syntactic check. |
| if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) |
| if (UO->getOpcode() == UO_Deref && |
| UO->getSubExpr()->IgnoreParenCasts()-> |
| isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) && |
| !UO->getType().isVolatileQualified()) { |
| S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, |
| S.PDiag(diag::warn_indirection_through_null) |
| << UO->getSubExpr()->getSourceRange()); |
| S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, |
| S.PDiag(diag::note_indirection_through_null)); |
| } |
| } |
| |
| ExprResult Sema::DefaultLvalueConversion(Expr *E) { |
| // Handle any placeholder expressions which made it here. |
| if (E->getType()->isPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(E); |
| if (result.isInvalid()) return ExprError(); |
| E = result.take(); |
| } |
| |
| // C++ [conv.lval]p1: |
| // A glvalue of a non-function, non-array type T can be |
| // converted to a prvalue. |
| if (!E->isGLValue()) return Owned(E); |
| |
| QualType T = E->getType(); |
| assert(!T.isNull() && "r-value conversion on typeless expression?"); |
| |
| // We can't do lvalue-to-rvalue on atomics yet. |
| if (T->isAtomicType()) |
| return Owned(E); |
| |
| // We don't want to throw lvalue-to-rvalue casts on top of |
| // expressions of certain types in C++. |
| if (getLangOptions().CPlusPlus && |
| (E->getType() == Context.OverloadTy || |
| T->isDependentType() || |
| T->isRecordType())) |
| return Owned(E); |
| |
| // The C standard is actually really unclear on this point, and |
| // DR106 tells us what the result should be but not why. It's |
| // generally best to say that void types just doesn't undergo |
| // lvalue-to-rvalue at all. Note that expressions of unqualified |
| // 'void' type are never l-values, but qualified void can be. |
| if (T->isVoidType()) |
| return Owned(E); |
| |
| CheckForNullPointerDereference(*this, E); |
| |
| // C++ [conv.lval]p1: |
| // [...] If T is a non-class type, the type of the prvalue is the |
| // cv-unqualified version of T. Otherwise, the type of the |
| // rvalue is T. |
| // |
| // C99 6.3.2.1p2: |
| // If the lvalue has qualified type, the value has the unqualified |
| // version of the type of the lvalue; otherwise, the value has the |
| // type of the lvalue. |
| if (T.hasQualifiers()) |
| T = T.getUnqualifiedType(); |
| |
| ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, |
| E, 0, VK_RValue)); |
| |
| return Res; |
| } |
| |
| ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) { |
| ExprResult Res = DefaultFunctionArrayConversion(E); |
| if (Res.isInvalid()) |
| return ExprError(); |
| Res = DefaultLvalueConversion(Res.take()); |
| if (Res.isInvalid()) |
| return ExprError(); |
| return move(Res); |
| } |
| |
| |
| /// UsualUnaryConversions - Performs various conversions that are common to most |
| /// operators (C99 6.3). The conversions of array and function types are |
| /// sometimes suppressed. For example, the array->pointer conversion doesn't |
| /// apply if the array is an argument to the sizeof or address (&) operators. |
| /// In these instances, this routine should *not* be called. |
| ExprResult Sema::UsualUnaryConversions(Expr *E) { |
| // First, convert to an r-value. |
| ExprResult Res = DefaultFunctionArrayLvalueConversion(E); |
| if (Res.isInvalid()) |
| return Owned(E); |
| E = Res.take(); |
| |
| QualType Ty = E->getType(); |
| assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); |
| |
| // Half FP is a bit different: it's a storage-only type, meaning that any |
| // "use" of it should be promoted to float. |
| if (Ty->isHalfType()) |
| return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast); |
| |
| // Try to perform integral promotions if the object has a theoretically |
| // promotable type. |
| if (Ty->isIntegralOrUnscopedEnumerationType()) { |
| // C99 6.3.1.1p2: |
| // |
| // The following may be used in an expression wherever an int or |
| // unsigned int may be used: |
| // - an object or expression with an integer type whose integer |
| // conversion rank is less than or equal to the rank of int |
| // and unsigned int. |
| // - A bit-field of type _Bool, int, signed int, or unsigned int. |
| // |
| // If an int can represent all values of the original type, the |
| // value is converted to an int; otherwise, it is converted to an |
| // unsigned int. These are called the integer promotions. All |
| // other types are unchanged by the integer promotions. |
| |
| QualType PTy = Context.isPromotableBitField(E); |
| if (!PTy.isNull()) { |
| E = ImpCastExprToType(E, PTy, CK_IntegralCast).take(); |
| return Owned(E); |
| } |
| if (Ty->isPromotableIntegerType()) { |
| QualType PT = Context.getPromotedIntegerType(Ty); |
| E = ImpCastExprToType(E, PT, CK_IntegralCast).take(); |
| return Owned(E); |
| } |
| } |
| return Owned(E); |
| } |
| |
| /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that |
| /// do not have a prototype. Arguments that have type float are promoted to |
| /// double. All other argument types are converted by UsualUnaryConversions(). |
| ExprResult Sema::DefaultArgumentPromotion(Expr *E) { |
| QualType Ty = E->getType(); |
| assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); |
| |
| ExprResult Res = UsualUnaryConversions(E); |
| if (Res.isInvalid()) |
| return Owned(E); |
| E = Res.take(); |
| |
| // If this is a 'float' (CVR qualified or typedef) promote to double. |
| if (Ty->isSpecificBuiltinType(BuiltinType::Float)) |
| E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take(); |
| |
| // C++ performs lvalue-to-rvalue conversion as a default argument |
| // promotion, even on class types, but note: |
| // C++11 [conv.lval]p2: |
| // When an lvalue-to-rvalue conversion occurs in an unevaluated |
| // operand or a subexpression thereof the value contained in the |
| // referenced object is not accessed. Otherwise, if the glvalue |
| // has a class type, the conversion copy-initializes a temporary |
| // of type T from the glvalue and the result of the conversion |
| // is a prvalue for the temporary. |
| // FIXME: add some way to gate this entire thing for correctness in |
| // potentially potentially evaluated contexts. |
| if (getLangOptions().CPlusPlus && E->isGLValue() && |
| ExprEvalContexts.back().Context != Unevaluated) { |
| ExprResult Temp = PerformCopyInitialization( |
| InitializedEntity::InitializeTemporary(E->getType()), |
| E->getExprLoc(), |
| Owned(E)); |
| if (Temp.isInvalid()) |
| return ExprError(); |
| E = Temp.get(); |
| } |
| |
| return Owned(E); |
| } |
| |
| /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but |
| /// will warn if the resulting type is not a POD type, and rejects ObjC |
| /// interfaces passed by value. |
| ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, |
| FunctionDecl *FDecl) { |
| if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) { |
| // Strip the unbridged-cast placeholder expression off, if applicable. |
| if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast && |
| (CT == VariadicMethod || |
| (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) { |
| E = stripARCUnbridgedCast(E); |
| |
| // Otherwise, do normal placeholder checking. |
| } else { |
| ExprResult ExprRes = CheckPlaceholderExpr(E); |
| if (ExprRes.isInvalid()) |
| return ExprError(); |
| E = ExprRes.take(); |
| } |
| } |
| |
| ExprResult ExprRes = DefaultArgumentPromotion(E); |
| if (ExprRes.isInvalid()) |
| return ExprError(); |
| E = ExprRes.take(); |
| |
| // Don't allow one to pass an Objective-C interface to a vararg. |
| if (E->getType()->isObjCObjectType() && |
| DiagRuntimeBehavior(E->getLocStart(), 0, |
| PDiag(diag::err_cannot_pass_objc_interface_to_vararg) |
| << E->getType() << CT)) |
| return ExprError(); |
| |
| // Complain about passing non-POD types through varargs. However, don't |
| // perform this check for incomplete types, which we can get here when we're |
| // in an unevaluated context. |
| if (!E->getType()->isIncompleteType() && !E->getType().isPODType(Context)) { |
| // C++0x [expr.call]p7: |
| // Passing a potentially-evaluated argument of class type (Clause 9) |
| // having a non-trivial copy constructor, a non-trivial move constructor, |
| // or a non-trivial destructor, with no corresponding parameter, |
| // is conditionally-supported with implementation-defined semantics. |
| bool TrivialEnough = false; |
| if (getLangOptions().CPlusPlus0x && !E->getType()->isDependentType()) { |
| if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) { |
| if (Record->hasTrivialCopyConstructor() && |
| Record->hasTrivialMoveConstructor() && |
| Record->hasTrivialDestructor()) { |
| DiagRuntimeBehavior(E->getLocStart(), 0, |
| PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) |
| << E->getType() << CT); |
| TrivialEnough = true; |
| } |
| } |
| } |
| |
| if (!TrivialEnough && |
| getLangOptions().ObjCAutoRefCount && |
| E->getType()->isObjCLifetimeType()) |
| TrivialEnough = true; |
| |
| if (TrivialEnough) { |
| // Nothing to diagnose. This is okay. |
| } else if (DiagRuntimeBehavior(E->getLocStart(), 0, |
| PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg) |
| << getLangOptions().CPlusPlus0x << E->getType() |
| << CT)) { |
| // Turn this into a trap. |
| CXXScopeSpec SS; |
| UnqualifiedId Name; |
| Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"), |
| E->getLocStart()); |
| ExprResult TrapFn = ActOnIdExpression(TUScope, SS, Name, true, false); |
| if (TrapFn.isInvalid()) |
| return ExprError(); |
| |
| ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(), |
| MultiExprArg(), E->getLocEnd()); |
| if (Call.isInvalid()) |
| return ExprError(); |
| |
| ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma, |
| Call.get(), E); |
| if (Comma.isInvalid()) |
| return ExprError(); |
| E = Comma.get(); |
| } |
| } |
| |
| return Owned(E); |
| } |
| |
| /// \brief Converts an integer to complex float type. Helper function of |
| /// UsualArithmeticConversions() |
| /// |
| /// \return false if the integer expression is an integer type and is |
| /// successfully converted to the complex type. |
| static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr, |
| ExprResult &ComplexExpr, |
| QualType IntTy, |
| QualType ComplexTy, |
| bool SkipCast) { |
| if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true; |
| if (SkipCast) return false; |
| if (IntTy->isIntegerType()) { |
| QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType(); |
| IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating); |
| IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy, |
| CK_FloatingRealToComplex); |
| } else { |
| assert(IntTy->isComplexIntegerType()); |
| IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy, |
| CK_IntegralComplexToFloatingComplex); |
| } |
| return false; |
| } |
| |
| /// \brief Takes two complex float types and converts them to the same type. |
| /// Helper function of UsualArithmeticConversions() |
| static QualType |
| handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, QualType LHSType, |
| QualType RHSType, |
| bool IsCompAssign) { |
| int order = S.Context.getFloatingTypeOrder(LHSType, RHSType); |
| |
| if (order < 0) { |
| // _Complex float -> _Complex double |
| if (!IsCompAssign) |
| LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast); |
| return RHSType; |
| } |
| if (order > 0) |
| // _Complex float -> _Complex double |
| RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast); |
| return LHSType; |
| } |
| |
| /// \brief Converts otherExpr to complex float and promotes complexExpr if |
| /// necessary. Helper function of UsualArithmeticConversions() |
| static QualType handleOtherComplexFloatConversion(Sema &S, |
| ExprResult &ComplexExpr, |
| ExprResult &OtherExpr, |
| QualType ComplexTy, |
| QualType OtherTy, |
| bool ConvertComplexExpr, |
| bool ConvertOtherExpr) { |
| int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy); |
| |
| // If just the complexExpr is complex, the otherExpr needs to be converted, |
| // and the complexExpr might need to be promoted. |
| if (order > 0) { // complexExpr is wider |
| // float -> _Complex double |
| if (ConvertOtherExpr) { |
| QualType fp = cast<ComplexType>(ComplexTy)->getElementType(); |
| OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast); |
| OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy, |
| CK_FloatingRealToComplex); |
| } |
| return ComplexTy; |
| } |
| |
| // otherTy is at least as wide. Find its corresponding complex type. |
| QualType result = (order == 0 ? ComplexTy : |
| S.Context.getComplexType(OtherTy)); |
| |
| // double -> _Complex double |
| if (ConvertOtherExpr) |
| OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result, |
| CK_FloatingRealToComplex); |
| |
| // _Complex float -> _Complex double |
| if (ConvertComplexExpr && order < 0) |
| ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result, |
| CK_FloatingComplexCast); |
| |
| return result; |
| } |
| |
| /// \brief Handle arithmetic conversion with complex types. Helper function of |
| /// UsualArithmeticConversions() |
| static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, QualType LHSType, |
| QualType RHSType, |
| bool IsCompAssign) { |
| // if we have an integer operand, the result is the complex type. |
| if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType, |
| /*skipCast*/false)) |
| return LHSType; |
| if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType, |
| /*skipCast*/IsCompAssign)) |
| return RHSType; |
| |
| // This handles complex/complex, complex/float, or float/complex. |
| // When both operands are complex, the shorter operand is converted to the |
| // type of the longer, and that is the type of the result. This corresponds |
| // to what is done when combining two real floating-point operands. |
| // The fun begins when size promotion occur across type domains. |
| // From H&S 6.3.4: When one operand is complex and the other is a real |
| // floating-point type, the less precise type is converted, within it's |
| // real or complex domain, to the precision of the other type. For example, |
| // when combining a "long double" with a "double _Complex", the |
| // "double _Complex" is promoted to "long double _Complex". |
| |
| bool LHSComplexFloat = LHSType->isComplexType(); |
| bool RHSComplexFloat = RHSType->isComplexType(); |
| |
| // If both are complex, just cast to the more precise type. |
| if (LHSComplexFloat && RHSComplexFloat) |
| return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS, |
| LHSType, RHSType, |
| IsCompAssign); |
| |
| // If only one operand is complex, promote it if necessary and convert the |
| // other operand to complex. |
| if (LHSComplexFloat) |
| return handleOtherComplexFloatConversion( |
| S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign, |
| /*convertOtherExpr*/ true); |
| |
| assert(RHSComplexFloat); |
| return handleOtherComplexFloatConversion( |
| S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true, |
| /*convertOtherExpr*/ !IsCompAssign); |
| } |
| |
| /// \brief Hande arithmetic conversion from integer to float. Helper function |
| /// of UsualArithmeticConversions() |
| static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr, |
| ExprResult &IntExpr, |
| QualType FloatTy, QualType IntTy, |
| bool ConvertFloat, bool ConvertInt) { |
| if (IntTy->isIntegerType()) { |
| if (ConvertInt) |
| // Convert intExpr to the lhs floating point type. |
| IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy, |
| CK_IntegralToFloating); |
| return FloatTy; |
| } |
| |
| // Convert both sides to the appropriate complex float. |
| assert(IntTy->isComplexIntegerType()); |
| QualType result = S.Context.getComplexType(FloatTy); |
| |
| // _Complex int -> _Complex float |
| if (ConvertInt) |
| IntExpr = S.ImpCastExprToType(IntExpr.take(), result, |
| CK_IntegralComplexToFloatingComplex); |
| |
| // float -> _Complex float |
| if (ConvertFloat) |
| FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result, |
| CK_FloatingRealToComplex); |
| |
| return result; |
| } |
| |
| /// \brief Handle arithmethic conversion with floating point types. Helper |
| /// function of UsualArithmeticConversions() |
| static QualType handleFloatConversion(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, QualType LHSType, |
| QualType RHSType, bool IsCompAssign) { |
| bool LHSFloat = LHSType->isRealFloatingType(); |
| bool RHSFloat = RHSType->isRealFloatingType(); |
| |
| // If we have two real floating types, convert the smaller operand |
| // to the bigger result. |
| if (LHSFloat && RHSFloat) { |
| int order = S.Context.getFloatingTypeOrder(LHSType, RHSType); |
| if (order > 0) { |
| RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast); |
| return LHSType; |
| } |
| |
| assert(order < 0 && "illegal float comparison"); |
| if (!IsCompAssign) |
| LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast); |
| return RHSType; |
| } |
| |
| if (LHSFloat) |
| return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType, |
| /*convertFloat=*/!IsCompAssign, |
| /*convertInt=*/ true); |
| assert(RHSFloat); |
| return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType, |
| /*convertInt=*/ true, |
| /*convertFloat=*/!IsCompAssign); |
| } |
| |
| /// \brief Handle conversions with GCC complex int extension. Helper function |
| /// of UsualArithmeticConversions() |
| // FIXME: if the operands are (int, _Complex long), we currently |
| // don't promote the complex. Also, signedness? |
| static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, QualType LHSType, |
| QualType RHSType, |
| bool IsCompAssign) { |
| const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType(); |
| const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType(); |
| |
| if (LHSComplexInt && RHSComplexInt) { |
| int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(), |
| RHSComplexInt->getElementType()); |
| assert(order && "inequal types with equal element ordering"); |
| if (order > 0) { |
| // _Complex int -> _Complex long |
| RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast); |
| return LHSType; |
| } |
| |
| if (!IsCompAssign) |
| LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast); |
| return RHSType; |
| } |
| |
| if (LHSComplexInt) { |
| // int -> _Complex int |
| // FIXME: This needs to take integer ranks into account |
| RHS = S.ImpCastExprToType(RHS.take(), LHSComplexInt->getElementType(), |
| CK_IntegralCast); |
| RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex); |
| return LHSType; |
| } |
| |
| assert(RHSComplexInt); |
| // int -> _Complex int |
| // FIXME: This needs to take integer ranks into account |
| if (!IsCompAssign) { |
| LHS = S.ImpCastExprToType(LHS.take(), RHSComplexInt->getElementType(), |
| CK_IntegralCast); |
| LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex); |
| } |
| return RHSType; |
| } |
| |
| /// \brief Handle integer arithmetic conversions. Helper function of |
| /// UsualArithmeticConversions() |
| static QualType handleIntegerConversion(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, QualType LHSType, |
| QualType RHSType, bool IsCompAssign) { |
| // The rules for this case are in C99 6.3.1.8 |
| int order = S.Context.getIntegerTypeOrder(LHSType, RHSType); |
| bool LHSSigned = LHSType->hasSignedIntegerRepresentation(); |
| bool RHSSigned = RHSType->hasSignedIntegerRepresentation(); |
| if (LHSSigned == RHSSigned) { |
| // Same signedness; use the higher-ranked type |
| if (order >= 0) { |
| RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast); |
| return LHSType; |
| } else if (!IsCompAssign) |
| LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast); |
| return RHSType; |
| } else if (order != (LHSSigned ? 1 : -1)) { |
| // The unsigned type has greater than or equal rank to the |
| // signed type, so use the unsigned type |
| if (RHSSigned) { |
| RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast); |
| return LHSType; |
| } else if (!IsCompAssign) |
| LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast); |
| return RHSType; |
| } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) { |
| // The two types are different widths; if we are here, that |
| // means the signed type is larger than the unsigned type, so |
| // use the signed type. |
| if (LHSSigned) { |
| RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast); |
| return LHSType; |
| } else if (!IsCompAssign) |
| LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast); |
| return RHSType; |
| } else { |
| // The signed type is higher-ranked than the unsigned type, |
| // but isn't actually any bigger (like unsigned int and long |
| // on most 32-bit systems). Use the unsigned type corresponding |
| // to the signed type. |
| QualType result = |
| S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType); |
| RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast); |
| if (!IsCompAssign) |
| LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast); |
| return result; |
| } |
| } |
| |
| /// UsualArithmeticConversions - Performs various conversions that are common to |
| /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this |
| /// routine returns the first non-arithmetic type found. The client is |
| /// responsible for emitting appropriate error diagnostics. |
| /// FIXME: verify the conversion rules for "complex int" are consistent with |
| /// GCC. |
| QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS, |
| bool IsCompAssign) { |
| if (!IsCompAssign) { |
| LHS = UsualUnaryConversions(LHS.take()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| } |
| |
| RHS = UsualUnaryConversions(RHS.take()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| // For conversion purposes, we ignore any qualifiers. |
| // For example, "const float" and "float" are equivalent. |
| QualType LHSType = |
| Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType(); |
| QualType RHSType = |
| Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType(); |
| |
| // If both types are identical, no conversion is needed. |
| if (LHSType == RHSType) |
| return LHSType; |
| |
| // If either side is a non-arithmetic type (e.g. a pointer), we are done. |
| // The caller can deal with this (e.g. pointer + int). |
| if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType()) |
| return LHSType; |
| |
| // Apply unary and bitfield promotions to the LHS's type. |
| QualType LHSUnpromotedType = LHSType; |
| if (LHSType->isPromotableIntegerType()) |
| LHSType = Context.getPromotedIntegerType(LHSType); |
| QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get()); |
| if (!LHSBitfieldPromoteTy.isNull()) |
| LHSType = LHSBitfieldPromoteTy; |
| if (LHSType != LHSUnpromotedType && !IsCompAssign) |
| LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast); |
| |
| // If both types are identical, no conversion is needed. |
| if (LHSType == RHSType) |
| return LHSType; |
| |
| // At this point, we have two different arithmetic types. |
| |
| // Handle complex types first (C99 6.3.1.8p1). |
| if (LHSType->isComplexType() || RHSType->isComplexType()) |
| return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType, |
| IsCompAssign); |
| |
| // Now handle "real" floating types (i.e. float, double, long double). |
| if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) |
| return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType, |
| IsCompAssign); |
| |
| // Handle GCC complex int extension. |
| if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType()) |
| return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType, |
| IsCompAssign); |
| |
| // Finally, we have two differing integer types. |
| return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType, |
| IsCompAssign); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Semantic Analysis for various Expression Types |
| //===----------------------------------------------------------------------===// |
| |
| |
| ExprResult |
| Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc, |
| SourceLocation DefaultLoc, |
| SourceLocation RParenLoc, |
| Expr *ControllingExpr, |
| MultiTypeArg ArgTypes, |
| MultiExprArg ArgExprs) { |
| unsigned NumAssocs = ArgTypes.size(); |
| assert(NumAssocs == ArgExprs.size()); |
| |
| ParsedType *ParsedTypes = ArgTypes.release(); |
| Expr **Exprs = ArgExprs.release(); |
| |
| TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs]; |
| for (unsigned i = 0; i < NumAssocs; ++i) { |
| if (ParsedTypes[i]) |
| (void) GetTypeFromParser(ParsedTypes[i], &Types[i]); |
| else |
| Types[i] = 0; |
| } |
| |
| ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, |
| ControllingExpr, Types, Exprs, |
| NumAssocs); |
| delete [] Types; |
| return ER; |
| } |
| |
| ExprResult |
| Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc, |
| SourceLocation DefaultLoc, |
| SourceLocation RParenLoc, |
| Expr *ControllingExpr, |
| TypeSourceInfo **Types, |
| Expr **Exprs, |
| unsigned NumAssocs) { |
| bool TypeErrorFound = false, |
| IsResultDependent = ControllingExpr->isTypeDependent(), |
| ContainsUnexpandedParameterPack |
| = ControllingExpr->containsUnexpandedParameterPack(); |
| |
| for (unsigned i = 0; i < NumAssocs; ++i) { |
| if (Exprs[i]->containsUnexpandedParameterPack()) |
| ContainsUnexpandedParameterPack = true; |
| |
| if (Types[i]) { |
| if (Types[i]->getType()->containsUnexpandedParameterPack()) |
| ContainsUnexpandedParameterPack = true; |
| |
| if (Types[i]->getType()->isDependentType()) { |
| IsResultDependent = true; |
| } else { |
| // C11 6.5.1.1p2 "The type name in a generic association shall specify a |
| // complete object type other than a variably modified type." |
| unsigned D = 0; |
| if (Types[i]->getType()->isIncompleteType()) |
| D = diag::err_assoc_type_incomplete; |
| else if (!Types[i]->getType()->isObjectType()) |
| D = diag::err_assoc_type_nonobject; |
| else if (Types[i]->getType()->isVariablyModifiedType()) |
| D = diag::err_assoc_type_variably_modified; |
| |
| if (D != 0) { |
| Diag(Types[i]->getTypeLoc().getBeginLoc(), D) |
| << Types[i]->getTypeLoc().getSourceRange() |
| << Types[i]->getType(); |
| TypeErrorFound = true; |
| } |
| |
| // C11 6.5.1.1p2 "No two generic associations in the same generic |
| // selection shall specify compatible types." |
| for (unsigned j = i+1; j < NumAssocs; ++j) |
| if (Types[j] && !Types[j]->getType()->isDependentType() && |
| Context.typesAreCompatible(Types[i]->getType(), |
| Types[j]->getType())) { |
| Diag(Types[j]->getTypeLoc().getBeginLoc(), |
| diag::err_assoc_compatible_types) |
| << Types[j]->getTypeLoc().getSourceRange() |
| << Types[j]->getType() |
| << Types[i]->getType(); |
| Diag(Types[i]->getTypeLoc().getBeginLoc(), |
| diag::note_compat_assoc) |
| << Types[i]->getTypeLoc().getSourceRange() |
| << Types[i]->getType(); |
| TypeErrorFound = true; |
| } |
| } |
| } |
| } |
| if (TypeErrorFound) |
| return ExprError(); |
| |
| // If we determined that the generic selection is result-dependent, don't |
| // try to compute the result expression. |
| if (IsResultDependent) |
| return Owned(new (Context) GenericSelectionExpr( |
| Context, KeyLoc, ControllingExpr, |
| Types, Exprs, NumAssocs, DefaultLoc, |
| RParenLoc, ContainsUnexpandedParameterPack)); |
| |
| SmallVector<unsigned, 1> CompatIndices; |
| unsigned DefaultIndex = -1U; |
| for (unsigned i = 0; i < NumAssocs; ++i) { |
| if (!Types[i]) |
| DefaultIndex = i; |
| else if (Context.typesAreCompatible(ControllingExpr->getType(), |
| Types[i]->getType())) |
| CompatIndices.push_back(i); |
| } |
| |
| // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have |
| // type compatible with at most one of the types named in its generic |
| // association list." |
| if (CompatIndices.size() > 1) { |
| // We strip parens here because the controlling expression is typically |
| // parenthesized in macro definitions. |
| ControllingExpr = ControllingExpr->IgnoreParens(); |
| Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match) |
| << ControllingExpr->getSourceRange() << ControllingExpr->getType() |
| << (unsigned) CompatIndices.size(); |
| for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(), |
| E = CompatIndices.end(); I != E; ++I) { |
| Diag(Types[*I]->getTypeLoc().getBeginLoc(), |
| diag::note_compat_assoc) |
| << Types[*I]->getTypeLoc().getSourceRange() |
| << Types[*I]->getType(); |
| } |
| return ExprError(); |
| } |
| |
| // C11 6.5.1.1p2 "If a generic selection has no default generic association, |
| // its controlling expression shall have type compatible with exactly one of |
| // the types named in its generic association list." |
| if (DefaultIndex == -1U && CompatIndices.size() == 0) { |
| // We strip parens here because the controlling expression is typically |
| // parenthesized in macro definitions. |
| ControllingExpr = ControllingExpr->IgnoreParens(); |
| Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match) |
| << ControllingExpr->getSourceRange() << ControllingExpr->getType(); |
| return ExprError(); |
| } |
| |
| // C11 6.5.1.1p3 "If a generic selection has a generic association with a |
| // type name that is compatible with the type of the controlling expression, |
| // then the result expression of the generic selection is the expression |
| // in that generic association. Otherwise, the result expression of the |
| // generic selection is the expression in the default generic association." |
| unsigned ResultIndex = |
| CompatIndices.size() ? CompatIndices[0] : DefaultIndex; |
| |
| return Owned(new (Context) GenericSelectionExpr( |
| Context, KeyLoc, ControllingExpr, |
| Types, Exprs, NumAssocs, DefaultLoc, |
| RParenLoc, ContainsUnexpandedParameterPack, |
| ResultIndex)); |
| } |
| |
| /// ActOnStringLiteral - The specified tokens were lexed as pasted string |
| /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string |
| /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from |
| /// multiple tokens. However, the common case is that StringToks points to one |
| /// string. |
| /// |
| ExprResult |
| Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) { |
| assert(NumStringToks && "Must have at least one string!"); |
| |
| StringLiteralParser Literal(StringToks, NumStringToks, PP); |
| if (Literal.hadError) |
| return ExprError(); |
| |
| SmallVector<SourceLocation, 4> StringTokLocs; |
| for (unsigned i = 0; i != NumStringToks; ++i) |
| StringTokLocs.push_back(StringToks[i].getLocation()); |
| |
| QualType StrTy = Context.CharTy; |
| if (Literal.isWide()) |
| StrTy = Context.getWCharType(); |
| else if (Literal.isUTF16()) |
| StrTy = Context.Char16Ty; |
| else if (Literal.isUTF32()) |
| StrTy = Context.Char32Ty; |
| else if (Literal.isPascal()) |
| StrTy = Context.UnsignedCharTy; |
| |
| StringLiteral::StringKind Kind = StringLiteral::Ascii; |
| if (Literal.isWide()) |
| Kind = StringLiteral::Wide; |
| else if (Literal.isUTF8()) |
| Kind = StringLiteral::UTF8; |
| else if (Literal.isUTF16()) |
| Kind = StringLiteral::UTF16; |
| else if (Literal.isUTF32()) |
| Kind = StringLiteral::UTF32; |
| |
| // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). |
| if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings) |
| StrTy.addConst(); |
| |
| // Get an array type for the string, according to C99 6.4.5. This includes |
| // the nul terminator character as well as the string length for pascal |
| // strings. |
| StrTy = Context.getConstantArrayType(StrTy, |
| llvm::APInt(32, Literal.GetNumStringChars()+1), |
| ArrayType::Normal, 0); |
| |
| // Pass &StringTokLocs[0], StringTokLocs.size() to factory! |
| return Owned(StringLiteral::Create(Context, Literal.GetString(), |
| Kind, Literal.Pascal, StrTy, |
| &StringTokLocs[0], |
| StringTokLocs.size())); |
| } |
| |
| enum CaptureResult { |
| /// No capture is required. |
| CR_NoCapture, |
| |
| /// A capture is required. |
| CR_Capture, |
| |
| /// A by-ref capture is required. |
| CR_CaptureByRef, |
| |
| /// An error occurred when trying to capture the given variable. |
| CR_Error |
| }; |
| |
| /// Diagnose an uncapturable value reference. |
| /// |
| /// \param var - the variable referenced |
| /// \param DC - the context which we couldn't capture through |
| static CaptureResult |
| diagnoseUncapturableValueReference(Sema &S, SourceLocation loc, |
| VarDecl *var, DeclContext *DC) { |
| switch (S.ExprEvalContexts.back().Context) { |
| case Sema::Unevaluated: |
| case Sema::ConstantEvaluated: |
| // The argument will never be evaluated at runtime, so don't complain. |
| return CR_NoCapture; |
| |
| case Sema::PotentiallyEvaluated: |
| case Sema::PotentiallyEvaluatedIfUsed: |
| break; |
| |
| case Sema::PotentiallyPotentiallyEvaluated: |
| // FIXME: delay these! |
| break; |
| } |
| |
| // Don't diagnose about capture if we're not actually in code right |
| // now; in general, there are more appropriate places that will |
| // diagnose this. |
| if (!S.CurContext->isFunctionOrMethod()) return CR_NoCapture; |
| |
| // Certain madnesses can happen with parameter declarations, which |
| // we want to ignore. |
| if (isa<ParmVarDecl>(var)) { |
| // - If the parameter still belongs to the translation unit, then |
| // we're actually just using one parameter in the declaration of |
| // the next. This is useful in e.g. VLAs. |
| if (isa<TranslationUnitDecl>(var->getDeclContext())) |
| return CR_NoCapture; |
| |
| // - This particular madness can happen in ill-formed default |
| // arguments; claim it's okay and let downstream code handle it. |
| if (S.CurContext == var->getDeclContext()->getParent()) |
| return CR_NoCapture; |
| } |
| |
| DeclarationName functionName; |
| if (FunctionDecl *fn = dyn_cast<FunctionDecl>(var->getDeclContext())) |
| functionName = fn->getDeclName(); |
| // FIXME: variable from enclosing block that we couldn't capture from! |
| |
| S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function) |
| << var->getIdentifier() << functionName; |
| S.Diag(var->getLocation(), diag::note_local_variable_declared_here) |
| << var->getIdentifier(); |
| |
| return CR_Error; |
| } |
| |
| /// There is a well-formed capture at a particular scope level; |
| /// propagate it through all the nested blocks. |
| static CaptureResult propagateCapture(Sema &S, unsigned ValidScopeIndex, |
| const BlockDecl::Capture &Capture) { |
| VarDecl *var = Capture.getVariable(); |
| |
| // Update all the inner blocks with the capture information. |
| for (unsigned i = ValidScopeIndex + 1, e = S.FunctionScopes.size(); |
| i != e; ++i) { |
| BlockScopeInfo *innerBlock = cast<BlockScopeInfo>(S.FunctionScopes[i]); |
| innerBlock->Captures.push_back( |
| BlockDecl::Capture(Capture.getVariable(), Capture.isByRef(), |
| /*nested*/ true, Capture.getCopyExpr())); |
| innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1 |
| } |
| |
| return Capture.isByRef() ? CR_CaptureByRef : CR_Capture; |
| } |
| |
| /// shouldCaptureValueReference - Determine if a reference to the |
| /// given value in the current context requires a variable capture. |
| /// |
| /// This also keeps the captures set in the BlockScopeInfo records |
| /// up-to-date. |
| static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc, |
| ValueDecl *Value) { |
| // Only variables ever require capture. |
| VarDecl *var = dyn_cast<VarDecl>(Value); |
| if (!var) return CR_NoCapture; |
| |
| // Fast path: variables from the current context never require capture. |
| DeclContext *DC = S.CurContext; |
| if (var->getDeclContext() == DC) return CR_NoCapture; |
| |
| // Only variables with local storage require capture. |
| // FIXME: What about 'const' variables in C++? |
| if (!var->hasLocalStorage()) return CR_NoCapture; |
| |
| // Otherwise, we need to capture. |
| |
| unsigned functionScopesIndex = S.FunctionScopes.size() - 1; |
| do { |
| // Only blocks (and eventually C++0x closures) can capture; other |
| // scopes don't work. |
| if (!isa<BlockDecl>(DC)) |
| return diagnoseUncapturableValueReference(S, loc, var, DC); |
| |
| BlockScopeInfo *blockScope = |
| cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]); |
| assert(blockScope->TheDecl == static_cast<BlockDecl*>(DC)); |
| |
| // Check whether we've already captured it in this block. If so, |
| // we're done. |
| if (unsigned indexPlus1 = blockScope->CaptureMap[var]) |
| return propagateCapture(S, functionScopesIndex, |
| blockScope->Captures[indexPlus1 - 1]); |
| |
| functionScopesIndex--; |
| DC = cast<BlockDecl>(DC)->getDeclContext(); |
| } while (var->getDeclContext() != DC); |
| |
| // Okay, we descended all the way to the block that defines the variable. |
| // Actually try to capture it. |
| QualType type = var->getType(); |
| |
| // Prohibit variably-modified types. |
| if (type->isVariablyModifiedType()) { |
| S.Diag(loc, diag::err_ref_vm_type); |
| S.Diag(var->getLocation(), diag::note_declared_at); |
| return CR_Error; |
| } |
| |
| // Prohibit arrays, even in __block variables, but not references to |
| // them. |
| if (type->isArrayType()) { |
| S.Diag(loc, diag::err_ref_array_type); |
| S.Diag(var->getLocation(), diag::note_declared_at); |
| return CR_Error; |
| } |
| |
| S.MarkDeclarationReferenced(loc, var); |
| |
| // The BlocksAttr indicates the variable is bound by-reference. |
| bool byRef = var->hasAttr<BlocksAttr>(); |
| |
| // Build a copy expression. |
| Expr *copyExpr = 0; |
| const RecordType *rtype; |
| if (!byRef && S.getLangOptions().CPlusPlus && !type->isDependentType() && |
| (rtype = type->getAs<RecordType>())) { |
| |
| // The capture logic needs the destructor, so make sure we mark it. |
| // Usually this is unnecessary because most local variables have |
| // their destructors marked at declaration time, but parameters are |
| // an exception because it's technically only the call site that |
| // actually requires the destructor. |
| if (isa<ParmVarDecl>(var)) |
| S.FinalizeVarWithDestructor(var, rtype); |
| |
| // According to the blocks spec, the capture of a variable from |
| // the stack requires a const copy constructor. This is not true |
| // of the copy/move done to move a __block variable to the heap. |
| type.addConst(); |
| |
| Expr *declRef = new (S.Context) DeclRefExpr(var, type, VK_LValue, loc); |
| ExprResult result = |
| S.PerformCopyInitialization( |
| InitializedEntity::InitializeBlock(var->getLocation(), |
| type, false), |
| loc, S.Owned(declRef)); |
| |
| // Build a full-expression copy expression if initialization |
| // succeeded and used a non-trivial constructor. Recover from |
| // errors by pretending that the copy isn't necessary. |
| if (!result.isInvalid() && |
| !cast<CXXConstructExpr>(result.get())->getConstructor()->isTrivial()) { |
| result = S.MaybeCreateExprWithCleanups(result); |
| copyExpr = result.take(); |
| } |
| } |
| |
| // We're currently at the declarer; go back to the closure. |
| functionScopesIndex++; |
| BlockScopeInfo *blockScope = |
| cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]); |
| |
| // Build a valid capture in this scope. |
| blockScope->Captures.push_back( |
| BlockDecl::Capture(var, byRef, /*nested*/ false, copyExpr)); |
| blockScope->CaptureMap[var] = blockScope->Captures.size(); // +1 |
| |
| // Propagate that to inner captures if necessary. |
| return propagateCapture(S, functionScopesIndex, |
| blockScope->Captures.back()); |
| } |
| |
| static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *VD, |
| const DeclarationNameInfo &NameInfo, |
| bool ByRef) { |
| assert(isa<VarDecl>(VD) && "capturing non-variable"); |
| |
| VarDecl *var = cast<VarDecl>(VD); |
| assert(var->hasLocalStorage() && "capturing non-local"); |
| assert(ByRef == var->hasAttr<BlocksAttr>() && "byref set wrong"); |
| |
| QualType exprType = var->getType().getNonReferenceType(); |
| |
| BlockDeclRefExpr *BDRE; |
| if (!ByRef) { |
| // The variable will be bound by copy; make it const within the |
| // closure, but record that this was done in the expression. |
| bool constAdded = !exprType.isConstQualified(); |
| exprType.addConst(); |
| |
| BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue, |
| NameInfo.getLoc(), false, |
| constAdded); |
| } else { |
| BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue, |
| NameInfo.getLoc(), true); |
| } |
| |
| return S.Owned(BDRE); |
| } |
| |
| ExprResult |
| Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, |
| SourceLocation Loc, |
| const CXXScopeSpec *SS) { |
| DeclarationNameInfo NameInfo(D->getDeclName(), Loc); |
| return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS); |
| } |
| |
| /// BuildDeclRefExpr - Build an expression that references a |
| /// declaration that does not require a closure capture. |
| ExprResult |
| Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, |
| const DeclarationNameInfo &NameInfo, |
| const CXXScopeSpec *SS) { |
| if (getLangOptions().CUDA) |
| if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) |
| if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) { |
| CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller), |
| CalleeTarget = IdentifyCUDATarget(Callee); |
| if (CheckCUDATarget(CallerTarget, CalleeTarget)) { |
| Diag(NameInfo.getLoc(), diag::err_ref_bad_target) |
| << CalleeTarget << D->getIdentifier() << CallerTarget; |
| Diag(D->getLocation(), diag::note_previous_decl) |
| << D->getIdentifier(); |
| return ExprError(); |
| } |
| } |
| |
| MarkDeclarationReferenced(NameInfo.getLoc(), D); |
| |
| Expr *E = DeclRefExpr::Create(Context, |
| SS? SS->getWithLocInContext(Context) |
| : NestedNameSpecifierLoc(), |
| D, NameInfo, Ty, VK); |
| |
| // Just in case we're building an illegal pointer-to-member. |
| FieldDecl *FD = dyn_cast<FieldDecl>(D); |
| if (FD && FD->isBitField()) |
| E->setObjectKind(OK_BitField); |
| |
| return Owned(E); |
| } |
| |
| /// Decomposes the given name into a DeclarationNameInfo, its location, and |
| /// possibly a list of template arguments. |
| /// |
| /// If this produces template arguments, it is permitted to call |
| /// DecomposeTemplateName. |
| /// |
| /// This actually loses a lot of source location information for |
| /// non-standard name kinds; we should consider preserving that in |
| /// some way. |
| void |
| Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id, |
| TemplateArgumentListInfo &Buffer, |
| DeclarationNameInfo &NameInfo, |
| const TemplateArgumentListInfo *&TemplateArgs) { |
| if (Id.getKind() == UnqualifiedId::IK_TemplateId) { |
| Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc); |
| Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc); |
| |
| ASTTemplateArgsPtr TemplateArgsPtr(*this, |
| Id.TemplateId->getTemplateArgs(), |
| Id.TemplateId->NumArgs); |
| translateTemplateArguments(TemplateArgsPtr, Buffer); |
| TemplateArgsPtr.release(); |
| |
| TemplateName TName = Id.TemplateId->Template.get(); |
| SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc; |
| NameInfo = Context.getNameForTemplate(TName, TNameLoc); |
| TemplateArgs = &Buffer; |
| } else { |
| NameInfo = GetNameFromUnqualifiedId(Id); |
| TemplateArgs = 0; |
| } |
| } |
| |
| /// Diagnose an empty lookup. |
| /// |
| /// \return false if new lookup candidates were found |
| bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, |
| CorrectTypoContext CTC, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, |
| Expr **Args, unsigned NumArgs) { |
| DeclarationName Name = R.getLookupName(); |
| |
| unsigned diagnostic = diag::err_undeclared_var_use; |
| unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest; |
| if (Name.getNameKind() == DeclarationName::CXXOperatorName || |
| Name.getNameKind() == DeclarationName::CXXLiteralOperatorName || |
| Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { |
| diagnostic = diag::err_undeclared_use; |
| diagnostic_suggest = diag::err_undeclared_use_suggest; |
| } |
| |
| // If the original lookup was an unqualified lookup, fake an |
| // unqualified lookup. This is useful when (for example) the |
| // original lookup would not have found something because it was a |
| // dependent name. |
| DeclContext *DC = SS.isEmpty() ? CurContext : 0; |
| while (DC) { |
| if (isa<CXXRecordDecl>(DC)) { |
| LookupQualifiedName(R, DC); |
| |
| if (!R.empty()) { |
| // Don't give errors about ambiguities in this lookup. |
| R.suppressDiagnostics(); |
| |
| // During a default argument instantiation the CurContext points |
| // to a CXXMethodDecl; but we can't apply a this-> fixit inside a |
| // function parameter list, hence add an explicit check. |
| bool isDefaultArgument = !ActiveTemplateInstantiations.empty() && |
| ActiveTemplateInstantiations.back().Kind == |
| ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation; |
| CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext); |
| bool isInstance = CurMethod && |
| CurMethod->isInstance() && |
| DC == CurMethod->getParent() && !isDefaultArgument; |
| |
| |
| // Give a code modification hint to insert 'this->'. |
| // TODO: fixit for inserting 'Base<T>::' in the other cases. |
| // Actually quite difficult! |
| if (isInstance) { |
| UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>( |
| CallsUndergoingInstantiation.back()->getCallee()); |
| CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>( |
| CurMethod->getInstantiatedFromMemberFunction()); |
| if (DepMethod) { |
| if (getLangOptions().MicrosoftMode) |
| diagnostic = diag::warn_found_via_dependent_bases_lookup; |
| Diag(R.getNameLoc(), diagnostic) << Name |
| << FixItHint::CreateInsertion(R.getNameLoc(), "this->"); |
| QualType DepThisType = DepMethod->getThisType(Context); |
| CheckCXXThisCapture(R.getNameLoc()); |
| CXXThisExpr *DepThis = new (Context) CXXThisExpr( |
| R.getNameLoc(), DepThisType, false); |
| TemplateArgumentListInfo TList; |
| if (ULE->hasExplicitTemplateArgs()) |
| ULE->copyTemplateArgumentsInto(TList); |
| |
| CXXScopeSpec SS; |
| SS.Adopt(ULE->getQualifierLoc()); |
| CXXDependentScopeMemberExpr *DepExpr = |
| CXXDependentScopeMemberExpr::Create( |
| Context, DepThis, DepThisType, true, SourceLocation(), |
| SS.getWithLocInContext(Context), NULL, |
| R.getLookupNameInfo(), |
| ULE->hasExplicitTemplateArgs() ? &TList : 0); |
| CallsUndergoingInstantiation.back()->setCallee(DepExpr); |
| } else { |
| // FIXME: we should be able to handle this case too. It is correct |
| // to add this-> here. This is a workaround for PR7947. |
| Diag(R.getNameLoc(), diagnostic) << Name; |
| } |
| } else { |
| if (getLangOptions().MicrosoftMode) |
| diagnostic = diag::warn_found_via_dependent_bases_lookup; |
| Diag(R.getNameLoc(), diagnostic) << Name; |
| } |
| |
| // Do we really want to note all of these? |
| for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) |
| Diag((*I)->getLocation(), diag::note_dependent_var_use); |
| |
| // Return true if we are inside a default argument instantiation |
| // and the found name refers to an instance member function, otherwise |
| // the function calling DiagnoseEmptyLookup will try to create an |
| // implicit member call and this is wrong for default argument. |
| if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) { |
| Diag(R.getNameLoc(), diag::err_member_call_without_object); |
| return true; |
| } |
| |
| // Tell the callee to try to recover. |
| return false; |
| } |
| |
| R.clear(); |
| } |
| |
| // In Microsoft mode, if we are performing lookup from within a friend |
| // function definition declared at class scope then we must set |
| // DC to the lexical parent to be able to search into the parent |
| // class. |
| if (getLangOptions().MicrosoftMode && isa<FunctionDecl>(DC) && |
| cast<FunctionDecl>(DC)->getFriendObjectKind() && |
| DC->getLexicalParent()->isRecord()) |
| DC = DC->getLexicalParent(); |
| else |
| DC = DC->getParent(); |
| } |
| |
| // We didn't find anything, so try to correct for a typo. |
| TypoCorrection Corrected; |
| if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), |
| S, &SS, NULL, false, CTC))) { |
| std::string CorrectedStr(Corrected.getAsString(getLangOptions())); |
| std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions())); |
| R.setLookupName(Corrected.getCorrection()); |
| |
| if (NamedDecl *ND = Corrected.getCorrectionDecl()) { |
| if (Corrected.isOverloaded()) { |
| OverloadCandidateSet OCS(R.getNameLoc()); |
| OverloadCandidateSet::iterator Best; |
| for (TypoCorrection::decl_iterator CD = Corrected.begin(), |
| CDEnd = Corrected.end(); |
| CD != CDEnd; ++CD) { |
| if (FunctionTemplateDecl *FTD = |
| dyn_cast<FunctionTemplateDecl>(*CD)) |
| AddTemplateOverloadCandidate( |
| FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs, |
| Args, NumArgs, OCS); |
| else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD)) |
| if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0) |
| AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), |
| Args, NumArgs, OCS); |
| } |
| switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) { |
| case OR_Success: |
| ND = Best->Function; |
| break; |
| default: |
| break; |
| } |
| } |
| R.addDecl(ND); |
| if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) { |
| if (SS.isEmpty()) |
| Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr |
| << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr); |
| else |
| Diag(R.getNameLoc(), diag::err_no_member_suggest) |
| << Name << computeDeclContext(SS, false) << CorrectedQuotedStr |
| << SS.getRange() |
| << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr); |
| if (ND) |
| Diag(ND->getLocation(), diag::note_previous_decl) |
| << CorrectedQuotedStr; |
| |
| // Tell the callee to try to recover. |
| return false; |
| } |
| |
| if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) { |
| // FIXME: If we ended up with a typo for a type name or |
| // Objective-C class name, we're in trouble because the parser |
| // is in the wrong place to recover. Suggest the typo |
| // correction, but don't make it a fix-it since we're not going |
| // to recover well anyway. |
| if (SS.isEmpty()) |
| Diag(R.getNameLoc(), diagnostic_suggest) |
| << Name << CorrectedQuotedStr; |
| else |
| Diag(R.getNameLoc(), diag::err_no_member_suggest) |
| << Name << computeDeclContext(SS, false) << CorrectedQuotedStr |
| << SS.getRange(); |
| |
| // Don't try to recover; it won't work. |
| return true; |
| } |
| } else { |
| // FIXME: We found a keyword. Suggest it, but don't provide a fix-it |
| // because we aren't able to recover. |
| if (SS.isEmpty()) |
| Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr; |
| else |
| Diag(R.getNameLoc(), diag::err_no_member_suggest) |
| << Name << computeDeclContext(SS, false) << CorrectedQuotedStr |
| << SS.getRange(); |
| return true; |
| } |
| } |
| R.clear(); |
| |
| // Emit a special diagnostic for failed member lookups. |
| // FIXME: computing the declaration context might fail here (?) |
| if (!SS.isEmpty()) { |
| Diag(R.getNameLoc(), diag::err_no_member) |
| << Name << computeDeclContext(SS, false) |
| << SS.getRange(); |
| return true; |
| } |
| |
| // Give up, we can't recover. |
| Diag(R.getNameLoc(), diagnostic) << Name; |
| return true; |
| } |
| |
| ExprResult Sema::ActOnIdExpression(Scope *S, |
| CXXScopeSpec &SS, |
| UnqualifiedId &Id, |
| bool HasTrailingLParen, |
| bool IsAddressOfOperand) { |
| assert(!(IsAddressOfOperand && HasTrailingLParen) && |
| "cannot be direct & operand and have a trailing lparen"); |
| |
| if (SS.isInvalid()) |
| return ExprError(); |
| |
| TemplateArgumentListInfo TemplateArgsBuffer; |
| |
| // Decompose the UnqualifiedId into the following data. |
| DeclarationNameInfo NameInfo; |
| const TemplateArgumentListInfo *TemplateArgs; |
| DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs); |
| |
| DeclarationName Name = NameInfo.getName(); |
| IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| SourceLocation NameLoc = NameInfo.getLoc(); |
| |
| // C++ [temp.dep.expr]p3: |
| // An id-expression is type-dependent if it contains: |
| // -- an identifier that was declared with a dependent type, |
| // (note: handled after lookup) |
| // -- a template-id that is dependent, |
| // (note: handled in BuildTemplateIdExpr) |
| // -- a conversion-function-id that specifies a dependent type, |
| // -- a nested-name-specifier that contains a class-name that |
| // names a dependent type. |
| // Determine whether this is a member of an unknown specialization; |
| // we need to handle these differently. |
| bool DependentID = false; |
| if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && |
| Name.getCXXNameType()->isDependentType()) { |
| DependentID = true; |
| } else if (SS.isSet()) { |
| if (DeclContext *DC = computeDeclContext(SS, false)) { |
| if (RequireCompleteDeclContext(SS, DC)) |
| return ExprError(); |
| } else { |
| DependentID = true; |
| } |
| } |
| |
| if (DependentID) |
| return ActOnDependentIdExpression(SS, NameInfo, IsAddressOfOperand, |
| TemplateArgs); |
| |
| bool IvarLookupFollowUp = false; |
| // Perform the required lookup. |
| LookupResult R(*this, NameInfo, |
| (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam) |
| ? LookupObjCImplicitSelfParam : LookupOrdinaryName); |
| if (TemplateArgs) { |
| // Lookup the template name again to correctly establish the context in |
| // which it was found. This is really unfortunate as we already did the |
| // lookup to determine that it was a template name in the first place. If |
| // this becomes a performance hit, we can work harder to preserve those |
| // results until we get here but it's likely not worth it. |
| bool MemberOfUnknownSpecialization; |
| LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false, |
| MemberOfUnknownSpecialization); |
| |
| if (MemberOfUnknownSpecialization || |
| (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)) |
| return ActOnDependentIdExpression(SS, NameInfo, IsAddressOfOperand, |
| TemplateArgs); |
| } else { |
| IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl()); |
| LookupParsedName(R, S, &SS, !IvarLookupFollowUp); |
| |
| // If the result might be in a dependent base class, this is a dependent |
| // id-expression. |
| if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) |
| return ActOnDependentIdExpression(SS, NameInfo, IsAddressOfOperand, |
| TemplateArgs); |
| |
| // If this reference is in an Objective-C method, then we need to do |
| // some special Objective-C lookup, too. |
| if (IvarLookupFollowUp) { |
| ExprResult E(LookupInObjCMethod(R, S, II, true)); |
| if (E.isInvalid()) |
| return ExprError(); |
| |
| if (Expr *Ex = E.takeAs<Expr>()) |
| return Owned(Ex); |
| |
| // for further use, this must be set to false if in class method. |
| IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod(); |
| } |
| } |
| |
| if (R.isAmbiguous()) |
| return ExprError(); |
| |
| // Determine whether this name might be a candidate for |
| // argument-dependent lookup. |
| bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen); |
| |
| if (R.empty() && !ADL) { |
| // Otherwise, this could be an implicitly declared function reference (legal |
| // in C90, extension in C99, forbidden in C++). |
| if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) { |
| NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S); |
| if (D) R.addDecl(D); |
| } |
| |
| // If this name wasn't predeclared and if this is not a function |
| // call, diagnose the problem. |
| if (R.empty()) { |
| |
| // In Microsoft mode, if we are inside a template class member function |
| // and we can't resolve an identifier then assume the identifier is type |
| // dependent. The goal is to postpone name lookup to instantiation time |
| // to be able to search into type dependent base classes. |
| if (getLangOptions().MicrosoftMode && CurContext->isDependentContext() && |
| isa<CXXMethodDecl>(CurContext)) |
| return ActOnDependentIdExpression(SS, NameInfo, IsAddressOfOperand, |
| TemplateArgs); |
| |
| if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown)) |
| return ExprError(); |
| |
| assert(!R.empty() && |
| "DiagnoseEmptyLookup returned false but added no results"); |
| |
| // If we found an Objective-C instance variable, let |
| // LookupInObjCMethod build the appropriate expression to |
| // reference the ivar. |
| if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) { |
| R.clear(); |
| ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier())); |
| // In a hopelessly buggy code, Objective-C instance variable |
| // lookup fails and no expression will be built to reference it. |
| if (!E.isInvalid() && !E.get()) |
| return ExprError(); |
| return move(E); |
| } |
| } |
| } |
| |
| // This is guaranteed from this point on. |
| assert(!R.empty() || ADL); |
| |
| // Check whether this might be a C++ implicit instance member access. |
| // C++ [class.mfct.non-static]p3: |
| // When an id-expression that is not part of a class member access |
| // syntax and not used to form a pointer to member is used in the |
| // body of a non-static member function of class X, if name lookup |
| // resolves the name in the id-expression to a non-static non-type |
| // member of some class C, the id-expression is transformed into a |
| // class member access expression using (*this) as the |
| // postfix-expression to the left of the . operator. |
| // |
| // But we don't actually need to do this for '&' operands if R |
| // resolved to a function or overloaded function set, because the |
| // expression is ill-formed if it actually works out to be a |
| // non-static member function: |
| // |
| // C++ [expr.ref]p4: |
| // Otherwise, if E1.E2 refers to a non-static member function. . . |
| // [t]he expression can be used only as the left-hand operand of a |
| // member function call. |
| // |
| // There are other safeguards against such uses, but it's important |
| // to get this right here so that we don't end up making a |
| // spuriously dependent expression if we're inside a dependent |
| // instance method. |
| if (!R.empty() && (*R.begin())->isCXXClassMember()) { |
| bool MightBeImplicitMember; |
| if (!IsAddressOfOperand) |
| MightBeImplicitMember = true; |
| else if (!SS.isEmpty()) |
| MightBeImplicitMember = false; |
| else if (R.isOverloadedResult()) |
| MightBeImplicitMember = false; |
| else if (R.isUnresolvableResult()) |
| MightBeImplicitMember = true; |
| else |
| MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) || |
| isa<IndirectFieldDecl>(R.getFoundDecl()); |
| |
| if (MightBeImplicitMember) |
| return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs); |
| } |
| |
| if (TemplateArgs) |
| return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs); |
| |
| return BuildDeclarationNameExpr(SS, R, ADL); |
| } |
| |
| /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified |
| /// declaration name, generally during template instantiation. |
| /// There's a large number of things which don't need to be done along |
| /// this path. |
| ExprResult |
| Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS, |
| const DeclarationNameInfo &NameInfo) { |
| DeclContext *DC; |
| if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext()) |
| return BuildDependentDeclRefExpr(SS, NameInfo, 0); |
| |
| if (RequireCompleteDeclContext(SS, DC)) |
| return ExprError(); |
| |
| LookupResult R(*this, NameInfo, LookupOrdinaryName); |
| LookupQualifiedName(R, DC); |
| |
| if (R.isAmbiguous()) |
| return ExprError(); |
| |
| if (R.empty()) { |
| Diag(NameInfo.getLoc(), diag::err_no_member) |
| << NameInfo.getName() << DC << SS.getRange(); |
| return ExprError(); |
| } |
| |
| return BuildDeclarationNameExpr(SS, R, /*ADL*/ false); |
| } |
| |
| /// LookupInObjCMethod - The parser has read a name in, and Sema has |
| /// detected that we're currently inside an ObjC method. Perform some |
| /// additional lookup. |
| /// |
| /// Ideally, most of this would be done by lookup, but there's |
| /// actually quite a lot of extra work involved. |
| /// |
| /// Returns a null sentinel to indicate trivial success. |
| ExprResult |
| Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S, |
| IdentifierInfo *II, bool AllowBuiltinCreation) { |
| SourceLocation Loc = Lookup.getNameLoc(); |
| ObjCMethodDecl *CurMethod = getCurMethodDecl(); |
| |
| // There are two cases to handle here. 1) scoped lookup could have failed, |
| // in which case we should look for an ivar. 2) scoped lookup could have |
| // found a decl, but that decl is outside the current instance method (i.e. |
| // a global variable). In these two cases, we do a lookup for an ivar with |
| // this name, if the lookup sucedes, we replace it our current decl. |
| |
| // If we're in a class method, we don't normally want to look for |
| // ivars. But if we don't find anything else, and there's an |
| // ivar, that's an error. |
| bool IsClassMethod = CurMethod->isClassMethod(); |
| |
| bool LookForIvars; |
| if (Lookup.empty()) |
| LookForIvars = true; |
| else if (IsClassMethod) |
| LookForIvars = false; |
| else |
| LookForIvars = (Lookup.isSingleResult() && |
| Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()); |
| ObjCInterfaceDecl *IFace = 0; |
| if (LookForIvars) { |
| IFace = CurMethod->getClassInterface(); |
| ObjCInterfaceDecl *ClassDeclared; |
| ObjCIvarDecl *IV = 0; |
| if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) { |
| // Diagnose using an ivar in a class method. |
| if (IsClassMethod) |
| return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method) |
| << IV->getDeclName()); |
| |
| // If we're referencing an invalid decl, just return this as a silent |
| // error node. The error diagnostic was already emitted on the decl. |
| if (IV->isInvalidDecl()) |
| return ExprError(); |
| |
| // Check if referencing a field with __attribute__((deprecated)). |
| if (DiagnoseUseOfDecl(IV, Loc)) |
| return ExprError(); |
| |
| // Diagnose the use of an ivar outside of the declaring class. |
| if (IV->getAccessControl() == ObjCIvarDecl::Private && |
| !declaresSameEntity(ClassDeclared, IFace)) |
| Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName(); |
| |
| // FIXME: This should use a new expr for a direct reference, don't |
| // turn this into Self->ivar, just return a BareIVarExpr or something. |
| IdentifierInfo &II = Context.Idents.get("self"); |
| UnqualifiedId SelfName; |
| SelfName.setIdentifier(&II, SourceLocation()); |
| SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam); |
| CXXScopeSpec SelfScopeSpec; |
| ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, |
| SelfName, false, false); |
| if (SelfExpr.isInvalid()) |
| return ExprError(); |
| |
| SelfExpr = DefaultLvalueConversion(SelfExpr.take()); |
| if (SelfExpr.isInvalid()) |
| return ExprError(); |
| |
| MarkDeclarationReferenced(Loc, IV); |
| return Owned(new (Context) |
| ObjCIvarRefExpr(IV, IV->getType(), Loc, |
| SelfExpr.take(), true, true)); |
| } |
| } else if (CurMethod->isInstanceMethod()) { |
| // We should warn if a local variable hides an ivar. |
| if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) { |
| ObjCInterfaceDecl *ClassDeclared; |
| if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { |
| if (IV->getAccessControl() != ObjCIvarDecl::Private || |
| declaresSameEntity(IFace, ClassDeclared)) |
| Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); |
| } |
| } |
| } else if (Lookup.isSingleResult() && |
| Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) { |
| // If accessing a stand-alone ivar in a class method, this is an error. |
| if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) |
| return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method) |
| << IV->getDeclName()); |
| } |
| |
| if (Lookup.empty() && II && AllowBuiltinCreation) { |
| // FIXME. Consolidate this with similar code in LookupName. |
| if (unsigned BuiltinID = II->getBuiltinID()) { |
| if (!(getLangOptions().CPlusPlus && |
| Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) { |
| NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, |
| S, Lookup.isForRedeclaration(), |
| Lookup.getNameLoc()); |
| if (D) Lookup.addDecl(D); |
| } |
| } |
| } |
| // Sentinel value saying that we didn't do anything special. |
| return Owned((Expr*) 0); |
| } |
| |
| /// \brief Cast a base object to a member's actual type. |
| /// |
| /// Logically this happens in three phases: |
| /// |
| /// * First we cast from the base type to the naming class. |
| /// The naming class is the class into which we were looking |
| /// when we found the member; it's the qualifier type if a |
| /// qualifier was provided, and otherwise it's the base type. |
| /// |
| /// * Next we cast from the naming class to the declaring class. |
| /// If the member we found was brought into a class's scope by |
| /// a using declaration, this is that class; otherwise it's |
| /// the class declaring the member. |
| /// |
| /// * Finally we cast from the declaring class to the "true" |
| /// declaring class of the member. This conversion does not |
| /// obey access control. |
| ExprResult |
| Sema::PerformObjectMemberConversion(Expr *From, |
| NestedNameSpecifier *Qualifier, |
| NamedDecl *FoundDecl, |
| NamedDecl *Member) { |
| CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext()); |
| if (!RD) |
| return Owned(From); |
| |
| QualType DestRecordType; |
| QualType DestType; |
| QualType FromRecordType; |
| QualType FromType = From->getType(); |
| bool PointerConversions = false; |
| if (isa<FieldDecl>(Member)) { |
| DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD)); |
| |
| if (FromType->getAs<PointerType>()) { |
| DestType = Context.getPointerType(DestRecordType); |
| FromRecordType = FromType->getPointeeType(); |
| PointerConversions = true; |
| } else { |
| DestType = DestRecordType; |
| FromRecordType = FromType; |
| } |
| } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) { |
| if (Method->isStatic()) |
| return Owned(From); |
| |
| DestType = Method->getThisType(Context); |
| DestRecordType = DestType->getPointeeType(); |
| |
| if (FromType->getAs<PointerType>()) { |
| FromRecordType = FromType->getPointeeType(); |
| PointerConversions = true; |
| } else { |
| FromRecordType = FromType; |
| DestType = DestRecordType; |
| } |
| } else { |
| // No conversion necessary. |
| return Owned(From); |
| } |
| |
| if (DestType->isDependentType() || FromType->isDependentType()) |
| return Owned(From); |
| |
| // If the unqualified types are the same, no conversion is necessary. |
| if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) |
| return Owned(From); |
| |
| SourceRange FromRange = From->getSourceRange(); |
| SourceLocation FromLoc = FromRange.getBegin(); |
| |
| ExprValueKind VK = From->getValueKind(); |
| |
| // C++ [class.member.lookup]p8: |
| // [...] Ambiguities can often be resolved by qualifying a name with its |
| // class name. |
| // |
| // If the member was a qualified name and the qualified referred to a |
| // specific base subobject type, we'll cast to that intermediate type |
| // first and then to the object in which the member is declared. That allows |
| // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as: |
| // |
| // class Base { public: int x; }; |
| // class Derived1 : public Base { }; |
| // class Derived2 : public Base { }; |
| // class VeryDerived : public Derived1, public Derived2 { void f(); }; |
| // |
| // void VeryDerived::f() { |
| // x = 17; // error: ambiguous base subobjects |
| // Derived1::x = 17; // okay, pick the Base subobject of Derived1 |
| // } |
| if (Qualifier) { |
| QualType QType = QualType(Qualifier->getAsType(), 0); |
| assert(!QType.isNull() && "lookup done with dependent qualifier?"); |
| assert(QType->isRecordType() && "lookup done with non-record type"); |
| |
| QualType QRecordType = QualType(QType->getAs<RecordType>(), 0); |
| |
| // In C++98, the qualifier type doesn't actually have to be a base |
| // type of the object type, in which case we just ignore it. |
| // Otherwise build the appropriate casts. |
| if (IsDerivedFrom(FromRecordType, QRecordType)) { |
| CXXCastPath BasePath; |
| if (CheckDerivedToBaseConversion(FromRecordType, QRecordType, |
| FromLoc, FromRange, &BasePath)) |
| return ExprError(); |
| |
| if (PointerConversions) |
| QType = Context.getPointerType(QType); |
| From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase, |
| VK, &BasePath).take(); |
| |
| FromType = QType; |
| FromRecordType = QRecordType; |
| |
| // If the qualifier type was the same as the destination type, |
| // we're done. |
| if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) |
| return Owned(From); |
| } |
| } |
| |
| bool IgnoreAccess = false; |
| |
| // If we actually found the member through a using declaration, cast |
| // down to the using declaration's type. |
| // |
| // Pointer equality is fine here because only one declaration of a |
| // class ever has member declarations. |
| if (FoundDecl->getDeclContext() != Member->getDeclContext()) { |
| assert(isa<UsingShadowDecl>(FoundDecl)); |
| QualType URecordType = Context.getTypeDeclType( |
| cast<CXXRecordDecl>(FoundDecl->getDeclContext())); |
| |
| // We only need to do this if the naming-class to declaring-class |
| // conversion is non-trivial. |
| if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) { |
| assert(IsDerivedFrom(FromRecordType, URecordType)); |
| CXXCastPath BasePath; |
| if (CheckDerivedToBaseConversion(FromRecordType, URecordType, |
| FromLoc, FromRange, &BasePath)) |
| return ExprError(); |
| |
| QualType UType = URecordType; |
| if (PointerConversions) |
| UType = Context.getPointerType(UType); |
| From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase, |
| VK, &BasePath).take(); |
| FromType = UType; |
| FromRecordType = URecordType; |
| } |
| |
| // We don't do access control for the conversion from the |
| // declaring class to the true declaring class. |
| IgnoreAccess = true; |
| } |
| |
| CXXCastPath BasePath; |
| if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType, |
| FromLoc, FromRange, &BasePath, |
| IgnoreAccess)) |
| return ExprError(); |
| |
| return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase, |
| VK, &BasePath); |
| } |
| |
| bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, |
| const LookupResult &R, |
| bool HasTrailingLParen) { |
| // Only when used directly as the postfix-expression of a call. |
| if (!HasTrailingLParen) |
| return false; |
| |
| // Never if a scope specifier was provided. |
| if (SS.isSet()) |
| return false; |
| |
| // Only in C++ or ObjC++. |
| if (!getLangOptions().CPlusPlus) |
| return false; |
| |
| // Turn off ADL when we find certain kinds of declarations during |
| // normal lookup: |
| for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
| NamedDecl *D = *I; |
| |
| // C++0x [basic.lookup.argdep]p3: |
| // -- a declaration of a class member |
| // Since using decls preserve this property, we check this on the |
| // original decl. |
| if (D->isCXXClassMember()) |
| return false; |
| |
| // C++0x [basic.lookup.argdep]p3: |
| // -- a block-scope function declaration that is not a |
| // using-declaration |
| // NOTE: we also trigger this for function templates (in fact, we |
| // don't check the decl type at all, since all other decl types |
| // turn off ADL anyway). |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| else if (D->getDeclContext()->isFunctionOrMethod()) |
| return false; |
| |
| // C++0x [basic.lookup.argdep]p3: |
| // -- a declaration that is neither a function or a function |
| // template |
| // And also for builtin functions. |
| if (isa<FunctionDecl>(D)) { |
| FunctionDecl *FDecl = cast<FunctionDecl>(D); |
| |
| // But also builtin functions. |
| if (FDecl->getBuiltinID() && FDecl->isImplicit()) |
| return false; |
| } else if (!isa<FunctionTemplateDecl>(D)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| /// Diagnoses obvious problems with the use of the given declaration |
| /// as an expression. This is only actually called for lookups that |
| /// were not overloaded, and it doesn't promise that the declaration |
| /// will in fact be used. |
| static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) { |
| if (isa<TypedefNameDecl>(D)) { |
| S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName(); |
| return true; |
| } |
| |
| if (isa<ObjCInterfaceDecl>(D)) { |
| S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName(); |
| return true; |
| } |
| |
| if (isa<NamespaceDecl>(D)) { |
| S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| ExprResult |
| Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, |
| LookupResult &R, |
| bool NeedsADL) { |
| // If this is a single, fully-resolved result and we don't need ADL, |
| // just build an ordinary singleton decl ref. |
| if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>()) |
| return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), |
| R.getFoundDecl()); |
| |
| // We only need to check the declaration if there's exactly one |
| // result, because in the overloaded case the results can only be |
| // functions and function templates. |
| if (R.isSingleResult() && |
| CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl())) |
| return ExprError(); |
| |
| // Otherwise, just build an unresolved lookup expression. Suppress |
| // any lookup-related diagnostics; we'll hash these out later, when |
| // we've picked a target. |
| R.suppressDiagnostics(); |
| |
| UnresolvedLookupExpr *ULE |
| = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), |
| SS.getWithLocInContext(Context), |
| R.getLookupNameInfo(), |
| NeedsADL, R.isOverloadedResult(), |
| R.begin(), R.end()); |
| |
| return Owned(ULE); |
| } |
| |
| /// \brief Complete semantic analysis for a reference to the given declaration. |
| ExprResult |
| Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, |
| const DeclarationNameInfo &NameInfo, |
| NamedDecl *D) { |
| assert(D && "Cannot refer to a NULL declaration"); |
| assert(!isa<FunctionTemplateDecl>(D) && |
| "Cannot refer unambiguously to a function template"); |
| |
| SourceLocation Loc = NameInfo.getLoc(); |
| if (CheckDeclInExpr(*this, Loc, D)) |
| return ExprError(); |
| |
| if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) { |
| // Specifically diagnose references to class templates that are missing |
| // a template argument list. |
| Diag(Loc, diag::err_template_decl_ref) |
| << Template << SS.getRange(); |
| Diag(Template->getLocation(), diag::note_template_decl_here); |
| return ExprError(); |
| } |
| |
| // Make sure that we're referring to a value. |
| ValueDecl *VD = dyn_cast<ValueDecl>(D); |
| if (!VD) { |
| Diag(Loc, diag::err_ref_non_value) |
| << D << SS.getRange(); |
| Diag(D->getLocation(), diag::note_declared_at); |
| return ExprError(); |
| } |
| |
| // Check whether this declaration can be used. Note that we suppress |
| // this check when we're going to perform argument-dependent lookup |
| // on this function name, because this might not be the function |
| // that overload resolution actually selects. |
| if (DiagnoseUseOfDecl(VD, Loc)) |
| return ExprError(); |
| |
| // Only create DeclRefExpr's for valid Decl's. |
| if (VD->isInvalidDecl()) |
| return ExprError(); |
| |
| // Handle members of anonymous structs and unions. If we got here, |
| // and the reference is to a class member indirect field, then this |
| // must be the subject of a pointer-to-member expression. |
| if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD)) |
| if (!indirectField->isCXXClassMember()) |
| return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(), |
| indirectField); |
| |
| // If the identifier reference is inside a block, and it refers to a value |
| // that is outside the block, create a BlockDeclRefExpr instead of a |
| // DeclRefExpr. This ensures the value is treated as a copy-in snapshot when |
| // the block is formed. |
| // |
| // We do not do this for things like enum constants, global variables, etc, |
| // as they do not get snapshotted. |
| // |
| switch (shouldCaptureValueReference(*this, NameInfo.getLoc(), VD)) { |
| case CR_Error: |
| return ExprError(); |
| |
| case CR_Capture: |
| assert(!SS.isSet() && "referenced local variable with scope specifier?"); |
| return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ false); |
| |
| case CR_CaptureByRef: |
| assert(!SS.isSet() && "referenced local variable with scope specifier?"); |
| return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ true); |
| |
| case CR_NoCapture: { |
| // If this reference is not in a block or if the referenced |
| // variable is within the block, create a normal DeclRefExpr. |
| |
| QualType type = VD->getType(); |
| ExprValueKind valueKind = VK_RValue; |
| |
| switch (D->getKind()) { |
| // Ignore all the non-ValueDecl kinds. |
| #define ABSTRACT_DECL(kind) |
| #define VALUE(type, base) |
| #define DECL(type, base) \ |
| case Decl::type: |
| #include "clang/AST/DeclNodes.inc" |
| llvm_unreachable("invalid value decl kind"); |
| return ExprError(); |
| |
| // These shouldn't make it here. |
| case Decl::ObjCAtDefsField: |
| case Decl::ObjCIvar: |
| llvm_unreachable("forming non-member reference to ivar?"); |
| return ExprError(); |
| |
| // Enum constants are always r-values and never references. |
| // Unresolved using declarations are dependent. |
| case Decl::EnumConstant: |
| case Decl::UnresolvedUsingValue: |
| valueKind = VK_RValue; |
| break; |
| |
| // Fields and indirect fields that got here must be for |
| // pointer-to-member expressions; we just call them l-values for |
| // internal consistency, because this subexpression doesn't really |
| // exist in the high-level semantics. |
| case Decl::Field: |
| case Decl::IndirectField: |
| assert(getLangOptions().CPlusPlus && |
| "building reference to field in C?"); |
| |
| // These can't have reference type in well-formed programs, but |
| // for internal consistency we do this anyway. |
| type = type.getNonReferenceType(); |
| valueKind = VK_LValue; |
| break; |
| |
| // Non-type template parameters are either l-values or r-values |
| // depending on the type. |
| case Decl::NonTypeTemplateParm: { |
| if (const ReferenceType *reftype = type->getAs<ReferenceType>()) { |
| type = reftype->getPointeeType(); |
| valueKind = VK_LValue; // even if the parameter is an r-value reference |
| break; |
| } |
| |
| // For non-references, we need to strip qualifiers just in case |
| // the template parameter was declared as 'const int' or whatever. |
| valueKind = VK_RValue; |
| type = type.getUnqualifiedType(); |
| break; |
| } |
| |
| case Decl::Var: |
| // In C, "extern void blah;" is valid and is an r-value. |
| if (!getLangOptions().CPlusPlus && |
| !type.hasQualifiers() && |
| type->isVoidType()) { |
| valueKind = VK_RValue; |
| break; |
| } |
| // fallthrough |
| |
| case Decl::ImplicitParam: |
| case Decl::ParmVar: |
| // These are always l-values. |
| valueKind = VK_LValue; |
| type = type.getNonReferenceType(); |
| break; |
| |
| case Decl::Function: { |
| const FunctionType *fty = type->castAs<FunctionType>(); |
| |
| // If we're referring to a function with an __unknown_anytype |
| // result type, make the entire expression __unknown_anytype. |
| if (fty->getResultType() == Context.UnknownAnyTy) { |
| type = Context.UnknownAnyTy; |
| valueKind = VK_RValue; |
| break; |
| } |
| |
| // Functions are l-values in C++. |
| if (getLangOptions().CPlusPlus) { |
| valueKind = VK_LValue; |
| break; |
| } |
| |
| // C99 DR 316 says that, if a function type comes from a |
| // function definition (without a prototype), that type is only |
| // used for checking compatibility. Therefore, when referencing |
| // the function, we pretend that we don't have the full function |
| // type. |
| if (!cast<FunctionDecl>(VD)->hasPrototype() && |
| isa<FunctionProtoType>(fty)) |
| type = Context.getFunctionNoProtoType(fty->getResultType(), |
| fty->getExtInfo()); |
| |
| // Functions are r-values in C. |
| valueKind = VK_RValue; |
| break; |
| } |
| |
| case Decl::CXXMethod: |
| // If we're referring to a method with an __unknown_anytype |
| // result type, make the entire expression __unknown_anytype. |
| // This should only be possible with a type written directly. |
| if (const FunctionProtoType *proto |
| = dyn_cast<FunctionProtoType>(VD->getType())) |
| if (proto->getResultType() == Context.UnknownAnyTy) { |
| type = Context.UnknownAnyTy; |
| valueKind = VK_RValue; |
| break; |
| } |
| |
| // C++ methods are l-values if static, r-values if non-static. |
| if (cast<CXXMethodDecl>(VD)->isStatic()) { |
| valueKind = VK_LValue; |
| break; |
| } |
| // fallthrough |
| |
| case Decl::CXXConversion: |
| case Decl::CXXDestructor: |
| case Decl::CXXConstructor: |
| valueKind = VK_RValue; |
| break; |
| } |
| |
| return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS); |
| } |
| |
| } |
| |
| llvm_unreachable("unknown capture result"); |
| return ExprError(); |
| } |
| |
| ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) { |
| PredefinedExpr::IdentType IT; |
| |
| switch (Kind) { |
| default: llvm_unreachable("Unknown simple primary expr!"); |
| case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2] |
| case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break; |
| case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break; |
| } |
| |
| // Pre-defined identifiers are of type char[x], where x is the length of the |
| // string. |
| |
| Decl *currentDecl = getCurFunctionOrMethodDecl(); |
| if (!currentDecl && getCurBlock()) |
| currentDecl = getCurBlock()->TheDecl; |
| if (!currentDecl) { |
| Diag(Loc, diag::ext_predef_outside_function); |
| currentDecl = Context.getTranslationUnitDecl(); |
| } |
| |
| QualType ResTy; |
| if (cast<DeclContext>(currentDecl)->isDependentContext()) { |
| ResTy = Context.DependentTy; |
| } else { |
| unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length(); |
| |
| llvm::APInt LengthI(32, Length + 1); |
| ResTy = Context.CharTy.withConst(); |
| ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0); |
| } |
| return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT)); |
| } |
| |
| ExprResult Sema::ActOnCharacterConstant(const Token &Tok) { |
| llvm::SmallString<16> CharBuffer; |
| bool Invalid = false; |
| StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid); |
| if (Invalid) |
| return ExprError(); |
| |
| CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(), |
| PP, Tok.getKind()); |
| if (Literal.hadError()) |
| return ExprError(); |
| |
| QualType Ty; |
| if (!getLangOptions().CPlusPlus) |
| Ty = Context.IntTy; // 'x' and L'x' -> int in C. |
| else if (Literal.isWide()) |
| Ty = Context.WCharTy; // L'x' -> wchar_t in C++. |
| else if (Literal.isUTF16()) |
| Ty = Context.Char16Ty; // u'x' -> char16_t in C++0x. |
| else if (Literal.isUTF32()) |
| Ty = Context.Char32Ty; // U'x' -> char32_t in C++0x. |
| else if (Literal.isMultiChar()) |
| Ty = Context.IntTy; // 'wxyz' -> int in C++. |
| else |
| Ty = Context.CharTy; // 'x' -> char in C++ |
| |
| CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii; |
| if (Literal.isWide()) |
| Kind = CharacterLiteral::Wide; |
| else if (Literal.isUTF16()) |
| Kind = CharacterLiteral::UTF16; |
| else if (Literal.isUTF32()) |
| Kind = CharacterLiteral::UTF32; |
| |
| return Owned(new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty, |
| Tok.getLocation())); |
| } |
| |
| ExprResult Sema::ActOnNumericConstant(const Token &Tok) { |
| // Fast path for a single digit (which is quite common). A single digit |
| // cannot have a trigraph, escaped newline, radix prefix, or type suffix. |
| if (Tok.getLength() == 1) { |
| const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); |
| unsigned IntSize = Context.getTargetInfo().getIntWidth(); |
| return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'), |
| Context.IntTy, Tok.getLocation())); |
| } |
| |
| llvm::SmallString<512> IntegerBuffer; |
| // Add padding so that NumericLiteralParser can overread by one character. |
| IntegerBuffer.resize(Tok.getLength()+1); |
| const char *ThisTokBegin = &IntegerBuffer[0]; |
| |
| // Get the spelling of the token, which eliminates trigraphs, etc. |
| bool Invalid = false; |
| unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid); |
| if (Invalid) |
| return ExprError(); |
| |
| NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, |
| Tok.getLocation(), PP); |
| if (Literal.hadError) |
| return ExprError(); |
| |
| Expr *Res; |
| |
| if (Literal.isFloatingLiteral()) { |
| QualType Ty; |
| if (Literal.isFloat) |
| Ty = Context.FloatTy; |
| else if (!Literal.isLong) |
| Ty = Context.DoubleTy; |
| else |
| Ty = Context.LongDoubleTy; |
| |
| const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty); |
| |
| using llvm::APFloat; |
| APFloat Val(Format); |
| |
| APFloat::opStatus result = Literal.GetFloatValue(Val); |
| |
| // Overflow is always an error, but underflow is only an error if |
| // we underflowed to zero (APFloat reports denormals as underflow). |
| if ((result & APFloat::opOverflow) || |
| ((result & APFloat::opUnderflow) && Val.isZero())) { |
| unsigned diagnostic; |
| llvm::SmallString<20> buffer; |
| if (result & APFloat::opOverflow) { |
| diagnostic = diag::warn_float_overflow; |
| APFloat::getLargest(Format).toString(buffer); |
| } else { |
| diagnostic = diag::warn_float_underflow; |
| APFloat::getSmallest(Format).toString(buffer); |
| } |
| |
| Diag(Tok.getLocation(), diagnostic) |
| << Ty |
| << StringRef(buffer.data(), buffer.size()); |
| } |
| |
| bool isExact = (result == APFloat::opOK); |
| Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation()); |
| |
| if (Ty == Context.DoubleTy) { |
| if (getLangOptions().SinglePrecisionConstants) { |
| Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take(); |
| } else if (getLangOptions().OpenCL && !getOpenCLOptions().cl_khr_fp64) { |
| Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64); |
| Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take(); |
| } |
| } |
| } else if (!Literal.isIntegerLiteral()) { |
| return ExprError(); |
| } else { |
| QualType Ty; |
| |
| // long long is a C99 feature. |
| if (!getLangOptions().C99 && Literal.isLongLong) |
| Diag(Tok.getLocation(), |
| getLangOptions().CPlusPlus0x ? |
| diag::warn_cxx98_compat_longlong : diag::ext_longlong); |
| |
| // Get the value in the widest-possible width. |
| llvm::APInt ResultVal(Context.getTargetInfo().getIntMaxTWidth(), 0); |
| |
| if (Literal.GetIntegerValue(ResultVal)) { |
| // If this value didn't fit into uintmax_t, warn and force to ull. |
| Diag(Tok.getLocation(), diag::warn_integer_too_large); |
| Ty = Context.UnsignedLongLongTy; |
| assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() && |
| "long long is not intmax_t?"); |
| } else { |
| // If this value fits into a ULL, try to figure out what else it fits into |
| // according to the rules of C99 6.4.4.1p5. |
| |
| // Octal, Hexadecimal, and integers with a U suffix are allowed to |
| // be an unsigned int. |
| bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; |
| |
| // Check from smallest to largest, picking the smallest type we can. |
| unsigned Width = 0; |
| if (!Literal.isLong && !Literal.isLongLong) { |
| // Are int/unsigned possibilities? |
| unsigned IntSize = Context.getTargetInfo().getIntWidth(); |
| |
| // Does it fit in a unsigned int? |
| if (ResultVal.isIntN(IntSize)) { |
| // Does it fit in a signed int? |
| if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) |
| Ty = Context.IntTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedIntTy; |
| Width = IntSize; |
| } |
| } |
| |
| // Are long/unsigned long possibilities? |
| if (Ty.isNull() && !Literal.isLongLong) { |
| unsigned LongSize = Context.getTargetInfo().getLongWidth(); |
| |
| // Does it fit in a unsigned long? |
| if (ResultVal.isIntN(LongSize)) { |
| // Does it fit in a signed long? |
| if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) |
| Ty = Context.LongTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedLongTy; |
| Width = LongSize; |
| } |
| } |
| |
| // Finally, check long long if needed. |
| if (Ty.isNull()) { |
| unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth(); |
| |
| // Does it fit in a unsigned long long? |
| if (ResultVal.isIntN(LongLongSize)) { |
| // Does it fit in a signed long long? |
| // To be compatible with MSVC, hex integer literals ending with the |
| // LL or i64 suffix are always signed in Microsoft mode. |
| if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 || |
| (getLangOptions().MicrosoftExt && Literal.isLongLong))) |
| Ty = Context.LongLongTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedLongLongTy; |
| Width = LongLongSize; |
| } |
| } |
| |
| // If we still couldn't decide a type, we probably have something that |
| // does not fit in a signed long long, but has no U suffix. |
| if (Ty.isNull()) { |
| Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed); |
| Ty = Context.UnsignedLongLongTy; |
| Width = Context.getTargetInfo().getLongLongWidth(); |
| } |
| |
| if (ResultVal.getBitWidth() != Width) |
| ResultVal = ResultVal.trunc(Width); |
| } |
| Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation()); |
| } |
| |
| // If this is an imaginary literal, create the ImaginaryLiteral wrapper. |
| if (Literal.isImaginary) |
| Res = new (Context) ImaginaryLiteral(Res, |
| Context.getComplexType(Res->getType())); |
| |
| return Owned(Res); |
| } |
| |
| ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) { |
| assert((E != 0) && "ActOnParenExpr() missing expr"); |
| return Owned(new (Context) ParenExpr(L, R, E)); |
| } |
| |
| static bool CheckVecStepTraitOperandType(Sema &S, QualType T, |
| SourceLocation Loc, |
| SourceRange ArgRange) { |
| // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in |
| // scalar or vector data type argument..." |
| // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic |
| // type (C99 6.2.5p18) or void. |
| if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) { |
| S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type) |
| << T << ArgRange; |
| return true; |
| } |
| |
| assert((T->isVoidType() || !T->isIncompleteType()) && |
| "Scalar types should always be complete"); |
| return false; |
| } |
| |
| static bool CheckExtensionTraitOperandType(Sema &S, QualType T, |
| SourceLocation Loc, |
| SourceRange ArgRange, |
| UnaryExprOrTypeTrait TraitKind) { |
| // C99 6.5.3.4p1: |
| if (T->isFunctionType()) { |
| // alignof(function) is allowed as an extension. |
| if (TraitKind == UETT_SizeOf) |
| S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange; |
| return false; |
| } |
| |
| // Allow sizeof(void)/alignof(void) as an extension. |
| if (T->isVoidType()) { |
| S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T, |
| SourceLocation Loc, |
| SourceRange ArgRange, |
| UnaryExprOrTypeTrait TraitKind) { |
| // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode. |
| if (S.LangOpts.ObjCNonFragileABI && T->isObjCObjectType()) { |
| S.Diag(Loc, diag::err_sizeof_nonfragile_interface) |
| << T << (TraitKind == UETT_SizeOf) |
| << ArgRange; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// \brief Check the constrains on expression operands to unary type expression |
| /// and type traits. |
| /// |
| /// Completes any types necessary and validates the constraints on the operand |
| /// expression. The logic mostly mirrors the type-based overload, but may modify |
| /// the expression as it completes the type for that expression through template |
| /// instantiation, etc. |
| bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E, |
| UnaryExprOrTypeTrait ExprKind) { |
| QualType ExprTy = E->getType(); |
| |
| // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, |
| // the result is the size of the referenced type." |
| // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the |
| // result shall be the alignment of the referenced type." |
| if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>()) |
| ExprTy = Ref->getPointeeType(); |
| |
| if (ExprKind == UETT_VecStep) |
| return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(), |
| E->getSourceRange()); |
| |
| // Whitelist some types as extensions |
| if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(), |
| E->getSourceRange(), ExprKind)) |
| return false; |
| |
| if (RequireCompleteExprType(E, |
| PDiag(diag::err_sizeof_alignof_incomplete_type) |
| << ExprKind << E->getSourceRange(), |
| std::make_pair(SourceLocation(), PDiag(0)))) |
| return true; |
| |
| // Completeing the expression's type may have changed it. |
| ExprTy = E->getType(); |
| if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>()) |
| ExprTy = Ref->getPointeeType(); |
| |
| if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(), |
| E->getSourceRange(), ExprKind)) |
| return true; |
| |
| if (ExprKind == UETT_SizeOf) { |
| if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) { |
| if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) { |
| QualType OType = PVD->getOriginalType(); |
| QualType Type = PVD->getType(); |
| if (Type->isPointerType() && OType->isArrayType()) { |
| Diag(E->getExprLoc(), diag::warn_sizeof_array_param) |
| << Type << OType; |
| Diag(PVD->getLocation(), diag::note_declared_at); |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// \brief Check the constraints on operands to unary expression and type |
| /// traits. |
| /// |
| /// This will complete any types necessary, and validate the various constraints |
| /// on those operands. |
| /// |
| /// The UsualUnaryConversions() function is *not* called by this routine. |
| /// C99 6.3.2.1p[2-4] all state: |
| /// Except when it is the operand of the sizeof operator ... |
| /// |
| /// C++ [expr.sizeof]p4 |
| /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer |
| /// standard conversions are not applied to the operand of sizeof. |
| /// |
| /// This policy is followed for all of the unary trait expressions. |
| bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType, |
| SourceLocation OpLoc, |
| SourceRange ExprRange, |
| UnaryExprOrTypeTrait ExprKind) { |
| if (ExprType->isDependentType()) |
| return false; |
| |
| // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, |
| // the result is the size of the referenced type." |
| // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the |
| // result shall be the alignment of the referenced type." |
| if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>()) |
| ExprType = Ref->getPointeeType(); |
| |
| if (ExprKind == UETT_VecStep) |
| return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange); |
| |
| // Whitelist some types as extensions |
| if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange, |
| ExprKind)) |
| return false; |
| |
| if (RequireCompleteType(OpLoc, ExprType, |
| PDiag(diag::err_sizeof_alignof_incomplete_type) |
| << ExprKind << ExprRange)) |
| return true; |
| |
| if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange, |
| ExprKind)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool CheckAlignOfExpr(Sema &S, Expr *E) { |
| E = E->IgnoreParens(); |
| |
| // alignof decl is always ok. |
| if (isa<DeclRefExpr>(E)) |
| return false; |
| |
| // Cannot know anything else if the expression is dependent. |
| if (E->isTypeDependent()) |
| return false; |
| |
| if (E->getBitField()) { |
| S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) |
| << 1 << E->getSourceRange(); |
| return true; |
| } |
| |
| // Alignment of a field access is always okay, so long as it isn't a |
| // bit-field. |
| if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) |
| if (isa<FieldDecl>(ME->getMemberDecl())) |
| return false; |
| |
| return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf); |
| } |
| |
| bool Sema::CheckVecStepExpr(Expr *E) { |
| E = E->IgnoreParens(); |
| |
| // Cannot know anything else if the expression is dependent. |
| if (E->isTypeDependent()) |
| return false; |
| |
| return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep); |
| } |
| |
| /// \brief Build a sizeof or alignof expression given a type operand. |
| ExprResult |
| Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, |
| SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind, |
| SourceRange R) { |
| if (!TInfo) |
| return ExprError(); |
| |
| QualType T = TInfo->getType(); |
| |
| if (!T->isDependentType() && |
| CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind)) |
| return ExprError(); |
| |
| // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. |
| return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo, |
| Context.getSizeType(), |
| OpLoc, R.getEnd())); |
| } |
| |
| /// \brief Build a sizeof or alignof expression given an expression |
| /// operand. |
| ExprResult |
| Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind) { |
| ExprResult PE = CheckPlaceholderExpr(E); |
| if (PE.isInvalid()) |
| return ExprError(); |
| |
| E = PE.get(); |
| |
| // Verify that the operand is valid. |
| bool isInvalid = false; |
| if (E->isTypeDependent()) { |
| // Delay type-checking for type-dependent expressions. |
| } else if (ExprKind == UETT_AlignOf) { |
| isInvalid = CheckAlignOfExpr(*this, E); |
| } else if (ExprKind == UETT_VecStep) { |
| isInvalid = CheckVecStepExpr(E); |
| } else if (E->getBitField()) { // C99 6.5.3.4p1. |
| Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0; |
| isInvalid = true; |
| } else { |
| isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf); |
| } |
| |
| if (isInvalid) |
| return ExprError(); |
| |
| // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. |
| return Owned(new (Context) UnaryExprOrTypeTraitExpr( |
| ExprKind, E, Context.getSizeType(), OpLoc, |
| E->getSourceRange().getEnd())); |
| } |
| |
| /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c |
| /// expr and the same for @c alignof and @c __alignof |
| /// Note that the ArgRange is invalid if isType is false. |
| ExprResult |
| Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind, bool IsType, |
| void *TyOrEx, const SourceRange &ArgRange) { |
| // If error parsing type, ignore. |
| if (TyOrEx == 0) return ExprError(); |
| |
| if (IsType) { |
| TypeSourceInfo *TInfo; |
| (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo); |
| return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange); |
| } |
| |
| Expr *ArgEx = (Expr *)TyOrEx; |
| ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind); |
| return move(Result); |
| } |
| |
| static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc, |
| bool IsReal) { |
| if (V.get()->isTypeDependent()) |
| return S.Context.DependentTy; |
| |
| // _Real and _Imag are only l-values for normal l-values. |
| if (V.get()->getObjectKind() != OK_Ordinary) { |
| V = S.DefaultLvalueConversion(V.take()); |
| if (V.isInvalid()) |
| return QualType(); |
| } |
| |
| // These operators return the element type of a complex type. |
| if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>()) |
| return CT->getElementType(); |
| |
| // Otherwise they pass through real integer and floating point types here. |
| if (V.get()->getType()->isArithmeticType()) |
| return V.get()->getType(); |
| |
| // Test for placeholders. |
| ExprResult PR = S.CheckPlaceholderExpr(V.get()); |
| if (PR.isInvalid()) return QualType(); |
| if (PR.get() != V.get()) { |
| V = move(PR); |
| return CheckRealImagOperand(S, V, Loc, IsReal); |
| } |
| |
| // Reject anything else. |
| S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType() |
| << (IsReal ? "__real" : "__imag"); |
| return QualType(); |
| } |
| |
| |
| |
| ExprResult |
| Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, |
| tok::TokenKind Kind, Expr *Input) { |
| UnaryOperatorKind Opc; |
| switch (Kind) { |
| default: llvm_unreachable("Unknown unary op!"); |
| case tok::plusplus: Opc = UO_PostInc; break; |
| case tok::minusminus: Opc = UO_PostDec; break; |
| } |
| |
| return BuildUnaryOp(S, OpLoc, Opc, Input); |
| } |
| |
| ExprResult |
| Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc, |
| Expr *Idx, SourceLocation RLoc) { |
| // Since this might be a postfix expression, get rid of ParenListExprs. |
| ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); |
| if (Result.isInvalid()) return ExprError(); |
| Base = Result.take(); |
| |
| Expr *LHSExp = Base, *RHSExp = Idx; |
| |
| if (getLangOptions().CPlusPlus && |
| (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) { |
| return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp, |
| Context.DependentTy, |
| VK_LValue, OK_Ordinary, |
| RLoc)); |
| } |
| |
| if (getLangOptions().CPlusPlus && |
| (LHSExp->getType()->isRecordType() || |
| LHSExp->getType()->isEnumeralType() || |
| RHSExp->getType()->isRecordType() || |
| RHSExp->getType()->isEnumeralType())) { |
| return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx); |
| } |
| |
| return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc); |
| } |
| |
| |
| ExprResult |
| Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, |
| Expr *Idx, SourceLocation RLoc) { |
| Expr *LHSExp = Base; |
| Expr *RHSExp = Idx; |
| |
| // Perform default conversions. |
| if (!LHSExp->getType()->getAs<VectorType>()) { |
| ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp); |
| if (Result.isInvalid()) |
| return ExprError(); |
| LHSExp = Result.take(); |
| } |
| ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp); |
| if (Result.isInvalid()) |
| return ExprError(); |
| RHSExp = Result.take(); |
| |
| QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); |
| ExprValueKind VK = VK_LValue; |
| ExprObjectKind OK = OK_Ordinary; |
| |
| // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent |
| // to the expression *((e1)+(e2)). This means the array "Base" may actually be |
| // in the subscript position. As a result, we need to derive the array base |
| // and index from the expression types. |
| Expr *BaseExpr, *IndexExpr; |
| QualType ResultType; |
| if (LHSTy->isDependentType() || RHSTy->isDependentType()) { |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| ResultType = Context.DependentTy; |
| } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) { |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| ResultType = PTy->getPointeeType(); |
| } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) { |
| // Handle the uncommon case of "123[Ptr]". |
| BaseExpr = RHSExp; |
| IndexExpr = LHSExp; |
| ResultType = PTy->getPointeeType(); |
| } else if (const ObjCObjectPointerType *PTy = |
| LHSTy->getAs<ObjCObjectPointerType>()) { |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| ResultType = PTy->getPointeeType(); |
| } else if (const ObjCObjectPointerType *PTy = |
| RHSTy->getAs<ObjCObjectPointerType>()) { |
| // Handle the uncommon case of "123[Ptr]". |
| BaseExpr = RHSExp; |
| IndexExpr = LHSExp; |
| ResultType = PTy->getPointeeType(); |
| } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) { |
| BaseExpr = LHSExp; // vectors: V[123] |
| IndexExpr = RHSExp; |
| VK = LHSExp->getValueKind(); |
| if (VK != VK_RValue) |
| OK = OK_VectorComponent; |
| |
| // FIXME: need to deal with const... |
| ResultType = VTy->getElementType(); |
| } else if (LHSTy->isArrayType()) { |
| // If we see an array that wasn't promoted by |
| // DefaultFunctionArrayLvalueConversion, it must be an array that |
| // wasn't promoted because of the C90 rule that doesn't |
| // allow promoting non-lvalue arrays. Warn, then |
| // force the promotion here. |
| Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << |
| LHSExp->getSourceRange(); |
| LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy), |
| CK_ArrayToPointerDecay).take(); |
| LHSTy = LHSExp->getType(); |
| |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| ResultType = LHSTy->getAs<PointerType>()->getPointeeType(); |
| } else if (RHSTy->isArrayType()) { |
| // Same as previous, except for 123[f().a] case |
| Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << |
| RHSExp->getSourceRange(); |
| RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy), |
| CK_ArrayToPointerDecay).take(); |
| RHSTy = RHSExp->getType(); |
| |
| BaseExpr = RHSExp; |
| IndexExpr = LHSExp; |
| ResultType = RHSTy->getAs<PointerType>()->getPointeeType(); |
| } else { |
| return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) |
| << LHSExp->getSourceRange() << RHSExp->getSourceRange()); |
| } |
| // C99 6.5.2.1p1 |
| if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent()) |
| return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) |
| << IndexExpr->getSourceRange()); |
| |
| if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || |
| IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) |
| && !IndexExpr->isTypeDependent()) |
| Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange(); |
| |
| // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, |
| // C++ [expr.sub]p1: The type "T" shall be a completely-defined object |
| // type. Note that Functions are not objects, and that (in C99 parlance) |
| // incomplete types are not object types. |
| if (ResultType->isFunctionType()) { |
| Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type) |
| << ResultType << BaseExpr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) { |
| // GNU extension: subscripting on pointer to void |
| Diag(LLoc, diag::ext_gnu_subscript_void_type) |
| << BaseExpr->getSourceRange(); |
| |
| // C forbids expressions of unqualified void type from being l-values. |
| // See IsCForbiddenLValueType. |
| if (!ResultType.hasQualifiers()) VK = VK_RValue; |
| } else if (!ResultType->isDependentType() && |
| RequireCompleteType(LLoc, ResultType, |
| PDiag(diag::err_subscript_incomplete_type) |
| << BaseExpr->getSourceRange())) |
| return ExprError(); |
| |
| // Diagnose bad cases where we step over interface counts. |
| if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) { |
| Diag(LLoc, diag::err_subscript_nonfragile_interface) |
| << ResultType << BaseExpr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| assert(VK == VK_RValue || LangOpts.CPlusPlus || |
| !ResultType.isCForbiddenLValueType()); |
| |
| return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp, |
| ResultType, VK, OK, RLoc)); |
| } |
| |
| ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc, |
| FunctionDecl *FD, |
| ParmVarDecl *Param) { |
| if (Param->hasUnparsedDefaultArg()) { |
| Diag(CallLoc, |
| diag::err_use_of_default_argument_to_function_declared_later) << |
| FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName(); |
| Diag(UnparsedDefaultArgLocs[Param], |
| diag::note_default_argument_declared_here); |
| return ExprError(); |
| } |
| |
| if (Param->hasUninstantiatedDefaultArg()) { |
| Expr *UninstExpr = Param->getUninstantiatedDefaultArg(); |
| |
| // Instantiate the expression. |
| MultiLevelTemplateArgumentList ArgList |
| = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true); |
| |
| std::pair<const TemplateArgument *, unsigned> Innermost |
| = ArgList.getInnermost(); |
| InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first, |
| Innermost.second); |
| |
| ExprResult Result; |
| { |
| // C++ [dcl.fct.default]p5: |
| // The names in the [default argument] expression are bound, and |
| // the semantic constraints are checked, at the point where the |
| // default argument expression appears. |
| ContextRAII SavedContext(*this, FD); |
| Result = SubstExpr(UninstExpr, ArgList); |
| } |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| // Check the expression as an initializer for the parameter. |
| InitializedEntity Entity |
| = InitializedEntity::InitializeParameter(Context, Param); |
| InitializationKind Kind |
| = InitializationKind::CreateCopy(Param->getLocation(), |
| /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin()); |
| Expr *ResultE = Result.takeAs<Expr>(); |
| |
| InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1); |
| Result = InitSeq.Perform(*this, Entity, Kind, |
| MultiExprArg(*this, &ResultE, 1)); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| // Build the default argument expression. |
| return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, |
| Result.takeAs<Expr>())); |
| } |
| |
| // If the default expression creates temporaries, we need to |
| // push them to the current stack of expression temporaries so they'll |
| // be properly destroyed. |
| // FIXME: We should really be rebuilding the default argument with new |
| // bound temporaries; see the comment in PR5810. |
| // We don't need to do that with block decls, though, because |
| // blocks in default argument expression can never capture anything. |
| if (isa<ExprWithCleanups>(Param->getInit())) { |
| // Set the "needs cleanups" bit regardless of whether there are |
| // any explicit objects. |
| ExprNeedsCleanups = true; |
| |
| // Append all the objects to the cleanup list. Right now, this |
| // should always be a no-op, because blocks in default argument |
| // expressions should never be able to capture anything. |
| assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() && |
| "default argument expression has capturing blocks?"); |
| } |
| |
| // We already type-checked the argument, so we know it works. |
| // Just mark all of the declarations in this potentially-evaluated expression |
| // as being "referenced". |
| MarkDeclarationsReferencedInExpr(Param->getDefaultArg()); |
| return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param)); |
| } |
| |
| /// ConvertArgumentsForCall - Converts the arguments specified in |
| /// Args/NumArgs to the parameter types of the function FDecl with |
| /// function prototype Proto. Call is the call expression itself, and |
| /// Fn is the function expression. For a C++ member function, this |
| /// routine does not attempt to convert the object argument. Returns |
| /// true if the call is ill-formed. |
| bool |
| Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, |
| FunctionDecl *FDecl, |
| const FunctionProtoType *Proto, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation RParenLoc, |
| bool IsExecConfig) { |
| // Bail out early if calling a builtin with custom typechecking. |
| // We don't need to do this in the |
| if (FDecl) |
| if (unsigned ID = FDecl->getBuiltinID()) |
| if (Context.BuiltinInfo.hasCustomTypechecking(ID)) |
| return false; |
| |
| // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by |
| // assignment, to the types of the corresponding parameter, ... |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| bool Invalid = false; |
| unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto; |
| unsigned FnKind = Fn->getType()->isBlockPointerType() |
| ? 1 /* block */ |
| : (IsExecConfig ? 3 /* kernel function (exec config) */ |
| : 0 /* function */); |
| |
| // If too few arguments are available (and we don't have default |
| // arguments for the remaining parameters), don't make the call. |
| if (NumArgs < NumArgsInProto) { |
| if (NumArgs < MinArgs) { |
| Diag(RParenLoc, MinArgs == NumArgsInProto |
| ? diag::err_typecheck_call_too_few_args |
| : diag::err_typecheck_call_too_few_args_at_least) |
| << FnKind |
| << MinArgs << NumArgs << Fn->getSourceRange(); |
| |
| // Emit the location of the prototype. |
| if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig) |
| Diag(FDecl->getLocStart(), diag::note_callee_decl) |
| << FDecl; |
| |
| return true; |
| } |
| Call->setNumArgs(Context, NumArgsInProto); |
| } |
| |
| // If too many are passed and not variadic, error on the extras and drop |
| // them. |
| if (NumArgs > NumArgsInProto) { |
| if (!Proto->isVariadic()) { |
| Diag(Args[NumArgsInProto]->getLocStart(), |
| MinArgs == NumArgsInProto |
| ? diag::err_typecheck_call_too_many_args |
| : diag::err_typecheck_call_too_many_args_at_most) |
| << FnKind |
| << NumArgsInProto << NumArgs << Fn->getSourceRange() |
| << SourceRange(Args[NumArgsInProto]->getLocStart(), |
| Args[NumArgs-1]->getLocEnd()); |
| |
| // Emit the location of the prototype. |
| if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig) |
| Diag(FDecl->getLocStart(), diag::note_callee_decl) |
| << FDecl; |
| |
| // This deletes the extra arguments. |
| Call->setNumArgs(Context, NumArgsInProto); |
| return true; |
| } |
| } |
| SmallVector<Expr *, 8> AllArgs; |
| VariadicCallType CallType = |
| Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply; |
| if (Fn->getType()->isBlockPointerType()) |
| CallType = VariadicBlock; // Block |
| else if (isa<MemberExpr>(Fn)) |
| CallType = VariadicMethod; |
| Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl, |
| Proto, 0, Args, NumArgs, AllArgs, CallType); |
| if (Invalid) |
| return true; |
| unsigned TotalNumArgs = AllArgs.size(); |
| for (unsigned i = 0; i < TotalNumArgs; ++i) |
| Call->setArg(i, AllArgs[i]); |
| |
| return false; |
| } |
| |
| bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, |
| FunctionDecl *FDecl, |
| const FunctionProtoType *Proto, |
| unsigned FirstProtoArg, |
| Expr **Args, unsigned NumArgs, |
| SmallVector<Expr *, 8> &AllArgs, |
| VariadicCallType CallType) { |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| unsigned NumArgsToCheck = NumArgs; |
| bool Invalid = false; |
| if (NumArgs != NumArgsInProto) |
| // Use default arguments for missing arguments |
| NumArgsToCheck = NumArgsInProto; |
| unsigned ArgIx = 0; |
| // Continue to check argument types (even if we have too few/many args). |
| for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) { |
| QualType ProtoArgType = Proto->getArgType(i); |
| |
| Expr *Arg; |
| ParmVarDecl *Param; |
| if (ArgIx < NumArgs) { |
| Arg = Args[ArgIx++]; |
| |
| if (RequireCompleteType(Arg->getSourceRange().getBegin(), |
| ProtoArgType, |
| PDiag(diag::err_call_incomplete_argument) |
| << Arg->getSourceRange())) |
| return true; |
| |
| // Pass the argument |
| Param = 0; |
| if (FDecl && i < FDecl->getNumParams()) |
| Param = FDecl->getParamDecl(i); |
| |
| // Strip the unbridged-cast placeholder expression off, if applicable. |
| if (Arg->getType() == Context.ARCUnbridgedCastTy && |
| FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() && |
| (!Param || !Param->hasAttr<CFConsumedAttr>())) |
| Arg = stripARCUnbridgedCast(Arg); |
| |
| InitializedEntity Entity = |
| Param? InitializedEntity::InitializeParameter(Context, Param) |
| : InitializedEntity::InitializeParameter(Context, ProtoArgType, |
| Proto->isArgConsumed(i)); |
| ExprResult ArgE = PerformCopyInitialization(Entity, |
| SourceLocation(), |
| Owned(Arg)); |
| if (ArgE.isInvalid()) |
| return true; |
| |
| Arg = ArgE.takeAs<Expr>(); |
| } else { |
| Param = FDecl->getParamDecl(i); |
| |
| ExprResult ArgExpr = |
| BuildCXXDefaultArgExpr(CallLoc, FDecl, Param); |
| if (ArgExpr.isInvalid()) |
| return true; |
| |
| Arg = ArgExpr.takeAs<Expr>(); |
| } |
| |
| // Check for array bounds violations for each argument to the call. This |
| // check only triggers warnings when the argument isn't a more complex Expr |
| // with its own checking, such as a BinaryOperator. |
| CheckArrayAccess(Arg); |
| |
| // Check for violations of C99 static array rules (C99 6.7.5.3p7). |
| CheckStaticArrayArgument(CallLoc, Param, Arg); |
| |
| AllArgs.push_back(Arg); |
| } |
| |
| // If this is a variadic call, handle args passed through "...". |
| if (CallType != VariadicDoesNotApply) { |
| |
| // Assume that extern "C" functions with variadic arguments that |
| // return __unknown_anytype aren't *really* variadic. |
| if (Proto->getResultType() == Context.UnknownAnyTy && |
| FDecl && FDecl->isExternC()) { |
| for (unsigned i = ArgIx; i != NumArgs; ++i) { |
| ExprResult arg; |
| if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens())) |
| arg = DefaultFunctionArrayLvalueConversion(Args[i]); |
| else |
| arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl); |
| Invalid |= arg.isInvalid(); |
| AllArgs.push_back(arg.take()); |
| } |
| |
| // Otherwise do argument promotion, (C99 6.5.2.2p7). |
| } else { |
| for (unsigned i = ArgIx; i != NumArgs; ++i) { |
| ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType, |
| FDecl); |
| Invalid |= Arg.isInvalid(); |
| AllArgs.push_back(Arg.take()); |
| } |
| } |
| |
| // Check for array bounds violations. |
| for (unsigned i = ArgIx; i != NumArgs; ++i) |
| CheckArrayAccess(Args[i]); |
| } |
| return Invalid; |
| } |
| |
| static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) { |
| TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc(); |
| if (ArrayTypeLoc *ATL = dyn_cast<ArrayTypeLoc>(&TL)) |
| S.Diag(PVD->getLocation(), diag::note_callee_static_array) |
| << ATL->getLocalSourceRange(); |
| } |
| |
| /// CheckStaticArrayArgument - If the given argument corresponds to a static |
| /// array parameter, check that it is non-null, and that if it is formed by |
| /// array-to-pointer decay, the underlying array is sufficiently large. |
| /// |
| /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the |
| /// array type derivation, then for each call to the function, the value of the |
| /// corresponding actual argument shall provide access to the first element of |
| /// an array with at least as many elements as specified by the size expression. |
| void |
| Sema::CheckStaticArrayArgument(SourceLocation CallLoc, |
| ParmVarDecl *Param, |
| const Expr *ArgExpr) { |
| // Static array parameters are not supported in C++. |
| if (!Param || getLangOptions().CPlusPlus) |
| return; |
| |
| QualType OrigTy = Param->getOriginalType(); |
| |
| const ArrayType *AT = Context.getAsArrayType(OrigTy); |
| if (!AT || AT->getSizeModifier() != ArrayType::Static) |
| return; |
| |
| if (ArgExpr->isNullPointerConstant(Context, |
| Expr::NPC_NeverValueDependent)) { |
| Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange(); |
| DiagnoseCalleeStaticArrayParam(*this, Param); |
| return; |
| } |
| |
| const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT); |
| if (!CAT) |
| return; |
| |
| const ConstantArrayType *ArgCAT = |
| Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType()); |
| if (!ArgCAT) |
| return; |
| |
| if (ArgCAT->getSize().ult(CAT->getSize())) { |
| Diag(CallLoc, diag::warn_static_array_too_small) |
| << ArgExpr->getSourceRange() |
| << (unsigned) ArgCAT->getSize().getZExtValue() |
| << (unsigned) CAT->getSize().getZExtValue(); |
| DiagnoseCalleeStaticArrayParam(*this, Param); |
| } |
| } |
| |
| /// Given a function expression of unknown-any type, try to rebuild it |
| /// to have a function type. |
| static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn); |
| |
| /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. |
| /// This provides the location of the left/right parens and a list of comma |
| /// locations. |
| ExprResult |
| Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc, |
| MultiExprArg ArgExprs, SourceLocation RParenLoc, |
| Expr *ExecConfig, bool IsExecConfig) { |
| unsigned NumArgs = ArgExprs.size(); |
| |
| // Since this might be a postfix expression, get rid of ParenListExprs. |
| ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn); |
| if (Result.isInvalid()) return ExprError(); |
| Fn = Result.take(); |
| |
| Expr **Args = ArgExprs.release(); |
| |
| if (getLangOptions().CPlusPlus) { |
| // If this is a pseudo-destructor expression, build the call immediately. |
| if (isa<CXXPseudoDestructorExpr>(Fn)) { |
| if (NumArgs > 0) { |
| // Pseudo-destructor calls should not have any arguments. |
| Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args) |
| << FixItHint::CreateRemoval( |
| SourceRange(Args[0]->getLocStart(), |
| Args[NumArgs-1]->getLocEnd())); |
| |
| NumArgs = 0; |
| } |
| |
| return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy, |
| VK_RValue, RParenLoc)); |
| } |
| |
| // Determine whether this is a dependent call inside a C++ template, |
| // in which case we won't do any semantic analysis now. |
| // FIXME: Will need to cache the results of name lookup (including ADL) in |
| // Fn. |
| bool Dependent = false; |
| if (Fn->isTypeDependent()) |
| Dependent = true; |
| else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs)) |
| Dependent = true; |
| |
| if (Dependent) { |
| if (ExecConfig) { |
| return Owned(new (Context) CUDAKernelCallExpr( |
| Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs, |
| Context.DependentTy, VK_RValue, RParenLoc)); |
| } else { |
| return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs, |
| Context.DependentTy, VK_RValue, |
| RParenLoc)); |
| } |
| } |
| |
| // Determine whether this is a call to an object (C++ [over.call.object]). |
| if (Fn->getType()->isRecordType()) |
| return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs, |
| RParenLoc)); |
| |
| if (Fn->getType() == Context.UnknownAnyTy) { |
| ExprResult result = rebuildUnknownAnyFunction(*this, Fn); |
| if (result.isInvalid()) return ExprError(); |
| Fn = result.take(); |
| } |
| |
| if (Fn->getType() == Context.BoundMemberTy) { |
| return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, |
| RParenLoc); |
| } |
| } |
| |
| // Check for overloaded calls. This can happen even in C due to extensions. |
| if (Fn->getType() == Context.OverloadTy) { |
| OverloadExpr::FindResult find = OverloadExpr::find(Fn); |
| |
| // We aren't supposed to apply this logic for if there's an '&' involved. |
| if (!find.HasFormOfMemberPointer) { |
| OverloadExpr *ovl = find.Expression; |
| if (isa<UnresolvedLookupExpr>(ovl)) { |
| UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl); |
| return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs, |
| RParenLoc, ExecConfig); |
| } else { |
| return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, |
| RParenLoc); |
| } |
| } |
| } |
| |
| // If we're directly calling a function, get the appropriate declaration. |
| if (Fn->getType() == Context.UnknownAnyTy) { |
| ExprResult result = rebuildUnknownAnyFunction(*this, Fn); |
| if (result.isInvalid()) return ExprError(); |
| Fn = result.take(); |
| } |
| |
| Expr *NakedFn = Fn->IgnoreParens(); |
| |
| NamedDecl *NDecl = 0; |
| if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) |
| if (UnOp->getOpcode() == UO_AddrOf) |
| NakedFn = UnOp->getSubExpr()->IgnoreParens(); |
| |
| if (isa<DeclRefExpr>(NakedFn)) |
| NDecl = cast<DeclRefExpr>(NakedFn)->getDecl(); |
| else if (isa<MemberExpr>(NakedFn)) |
| NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl(); |
| |
| return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc, |
| ExecConfig, IsExecConfig); |
| } |
| |
| ExprResult |
| Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, |
| MultiExprArg ExecConfig, SourceLocation GGGLoc) { |
| FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl(); |
| if (!ConfigDecl) |
| return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use) |
| << "cudaConfigureCall"); |
| QualType ConfigQTy = ConfigDecl->getType(); |
| |
| DeclRefExpr *ConfigDR = new (Context) DeclRefExpr( |
| ConfigDecl, ConfigQTy, VK_LValue, LLLLoc); |
| |
| return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0, |
| /*IsExecConfig=*/true); |
| } |
| |
| /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments. |
| /// |
| /// __builtin_astype( value, dst type ) |
| /// |
| ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy, |
| SourceLocation BuiltinLoc, |
| SourceLocation RParenLoc) { |
| ExprValueKind VK = VK_RValue; |
| ExprObjectKind OK = OK_Ordinary; |
| QualType DstTy = GetTypeFromParser(ParsedDestTy); |
| QualType SrcTy = E->getType(); |
| if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy)) |
| return ExprError(Diag(BuiltinLoc, |
| diag::err_invalid_astype_of_different_size) |
| << DstTy |
| << SrcTy |
| << E->getSourceRange()); |
| return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, |
| RParenLoc)); |
| } |
| |
| /// BuildResolvedCallExpr - Build a call to a resolved expression, |
| /// i.e. an expression not of \p OverloadTy. The expression should |
| /// unary-convert to an expression of function-pointer or |
| /// block-pointer type. |
| /// |
| /// \param NDecl the declaration being called, if available |
| ExprResult |
| Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, |
| SourceLocation LParenLoc, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation RParenLoc, |
| Expr *Config, bool IsExecConfig) { |
| FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl); |
| |
| // Promote the function operand. |
| ExprResult Result = UsualUnaryConversions(Fn); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Fn = Result.take(); |
| |
| // Make the call expr early, before semantic checks. This guarantees cleanup |
| // of arguments and function on error. |
| CallExpr *TheCall; |
| if (Config) { |
| TheCall = new (Context) CUDAKernelCallExpr(Context, Fn, |
| cast<CallExpr>(Config), |
| Args, NumArgs, |
| Context.BoolTy, |
| VK_RValue, |
| RParenLoc); |
| } else { |
| TheCall = new (Context) CallExpr(Context, Fn, |
| Args, NumArgs, |
| Context.BoolTy, |
| VK_RValue, |
| RParenLoc); |
| } |
| |
| unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0); |
| |
| // Bail out early if calling a builtin with custom typechecking. |
| if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) |
| return CheckBuiltinFunctionCall(BuiltinID, TheCall); |
| |
| retry: |
| const FunctionType *FuncT; |
| if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) { |
| // C99 6.5.2.2p1 - "The expression that denotes the called function shall |
| // have type pointer to function". |
| FuncT = PT->getPointeeType()->getAs<FunctionType>(); |
| if (FuncT == 0) |
| return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) |
| << Fn->getType() << Fn->getSourceRange()); |
| } else if (const BlockPointerType *BPT = |
| Fn->getType()->getAs<BlockPointerType>()) { |
| FuncT = BPT->getPointeeType()->castAs<FunctionType>(); |
| } else { |
| // Handle calls to expressions of unknown-any type. |
| if (Fn->getType() == Context.UnknownAnyTy) { |
| ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn); |
| if (rewrite.isInvalid()) return ExprError(); |
| Fn = rewrite.take(); |
| TheCall->setCallee(Fn); |
| goto retry; |
| } |
| |
| return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) |
| << Fn->getType() << Fn->getSourceRange()); |
| } |
| |
| if (getLangOptions().CUDA) { |
| if (Config) { |
| // CUDA: Kernel calls must be to global functions |
| if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>()) |
| return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function) |
| << FDecl->getName() << Fn->getSourceRange()); |
| |
| // CUDA: Kernel function must have 'void' return type |
| if (!FuncT->getResultType()->isVoidType()) |
| return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return) |
| << Fn->getType() << Fn->getSourceRange()); |
| } else { |
| // CUDA: Calls to global functions must be configured |
| if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>()) |
| return ExprError(Diag(LParenLoc, diag::err_global_call_not_config) |
| << FDecl->getName() << Fn->getSourceRange()); |
| } |
| } |
| |
| // Check for a valid return type |
| if (CheckCallReturnType(FuncT->getResultType(), |
| Fn->getSourceRange().getBegin(), TheCall, |
| FDecl)) |
| return ExprError(); |
| |
| // We know the result type of the call, set it. |
| TheCall->setType(FuncT->getCallResultType(Context)); |
| TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType())); |
| |
| if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) { |
| if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs, |
| RParenLoc, IsExecConfig)) |
| return ExprError(); |
| } else { |
| assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!"); |
| |
| if (FDecl) { |
| // Check if we have too few/too many template arguments, based |
| // on our knowledge of the function definition. |
| const FunctionDecl *Def = 0; |
| if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) { |
| const FunctionProtoType *Proto |
| = Def->getType()->getAs<FunctionProtoType>(); |
| if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) |
| Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments) |
| << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange(); |
| } |
| |
| // If the function we're calling isn't a function prototype, but we have |
| // a function prototype from a prior declaratiom, use that prototype. |
| if (!FDecl->hasPrototype()) |
| Proto = FDecl->getType()->getAs<FunctionProtoType>(); |
| } |
| |
| // Promote the arguments (C99 6.5.2.2p6). |
| for (unsigned i = 0; i != NumArgs; i++) { |
| Expr *Arg = Args[i]; |
| |
| if (Proto && i < Proto->getNumArgs()) { |
| InitializedEntity Entity |
| = InitializedEntity::InitializeParameter(Context, |
| Proto->getArgType(i), |
| Proto->isArgConsumed(i)); |
| ExprResult ArgE = PerformCopyInitialization(Entity, |
| SourceLocation(), |
| Owned(Arg)); |
| if (ArgE.isInvalid()) |
| return true; |
| |
| Arg = ArgE.takeAs<Expr>(); |
| |
| } else { |
| ExprResult ArgE = DefaultArgumentPromotion(Arg); |
| |
| if (ArgE.isInvalid()) |
| return true; |
| |
| Arg = ArgE.takeAs<Expr>(); |
| } |
| |
| if (RequireCompleteType(Arg->getSourceRange().getBegin(), |
| Arg->getType(), |
| PDiag(diag::err_call_incomplete_argument) |
| << Arg->getSourceRange())) |
| return ExprError(); |
| |
| TheCall->setArg(i, Arg); |
| } |
| } |
| |
| if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) |
| if (!Method->isStatic()) |
| return ExprError(Diag(LParenLoc, diag::err_member_call_without_object) |
| << Fn->getSourceRange()); |
| |
| // Check for sentinels |
| if (NDecl) |
| DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs); |
| |
| // Do special checking on direct calls to functions. |
| if (FDecl) { |
| if (CheckFunctionCall(FDecl, TheCall)) |
| return ExprError(); |
| |
| if (BuiltinID) |
| return CheckBuiltinFunctionCall(BuiltinID, TheCall); |
| } else if (NDecl) { |
| if (CheckBlockCall(NDecl, TheCall)) |
| return ExprError(); |
| } |
| |
| return MaybeBindToTemporary(TheCall); |
| } |
| |
| ExprResult |
| Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty, |
| SourceLocation RParenLoc, Expr *InitExpr) { |
| assert((Ty != 0) && "ActOnCompoundLiteral(): missing type"); |
| // FIXME: put back this assert when initializers are worked out. |
| //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression"); |
| |
| TypeSourceInfo *TInfo; |
| QualType literalType = GetTypeFromParser(Ty, &TInfo); |
| if (!TInfo) |
| TInfo = Context.getTrivialTypeSourceInfo(literalType); |
| |
| return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr); |
| } |
| |
| ExprResult |
| Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, |
| SourceLocation RParenLoc, Expr *LiteralExpr) { |
| QualType literalType = TInfo->getType(); |
| |
| if (literalType->isArrayType()) { |
| if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType), |
| PDiag(diag::err_illegal_decl_array_incomplete_type) |
| << SourceRange(LParenLoc, |
| LiteralExpr->getSourceRange().getEnd()))) |
| return ExprError(); |
| if (literalType->isVariableArrayType()) |
| return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init) |
| << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())); |
| } else if (!literalType->isDependentType() && |
| RequireCompleteType(LParenLoc, literalType, |
| PDiag(diag::err_typecheck_decl_incomplete_type) |
| << SourceRange(LParenLoc, |
| LiteralExpr->getSourceRange().getEnd()))) |
| return ExprError(); |
| |
| InitializedEntity Entity |
| = InitializedEntity::InitializeTemporary(literalType); |
| InitializationKind Kind |
| = InitializationKind::CreateCStyleCast(LParenLoc, |
| SourceRange(LParenLoc, RParenLoc)); |
| InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1); |
| ExprResult Result = InitSeq.Perform(*this, Entity, Kind, |
| MultiExprArg(*this, &LiteralExpr, 1), |
| &literalType); |
| if (Result.isInvalid()) |
| return ExprError(); |
| LiteralExpr = Result.get(); |
| |
| bool isFileScope = getCurFunctionOrMethodDecl() == 0; |
| if (isFileScope) { // 6.5.2.5p3 |
| if (CheckForConstantInitializer(LiteralExpr, literalType)) |
| return ExprError(); |
| } |
| |
| // In C, compound literals are l-values for some reason. |
| ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue; |
| |
| return MaybeBindToTemporary( |
| new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType, |
| VK, LiteralExpr, isFileScope)); |
| } |
| |
| ExprResult |
| Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, |
| SourceLocation RBraceLoc) { |
| unsigned NumInit = InitArgList.size(); |
| Expr **InitList = InitArgList.release(); |
| |
| // Immediately handle non-overload placeholders. Overloads can be |
| // resolved contextually, but everything else here can't. |
| for (unsigned I = 0; I != NumInit; ++I) { |
| if (InitList[I]->getType()->isNonOverloadPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(InitList[I]); |
| |
| // Ignore failures; dropping the entire initializer list because |
| // of one failure would be terrible for indexing/etc. |
| if (result.isInvalid()) continue; |
| |
| InitList[I] = result.take(); |
| } |
| } |
| |
| // Semantic analysis for initializers is done by ActOnDeclarator() and |
| // CheckInitializer() - it requires knowledge of the object being intialized. |
| |
| InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList, |
| NumInit, RBraceLoc); |
| E->setType(Context.VoidTy); // FIXME: just a place holder for now. |
| return Owned(E); |
| } |
| |
| /// Do an explicit extend of the given block pointer if we're in ARC. |
| static void maybeExtendBlockObject(Sema &S, ExprResult &E) { |
| assert(E.get()->getType()->isBlockPointerType()); |
| assert(E.get()->isRValue()); |
| |
| // Only do this in an r-value context. |
| if (!S.getLangOptions().ObjCAutoRefCount) return; |
| |
| E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), |
| CK_ARCExtendBlockObject, E.get(), |
| /*base path*/ 0, VK_RValue); |
| S.ExprNeedsCleanups = true; |
| } |
| |
| /// Prepare a conversion of the given expression to an ObjC object |
| /// pointer type. |
| CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) { |
| QualType type = E.get()->getType(); |
| if (type->isObjCObjectPointerType()) { |
| return CK_BitCast; |
| } else if (type->isBlockPointerType()) { |
| maybeExtendBlockObject(*this, E); |
| return CK_BlockPointerToObjCPointerCast; |
| } else { |
| assert(type->isPointerType()); |
| return CK_CPointerToObjCPointerCast; |
| } |
| } |
| |
| /// Prepares for a scalar cast, performing all the necessary stages |
| /// except the final cast and returning the kind required. |
| CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) { |
| // Both Src and Dest are scalar types, i.e. arithmetic or pointer. |
| // Also, callers should have filtered out the invalid cases with |
| // pointers. Everything else should be possible. |
| |
| QualType SrcTy = Src.get()->getType(); |
| if (Context.hasSameUnqualifiedType(SrcTy, DestTy)) |
| return CK_NoOp; |
| |
| switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) { |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| |
| case Type::STK_CPointer: |
| case Type::STK_BlockPointer: |
| case Type::STK_ObjCObjectPointer: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_CPointer: |
| return CK_BitCast; |
| case Type::STK_BlockPointer: |
| return (SrcKind == Type::STK_BlockPointer |
| ? CK_BitCast : CK_AnyPointerToBlockPointerCast); |
| case Type::STK_ObjCObjectPointer: |
| if (SrcKind == Type::STK_ObjCObjectPointer) |
| return CK_BitCast; |
| else if (SrcKind == Type::STK_CPointer) |
| return CK_CPointerToObjCPointerCast; |
| else { |
| maybeExtendBlockObject(*this, Src); |
| return CK_BlockPointerToObjCPointerCast; |
| } |
| case Type::STK_Bool: |
| return CK_PointerToBoolean; |
| case Type::STK_Integral: |
| return CK_PointerToIntegral; |
| case Type::STK_Floating: |
| case Type::STK_FloatingComplex: |
| case Type::STK_IntegralComplex: |
| case Type::STK_MemberPointer: |
| llvm_unreachable("illegal cast from pointer"); |
| } |
| break; |
| |
| case Type::STK_Bool: // casting from bool is like casting from an integer |
| case Type::STK_Integral: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_CPointer: |
| case Type::STK_ObjCObjectPointer: |
| case Type::STK_BlockPointer: |
| if (Src.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) |
| return CK_NullToPointer; |
| return CK_IntegralToPointer; |
| case Type::STK_Bool: |
| return CK_IntegralToBoolean; |
| case Type::STK_Integral: |
| return CK_IntegralCast; |
| case Type::STK_Floating: |
| return CK_IntegralToFloating; |
| case Type::STK_IntegralComplex: |
| Src = ImpCastExprToType(Src.take(), |
| DestTy->castAs<ComplexType>()->getElementType(), |
| CK_IntegralCast); |
| return CK_IntegralRealToComplex; |
| case Type::STK_FloatingComplex: |
| Src = ImpCastExprToType(Src.take(), |
| DestTy->castAs<ComplexType>()->getElementType(), |
| CK_IntegralToFloating); |
| return CK_FloatingRealToComplex; |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| } |
| break; |
| |
| case Type::STK_Floating: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_Floating: |
| return CK_FloatingCast; |
| case Type::STK_Bool: |
| return CK_FloatingToBoolean; |
| case Type::STK_Integral: |
| return CK_FloatingToIntegral; |
| case Type::STK_FloatingComplex: |
| Src = ImpCastExprToType(Src.take(), |
| DestTy->castAs<ComplexType>()->getElementType(), |
| CK_FloatingCast); |
| return CK_FloatingRealToComplex; |
| case Type::STK_IntegralComplex: |
| Src = ImpCastExprToType(Src.take(), |
| DestTy->castAs<ComplexType>()->getElementType(), |
| CK_FloatingToIntegral); |
| return CK_IntegralRealToComplex; |
| case Type::STK_CPointer: |
| case Type::STK_ObjCObjectPointer: |
| case Type::STK_BlockPointer: |
| llvm_unreachable("valid float->pointer cast?"); |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| } |
| break; |
| |
| case Type::STK_FloatingComplex: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_FloatingComplex: |
| return CK_FloatingComplexCast; |
| case Type::STK_IntegralComplex: |
| return CK_FloatingComplexToIntegralComplex; |
| case Type::STK_Floating: { |
| QualType ET = SrcTy->castAs<ComplexType>()->getElementType(); |
| if (Context.hasSameType(ET, DestTy)) |
| return CK_FloatingComplexToReal; |
| Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal); |
| return CK_FloatingCast; |
| } |
| case Type::STK_Bool: |
| return CK_FloatingComplexToBoolean; |
| case Type::STK_Integral: |
| Src = ImpCastExprToType(Src.take(), |
| SrcTy->castAs<ComplexType>()->getElementType(), |
| CK_FloatingComplexToReal); |
| return CK_FloatingToIntegral; |
| case Type::STK_CPointer: |
| case Type::STK_ObjCObjectPointer: |
| case Type::STK_BlockPointer: |
| llvm_unreachable("valid complex float->pointer cast?"); |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| } |
| break; |
| |
| case Type::STK_IntegralComplex: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_FloatingComplex: |
| return CK_IntegralComplexToFloatingComplex; |
| case Type::STK_IntegralComplex: |
| return CK_IntegralComplexCast; |
| case Type::STK_Integral: { |
| QualType ET = SrcTy->castAs<ComplexType>()->getElementType(); |
| if (Context.hasSameType(ET, DestTy)) |
| return CK_IntegralComplexToReal; |
| Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal); |
| return CK_IntegralCast; |
| } |
| case Type::STK_Bool: |
| return CK_IntegralComplexToBoolean; |
| case Type::STK_Floating: |
| Src = ImpCastExprToType(Src.take(), |
| SrcTy->castAs<ComplexType>()->getElementType(), |
| CK_IntegralComplexToReal); |
| return CK_IntegralToFloating; |
| case Type::STK_CPointer: |
| case Type::STK_ObjCObjectPointer: |
| case Type::STK_BlockPointer: |
| llvm_unreachable("valid complex int->pointer cast?"); |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| } |
| break; |
| } |
| |
| llvm_unreachable("Unhandled scalar cast"); |
| } |
| |
| bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, |
| CastKind &Kind) { |
| assert(VectorTy->isVectorType() && "Not a vector type!"); |
| |
| if (Ty->isVectorType() || Ty->isIntegerType()) { |
| if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty)) |
| return Diag(R.getBegin(), |
| Ty->isVectorType() ? |
| diag::err_invalid_conversion_between_vectors : |
| diag::err_invalid_conversion_between_vector_and_integer) |
| << VectorTy << Ty << R; |
| } else |
| return Diag(R.getBegin(), |
| diag::err_invalid_conversion_between_vector_and_scalar) |
| << VectorTy << Ty << R; |
| |
| Kind = CK_BitCast; |
| return false; |
| } |
| |
| ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, |
| Expr *CastExpr, CastKind &Kind) { |
| assert(DestTy->isExtVectorType() && "Not an extended vector type!"); |
| |
| QualType SrcTy = CastExpr->getType(); |
| |
| // If SrcTy is a VectorType, the total size must match to explicitly cast to |
| // an ExtVectorType. |
| // In OpenCL, casts between vectors of different types are not allowed. |
| // (See OpenCL 6.2). |
| if (SrcTy->isVectorType()) { |
| if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy) |
| || (getLangOptions().OpenCL && |
| (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) { |
| Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors) |
| << DestTy << SrcTy << R; |
| return ExprError(); |
| } |
| Kind = CK_BitCast; |
| return Owned(CastExpr); |
| } |
| |
| // All non-pointer scalars can be cast to ExtVector type. The appropriate |
| // conversion will take place first from scalar to elt type, and then |
| // splat from elt type to vector. |
| if (SrcTy->isPointerType()) |
| return Diag(R.getBegin(), |
| diag::err_invalid_conversion_between_vector_and_scalar) |
| << DestTy << SrcTy << R; |
| |
| QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType(); |
| ExprResult CastExprRes = Owned(CastExpr); |
| CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy); |
| if (CastExprRes.isInvalid()) |
| return ExprError(); |
| CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take(); |
| |
| Kind = CK_VectorSplat; |
| return Owned(CastExpr); |
| } |
| |
| ExprResult |
| Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, |
| Declarator &D, ParsedType &Ty, |
| SourceLocation RParenLoc, Expr *CastExpr) { |
| assert(!D.isInvalidType() && (CastExpr != 0) && |
| "ActOnCastExpr(): missing type or expr"); |
| |
| TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType()); |
| if (D.isInvalidType()) |
| return ExprError(); |
| |
| if (getLangOptions().CPlusPlus) { |
| // Check that there are no default arguments (C++ only). |
| CheckExtraCXXDefaultArguments(D); |
| } |
| |
| checkUnusedDeclAttributes(D); |
| |
| QualType castType = castTInfo->getType(); |
| Ty = CreateParsedType(castType, castTInfo); |
| |
| bool isVectorLiteral = false; |
| |
| // Check for an altivec or OpenCL literal, |
| // i.e. all the elements are integer constants. |
| ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr); |
| ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr); |
| if ((getLangOptions().AltiVec || getLangOptions().OpenCL) |
| && castType->isVectorType() && (PE || PLE)) { |
| if (PLE && PLE->getNumExprs() == 0) { |
| Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer); |
| return ExprError(); |
| } |
| if (PE || PLE->getNumExprs() == 1) { |
| Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0)); |
| if (!E->getType()->isVectorType()) |
| isVectorLiteral = true; |
| } |
| else |
| isVectorLiteral = true; |
| } |
| |
| // If this is a vector initializer, '(' type ')' '(' init, ..., init ')' |
| // then handle it as such. |
| if (isVectorLiteral) |
| return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo); |
| |
| // If the Expr being casted is a ParenListExpr, handle it specially. |
| // This is not an AltiVec-style cast, so turn the ParenListExpr into a |
| // sequence of BinOp comma operators. |
| if (isa<ParenListExpr>(CastExpr)) { |
| ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr); |
| if (Result.isInvalid()) return ExprError(); |
| CastExpr = Result.take(); |
| } |
| |
| return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr); |
| } |
| |
| ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc, |
| SourceLocation RParenLoc, Expr *E, |
| TypeSourceInfo *TInfo) { |
| assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && |
| "Expected paren or paren list expression"); |
| |
| Expr **exprs; |
| unsigned numExprs; |
| Expr *subExpr; |
| if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) { |
| exprs = PE->getExprs(); |
| numExprs = PE->getNumExprs(); |
| } else { |
| subExpr = cast<ParenExpr>(E)->getSubExpr(); |
| exprs = &subExpr; |
| numExprs = 1; |
| } |
| |
| QualType Ty = TInfo->getType(); |
| assert(Ty->isVectorType() && "Expected vector type"); |
| |
| SmallVector<Expr *, 8> initExprs; |
| const VectorType *VTy = Ty->getAs<VectorType>(); |
| unsigned numElems = Ty->getAs<VectorType>()->getNumElements(); |
| |
| // '(...)' form of vector initialization in AltiVec: the number of |
| // initializers must be one or must match the size of the vector. |
| // If a single value is specified in the initializer then it will be |
| // replicated to all the components of the vector |
| if (VTy->getVectorKind() == VectorType::AltiVecVector) { |
| // The number of initializers must be one or must match the size of the |
| // vector. If a single value is specified in the initializer then it will |
| // be replicated to all the components of the vector |
| if (numExprs == 1) { |
| QualType ElemTy = Ty->getAs<VectorType>()->getElementType(); |
| ExprResult Literal = DefaultLvalueConversion(exprs[0]); |
| if (Literal.isInvalid()) |
| return ExprError(); |
| Literal = ImpCastExprToType(Literal.take(), ElemTy, |
| PrepareScalarCast(Literal, ElemTy)); |
| return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take()); |
| } |
| else if (numExprs < numElems) { |
| Diag(E->getExprLoc(), |
| diag::err_incorrect_number_of_vector_initializers); |
| return ExprError(); |
| } |
| else |
| for (unsigned i = 0, e = numExprs; i != e; ++i) |
| initExprs.push_back(exprs[i]); |
| } |
| else { |
| // For OpenCL, when the number of initializers is a single value, |
| // it will be replicated to all components of the vector. |
| if (getLangOptions().OpenCL && |
| VTy->getVectorKind() == VectorType::GenericVector && |
| numExprs == 1) { |
| QualType ElemTy = Ty->getAs<VectorType>()->getElementType(); |
| ExprResult Literal = DefaultLvalueConversion(exprs[0]); |
| if (Literal.isInvalid()) |
| return ExprError(); |
| Literal = ImpCastExprToType(Literal.take(), ElemTy, |
| PrepareScalarCast(Literal, ElemTy)); |
| return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take()); |
| } |
| |
| for (unsigned i = 0, e = numExprs; i != e; ++i) |
| initExprs.push_back(exprs[i]); |
| } |
| // FIXME: This means that pretty-printing the final AST will produce curly |
| // braces instead of the original commas. |
| InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc, |
| &initExprs[0], |
| initExprs.size(), RParenLoc); |
| initE->setType(Ty); |
| return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE); |
| } |
| |
| /// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence |
| /// of comma binary operators. |
| ExprResult |
| Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) { |
| ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr); |
| if (!E) |
| return Owned(OrigExpr); |
| |
| ExprResult Result(E->getExpr(0)); |
| |
| for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i) |
| Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(), |
| E->getExpr(i)); |
| |
| if (Result.isInvalid()) return ExprError(); |
| |
| return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get()); |
| } |
| |
| ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L, |
| SourceLocation R, |
| MultiExprArg Val) { |
| unsigned nexprs = Val.size(); |
| Expr **exprs = reinterpret_cast<Expr**>(Val.release()); |
| assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list"); |
| Expr *expr; |
| if (nexprs == 1) |
| expr = new (Context) ParenExpr(L, R, exprs[0]); |
| else |
| expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R, |
| exprs[nexprs-1]->getType()); |
| return Owned(expr); |
| } |
| |
| /// \brief Emit a specialized diagnostic when one expression is a null pointer |
| /// constant and the other is not a pointer. Returns true if a diagnostic is |
| /// emitted. |
| bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr, |
| SourceLocation QuestionLoc) { |
| Expr *NullExpr = LHSExpr; |
| Expr *NonPointerExpr = RHSExpr; |
| Expr::NullPointerConstantKind NullKind = |
| NullExpr->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNotNull); |
| |
| if (NullKind == Expr::NPCK_NotNull) { |
| NullExpr = RHSExpr; |
| NonPointerExpr = LHSExpr; |
| NullKind = |
| NullExpr->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNotNull); |
| } |
| |
| if (NullKind == Expr::NPCK_NotNull) |
| return false; |
| |
| if (NullKind == Expr::NPCK_ZeroInteger) { |
| // In this case, check to make sure that we got here from a "NULL" |
| // string in the source code. |
| NullExpr = NullExpr->IgnoreParenImpCasts(); |
| SourceLocation loc = NullExpr->getExprLoc(); |
| if (!findMacroSpelling(loc, "NULL")) |
| return false; |
| } |
| |
| int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr); |
| Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null) |
| << NonPointerExpr->getType() << DiagType |
| << NonPointerExpr->getSourceRange(); |
| return true; |
| } |
| |
| /// \brief Return false if the condition expression is valid, true otherwise. |
| static bool checkCondition(Sema &S, Expr *Cond) { |
| QualType CondTy = Cond->getType(); |
| |
| // C99 6.5.15p2 |
| if (CondTy->isScalarType()) return false; |
| |
| // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar. |
| if (S.getLangOptions().OpenCL && CondTy->isVectorType()) |
| return false; |
| |
| // Emit the proper error message. |
| S.Diag(Cond->getLocStart(), S.getLangOptions().OpenCL ? |
| diag::err_typecheck_cond_expect_scalar : |
| diag::err_typecheck_cond_expect_scalar_or_vector) |
| << CondTy; |
| return true; |
| } |
| |
| /// \brief Return false if the two expressions can be converted to a vector, |
| /// true otherwise |
| static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, |
| QualType CondTy) { |
| // Both operands should be of scalar type. |
| if (!LHS.get()->getType()->isScalarType()) { |
| S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar) |
| << CondTy; |
| return true; |
| } |
| if (!RHS.get()->getType()->isScalarType()) { |
| S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar) |
| << CondTy; |
| return true; |
| } |
| |
| // Implicity convert these scalars to the type of the condition. |
| LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast); |
| RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast); |
| return false; |
| } |
| |
| /// \brief Handle when one or both operands are void type. |
| static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS, |
| ExprResult &RHS) { |
| Expr *LHSExpr = LHS.get(); |
| Expr *RHSExpr = RHS.get(); |
| |
| if (!LHSExpr->getType()->isVoidType()) |
| S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void) |
| << RHSExpr->getSourceRange(); |
| if (!RHSExpr->getType()->isVoidType()) |
| S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void) |
| << LHSExpr->getSourceRange(); |
| LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid); |
| RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid); |
| return S.Context.VoidTy; |
| } |
| |
| /// \brief Return false if the NullExpr can be promoted to PointerTy, |
| /// true otherwise. |
| static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr, |
| QualType PointerTy) { |
| if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) || |
| !NullExpr.get()->isNullPointerConstant(S.Context, |
| Expr::NPC_ValueDependentIsNull)) |
| return true; |
| |
| NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer); |
| return false; |
| } |
| |
| /// \brief Checks compatibility between two pointers and return the resulting |
| /// type. |
| static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation Loc) { |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| if (S.Context.hasSameType(LHSTy, RHSTy)) { |
| // Two identical pointers types are always compatible. |
| return LHSTy; |
| } |
| |
| QualType lhptee, rhptee; |
| |
| // Get the pointee types. |
| if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) { |
| lhptee = LHSBTy->getPointeeType(); |
| rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType(); |
| } else { |
| lhptee = LHSTy->castAs<PointerType>()->getPointeeType(); |
| rhptee = RHSTy->castAs<PointerType>()->getPointeeType(); |
| } |
| |
| if (!S.Context.typesAreCompatible(lhptee.getUnqualifiedType(), |
| rhptee.getUnqualifiedType())) { |
| S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| // In this situation, we assume void* type. No especially good |
| // reason, but this is what gcc does, and we do have to pick |
| // to get a consistent AST. |
| QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy); |
| LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast); |
| RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast); |
| return incompatTy; |
| } |
| |
| // The pointer types are compatible. |
| // C99 6.5.15p6: If both operands are pointers to compatible types *or* to |
| // differently qualified versions of compatible types, the result type is |
| // a pointer to an appropriately qualified version of the *composite* |
| // type. |
| // FIXME: Need to calculate the composite type. |
| // FIXME: Need to add qualifiers |
| |
| LHS = S.ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast); |
| RHS = S.ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast); |
| return LHSTy; |
| } |
| |
| /// \brief Return the resulting type when the operands are both block pointers. |
| static QualType checkConditionalBlockPointerCompatibility(Sema &S, |
| ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation Loc) { |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) { |
| if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) { |
| QualType destType = S.Context.getPointerType(S.Context.VoidTy); |
| LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast); |
| RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast); |
| return destType; |
| } |
| S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // We have 2 block pointer types. |
| return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); |
| } |
| |
| /// \brief Return the resulting type when the operands are both pointers. |
| static QualType |
| checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation Loc) { |
| // get the pointer types |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| // get the "pointed to" types |
| QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType(); |
| QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType(); |
| |
| // ignore qualifiers on void (C99 6.5.15p3, clause 6) |
| if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) { |
| // Figure out necessary qualifiers (C99 6.5.15p6) |
| QualType destPointee |
| = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers()); |
| QualType destType = S.Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp); |
| // Promote to void*. |
| RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast); |
| return destType; |
| } |
| if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { |
| QualType destPointee |
| = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers()); |
| QualType destType = S.Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp); |
| // Promote to void*. |
| LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast); |
| return destType; |
| } |
| |
| return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); |
| } |
| |
| /// \brief Return false if the first expression is not an integer and the second |
| /// expression is not a pointer, true otherwise. |
| static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int, |
| Expr* PointerExpr, SourceLocation Loc, |
| bool IsIntFirstExpr) { |
| if (!PointerExpr->getType()->isPointerType() || |
| !Int.get()->getType()->isIntegerType()) |
| return false; |
| |
| Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr; |
| Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get(); |
| |
| S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch) |
| << Expr1->getType() << Expr2->getType() |
| << Expr1->getSourceRange() << Expr2->getSourceRange(); |
| Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(), |
| CK_IntegralToPointer); |
| return true; |
| } |
| |
| /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension. |
| /// In that case, LHS = cond. |
| /// C99 6.5.15 |
| QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, |
| ExprResult &RHS, ExprValueKind &VK, |
| ExprObjectKind &OK, |
| SourceLocation QuestionLoc) { |
| |
| ExprResult LHSResult = CheckPlaceholderExpr(LHS.get()); |
| if (!LHSResult.isUsable()) return QualType(); |
| LHS = move(LHSResult); |
| |
| ExprResult RHSResult = CheckPlaceholderExpr(RHS.get()); |
| if (!RHSResult.isUsable()) return QualType(); |
| RHS = move(RHSResult); |
| |
| // C++ is sufficiently different to merit its own checker. |
| if (getLangOptions().CPlusPlus) |
| return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc); |
| |
| VK = VK_RValue; |
| OK = OK_Ordinary; |
| |
| Cond = UsualUnaryConversions(Cond.take()); |
| if (Cond.isInvalid()) |
| return QualType(); |
| LHS = UsualUnaryConversions(LHS.take()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| RHS = UsualUnaryConversions(RHS.take()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| QualType CondTy = Cond.get()->getType(); |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| // first, check the condition. |
| if (checkCondition(*this, Cond.get())) |
| return QualType(); |
| |
| // Now check the two expressions. |
| if (LHSTy->isVectorType() || RHSTy->isVectorType()) |
| return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false); |
| |
| // OpenCL: If the condition is a vector, and both operands are scalar, |
| // attempt to implicity convert them to the vector type to act like the |
| // built in select. |
| if (getLangOptions().OpenCL && CondTy->isVectorType()) |
| if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy)) |
| return QualType(); |
| |
| // If both operands have arithmetic type, do the usual arithmetic conversions |
| // to find a common type: C99 6.5.15p3,5. |
| if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) { |
| UsualArithmeticConversions(LHS, RHS); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| return LHS.get()->getType(); |
| } |
| |
| // If both operands are the same structure or union type, the result is that |
| // type. |
| if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3 |
| if (const RecordType *RHSRT = RHSTy->getAs<RecordType>()) |
| if (LHSRT->getDecl() == RHSRT->getDecl()) |
| // "If both the operands have structure or union type, the result has |
| // that type." This implies that CV qualifiers are dropped. |
| return LHSTy.getUnqualifiedType(); |
| // FIXME: Type of conditional expression must be complete in C mode. |
| } |
| |
| // C99 6.5.15p5: "If both operands have void type, the result has void type." |
| // The following || allows only one side to be void (a GCC-ism). |
| if (LHSTy->isVoidType() || RHSTy->isVoidType()) { |
| return checkConditionalVoidType(*this, LHS, RHS); |
| } |
| |
| // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has |
| // the type of the other operand." |
| if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy; |
| if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy; |
| |
| // All objective-c pointer type analysis is done here. |
| QualType compositeType = FindCompositeObjCPointerType(LHS, RHS, |
| QuestionLoc); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| if (!compositeType.isNull()) |
| return compositeType; |
| |
| |
| // Handle block pointer types. |
| if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) |
| return checkConditionalBlockPointerCompatibility(*this, LHS, RHS, |
| QuestionLoc); |
| |
| // Check constraints for C object pointers types (C99 6.5.15p3,6). |
| if (LHSTy->isPointerType() && RHSTy->isPointerType()) |
| return checkConditionalObjectPointersCompatibility(*this, LHS, RHS, |
| QuestionLoc); |
| |
| // GCC compatibility: soften pointer/integer mismatch. Note that |
| // null pointers have been filtered out by this point. |
| if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc, |
| /*isIntFirstExpr=*/true)) |
| return RHSTy; |
| if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc, |
| /*isIntFirstExpr=*/false)) |
| return LHSTy; |
| |
| // Emit a better diagnostic if one of the expressions is a null pointer |
| // constant and the other is not a pointer type. In this case, the user most |
| // likely forgot to take the address of the other expression. |
| if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) |
| return QualType(); |
| |
| // Otherwise, the operands are not compatible. |
| Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| /// FindCompositeObjCPointerType - Helper method to find composite type of |
| /// two objective-c pointer types of the two input expressions. |
| QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation QuestionLoc) { |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| // Handle things like Class and struct objc_class*. Here we case the result |
| // to the pseudo-builtin, because that will be implicitly cast back to the |
| // redefinition type if an attempt is made to access its fields. |
| if (LHSTy->isObjCClassType() && |
| (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) { |
| RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast); |
| return LHSTy; |
| } |
| if (RHSTy->isObjCClassType() && |
| (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) { |
| LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast); |
| return RHSTy; |
| } |
| // And the same for struct objc_object* / id |
| if (LHSTy->isObjCIdType() && |
| (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) { |
| RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast); |
| return LHSTy; |
| } |
| if (RHSTy->isObjCIdType() && |
| (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) { |
| LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast); |
| return RHSTy; |
| } |
| // And the same for struct objc_selector* / SEL |
| if (Context.isObjCSelType(LHSTy) && |
| (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) { |
| RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast); |
| return LHSTy; |
| } |
| if (Context.isObjCSelType(RHSTy) && |
| (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) { |
| LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast); |
| return RHSTy; |
| } |
| // Check constraints for Objective-C object pointers types. |
| if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) { |
| |
| if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { |
| // Two identical object pointer types are always compatible. |
| return LHSTy; |
| } |
| const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>(); |
| const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>(); |
| QualType compositeType = LHSTy; |
| |
| // If both operands are interfaces and either operand can be |
| // assigned to the other, use that type as the composite |
| // type. This allows |
| // xxx ? (A*) a : (B*) b |
| // where B is a subclass of A. |
| // |
| // Additionally, as for assignment, if either type is 'id' |
| // allow silent coercion. Finally, if the types are |
| // incompatible then make sure to use 'id' as the composite |
| // type so the result is acceptable for sending messages to. |
| |
| // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. |
| // It could return the composite type. |
| if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) { |
| compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy; |
| } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) { |
| compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy; |
| } else if ((LHSTy->isObjCQualifiedIdType() || |
| RHSTy->isObjCQualifiedIdType()) && |
| Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) { |
| // Need to handle "id<xx>" explicitly. |
| // GCC allows qualified id and any Objective-C type to devolve to |
| // id. Currently localizing to here until clear this should be |
| // part of ObjCQualifiedIdTypesAreCompatible. |
| compositeType = Context.getObjCIdType(); |
| } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) { |
| compositeType = Context.getObjCIdType(); |
| } else if (!(compositeType = |
| Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) |
| ; |
| else { |
| Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) |
| << LHSTy << RHSTy |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| QualType incompatTy = Context.getObjCIdType(); |
| LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast); |
| RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast); |
| return incompatTy; |
| } |
| // The object pointer types are compatible. |
| LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast); |
| RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast); |
| return compositeType; |
| } |
| // Check Objective-C object pointer types and 'void *' |
| if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) { |
| QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType(); |
| QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType destPointee |
| = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); |
| QualType destType = Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp); |
| // Promote to void*. |
| RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast); |
| return destType; |
| } |
| if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) { |
| QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType(); |
| QualType destPointee |
| = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); |
| QualType destType = Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp); |
| // Promote to void*. |
| LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast); |
| return destType; |
| } |
| return QualType(); |
| } |
| |
| /// SuggestParentheses - Emit a note with a fixit hint that wraps |
| /// ParenRange in parentheses. |
| static void SuggestParentheses(Sema &Self, SourceLocation Loc, |
| const PartialDiagnostic &Note, |
| SourceRange ParenRange) { |
| SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd()); |
| if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() && |
| EndLoc.isValid()) { |
| Self.Diag(Loc, Note) |
| << FixItHint::CreateInsertion(ParenRange.getBegin(), "(") |
| << FixItHint::CreateInsertion(EndLoc, ")"); |
| } else { |
| // We can't display the parentheses, so just show the bare note. |
| Self.Diag(Loc, Note) << ParenRange; |
| } |
| } |
| |
| static bool IsArithmeticOp(BinaryOperatorKind Opc) { |
| return Opc >= BO_Mul && Opc <= BO_Shr; |
| } |
| |
| /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary |
| /// expression, either using a built-in or overloaded operator, |
| /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side |
| /// expression. |
| static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode, |
| Expr **RHSExprs) { |
| // Don't strip parenthesis: we should not warn if E is in parenthesis. |
| E = E->IgnoreImpCasts(); |
| E = E->IgnoreConversionOperator(); |
| E = E->IgnoreImpCasts(); |
| |
| // Built-in binary operator. |
| if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) { |
| if (IsArithmeticOp(OP->getOpcode())) { |
| *Opcode = OP->getOpcode(); |
| *RHSExprs = OP->getRHS(); |
| return true; |
| } |
| } |
| |
| // Overloaded operator. |
| if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) { |
| if (Call->getNumArgs() != 2) |
| return false; |
| |
| // Make sure this is really a binary operator that is safe to pass into |
| // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op. |
| OverloadedOperatorKind OO = Call->getOperator(); |
| if (OO < OO_Plus || OO > OO_Arrow) |
| return false; |
| |
| BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO); |
| if (IsArithmeticOp(OpKind)) { |
| *Opcode = OpKind; |
| *RHSExprs = Call->getArg(1); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool IsLogicOp(BinaryOperatorKind Opc) { |
| return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr); |
| } |
| |
| /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type |
| /// or is a logical expression such as (x==y) which has int type, but is |
| /// commonly interpreted as boolean. |
| static bool ExprLooksBoolean(Expr *E) { |
| E = E->IgnoreParenImpCasts(); |
| |
| if (E->getType()->isBooleanType()) |
| return true; |
| if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) |
| return IsLogicOp(OP->getOpcode()); |
| if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E)) |
| return OP->getOpcode() == UO_LNot; |
| |
| return false; |
| } |
| |
| /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator |
| /// and binary operator are mixed in a way that suggests the programmer assumed |
| /// the conditional operator has higher precedence, for example: |
| /// "int x = a + someBinaryCondition ? 1 : 2". |
| static void DiagnoseConditionalPrecedence(Sema &Self, |
| SourceLocation OpLoc, |
| Expr *Condition, |
| Expr *LHSExpr, |
| Expr *RHSExpr) { |
| BinaryOperatorKind CondOpcode; |
| Expr *CondRHS; |
| |
| if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS)) |
| return; |
| if (!ExprLooksBoolean(CondRHS)) |
| return; |
| |
| // The condition is an arithmetic binary expression, with a right- |
| // hand side that looks boolean, so warn. |
| |
| Self.Diag(OpLoc, diag::warn_precedence_conditional) |
| << Condition->getSourceRange() |
| << BinaryOperator::getOpcodeStr(CondOpcode); |
| |
| SuggestParentheses(Self, OpLoc, |
| Self.PDiag(diag::note_precedence_conditional_silence) |
| << BinaryOperator::getOpcodeStr(CondOpcode), |
| SourceRange(Condition->getLocStart(), Condition->getLocEnd())); |
| |
| SuggestParentheses(Self, OpLoc, |
| Self.PDiag(diag::note_precedence_conditional_first), |
| SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd())); |
| } |
| |
| /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null |
| /// in the case of a the GNU conditional expr extension. |
| ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, |
| SourceLocation ColonLoc, |
| Expr *CondExpr, Expr *LHSExpr, |
| Expr *RHSExpr) { |
| // If this is the gnu "x ?: y" extension, analyze the types as though the LHS |
| // was the condition. |
| OpaqueValueExpr *opaqueValue = 0; |
| Expr *commonExpr = 0; |
| if (LHSExpr == 0) { |
| commonExpr = CondExpr; |
| |
| // We usually want to apply unary conversions *before* saving, except |
| // in the special case of a C++ l-value conditional. |
| if (!(getLangOptions().CPlusPlus |
| && !commonExpr->isTypeDependent() |
| && commonExpr->getValueKind() == RHSExpr->getValueKind() |
| && commonExpr->isGLValue() |
| && commonExpr->isOrdinaryOrBitFieldObject() |
| && RHSExpr->isOrdinaryOrBitFieldObject() |
| && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) { |
| ExprResult commonRes = UsualUnaryConversions(commonExpr); |
| if (commonRes.isInvalid()) |
| return ExprError(); |
| commonExpr = commonRes.take(); |
| } |
| |
| opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(), |
| commonExpr->getType(), |
| commonExpr->getValueKind(), |
| commonExpr->getObjectKind()); |
| LHSExpr = CondExpr = opaqueValue; |
| } |
| |
| ExprValueKind VK = VK_RValue; |
| ExprObjectKind OK = OK_Ordinary; |
| ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr); |
| QualType result = CheckConditionalOperands(Cond, LHS, RHS, |
| VK, OK, QuestionLoc); |
| if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() || |
| RHS.isInvalid()) |
| return ExprError(); |
| |
| DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(), |
| RHS.get()); |
| |
| if (!commonExpr) |
| return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc, |
| LHS.take(), ColonLoc, |
| RHS.take(), result, VK, OK)); |
| |
| return Owned(new (Context) |
| BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(), |
| RHS.take(), QuestionLoc, ColonLoc, result, VK, |
| OK)); |
| } |
| |
| // checkPointerTypesForAssignment - This is a very tricky routine (despite |
| // being closely modeled after the C99 spec:-). The odd characteristic of this |
| // routine is it effectively iqnores the qualifiers on the top level pointee. |
| // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. |
| // FIXME: add a couple examples in this comment. |
| static Sema::AssignConvertType |
| checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) { |
| assert(LHSType.isCanonical() && "LHS not canonicalized!"); |
| assert(RHSType.isCanonical() && "RHS not canonicalized!"); |
| |
| // get the "pointed to" type (ignoring qualifiers at the top level) |
| const Type *lhptee, *rhptee; |
| Qualifiers lhq, rhq; |
| llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split(); |
| llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split(); |
| |
| Sema::AssignConvertType ConvTy = Sema::Compatible; |
| |
| // C99 6.5.16.1p1: This following citation is common to constraints |
| // 3 & 4 (below). ...and the type *pointed to* by the left has all the |
| // qualifiers of the type *pointed to* by the right; |
| Qualifiers lq; |
| |
| // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay. |
| if (lhq.getObjCLifetime() != rhq.getObjCLifetime() && |
| lhq.compatiblyIncludesObjCLifetime(rhq)) { |
| // Ignore lifetime for further calculation. |
| lhq.removeObjCLifetime(); |
| rhq.removeObjCLifetime(); |
| } |
| |
| if (!lhq.compatiblyIncludes(rhq)) { |
| // Treat address-space mismatches as fatal. TODO: address subspaces |
| if (lhq.getAddressSpace() != rhq.getAddressSpace()) |
| ConvTy = Sema::IncompatiblePointerDiscardsQualifiers; |
| |
| // It's okay to add or remove GC or lifetime qualifiers when converting to |
| // and from void*. |
| else if (lhq.withoutObjCGCAttr().withoutObjCGLifetime() |
| .compatiblyIncludes( |
| rhq.withoutObjCGCAttr().withoutObjCGLifetime()) |
| && (lhptee->isVoidType() || rhptee->isVoidType())) |
| ; // keep old |
| |
| // Treat lifetime mismatches as fatal. |
| else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) |
| ConvTy = Sema::IncompatiblePointerDiscardsQualifiers; |
| |
| // For GCC compatibility, other qualifier mismatches are treated |
| // as still compatible in C. |
| else ConvTy = Sema::CompatiblePointerDiscardsQualifiers; |
| } |
| |
| // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or |
| // incomplete type and the other is a pointer to a qualified or unqualified |
| // version of void... |
| if (lhptee->isVoidType()) { |
| if (rhptee->isIncompleteOrObjectType()) |
| return ConvTy; |
| |
| // As an extension, we allow cast to/from void* to function pointer. |
| assert(rhptee->isFunctionType()); |
| return Sema::FunctionVoidPointer; |
| } |
| |
| if (rhptee->isVoidType()) { |
| if (lhptee->isIncompleteOrObjectType()) |
| return ConvTy; |
| |
| // As an extension, we allow cast to/from void* to function pointer. |
| assert(lhptee->isFunctionType()); |
| return Sema::FunctionVoidPointer; |
| } |
| |
| // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or |
| // unqualified versions of compatible types, ... |
| QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0); |
| if (!S.Context.typesAreCompatible(ltrans, rtrans)) { |
| // Check if the pointee types are compatible ignoring the sign. |
| // We explicitly check for char so that we catch "char" vs |
| // "unsigned char" on systems where "char" is unsigned. |
| if (lhptee->isCharType()) |
| ltrans = S.Context.UnsignedCharTy; |
| else if (lhptee->hasSignedIntegerRepresentation()) |
| ltrans = S.Context.getCorrespondingUnsignedType(ltrans); |
| |
| if (rhptee->isCharType()) |
| rtrans = S.Context.UnsignedCharTy; |
| else if (rhptee->hasSignedIntegerRepresentation()) |
| rtrans = S.Context.getCorrespondingUnsignedType(rtrans); |
| |
| if (ltrans == rtrans) { |
| // Types are compatible ignoring the sign. Qualifier incompatibility |
| // takes priority over sign incompatibility because the sign |
| // warning can be disabled. |
| if (ConvTy != Sema::Compatible) |
| return ConvTy; |
| |
| return Sema::IncompatiblePointerSign; |
| } |
| |
| // If we are a multi-level pointer, it's possible that our issue is simply |
| // one of qualification - e.g. char ** -> const char ** is not allowed. If |
| // the eventual target type is the same and the pointers have the same |
| // level of indirection, this must be the issue. |
| if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) { |
| do { |
| lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr(); |
| rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr(); |
| } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)); |
| |
| if (lhptee == rhptee) |
| return Sema::IncompatibleNestedPointerQualifiers; |
| } |
| |
| // General pointer incompatibility takes priority over qualifiers. |
| return Sema::IncompatiblePointer; |
| } |
| if (!S.getLangOptions().CPlusPlus && |
| S.IsNoReturnConversion(ltrans, rtrans, ltrans)) |
| return Sema::IncompatiblePointer; |
| return ConvTy; |
| } |
| |
| /// checkBlockPointerTypesForAssignment - This routine determines whether two |
| /// block pointer types are compatible or whether a block and normal pointer |
| /// are compatible. It is more restrict than comparing two function pointer |
| // types. |
| static Sema::AssignConvertType |
| checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType, |
| QualType RHSType) { |
| assert(LHSType.isCanonical() && "LHS not canonicalized!"); |
| assert(RHSType.isCanonical() && "RHS not canonicalized!"); |
| |
| QualType lhptee, rhptee; |
| |
| // get the "pointed to" type (ignoring qualifiers at the top level) |
| lhptee = cast<BlockPointerType>(LHSType)->getPointeeType(); |
| rhptee = cast<BlockPointerType>(RHSType)->getPointeeType(); |
| |
| // In C++, the types have to match exactly. |
| if (S.getLangOptions().CPlusPlus) |
| return Sema::IncompatibleBlockPointer; |
| |
| Sema::AssignConvertType ConvTy = Sema::Compatible; |
| |
| // For blocks we enforce that qualifiers are identical. |
| if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers()) |
| ConvTy = Sema::CompatiblePointerDiscardsQualifiers; |
| |
| if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType)) |
| return Sema::IncompatibleBlockPointer; |
| |
| return ConvTy; |
| } |
| |
| /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types |
| /// for assignment compatibility. |
| static Sema::AssignConvertType |
| checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType, |
| QualType RHSType) { |
| assert(LHSType.isCanonical() && "LHS was not canonicalized!"); |
| assert(RHSType.isCanonical() && "RHS was not canonicalized!"); |
| |
| if (LHSType->isObjCBuiltinType()) { |
| // Class is not compatible with ObjC object pointers. |
| if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() && |
| !RHSType->isObjCQualifiedClassType()) |
| return Sema::IncompatiblePointer; |
| return Sema::Compatible; |
| } |
| if (RHSType->isObjCBuiltinType()) { |
| if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() && |
| !LHSType->isObjCQualifiedClassType()) |
| return Sema::IncompatiblePointer; |
| return Sema::Compatible; |
| } |
| QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| |
| if (!lhptee.isAtLeastAsQualifiedAs(rhptee)) |
| return Sema::CompatiblePointerDiscardsQualifiers; |
| |
| if (S.Context.typesAreCompatible(LHSType, RHSType)) |
| return Sema::Compatible; |
| if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType()) |
| return Sema::IncompatibleObjCQualifiedId; |
| return Sema::IncompatiblePointer; |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckAssignmentConstraints(SourceLocation Loc, |
| QualType LHSType, QualType RHSType) { |
| // Fake up an opaque expression. We don't actually care about what |
| // cast operations are required, so if CheckAssignmentConstraints |
| // adds casts to this they'll be wasted, but fortunately that doesn't |
| // usually happen on valid code. |
| OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue); |
| ExprResult RHSPtr = &RHSExpr; |
| CastKind K = CK_Invalid; |
| |
| return CheckAssignmentConstraints(LHSType, RHSPtr, K); |
| } |
| |
| /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently |
| /// has code to accommodate several GCC extensions when type checking |
| /// pointers. Here are some objectionable examples that GCC considers warnings: |
| /// |
| /// int a, *pint; |
| /// short *pshort; |
| /// struct foo *pfoo; |
| /// |
| /// pint = pshort; // warning: assignment from incompatible pointer type |
| /// a = pint; // warning: assignment makes integer from pointer without a cast |
| /// pint = a; // warning: assignment makes pointer from integer without a cast |
| /// pint = pfoo; // warning: assignment from incompatible pointer type |
| /// |
| /// As a result, the code for dealing with pointers is more complex than the |
| /// C99 spec dictates. |
| /// |
| /// Sets 'Kind' for any result kind except Incompatible. |
| Sema::AssignConvertType |
| Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS, |
| CastKind &Kind) { |
| QualType RHSType = RHS.get()->getType(); |
| QualType OrigLHSType = LHSType; |
| |
| // Get canonical types. We're not formatting these types, just comparing |
| // them. |
| LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType(); |
| RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType(); |
| |
| // We can't do assignment from/to atomics yet. |
| if (LHSType->isAtomicType()) |
| return Incompatible; |
| |
| // Common case: no conversion required. |
| if (LHSType == RHSType) { |
| Kind = CK_NoOp; |
| return Compatible; |
| } |
| |
| // If the left-hand side is a reference type, then we are in a |
| // (rare!) case where we've allowed the use of references in C, |
| // e.g., as a parameter type in a built-in function. In this case, |
| // just make sure that the type referenced is compatible with the |
| // right-hand side type. The caller is responsible for adjusting |
| // LHSType so that the resulting expression does not have reference |
| // type. |
| if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) { |
| if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) { |
| Kind = CK_LValueBitCast; |
| return Compatible; |
| } |
| return Incompatible; |
| } |
| |
| // Allow scalar to ExtVector assignments, and assignments of an ExtVector type |
| // to the same ExtVector type. |
| if (LHSType->isExtVectorType()) { |
| if (RHSType->isExtVectorType()) |
| return Incompatible; |
| if (RHSType->isArithmeticType()) { |
| // CK_VectorSplat does T -> vector T, so first cast to the |
| // element type. |
| QualType elType = cast<ExtVectorType>(LHSType)->getElementType(); |
| if (elType != RHSType) { |
| Kind = PrepareScalarCast(RHS, elType); |
| RHS = ImpCastExprToType(RHS.take(), elType, Kind); |
| } |
| Kind = CK_VectorSplat; |
| return Compatible; |
| } |
| } |
| |
| // Conversions to or from vector type. |
| if (LHSType->isVectorType() || RHSType->isVectorType()) { |
| if (LHSType->isVectorType() && RHSType->isVectorType()) { |
| // Allow assignments of an AltiVec vector type to an equivalent GCC |
| // vector type and vice versa |
| if (Context.areCompatibleVectorTypes(LHSType, RHSType)) { |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| |
| // If we are allowing lax vector conversions, and LHS and RHS are both |
| // vectors, the total size only needs to be the same. This is a bitcast; |
| // no bits are changed but the result type is different. |
| if (getLangOptions().LaxVectorConversions && |
| (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) { |
| Kind = CK_BitCast; |
| return IncompatibleVectors; |
| } |
| } |
| return Incompatible; |
| } |
| |
| // Arithmetic conversions. |
| if (LHSType->isArithmeticType() && RHSType->isArithmeticType() && |
| !(getLangOptions().CPlusPlus && LHSType->isEnumeralType())) { |
| Kind = PrepareScalarCast(RHS, LHSType); |
| return Compatible; |
| } |
| |
| // Conversions to normal pointers. |
| if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) { |
| // U* -> T* |
| if (isa<PointerType>(RHSType)) { |
| Kind = CK_BitCast; |
| return checkPointerTypesForAssignment(*this, LHSType, RHSType); |
| } |
| |
| // int -> T* |
| if (RHSType->isIntegerType()) { |
| Kind = CK_IntegralToPointer; // FIXME: null? |
| return IntToPointer; |
| } |
| |
| // C pointers are not compatible with ObjC object pointers, |
| // with two exceptions: |
| if (isa<ObjCObjectPointerType>(RHSType)) { |
| // - conversions to void* |
| if (LHSPointer->getPointeeType()->isVoidType()) { |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| |
| // - conversions from 'Class' to the redefinition type |
| if (RHSType->isObjCClassType() && |
| Context.hasSameType(LHSType, |
| Context.getObjCClassRedefinitionType())) { |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| |
| Kind = CK_BitCast; |
| return IncompatiblePointer; |
| } |
| |
| // U^ -> void* |
| if (RHSType->getAs<BlockPointerType>()) { |
| if (LHSPointer->getPointeeType()->isVoidType()) { |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions to block pointers. |
| if (isa<BlockPointerType>(LHSType)) { |
| // U^ -> T^ |
| if (RHSType->isBlockPointerType()) { |
| Kind = CK_BitCast; |
| return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType); |
| } |
| |
| // int or null -> T^ |
| if (RHSType->isIntegerType()) { |
| Kind = CK_IntegralToPointer; // FIXME: null |
| return IntToBlockPointer; |
| } |
| |
| // id -> T^ |
| if (getLangOptions().ObjC1 && RHSType->isObjCIdType()) { |
| Kind = CK_AnyPointerToBlockPointerCast; |
| return Compatible; |
| } |
| |
| // void* -> T^ |
| if (const PointerType *RHSPT = RHSType->getAs<PointerType>()) |
| if (RHSPT->getPointeeType()->isVoidType()) { |
| Kind = CK_AnyPointerToBlockPointerCast; |
| return Compatible; |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions to Objective-C pointers. |
| if (isa<ObjCObjectPointerType>(LHSType)) { |
| // A* -> B* |
| if (RHSType->isObjCObjectPointerType()) { |
| Kind = CK_BitCast; |
| Sema::AssignConvertType result = |
| checkObjCPointerTypesForAssignment(*this, LHSType, RHSType); |
| if (getLangOptions().ObjCAutoRefCount && |
| result == Compatible && |
| !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType)) |
| result = IncompatibleObjCWeakRef; |
| return result; |
| } |
| |
| // int or null -> A* |
| if (RHSType->isIntegerType()) { |
| Kind = CK_IntegralToPointer; // FIXME: null |
| return IntToPointer; |
| } |
| |
| // In general, C pointers are not compatible with ObjC object pointers, |
| // with two exceptions: |
| if (isa<PointerType>(RHSType)) { |
| Kind = CK_CPointerToObjCPointerCast; |
| |
| // - conversions from 'void*' |
| if (RHSType->isVoidPointerType()) { |
| return Compatible; |
| } |
| |
| // - conversions to 'Class' from its redefinition type |
| if (LHSType->isObjCClassType() && |
| Context.hasSameType(RHSType, |
| Context.getObjCClassRedefinitionType())) { |
| return Compatible; |
| } |
| |
| return IncompatiblePointer; |
| } |
| |
| // T^ -> A* |
| if (RHSType->isBlockPointerType()) { |
| maybeExtendBlockObject(*this, RHS); |
| Kind = CK_BlockPointerToObjCPointerCast; |
| return Compatible; |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions from pointers that are not covered by the above. |
| if (isa<PointerType>(RHSType)) { |
| // T* -> _Bool |
| if (LHSType == Context.BoolTy) { |
| Kind = CK_PointerToBoolean; |
| return Compatible; |
| } |
| |
| // T* -> int |
| if (LHSType->isIntegerType()) { |
| Kind = CK_PointerToIntegral; |
| return PointerToInt; |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions from Objective-C pointers that are not covered by the above. |
| if (isa<ObjCObjectPointerType>(RHSType)) { |
| // T* -> _Bool |
| if (LHSType == Context.BoolTy) { |
| Kind = CK_PointerToBoolean; |
| return Compatible; |
| } |
| |
| // T* -> int |
| if (LHSType->isIntegerType()) { |
| Kind = CK_PointerToIntegral; |
| return PointerToInt; |
| } |
| |
| return Incompatible; |
| } |
| |
| // struct A -> struct B |
| if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) { |
| if (Context.typesAreCompatible(LHSType, RHSType)) { |
| Kind = CK_NoOp; |
| return Compatible; |
| } |
| } |
| |
| return Incompatible; |
| } |
| |
| /// \brief Constructs a transparent union from an expression that is |
| /// used to initialize the transparent union. |
| static void ConstructTransparentUnion(Sema &S, ASTContext &C, |
| ExprResult &EResult, QualType UnionType, |
| FieldDecl *Field) { |
| // Build an initializer list that designates the appropriate member |
| // of the transparent union. |
| Expr *E = EResult.take(); |
| InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(), |
| &E, 1, |
| SourceLocation()); |
| Initializer->setType(UnionType); |
| Initializer->setInitializedFieldInUnion(Field); |
| |
| // Build a compound literal constructing a value of the transparent |
| // union type from this initializer list. |
| TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType); |
| EResult = S.Owned( |
| new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType, |
| VK_RValue, Initializer, false)); |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, |
| ExprResult &RHS) { |
| QualType RHSType = RHS.get()->getType(); |
| |
| // If the ArgType is a Union type, we want to handle a potential |
| // transparent_union GCC extension. |
| const RecordType *UT = ArgType->getAsUnionType(); |
| if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) |
| return Incompatible; |
| |
| // The field to initialize within the transparent union. |
| RecordDecl *UD = UT->getDecl(); |
| FieldDecl *InitField = 0; |
| // It's compatible if the expression matches any of the fields. |
| for (RecordDecl::field_iterator it = UD->field_begin(), |
| itend = UD->field_end(); |
| it != itend; ++it) { |
| if (it->getType()->isPointerType()) { |
| // If the transparent union contains a pointer type, we allow: |
| // 1) void pointer |
| // 2) null pointer constant |
| if (RHSType->isPointerType()) |
| if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) { |
| RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast); |
| InitField = *it; |
| break; |
| } |
| |
| if (RHS.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| RHS = ImpCastExprToType(RHS.take(), it->getType(), |
| CK_NullToPointer); |
| InitField = *it; |
| break; |
| } |
| } |
| |
| CastKind Kind = CK_Invalid; |
| if (CheckAssignmentConstraints(it->getType(), RHS, Kind) |
| == Compatible) { |
| RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind); |
| InitField = *it; |
| break; |
| } |
| } |
| |
| if (!InitField) |
| return Incompatible; |
| |
| ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField); |
| return Compatible; |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS, |
| bool Diagnose) { |
| if (getLangOptions().CPlusPlus) { |
| if (!LHSType->isRecordType() && !LHSType->isAtomicType()) { |
| // C++ 5.17p3: If the left operand is not of class type, the |
| // expression is implicitly converted (C++ 4) to the |
| // cv-unqualified type of the left operand. |
| ExprResult Res; |
| if (Diagnose) { |
| Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), |
| AA_Assigning); |
| } else { |
| ImplicitConversionSequence ICS = |
| TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/false, |
| /*InOverloadResolution=*/false, |
| /*CStyle=*/false, |
| /*AllowObjCWritebackConversion=*/false); |
| if (ICS.isFailure()) |
| return Incompatible; |
| Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), |
| ICS, AA_Assigning); |
| } |
| if (Res.isInvalid()) |
| return Incompatible; |
| Sema::AssignConvertType result = Compatible; |
| if (getLangOptions().ObjCAutoRefCount && |
| !CheckObjCARCUnavailableWeakConversion(LHSType, |
| RHS.get()->getType())) |
| result = IncompatibleObjCWeakRef; |
| RHS = move(Res); |
| return result; |
| } |
| |
| // FIXME: Currently, we fall through and treat C++ classes like C |
| // structures. |
| // FIXME: We also fall through for atomics; not sure what should |
| // happen there, though. |
| } |
| |
| // C99 6.5.16.1p1: the left operand is a pointer and the right is |
| // a null pointer constant. |
| if ((LHSType->isPointerType() || |
| LHSType->isObjCObjectPointerType() || |
| LHSType->isBlockPointerType()) |
| && RHS.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer); |
| return Compatible; |
| } |
| |
| // This check seems unnatural, however it is necessary to ensure the proper |
| // conversion of functions/arrays. If the conversion were done for all |
| // DeclExpr's (created by ActOnIdExpression), it would mess up the unary |
| // expressions that suppress this implicit conversion (&, sizeof). |
| // |
| // Suppress this for references: C++ 8.5.3p5. |
| if (!LHSType->isReferenceType()) { |
| RHS = DefaultFunctionArrayLvalueConversion(RHS.take()); |
| if (RHS.isInvalid()) |
| return Incompatible; |
| } |
| |
| CastKind Kind = CK_Invalid; |
| Sema::AssignConvertType result = |
| CheckAssignmentConstraints(LHSType, RHS, Kind); |
| |
| // C99 6.5.16.1p2: The value of the right operand is converted to the |
| // type of the assignment expression. |
| // CheckAssignmentConstraints allows the left-hand side to be a reference, |
| // so that we can use references in built-in functions even in C. |
| // The getNonReferenceType() call makes sure that the resulting expression |
| // does not have reference type. |
| if (result != Incompatible && RHS.get()->getType() != LHSType) |
| RHS = ImpCastExprToType(RHS.take(), |
| LHSType.getNonLValueExprType(Context), Kind); |
| return result; |
| } |
| |
| QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS, |
| ExprResult &RHS) { |
| Diag(Loc, diag::err_typecheck_invalid_operands) |
| << LHS.get()->getType() << RHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, bool IsCompAssign) { |
| if (!IsCompAssign) { |
| LHS = DefaultFunctionArrayLvalueConversion(LHS.take()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| } |
| RHS = DefaultFunctionArrayLvalueConversion(RHS.take()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| // For conversion purposes, we ignore any qualifiers. |
| // For example, "const float" and "float" are equivalent. |
| QualType LHSType = |
| Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType(); |
| QualType RHSType = |
| Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType(); |
| |
| // If the vector types are identical, return. |
| if (LHSType == RHSType) |
| return LHSType; |
| |
| // Handle the case of equivalent AltiVec and GCC vector types |
| if (LHSType->isVectorType() && RHSType->isVectorType() && |
| Context.areCompatibleVectorTypes(LHSType, RHSType)) { |
| if (LHSType->isExtVectorType()) { |
| RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast); |
| return LHSType; |
| } |
| |
| if (!IsCompAssign) |
| LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast); |
| return RHSType; |
| } |
| |
| if (getLangOptions().LaxVectorConversions && |
| Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) { |
| // If we are allowing lax vector conversions, and LHS and RHS are both |
| // vectors, the total size only needs to be the same. This is a |
| // bitcast; no bits are changed but the result type is different. |
| // FIXME: Should we really be allowing this? |
| RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast); |
| return LHSType; |
| } |
| |
| // Canonicalize the ExtVector to the LHS, remember if we swapped so we can |
| // swap back (so that we don't reverse the inputs to a subtract, for instance. |
| bool swapped = false; |
| if (RHSType->isExtVectorType() && !IsCompAssign) { |
| swapped = true; |
| std::swap(RHS, LHS); |
| std::swap(RHSType, LHSType); |
| } |
| |
| // Handle the case of an ext vector and scalar. |
| if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) { |
| QualType EltTy = LV->getElementType(); |
| if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) { |
| int order = Context.getIntegerTypeOrder(EltTy, RHSType); |
| if (order > 0) |
| RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast); |
| if (order >= 0) { |
| RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat); |
| if (swapped) std::swap(RHS, LHS); |
| return LHSType; |
| } |
| } |
| if (EltTy->isRealFloatingType() && RHSType->isScalarType() && |
| RHSType->isRealFloatingType()) { |
| int order = Context.getFloatingTypeOrder(EltTy, RHSType); |
| if (order > 0) |
| RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast); |
| if (order >= 0) { |
| RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat); |
| if (swapped) std::swap(RHS, LHS); |
| return LHSType; |
| } |
| } |
| } |
| |
| // Vectors of different size or scalar and non-ext-vector are errors. |
| if (swapped) std::swap(RHS, LHS); |
| Diag(Loc, diag::err_typecheck_vector_not_convertable) |
| << LHS.get()->getType() << RHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // checkArithmeticNull - Detect when a NULL constant is used improperly in an |
| // expression. These are mainly cases where the null pointer is used as an |
| // integer instead of a pointer. |
| static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, bool IsCompare) { |
| // The canonical way to check for a GNU null is with isNullPointerConstant, |
| // but we use a bit of a hack here for speed; this is a relatively |
| // hot path, and isNullPointerConstant is slow. |
| bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts()); |
| bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts()); |
| |
| QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType(); |
| |
| // Avoid analyzing cases where the result will either be invalid (and |
| // diagnosed as such) or entirely valid and not something to warn about. |
| if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() || |
| NonNullType->isMemberPointerType() || NonNullType->isFunctionType()) |
| return; |
| |
| // Comparison operations would not make sense with a null pointer no matter |
| // what the other expression is. |
| if (!IsCompare) { |
| S.Diag(Loc, diag::warn_null_in_arithmetic_operation) |
| << (LHSNull ? LHS.get()->getSourceRange() : SourceRange()) |
| << (RHSNull ? RHS.get()->getSourceRange() : SourceRange()); |
| return; |
| } |
| |
| // The rest of the operations only make sense with a null pointer |
| // if the other expression is a pointer. |
| if (LHSNull == RHSNull || NonNullType->isAnyPointerType() || |
| NonNullType->canDecayToPointerType()) |
| return; |
| |
| S.Diag(Loc, diag::warn_null_in_comparison_operation) |
| << LHSNull /* LHS is NULL */ << NonNullType |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| |
| QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| bool IsCompAssign, bool IsDiv) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false); |
| |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) |
| return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign); |
| |
| QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| if (!LHS.get()->getType()->isArithmeticType() || |
| !RHS.get()->getType()->isArithmeticType()) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| // Check for division by zero. |
| if (IsDiv && |
| RHS.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNotNull)) |
| DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero) |
| << RHS.get()->getSourceRange()); |
| |
| return compType; |
| } |
| |
| QualType Sema::CheckRemainderOperands( |
| ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false); |
| |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| if (LHS.get()->getType()->hasIntegerRepresentation() && |
| RHS.get()->getType()->hasIntegerRepresentation()) |
| return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign); |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| if (!LHS.get()->getType()->isIntegerType() || |
| !RHS.get()->getType()->isIntegerType()) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| // Check for remainder by zero. |
| if (RHS.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNotNull)) |
| DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero) |
| << RHS.get()->getSourceRange()); |
| |
| return compType; |
| } |
| |
| /// \brief Diagnose invalid arithmetic on two void pointers. |
| static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| S.Diag(Loc, S.getLangOptions().CPlusPlus |
| ? diag::err_typecheck_pointer_arith_void_type |
| : diag::ext_gnu_void_ptr) |
| << 1 /* two pointers */ << LHSExpr->getSourceRange() |
| << RHSExpr->getSourceRange(); |
| } |
| |
| /// \brief Diagnose invalid arithmetic on a void pointer. |
| static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc, |
| Expr *Pointer) { |
| S.Diag(Loc, S.getLangOptions().CPlusPlus |
| ? diag::err_typecheck_pointer_arith_void_type |
| : diag::ext_gnu_void_ptr) |
| << 0 /* one pointer */ << Pointer->getSourceRange(); |
| } |
| |
| /// \brief Diagnose invalid arithmetic on two function pointers. |
| static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc, |
| Expr *LHS, Expr *RHS) { |
| assert(LHS->getType()->isAnyPointerType()); |
| assert(RHS->getType()->isAnyPointerType()); |
| S.Diag(Loc, S.getLangOptions().CPlusPlus |
| ? diag::err_typecheck_pointer_arith_function_type |
| : diag::ext_gnu_ptr_func_arith) |
| << 1 /* two pointers */ << LHS->getType()->getPointeeType() |
| // We only show the second type if it differs from the first. |
| << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(), |
| RHS->getType()) |
| << RHS->getType()->getPointeeType() |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| } |
| |
| /// \brief Diagnose invalid arithmetic on a function pointer. |
| static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc, |
| Expr *Pointer) { |
| assert(Pointer->getType()->isAnyPointerType()); |
| S.Diag(Loc, S.getLangOptions().CPlusPlus |
| ? diag::err_typecheck_pointer_arith_function_type |
| : diag::ext_gnu_ptr_func_arith) |
| << 0 /* one pointer */ << Pointer->getType()->getPointeeType() |
| << 0 /* one pointer, so only one type */ |
| << Pointer->getSourceRange(); |
| } |
| |
| /// \brief Emit error if Operand is incomplete pointer type |
| /// |
| /// \returns True if pointer has incomplete type |
| static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc, |
| Expr *Operand) { |
| if ((Operand->getType()->isPointerType() && |
| !Operand->getType()->isDependentType()) || |
| Operand->getType()->isObjCObjectPointerType()) { |
| QualType PointeeTy = Operand->getType()->getPointeeType(); |
| if (S.RequireCompleteType( |
| Loc, PointeeTy, |
| S.PDiag(diag::err_typecheck_arithmetic_incomplete_type) |
| << PointeeTy << Operand->getSourceRange())) |
| return true; |
| } |
| return false; |
| } |
| |
| /// \brief Check the validity of an arithmetic pointer operand. |
| /// |
| /// If the operand has pointer type, this code will check for pointer types |
| /// which are invalid in arithmetic operations. These will be diagnosed |
| /// appropriately, including whether or not the use is supported as an |
| /// extension. |
| /// |
| /// \returns True when the operand is valid to use (even if as an extension). |
| static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc, |
| Expr *Operand) { |
| if (!Operand->getType()->isAnyPointerType()) return true; |
| |
| QualType PointeeTy = Operand->getType()->getPointeeType(); |
| if (PointeeTy->isVoidType()) { |
| diagnoseArithmeticOnVoidPointer(S, Loc, Operand); |
| return !S.getLangOptions().CPlusPlus; |
| } |
| if (PointeeTy->isFunctionType()) { |
| diagnoseArithmeticOnFunctionPointer(S, Loc, Operand); |
| return !S.getLangOptions().CPlusPlus; |
| } |
| |
| if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false; |
| |
| return true; |
| } |
| |
| /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer |
| /// operands. |
| /// |
| /// This routine will diagnose any invalid arithmetic on pointer operands much |
| /// like \see checkArithmeticOpPointerOperand. However, it has special logic |
| /// for emitting a single diagnostic even for operations where both LHS and RHS |
| /// are (potentially problematic) pointers. |
| /// |
| /// \returns True when the operand is valid to use (even if as an extension). |
| static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| bool isLHSPointer = LHSExpr->getType()->isAnyPointerType(); |
| bool isRHSPointer = RHSExpr->getType()->isAnyPointerType(); |
| if (!isLHSPointer && !isRHSPointer) return true; |
| |
| QualType LHSPointeeTy, RHSPointeeTy; |
| if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType(); |
| if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType(); |
| |
| // Check for arithmetic on pointers to incomplete types. |
| bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType(); |
| bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType(); |
| if (isLHSVoidPtr || isRHSVoidPtr) { |
| if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr); |
| else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr); |
| else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr); |
| |
| return !S.getLangOptions().CPlusPlus; |
| } |
| |
| bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType(); |
| bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType(); |
| if (isLHSFuncPtr || isRHSFuncPtr) { |
| if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr); |
| else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, |
| RHSExpr); |
| else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr); |
| |
| return !S.getLangOptions().CPlusPlus; |
| } |
| |
| if (checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) return false; |
| if (checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) return false; |
| |
| return true; |
| } |
| |
| /// \brief Check bad cases where we step over interface counts. |
| static bool checkArithmethicPointerOnNonFragileABI(Sema &S, |
| SourceLocation OpLoc, |
| Expr *Op) { |
| assert(Op->getType()->isAnyPointerType()); |
| QualType PointeeTy = Op->getType()->getPointeeType(); |
| if (!PointeeTy->isObjCObjectType() || !S.LangOpts.ObjCNonFragileABI) |
| return true; |
| |
| S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface) |
| << PointeeTy << Op->getSourceRange(); |
| return false; |
| } |
| |
| /// \brief Emit error when two pointers are incompatible. |
| static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| assert(LHSExpr->getType()->isAnyPointerType()); |
| assert(RHSExpr->getType()->isAnyPointerType()); |
| S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible) |
| << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange() |
| << RHSExpr->getSourceRange(); |
| } |
| |
| QualType Sema::CheckAdditionOperands( // C99 6.5.6 |
| ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, QualType* CompLHSTy) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false); |
| |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy); |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| // handle the common case first (both operands are arithmetic). |
| if (LHS.get()->getType()->isArithmeticType() && |
| RHS.get()->getType()->isArithmeticType()) { |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| // Put any potential pointer into PExp |
| Expr* PExp = LHS.get(), *IExp = RHS.get(); |
| if (IExp->getType()->isAnyPointerType()) |
| std::swap(PExp, IExp); |
| |
| if (!PExp->getType()->isAnyPointerType()) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| if (!IExp->getType()->isIntegerType()) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| if (!checkArithmeticOpPointerOperand(*this, Loc, PExp)) |
| return QualType(); |
| |
| // Diagnose bad cases where we step over interface counts. |
| if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, PExp)) |
| return QualType(); |
| |
| // Check array bounds for pointer arithemtic |
| CheckArrayAccess(PExp, IExp); |
| |
| if (CompLHSTy) { |
| QualType LHSTy = Context.isPromotableBitField(LHS.get()); |
| if (LHSTy.isNull()) { |
| LHSTy = LHS.get()->getType(); |
| if (LHSTy->isPromotableIntegerType()) |
| LHSTy = Context.getPromotedIntegerType(LHSTy); |
| } |
| *CompLHSTy = LHSTy; |
| } |
| |
| return PExp->getType(); |
| } |
| |
| // C99 6.5.6 |
| QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| QualType* CompLHSTy) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false); |
| |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy); |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| // Enforce type constraints: C99 6.5.6p3. |
| |
| // Handle the common case first (both operands are arithmetic). |
| if (LHS.get()->getType()->isArithmeticType() && |
| RHS.get()->getType()->isArithmeticType()) { |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| // Either ptr - int or ptr - ptr. |
| if (LHS.get()->getType()->isAnyPointerType()) { |
| QualType lpointee = LHS.get()->getType()->getPointeeType(); |
| |
| // Diagnose bad cases where we step over interface counts. |
| if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, LHS.get())) |
| return QualType(); |
| |
| // The result type of a pointer-int computation is the pointer type. |
| if (RHS.get()->getType()->isIntegerType()) { |
| if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get())) |
| return QualType(); |
| |
| // Check array bounds for pointer arithemtic |
| CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0, |
| /*AllowOnePastEnd*/true, /*IndexNegated*/true); |
| |
| if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); |
| return LHS.get()->getType(); |
| } |
| |
| // Handle pointer-pointer subtractions. |
| if (const PointerType *RHSPTy |
| = RHS.get()->getType()->getAs<PointerType>()) { |
| QualType rpointee = RHSPTy->getPointeeType(); |
| |
| if (getLangOptions().CPlusPlus) { |
| // Pointee types must be the same: C++ [expr.add] |
| if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) { |
| diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); |
| } |
| } else { |
| // Pointee types must be compatible C99 6.5.6p3 |
| if (!Context.typesAreCompatible( |
| Context.getCanonicalType(lpointee).getUnqualifiedType(), |
| Context.getCanonicalType(rpointee).getUnqualifiedType())) { |
| diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); |
| return QualType(); |
| } |
| } |
| |
| if (!checkArithmeticBinOpPointerOperands(*this, Loc, |
| LHS.get(), RHS.get())) |
| return QualType(); |
| |
| if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); |
| return Context.getPointerDiffType(); |
| } |
| } |
| |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| static bool isScopedEnumerationType(QualType T) { |
| if (const EnumType *ET = dyn_cast<EnumType>(T)) |
| return ET->getDecl()->isScoped(); |
| return false; |
| } |
| |
| static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, unsigned Opc, |
| QualType LHSType) { |
| llvm::APSInt Right; |
| // Check right/shifter operand |
| if (RHS.get()->isValueDependent() || |
| !RHS.get()->isIntegerConstantExpr(Right, S.Context)) |
| return; |
| |
| if (Right.isNegative()) { |
| S.DiagRuntimeBehavior(Loc, RHS.get(), |
| S.PDiag(diag::warn_shift_negative) |
| << RHS.get()->getSourceRange()); |
| return; |
| } |
| llvm::APInt LeftBits(Right.getBitWidth(), |
| S.Context.getTypeSize(LHS.get()->getType())); |
| if (Right.uge(LeftBits)) { |
| S.DiagRuntimeBehavior(Loc, RHS.get(), |
| S.PDiag(diag::warn_shift_gt_typewidth) |
| << RHS.get()->getSourceRange()); |
| return; |
| } |
| if (Opc != BO_Shl) |
| return; |
| |
| // When left shifting an ICE which is signed, we can check for overflow which |
| // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned |
| // integers have defined behavior modulo one more than the maximum value |
| // representable in the result type, so never warn for those. |
| llvm::APSInt Left; |
| if (LHS.get()->isValueDependent() || |
| !LHS.get()->isIntegerConstantExpr(Left, S.Context) || |
| LHSType->hasUnsignedIntegerRepresentation()) |
| return; |
| llvm::APInt ResultBits = |
| static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits(); |
| if (LeftBits.uge(ResultBits)) |
| return; |
| llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue()); |
| Result = Result.shl(Right); |
| |
| // Print the bit representation of the signed integer as an unsigned |
| // hexadecimal number. |
| llvm::SmallString<40> HexResult; |
| Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true); |
| |
| // If we are only missing a sign bit, this is less likely to result in actual |
| // bugs -- if the result is cast back to an unsigned type, it will have the |
| // expected value. Thus we place this behind a different warning that can be |
| // turned off separately if needed. |
| if (LeftBits == ResultBits - 1) { |
| S.Diag(Loc, diag::warn_shift_result_sets_sign_bit) |
| << HexResult.str() << LHSType |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return; |
| } |
| |
| S.Diag(Loc, diag::warn_shift_result_gt_typewidth) |
| << HexResult.str() << Result.getMinSignedBits() << LHSType |
| << Left.getBitWidth() << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| } |
| |
| // C99 6.5.7 |
| QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, unsigned Opc, |
| bool IsCompAssign) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false); |
| |
| // C99 6.5.7p2: Each of the operands shall have integer type. |
| if (!LHS.get()->getType()->hasIntegerRepresentation() || |
| !RHS.get()->getType()->hasIntegerRepresentation()) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| // C++0x: Don't allow scoped enums. FIXME: Use something better than |
| // hasIntegerRepresentation() above instead of this. |
| if (isScopedEnumerationType(LHS.get()->getType()) || |
| isScopedEnumerationType(RHS.get()->getType())) { |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| // Vector shifts promote their scalar inputs to vector type. |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) |
| return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign); |
| |
| // Shifts don't perform usual arithmetic conversions, they just do integer |
| // promotions on each operand. C99 6.5.7p3 |
| |
| // For the LHS, do usual unary conversions, but then reset them away |
| // if this is a compound assignment. |
| ExprResult OldLHS = LHS; |
| LHS = UsualUnaryConversions(LHS.take()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| QualType LHSType = LHS.get()->getType(); |
| if (IsCompAssign) LHS = OldLHS; |
| |
| // The RHS is simpler. |
| RHS = UsualUnaryConversions(RHS.take()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| // Sanity-check shift operands |
| DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType); |
| |
| // "The type of the result is that of the promoted left operand." |
| return LHSType; |
| } |
| |
| static bool IsWithinTemplateSpecialization(Decl *D) { |
| if (DeclContext *DC = D->getDeclContext()) { |
| if (isa<ClassTemplateSpecializationDecl>(DC)) |
| return true; |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) |
| return FD->isFunctionTemplateSpecialization(); |
| } |
| return false; |
| } |
| |
| /// If two different enums are compared, raise a warning. |
| static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS, |
| ExprResult &RHS) { |
| QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType(); |
| QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType(); |
| |
| const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>(); |
| if (!LHSEnumType) |
| return; |
| const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>(); |
| if (!RHSEnumType) |
| return; |
| |
| // Ignore anonymous enums. |
| if (!LHSEnumType->getDecl()->getIdentifier()) |
| return; |
| if (!RHSEnumType->getDecl()->getIdentifier()) |
| return; |
| |
| if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) |
| return; |
| |
| S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types) |
| << LHSStrippedType << RHSStrippedType |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| |
| /// \brief Diagnose bad pointer comparisons. |
| static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc, |
| ExprResult &LHS, ExprResult &RHS, |
| bool IsError) { |
| S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers |
| : diag::ext_typecheck_comparison_of_distinct_pointers) |
| << LHS.get()->getType() << RHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| |
| /// \brief Returns false if the pointers are converted to a composite type, |
| /// true otherwise. |
| static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc, |
| ExprResult &LHS, ExprResult &RHS) { |
| // C++ [expr.rel]p2: |
| // [...] Pointer conversions (4.10) and qualification |
| // conversions (4.4) are performed on pointer operands (or on |
| // a pointer operand and a null pointer constant) to bring |
| // them to their composite pointer type. [...] |
| // |
| // C++ [expr.eq]p1 uses the same notion for (in)equality |
| // comparisons of pointers. |
| |
| // C++ [expr.eq]p2: |
| // In addition, pointers to members can be compared, or a pointer to |
| // member and a null pointer constant. Pointer to member conversions |
| // (4.11) and qualification conversions (4.4) are performed to bring |
| // them to a common type. If one operand is a null pointer constant, |
| // the common type is the type of the other operand. Otherwise, the |
| // common type is a pointer to member type similar (4.4) to the type |
| // of one of the operands, with a cv-qualification signature (4.4) |
| // that is the union of the cv-qualification signatures of the operand |
| // types. |
| |
| QualType LHSType = LHS.get()->getType(); |
| QualType RHSType = RHS.get()->getType(); |
| assert((LHSType->isPointerType() && RHSType->isPointerType()) || |
| (LHSType->isMemberPointerType() && RHSType->isMemberPointerType())); |
| |
| bool NonStandardCompositeType = false; |
| bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType; |
| QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr); |
| if (T.isNull()) { |
| diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true); |
| return true; |
| } |
| |
| if (NonStandardCompositeType) |
| S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard) |
| << LHSType << RHSType << T << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| |
| LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast); |
| RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast); |
| return false; |
| } |
| |
| static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc, |
| ExprResult &LHS, |
| ExprResult &RHS, |
| bool IsError) { |
| S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void |
| : diag::ext_typecheck_comparison_of_fptr_to_void) |
| << LHS.get()->getType() << RHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| |
| // C99 6.5.8, C++ [expr.rel] |
| QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, unsigned OpaqueOpc, |
| bool IsRelational) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true); |
| |
| BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc; |
| |
| // Handle vector comparisons separately. |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) |
| return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational); |
| |
| QualType LHSType = LHS.get()->getType(); |
| QualType RHSType = RHS.get()->getType(); |
| |
| Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts(); |
| Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts(); |
| |
| checkEnumComparison(*this, Loc, LHS, RHS); |
| |
| if (!LHSType->hasFloatingRepresentation() && |
| !(LHSType->isBlockPointerType() && IsRelational) && |
| !LHS.get()->getLocStart().isMacroID() && |
| !RHS.get()->getLocStart().isMacroID()) { |
| // For non-floating point types, check for self-comparisons of the form |
| // x == x, x != x, x < x, etc. These always evaluate to a constant, and |
| // often indicate logic errors in the program. |
| // |
| // NOTE: Don't warn about comparison expressions resulting from macro |
| // expansion. Also don't warn about comparisons which are only self |
| // comparisons within a template specialization. The warnings should catch |
| // obvious cases in the definition of the template anyways. The idea is to |
| // warn when the typed comparison operator will always evaluate to the same |
| // result. |
| if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) { |
| if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) { |
| if (DRL->getDecl() == DRR->getDecl() && |
| !IsWithinTemplateSpecialization(DRL->getDecl())) { |
| DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always) |
| << 0 // self- |
| << (Opc == BO_EQ |
| || Opc == BO_LE |
| || Opc == BO_GE)); |
| } else if (LHSType->isArrayType() && RHSType->isArrayType() && |
| !DRL->getDecl()->getType()->isReferenceType() && |
| !DRR->getDecl()->getType()->isReferenceType()) { |
| // what is it always going to eval to? |
| char always_evals_to; |
| switch(Opc) { |
| case BO_EQ: // e.g. array1 == array2 |
| always_evals_to = 0; // false |
| break; |
| case BO_NE: // e.g. array1 != array2 |
| always_evals_to = 1; // true |
| break; |
| default: |
| // best we can say is 'a constant' |
| always_evals_to = 2; // e.g. array1 <= array2 |
| break; |
| } |
| DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always) |
| << 1 // array |
| << always_evals_to); |
| } |
| } |
| } |
| |
| if (isa<CastExpr>(LHSStripped)) |
| LHSStripped = LHSStripped->IgnoreParenCasts(); |
| if (isa<CastExpr>(RHSStripped)) |
| RHSStripped = RHSStripped->IgnoreParenCasts(); |
| |
| // Warn about comparisons against a string constant (unless the other |
| // operand is null), the user probably wants strcmp. |
| Expr *literalString = 0; |
| Expr *literalStringStripped = 0; |
| if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) && |
| !RHSStripped->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| literalString = LHS.get(); |
| literalStringStripped = LHSStripped; |
| } else if ((isa<StringLiteral>(RHSStripped) || |
| isa<ObjCEncodeExpr>(RHSStripped)) && |
| !LHSStripped->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| literalString = RHS.get(); |
| literalStringStripped = RHSStripped; |
| } |
| |
| if (literalString) { |
| std::string resultComparison; |
| switch (Opc) { |
| case BO_LT: resultComparison = ") < 0"; break; |
| case BO_GT: resultComparison = ") > 0"; break; |
| case BO_LE: resultComparison = ") <= 0"; break; |
| case BO_GE: resultComparison = ") >= 0"; break; |
| case BO_EQ: resultComparison = ") == 0"; break; |
| case BO_NE: resultComparison = ") != 0"; break; |
| default: llvm_unreachable("Invalid comparison operator"); |
| } |
| |
| DiagRuntimeBehavior(Loc, 0, |
| PDiag(diag::warn_stringcompare) |
| << isa<ObjCEncodeExpr>(literalStringStripped) |
| << literalString->getSourceRange()); |
| } |
| } |
| |
| // C99 6.5.8p3 / C99 6.5.9p4 |
| if (LHS.get()->getType()->isArithmeticType() && |
| RHS.get()->getType()->isArithmeticType()) { |
| UsualArithmeticConversions(LHS, RHS); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| } |
| else { |
| LHS = UsualUnaryConversions(LHS.take()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| |
| RHS = UsualUnaryConversions(RHS.take()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| } |
| |
| LHSType = LHS.get()->getType(); |
| RHSType = RHS.get()->getType(); |
| |
| // The result of comparisons is 'bool' in C++, 'int' in C. |
| QualType ResultTy = Context.getLogicalOperationType(); |
| |
| if (IsRelational) { |
| if (LHSType->isRealType() && RHSType->isRealType()) |
| return ResultTy; |
| } else { |
| // Check for comparisons of floating point operands using != and ==. |
| if (LHSType->hasFloatingRepresentation()) |
| CheckFloatComparison(Loc, LHS.get(), RHS.get()); |
| |
| if (LHSType->isArithmeticType() && RHSType->isArithmeticType()) |
| return ResultTy; |
| } |
| |
| bool LHSIsNull = LHS.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull); |
| bool RHSIsNull = RHS.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull); |
| |
| // All of the following pointer-related warnings are GCC extensions, except |
| // when handling null pointer constants. |
| if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2 |
| QualType LCanPointeeTy = |
| LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType(); |
| QualType RCanPointeeTy = |
| RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType(); |
| |
| if (getLangOptions().CPlusPlus) { |
| if (LCanPointeeTy == RCanPointeeTy) |
| return ResultTy; |
| if (!IsRelational && |
| (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { |
| // Valid unless comparison between non-null pointer and function pointer |
| // This is a gcc extension compatibility comparison. |
| // In a SFINAE context, we treat this as a hard error to maintain |
| // conformance with the C++ standard. |
| if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) |
| && !LHSIsNull && !RHSIsNull) { |
| diagnoseFunctionPointerToVoidComparison( |
| *this, Loc, LHS, RHS, /*isError*/ isSFINAEContext()); |
| |
| if (isSFINAEContext()) |
| return QualType(); |
| |
| RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast); |
| return ResultTy; |
| } |
| } |
| |
| if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) |
| return QualType(); |
| else |
| return ResultTy; |
| } |
| // C99 6.5.9p2 and C99 6.5.8p2 |
| if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), |
| RCanPointeeTy.getUnqualifiedType())) { |
| // Valid unless a relational comparison of function pointers |
| if (IsRelational && LCanPointeeTy->isFunctionType()) { |
| Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers) |
| << LHSType << RHSType << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| } |
| } else if (!IsRelational && |
| (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { |
| // Valid unless comparison between non-null pointer and function pointer |
| if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) |
| && !LHSIsNull && !RHSIsNull) |
| diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS, |
| /*isError*/false); |
| } else { |
| // Invalid |
| diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false); |
| } |
| if (LCanPointeeTy != RCanPointeeTy) { |
| if (LHSIsNull && !RHSIsNull) |
| LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast); |
| else |
| RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast); |
| } |
| return ResultTy; |
| } |
| |
| if (getLangOptions().CPlusPlus) { |
| // Comparison of nullptr_t with itself. |
| if (LHSType->isNullPtrType() && RHSType->isNullPtrType()) |
| return ResultTy; |
| |
| // Comparison of pointers with null pointer constants and equality |
| // comparisons of member pointers to null pointer constants. |
| if (RHSIsNull && |
| ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) || |
| (!IsRelational && |
| (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) { |
| RHS = ImpCastExprToType(RHS.take(), LHSType, |
| LHSType->isMemberPointerType() |
| ? CK_NullToMemberPointer |
| : CK_NullToPointer); |
| return ResultTy; |
| } |
| if (LHSIsNull && |
| ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) || |
| (!IsRelational && |
| (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) { |
| LHS = ImpCastExprToType(LHS.take(), RHSType, |
| RHSType->isMemberPointerType() |
| ? CK_NullToMemberPointer |
| : CK_NullToPointer); |
| return ResultTy; |
| } |
| |
| // Comparison of member pointers. |
| if (!IsRelational && |
| LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) { |
| if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) |
| return QualType(); |
| else |
| return ResultTy; |
| } |
| |
| // Handle scoped enumeration types specifically, since they don't promote |
| // to integers. |
| if (LHS.get()->getType()->isEnumeralType() && |
| Context.hasSameUnqualifiedType(LHS.get()->getType(), |
| RHS.get()->getType())) |
| return ResultTy; |
| } |
| |
| // Handle block pointer types. |
| if (!IsRelational && LHSType->isBlockPointerType() && |
| RHSType->isBlockPointerType()) { |
| QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType(); |
| QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType(); |
| |
| if (!LHSIsNull && !RHSIsNull && |
| !Context.typesAreCompatible(lpointee, rpointee)) { |
| Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) |
| << LHSType << RHSType << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| } |
| RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast); |
| return ResultTy; |
| } |
| |
| // Allow block pointers to be compared with null pointer constants. |
| if (!IsRelational |
| && ((LHSType->isBlockPointerType() && RHSType->isPointerType()) |
| || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) { |
| if (!LHSIsNull && !RHSIsNull) { |
| if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>() |
| ->getPointeeType()->isVoidType()) |
| || (LHSType->isPointerType() && LHSType->castAs<PointerType>() |
| ->getPointeeType()->isVoidType()))) |
| Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) |
| << LHSType << RHSType << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| } |
| if (LHSIsNull && !RHSIsNull) |
| LHS = ImpCastExprToType(LHS.take(), RHSType, |
| RHSType->isPointerType() ? CK_BitCast |
| : CK_AnyPointerToBlockPointerCast); |
| else |
| RHS = ImpCastExprToType(RHS.take(), LHSType, |
| LHSType->isPointerType() ? CK_BitCast |
| : CK_AnyPointerToBlockPointerCast); |
| return ResultTy; |
| } |
| |
| if (LHSType->isObjCObjectPointerType() || |
| RHSType->isObjCObjectPointerType()) { |
| const PointerType *LPT = LHSType->getAs<PointerType>(); |
| const PointerType *RPT = RHSType->getAs<PointerType>(); |
| if (LPT || RPT) { |
| bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false; |
| bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false; |
| |
| if (!LPtrToVoid && !RPtrToVoid && |
| !Context.typesAreCompatible(LHSType, RHSType)) { |
| diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, |
| /*isError*/false); |
| } |
| if (LHSIsNull && !RHSIsNull) |
| LHS = ImpCastExprToType(LHS.take(), RHSType, |
| RPT ? CK_BitCast :CK_CPointerToObjCPointerCast); |
| else |
| RHS = ImpCastExprToType(RHS.take(), LHSType, |
| LPT ? CK_BitCast :CK_CPointerToObjCPointerCast); |
| return ResultTy; |
| } |
| if (LHSType->isObjCObjectPointerType() && |
| RHSType->isObjCObjectPointerType()) { |
| if (!Context.areComparableObjCPointerTypes(LHSType, RHSType)) |
| diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, |
| /*isError*/false); |
| if (LHSIsNull && !RHSIsNull) |
| LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast); |
| else |
| RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast); |
| return ResultTy; |
| } |
| } |
| if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) || |
| (LHSType->isIntegerType() && RHSType->isAnyPointerType())) { |
| unsigned DiagID = 0; |
| bool isError = false; |
| if ((LHSIsNull && LHSType->isIntegerType()) || |
| (RHSIsNull && RHSType->isIntegerType())) { |
| if (IsRelational && !getLangOptions().CPlusPlus) |
| DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero; |
| } else if (IsRelational && !getLangOptions().CPlusPlus) |
| DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer; |
| else if (getLangOptions().CPlusPlus) { |
| DiagID = diag::err_typecheck_comparison_of_pointer_integer; |
| isError = true; |
| } else |
| DiagID = diag::ext_typecheck_comparison_of_pointer_integer; |
| |
| if (DiagID) { |
| Diag(Loc, DiagID) |
| << LHSType << RHSType << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| if (isError) |
| return QualType(); |
| } |
| |
| if (LHSType->isIntegerType()) |
| LHS = ImpCastExprToType(LHS.take(), RHSType, |
| LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); |
| else |
| RHS = ImpCastExprToType(RHS.take(), LHSType, |
| RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); |
| return ResultTy; |
| } |
| |
| // Handle block pointers. |
| if (!IsRelational && RHSIsNull |
| && LHSType->isBlockPointerType() && RHSType->isIntegerType()) { |
| RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer); |
| return ResultTy; |
| } |
| if (!IsRelational && LHSIsNull |
| && LHSType->isIntegerType() && RHSType->isBlockPointerType()) { |
| LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer); |
| return ResultTy; |
| } |
| |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| /// CheckVectorCompareOperands - vector comparisons are a clang extension that |
| /// operates on extended vector types. Instead of producing an IntTy result, |
| /// like a scalar comparison, a vector comparison produces a vector of integer |
| /// types. |
| QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| bool IsRelational) { |
| // Check to make sure we're operating on vectors of the same type and width, |
| // Allowing one side to be a scalar of element type. |
| QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false); |
| if (vType.isNull()) |
| return vType; |
| |
| QualType LHSType = LHS.get()->getType(); |
| QualType RHSType = RHS.get()->getType(); |
| |
| // If AltiVec, the comparison results in a numeric type, i.e. |
| // bool for C++, int for C |
| if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector) |
| return Context.getLogicalOperationType(); |
| |
| // For non-floating point types, check for self-comparisons of the form |
| // x == x, x != x, x < x, etc. These always evaluate to a constant, and |
| // often indicate logic errors in the program. |
| if (!LHSType->hasFloatingRepresentation()) { |
| if (DeclRefExpr* DRL |
| = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts())) |
| if (DeclRefExpr* DRR |
| = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts())) |
| if (DRL->getDecl() == DRR->getDecl()) |
| DiagRuntimeBehavior(Loc, 0, |
| PDiag(diag::warn_comparison_always) |
| << 0 // self- |
| << 2 // "a constant" |
| ); |
| } |
| |
| // Check for comparisons of floating point operands using != and ==. |
| if (!IsRelational && LHSType->hasFloatingRepresentation()) { |
| assert (RHSType->hasFloatingRepresentation()); |
| CheckFloatComparison(Loc, LHS.get(), RHS.get()); |
| } |
| |
| // Return a signed type that is of identical size and number of elements. |
| // For floating point vectors, return an integer type of identical size |
| // and number of elements. |
| const VectorType *VTy = LHSType->getAs<VectorType>(); |
| unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); |
| if (TypeSize == Context.getTypeSize(Context.CharTy)) |
| return Context.getExtVectorType(Context.CharTy, VTy->getNumElements()); |
| else if (TypeSize == Context.getTypeSize(Context.ShortTy)) |
| return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements()); |
| else if (TypeSize == Context.getTypeSize(Context.IntTy)) |
| return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); |
| else if (TypeSize == Context.getTypeSize(Context.LongTy)) |
| return Context.getExtVectorType(Context.LongTy, VTy->getNumElements()); |
| assert(TypeSize == Context.getTypeSize(Context.LongLongTy) && |
| "Unhandled vector element size in vector compare"); |
| return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); |
| } |
| |
| inline QualType Sema::CheckBitwiseOperands( |
| ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false); |
| |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| if (LHS.get()->getType()->hasIntegerRepresentation() && |
| RHS.get()->getType()->hasIntegerRepresentation()) |
| return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign); |
| |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS); |
| QualType compType = UsualArithmeticConversions(LHSResult, RHSResult, |
| IsCompAssign); |
| if (LHSResult.isInvalid() || RHSResult.isInvalid()) |
| return QualType(); |
| LHS = LHSResult.take(); |
| RHS = RHSResult.take(); |
| |
| if (LHS.get()->getType()->isIntegralOrUnscopedEnumerationType() && |
| RHS.get()->getType()->isIntegralOrUnscopedEnumerationType()) |
| return compType; |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14] |
| ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) { |
| |
| // Diagnose cases where the user write a logical and/or but probably meant a |
| // bitwise one. We do this when the LHS is a non-bool integer and the RHS |
| // is a constant. |
| if (LHS.get()->getType()->isIntegerType() && |
| !LHS.get()->getType()->isBooleanType() && |
| RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() && |
| // Don't warn in macros or template instantiations. |
| !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) { |
| // If the RHS can be constant folded, and if it constant folds to something |
| // that isn't 0 or 1 (which indicate a potential logical operation that |
| // happened to fold to true/false) then warn. |
| // Parens on the RHS are ignored. |
| llvm::APSInt Result; |
| if (RHS.get()->EvaluateAsInt(Result, Context)) |
| if ((getLangOptions().Bool && !RHS.get()->getType()->isBooleanType()) || |
| (Result != 0 && Result != 1)) { |
| Diag(Loc, diag::warn_logical_instead_of_bitwise) |
| << RHS.get()->getSourceRange() |
| << (Opc == BO_LAnd ? "&&" : "||"); |
| // Suggest replacing the logical operator with the bitwise version |
| Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator) |
| << (Opc == BO_LAnd ? "&" : "|") |
| << FixItHint::CreateReplacement(SourceRange( |
| Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(), |
| getLangOptions())), |
| Opc == BO_LAnd ? "&" : "|"); |
| if (Opc == BO_LAnd) |
| // Suggest replacing "Foo() && kNonZero" with "Foo()" |
| Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant) |
| << FixItHint::CreateRemoval( |
| SourceRange( |
| Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(), |
| 0, getSourceManager(), |
| getLangOptions()), |
| RHS.get()->getLocEnd())); |
| } |
| } |
| |
| if (!Context.getLangOptions().CPlusPlus) { |
| LHS = UsualUnaryConversions(LHS.take()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| |
| RHS = UsualUnaryConversions(RHS.take()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| if (!LHS.get()->getType()->isScalarType() || |
| !RHS.get()->getType()->isScalarType()) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| return Context.IntTy; |
| } |
| |
| // The following is safe because we only use this method for |
| // non-overloadable operands. |
| |
| // C++ [expr.log.and]p1 |
| // C++ [expr.log.or]p1 |
| // The operands are both contextually converted to type bool. |
| ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get()); |
| if (LHSRes.isInvalid()) |
| return InvalidOperands(Loc, LHS, RHS); |
| LHS = move(LHSRes); |
| |
| ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get()); |
| if (RHSRes.isInvalid()) |
| return InvalidOperands(Loc, LHS, RHS); |
| RHS = move(RHSRes); |
| |
| // C++ [expr.log.and]p2 |
| // C++ [expr.log.or]p2 |
| // The result is a bool. |
| return Context.BoolTy; |
| } |
| |
| /// IsReadonlyProperty - Verify that otherwise a valid l-value expression |
| /// is a read-only property; return true if so. A readonly property expression |
| /// depends on various declarations and thus must be treated specially. |
| /// |
| static bool IsReadonlyProperty(Expr *E, Sema &S) { |
| const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E); |
| if (!PropExpr) return false; |
| if (PropExpr->isImplicitProperty()) return false; |
| |
| ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty(); |
| QualType BaseType = PropExpr->isSuperReceiver() ? |
| PropExpr->getSuperReceiverType() : |
| PropExpr->getBase()->getType(); |
| |
| if (const ObjCObjectPointerType *OPT = |
| BaseType->getAsObjCInterfacePointerType()) |
| if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl()) |
| if (S.isPropertyReadonly(PDecl, IFace)) |
| return true; |
| return false; |
| } |
| |
| static bool IsConstProperty(Expr *E, Sema &S) { |
| const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E); |
| if (!PropExpr) return false; |
| if (PropExpr->isImplicitProperty()) return false; |
| |
| ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty(); |
| QualType T = PDecl->getType().getNonReferenceType(); |
| return T.isConstQualified(); |
| } |
| |
| static bool IsReadonlyMessage(Expr *E, Sema &S) { |
| const MemberExpr *ME = dyn_cast<MemberExpr>(E); |
| if (!ME) return false; |
| if (!isa<FieldDecl>(ME->getMemberDecl())) return false; |
| ObjCMessageExpr *Base = |
| dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts()); |
| if (!Base) return false; |
| return Base->getMethodDecl() != 0; |
| } |
| |
| /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not, |
| /// emit an error and return true. If so, return false. |
| static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { |
| SourceLocation OrigLoc = Loc; |
| Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context, |
| &Loc); |
| if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S)) |
| IsLV = Expr::MLV_ReadonlyProperty; |
| else if (Expr::MLV_ConstQualified && IsConstProperty(E, S)) |
| IsLV = Expr::MLV_Valid; |
| else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S)) |
| IsLV = Expr::MLV_InvalidMessageExpression; |
| if (IsLV == Expr::MLV_Valid) |
| return false; |
| |
| unsigned Diag = 0; |
| bool NeedType = false; |
| switch (IsLV) { // C99 6.5.16p2 |
| case Expr::MLV_ConstQualified: |
| Diag = diag::err_typecheck_assign_const; |
| |
| // In ARC, use some specialized diagnostics for occasions where we |
| // infer 'const'. These are always pseudo-strong variables. |
| if (S.getLangOptions().ObjCAutoRefCount) { |
| DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()); |
| if (declRef && isa<VarDecl>(declRef->getDecl())) { |
| VarDecl *var = cast<VarDecl>(declRef->getDecl()); |
| |
| // Use the normal diagnostic if it's pseudo-__strong but the |
| // user actually wrote 'const'. |
| if (var->isARCPseudoStrong() && |
| (!var->getTypeSourceInfo() || |
| !var->getTypeSourceInfo()->getType().isConstQualified())) { |
| // There are two pseudo-strong cases: |
| // - self |
| ObjCMethodDecl *method = S.getCurMethodDecl(); |
| if (method && var == method->getSelfDecl()) |
| Diag = method->isClassMethod() |
| ? diag::err_typecheck_arc_assign_self_class_method |
| : diag::err_typecheck_arc_assign_self; |
| |
| // - fast enumeration variables |
| else |
| Diag = diag::err_typecheck_arr_assign_enumeration; |
| |
| SourceRange Assign; |
| if (Loc != OrigLoc) |
| Assign = SourceRange(OrigLoc, OrigLoc); |
| S.Diag(Loc, Diag) << E->getSourceRange() << Assign; |
| // We need to preserve the AST regardless, so migration tool |
| // can do its job. |
| return false; |
| } |
| } |
| } |
| |
| break; |
| case Expr::MLV_ArrayType: |
| Diag = diag::err_typecheck_array_not_modifiable_lvalue; |
| NeedType = true; |
| break; |
| case Expr::MLV_NotObjectType: |
| Diag = diag::err_typecheck_non_object_not_modifiable_lvalue; |
| NeedType = true; |
| break; |
| case Expr::MLV_LValueCast: |
| Diag = diag::err_typecheck_lvalue_casts_not_supported; |
| break; |
| case Expr::MLV_Valid: |
| llvm_unreachable("did not take early return for MLV_Valid"); |
| case Expr::MLV_InvalidExpression: |
| case Expr::MLV_MemberFunction: |
| case Expr::MLV_ClassTemporary: |
| Diag = diag::err_typecheck_expression_not_modifiable_lvalue; |
| break; |
| case Expr::MLV_IncompleteType: |
| case Expr::MLV_IncompleteVoidType: |
| return S.RequireCompleteType(Loc, E->getType(), |
| S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue) |
| << E->getSourceRange()); |
| case Expr::MLV_DuplicateVectorComponents: |
| Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue; |
| break; |
| case Expr::MLV_NotBlockQualified: |
| Diag = diag::err_block_decl_ref_not_modifiable_lvalue; |
| break; |
| case Expr::MLV_ReadonlyProperty: |
| case Expr::MLV_NoSetterProperty: |
| llvm_unreachable("readonly properties should be processed differently"); |
| break; |
| case Expr::MLV_InvalidMessageExpression: |
| Diag = diag::error_readonly_message_assignment; |
| break; |
| case Expr::MLV_SubObjCPropertySetting: |
| Diag = diag::error_no_subobject_property_setting; |
| break; |
| } |
| |
| SourceRange Assign; |
| if (Loc != OrigLoc) |
| Assign = SourceRange(OrigLoc, OrigLoc); |
| if (NeedType) |
| S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign; |
| else |
| S.Diag(Loc, Diag) << E->getSourceRange() << Assign; |
| return true; |
| } |
| |
| |
| |
| // C99 6.5.16.1 |
| QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS, |
| SourceLocation Loc, |
| QualType CompoundType) { |
| assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject)); |
| |
| // Verify that LHS is a modifiable lvalue, and emit error if not. |
| if (CheckForModifiableLvalue(LHSExpr, Loc, *this)) |
| return QualType(); |
| |
| QualType LHSType = LHSExpr->getType(); |
| QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : |
| CompoundType; |
| AssignConvertType ConvTy; |
| if (CompoundType.isNull()) { |
| QualType LHSTy(LHSType); |
| ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); |
| if (RHS.isInvalid()) |
| return QualType(); |
| // Special case of NSObject attributes on c-style pointer types. |
| if (ConvTy == IncompatiblePointer && |
| ((Context.isObjCNSObjectType(LHSType) && |
| RHSType->isObjCObjectPointerType()) || |
| (Context.isObjCNSObjectType(RHSType) && |
| LHSType->isObjCObjectPointerType()))) |
| ConvTy = Compatible; |
| |
| if (ConvTy == Compatible && |
| getLangOptions().ObjCNonFragileABI && |
| LHSType->isObjCObjectType()) |
| Diag(Loc, diag::err_assignment_requires_nonfragile_object) |
| << LHSType; |
| |
| // If the RHS is a unary plus or minus, check to see if they = and + are |
| // right next to each other. If so, the user may have typo'd "x =+ 4" |
| // instead of "x += 4". |
| Expr *RHSCheck = RHS.get(); |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck)) |
| RHSCheck = ICE->getSubExpr(); |
| if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) { |
| if ((UO->getOpcode() == UO_Plus || |
| UO->getOpcode() == UO_Minus) && |
| Loc.isFileID() && UO->getOperatorLoc().isFileID() && |
| // Only if the two operators are exactly adjacent. |
| Loc.getLocWithOffset(1) == UO->getOperatorLoc() && |
| // And there is a space or other character before the subexpr of the |
| // unary +/-. We don't want to warn on "x=-1". |
| Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() && |
| UO->getSubExpr()->getLocStart().isFileID()) { |
| Diag(Loc, diag::warn_not_compound_assign) |
| << (UO->getOpcode() == UO_Plus ? "+" : "-") |
| << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()); |
| } |
| } |
| |
| if (ConvTy == Compatible) { |
| if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) |
| checkRetainCycles(LHSExpr, RHS.get()); |
| else if (getLangOptions().ObjCAutoRefCount) |
| checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get()); |
| } |
| } else { |
| // Compound assignment "x += y" |
| ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType); |
| } |
| |
| if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, |
| RHS.get(), AA_Assigning)) |
| return QualType(); |
| |
| CheckForNullPointerDereference(*this, LHSExpr); |
| |
| // C99 6.5.16p3: The type of an assignment expression is the type of the |
| // left operand unless the left operand has qualified type, in which case |
| // it is the unqualified version of the type of the left operand. |
| // C99 6.5.16.1p2: In simple assignment, the value of the right operand |
| // is converted to the type of the assignment expression (above). |
| // C++ 5.17p1: the type of the assignment expression is that of its left |
| // operand. |
| return (getLangOptions().CPlusPlus |
| ? LHSType : LHSType.getUnqualifiedType()); |
| } |
| |
| // C99 6.5.17 |
| static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc) { |
| S.DiagnoseUnusedExprResult(LHS.get()); |
| |
| LHS = S.CheckPlaceholderExpr(LHS.take()); |
| RHS = S.CheckPlaceholderExpr(RHS.take()); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| // C's comma performs lvalue conversion (C99 6.3.2.1) on both its |
| // operands, but not unary promotions. |
| // C++'s comma does not do any conversions at all (C++ [expr.comma]p1). |
| |
| // So we treat the LHS as a ignored value, and in C++ we allow the |
| // containing site to determine what should be done with the RHS. |
| LHS = S.IgnoredValueConversions(LHS.take()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| |
| if (!S.getLangOptions().CPlusPlus) { |
| RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| if (!RHS.get()->getType()->isVoidType()) |
| S.RequireCompleteType(Loc, RHS.get()->getType(), |
| diag::err_incomplete_type); |
| } |
| |
| return RHS.get()->getType(); |
| } |
| |
| /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine |
| /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. |
| static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op, |
| ExprValueKind &VK, |
| SourceLocation OpLoc, |
| bool IsInc, bool IsPrefix) { |
| if (Op->isTypeDependent()) |
| return S.Context.DependentTy; |
| |
| QualType ResType = Op->getType(); |
| assert(!ResType.isNull() && "no type for increment/decrement expression"); |
| |
| if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) { |
| // Decrement of bool is not allowed. |
| if (!IsInc) { |
| S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange(); |
| return QualType(); |
| } |
| // Increment of bool sets it to true, but is deprecated. |
| S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange(); |
| } else if (ResType->isRealType()) { |
| // OK! |
| } else if (ResType->isAnyPointerType()) { |
| // C99 6.5.2.4p2, 6.5.6p2 |
| if (!checkArithmeticOpPointerOperand(S, OpLoc, Op)) |
| return QualType(); |
| |
| // Diagnose bad cases where we step over interface counts. |
| else if (!checkArithmethicPointerOnNonFragileABI(S, OpLoc, Op)) |
| return QualType(); |
| } else if (ResType->isAnyComplexType()) { |
| // C99 does not support ++/-- on complex types, we allow as an extension. |
| S.Diag(OpLoc, diag::ext_integer_increment_complex) |
| << ResType << Op->getSourceRange(); |
| } else if (ResType->isPlaceholderType()) { |
| ExprResult PR = S.CheckPlaceholderExpr(Op); |
| if (PR.isInvalid()) return QualType(); |
| return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc, |
| IsInc, IsPrefix); |
| } else if (S.getLangOptions().AltiVec && ResType->isVectorType()) { |
| // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 ) |
| } else { |
| S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement) |
| << ResType << int(IsInc) << Op->getSourceRange(); |
| return QualType(); |
| } |
| // At this point, we know we have a real, complex or pointer type. |
| // Now make sure the operand is a modifiable lvalue. |
| if (CheckForModifiableLvalue(Op, OpLoc, S)) |
| return QualType(); |
| // In C++, a prefix increment is the same type as the operand. Otherwise |
| // (in C or with postfix), the increment is the unqualified type of the |
| // operand. |
| if (IsPrefix && S.getLangOptions().CPlusPlus) { |
| VK = VK_LValue; |
| return ResType; |
| } else { |
| VK = VK_RValue; |
| return ResType.getUnqualifiedType(); |
| } |
| } |
| |
| |
| /// getPrimaryDecl - Helper function for CheckAddressOfOperand(). |
| /// This routine allows us to typecheck complex/recursive expressions |
| /// where the declaration is needed for type checking. We only need to |
| /// handle cases when the expression references a function designator |
| /// or is an lvalue. Here are some examples: |
| /// - &(x) => x |
| /// - &*****f => f for f a function designator. |
| /// - &s.xx => s |
| /// - &s.zz[1].yy -> s, if zz is an array |
| /// - *(x + 1) -> x, if x is an array |
| /// - &"123"[2] -> 0 |
| /// - & __real__ x -> x |
| static ValueDecl *getPrimaryDecl(Expr *E) { |
| switch (E->getStmtClass()) { |
| case Stmt::DeclRefExprClass: |
| return cast<DeclRefExpr>(E)->getDecl(); |
| case Stmt::MemberExprClass: |
| // If this is an arrow operator, the address is an offset from |
| // the base's value, so the object the base refers to is |
| // irrelevant. |
| if (cast<MemberExpr>(E)->isArrow()) |
| return 0; |
| // Otherwise, the expression refers to a part of the base |
| return getPrimaryDecl(cast<MemberExpr>(E)->getBase()); |
| case Stmt::ArraySubscriptExprClass: { |
| // FIXME: This code shouldn't be necessary! We should catch the implicit |
| // promotion of register arrays earlier. |
| Expr* Base = cast<ArraySubscriptExpr>(E)->getBase(); |
| if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) { |
| if (ICE->getSubExpr()->getType()->isArrayType()) |
| return getPrimaryDecl(ICE->getSubExpr()); |
| } |
| return 0; |
| } |
| case Stmt::UnaryOperatorClass: { |
| UnaryOperator *UO = cast<UnaryOperator>(E); |
| |
| switch(UO->getOpcode()) { |
| case UO_Real: |
| case UO_Imag: |
| case UO_Extension: |
| return getPrimaryDecl(UO->getSubExpr()); |
| default: |
| return 0; |
| } |
| } |
| case Stmt::ParenExprClass: |
| return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr()); |
| case Stmt::ImplicitCastExprClass: |
| // If the result of an implicit cast is an l-value, we care about |
| // the sub-expression; otherwise, the result here doesn't matter. |
| return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr()); |
| default: |
| return 0; |
| } |
| } |
| |
| namespace { |
| enum { |
| AO_Bit_Field = 0, |
| AO_Vector_Element = 1, |
| AO_Property_Expansion = 2, |
| AO_Register_Variable = 3, |
| AO_No_Error = 4 |
| }; |
| } |
| /// \brief Diagnose invalid operand for address of operations. |
| /// |
| /// \param Type The type of operand which cannot have its address taken. |
| static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc, |
| Expr *E, unsigned Type) { |
| S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange(); |
| } |
| |
| /// CheckAddressOfOperand - The operand of & must be either a function |
| /// designator or an lvalue designating an object. If it is an lvalue, the |
| /// object cannot be declared with storage class register or be a bit field. |
| /// Note: The usual conversions are *not* applied to the operand of the & |
| /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. |
| /// In C++, the operand might be an overloaded function name, in which case |
| /// we allow the '&' but retain the overloaded-function type. |
| static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp, |
| SourceLocation OpLoc) { |
| if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){ |
| if (PTy->getKind() == BuiltinType::Overload) { |
| if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) { |
| S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) |
| << OrigOp.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| return S.Context.OverloadTy; |
| } |
| |
| if (PTy->getKind() == BuiltinType::UnknownAny) |
| return S.Context.UnknownAnyTy; |
| |
| if (PTy->getKind() == BuiltinType::BoundMember) { |
| S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function) |
| << OrigOp.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| OrigOp = S.CheckPlaceholderExpr(OrigOp.take()); |
| if (OrigOp.isInvalid()) return QualType(); |
| } |
| |
| if (OrigOp.get()->isTypeDependent()) |
| return S.Context.DependentTy; |
| |
| assert(!OrigOp.get()->getType()->isPlaceholderType()); |
| |
| // Make sure to ignore parentheses in subsequent checks |
| Expr *op = OrigOp.get()->IgnoreParens(); |
| |
| if (S.getLangOptions().C99) { |
| // Implement C99-only parts of addressof rules. |
| if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) { |
| if (uOp->getOpcode() == UO_Deref) |
| // Per C99 6.5.3.2, the address of a deref always returns a valid result |
| // (assuming the deref expression is valid). |
| return uOp->getSubExpr()->getType(); |
| } |
| // Technically, there should be a check for array subscript |
| // expressions here, but the result of one is always an lvalue anyway. |
| } |
| ValueDecl *dcl = getPrimaryDecl(op); |
| Expr::LValueClassification lval = op->ClassifyLValue(S.Context); |
| unsigned AddressOfError = AO_No_Error; |
| |
| if (lval == Expr::LV_ClassTemporary) { |
| bool sfinae = S.isSFINAEContext(); |
| S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary |
| : diag::ext_typecheck_addrof_class_temporary) |
| << op->getType() << op->getSourceRange(); |
| if (sfinae) |
| return QualType(); |
| } else if (isa<ObjCSelectorExpr>(op)) { |
| return S.Context.getPointerType(op->getType()); |
| } else if (lval == Expr::LV_MemberFunction) { |
| // If it's an instance method, make a member pointer. |
| // The expression must have exactly the form &A::foo. |
| |
| // If the underlying expression isn't a decl ref, give up. |
| if (!isa<DeclRefExpr>(op)) { |
| S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function) |
| << OrigOp.get()->getSourceRange(); |
| return QualType(); |
| } |
| DeclRefExpr *DRE = cast<DeclRefExpr>(op); |
| CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl()); |
| |
| // The id-expression was parenthesized. |
| if (OrigOp.get() != DRE) { |
| S.Diag(OpLoc, diag::err_parens_pointer_member_function) |
| << OrigOp.get()->getSourceRange(); |
| |
| // The method was named without a qualifier. |
| } else if (!DRE->getQualifier()) { |
| S.Diag(OpLoc, diag::err_unqualified_pointer_member_function) |
| << op->getSourceRange(); |
| } |
| |
| return S.Context.getMemberPointerType(op->getType(), |
| S.Context.getTypeDeclType(MD->getParent()).getTypePtr()); |
| } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) { |
| // C99 6.5.3.2p1 |
| // The operand must be either an l-value or a function designator |
| if (!op->getType()->isFunctionType()) { |
| // Use a special diagnostic for loads from property references. |
| if (isa<PseudoObjectExpr>(op)) { |
| AddressOfError = AO_Property_Expansion; |
| } else { |
| // FIXME: emit more specific diag... |
| S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) |
| << op->getSourceRange(); |
| return QualType(); |
| } |
| } |
| } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1 |
| // The operand cannot be a bit-field |
| AddressOfError = AO_Bit_Field; |
| } else if (op->getObjectKind() == OK_VectorComponent) { |
| // The operand cannot be an element of a vector |
| AddressOfError = AO_Vector_Element; |
| } else if (dcl) { // C99 6.5.3.2p1 |
| // We have an lvalue with a decl. Make sure the decl is not declared |
| // with the register storage-class specifier. |
| if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) { |
| // in C++ it is not error to take address of a register |
| // variable (c++03 7.1.1P3) |
| if (vd->getStorageClass() == SC_Register && |
| !S.getLangOptions().CPlusPlus) { |
| AddressOfError = AO_Register_Variable; |
| } |
| } else if (isa<FunctionTemplateDecl>(dcl)) { |
| return S.Context.OverloadTy; |
| } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) { |
| // Okay: we can take the address of a field. |
| // Could be a pointer to member, though, if there is an explicit |
| // scope qualifier for the class. |
| if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) { |
| DeclContext *Ctx = dcl->getDeclContext(); |
| if (Ctx && Ctx->isRecord()) { |
| if (dcl->getType()->isReferenceType()) { |
| S.Diag(OpLoc, |
| diag::err_cannot_form_pointer_to_member_of_reference_type) |
| << dcl->getDeclName() << dcl->getType(); |
| return QualType(); |
| } |
| |
| while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion()) |
| Ctx = Ctx->getParent(); |
| return S.Context.getMemberPointerType(op->getType(), |
| S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr()); |
| } |
| } |
| } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl)) |
| llvm_unreachable("Unknown/unexpected decl type"); |
| } |
| |
| if (AddressOfError != AO_No_Error) { |
| diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError); |
| return QualType(); |
| } |
| |
| if (lval == Expr::LV_IncompleteVoidType) { |
| // Taking the address of a void variable is technically illegal, but we |
| // allow it in cases which are otherwise valid. |
| // Example: "extern void x; void* y = &x;". |
| S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange(); |
| } |
| |
| // If the operand has type "type", the result has type "pointer to type". |
| if (op->getType()->isObjCObjectType()) |
| return S.Context.getObjCObjectPointerType(op->getType()); |
| return S.Context.getPointerType(op->getType()); |
| } |
| |
| /// CheckIndirectionOperand - Type check unary indirection (prefix '*'). |
| static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK, |
| SourceLocation OpLoc) { |
| if (Op->isTypeDependent()) |
| return S.Context.DependentTy; |
| |
| ExprResult ConvResult = S.UsualUnaryConversions(Op); |
| if (ConvResult.isInvalid()) |
| return QualType(); |
| Op = ConvResult.take(); |
| QualType OpTy = Op->getType(); |
| QualType Result; |
| |
| if (isa<CXXReinterpretCastExpr>(Op)) { |
| QualType OpOrigType = Op->IgnoreParenCasts()->getType(); |
| S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true, |
| Op->getSourceRange()); |
| } |
| |
| // Note that per both C89 and C99, indirection is always legal, even if OpTy |
| // is an incomplete type or void. It would be possible to warn about |
| // dereferencing a void pointer, but it's completely well-defined, and such a |
| // warning is unlikely to catch any mistakes. |
| if (const PointerType *PT = OpTy->getAs<PointerType>()) |
| Result = PT->getPointeeType(); |
| else if (const ObjCObjectPointerType *OPT = |
| OpTy->getAs<ObjCObjectPointerType>()) |
| Result = OPT->getPointeeType(); |
| else { |
| ExprResult PR = S.CheckPlaceholderExpr(Op); |
| if (PR.isInvalid()) return QualType(); |
| if (PR.take() != Op) |
| return CheckIndirectionOperand(S, PR.take(), VK, OpLoc); |
| } |
| |
| if (Result.isNull()) { |
| S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer) |
| << OpTy << Op->getSourceRange(); |
| return QualType(); |
| } |
| |
| // Dereferences are usually l-values... |
| VK = VK_LValue; |
| |
| // ...except that certain expressions are never l-values in C. |
| if (!S.getLangOptions().CPlusPlus && Result.isCForbiddenLValueType()) |
| VK = VK_RValue; |
| |
| return Result; |
| } |
| |
| static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode( |
| tok::TokenKind Kind) { |
| BinaryOperatorKind Opc; |
| switch (Kind) { |
| default: llvm_unreachable("Unknown binop!"); |
| case tok::periodstar: Opc = BO_PtrMemD; break; |
| case tok::arrowstar: Opc = BO_PtrMemI; break; |
| case tok::star: Opc = BO_Mul; break; |
| case tok::slash: Opc = BO_Div; break; |
| case tok::percent: Opc = BO_Rem; break; |
| case tok::plus: Opc = BO_Add; break; |
| case tok::minus: Opc = BO_Sub; break; |
| case tok::lessless: Opc = BO_Shl; break; |
| case tok::greatergreater: Opc = BO_Shr; break; |
| case tok::lessequal: Opc = BO_LE; break; |
| case tok::less: Opc = BO_LT; break; |
| case tok::greaterequal: Opc = BO_GE; break; |
| case tok::greater: Opc = BO_GT; break; |
| case tok::exclaimequal: Opc = BO_NE; break; |
| case tok::equalequal: Opc = BO_EQ; break; |
| case tok::amp: Opc = BO_And; break; |
| case tok::caret: Opc = BO_Xor; break; |
| case tok::pipe: Opc = BO_Or; break; |
| case tok::ampamp: Opc = BO_LAnd; break; |
| case tok::pipepipe: Opc = BO_LOr; break; |
| case tok::equal: Opc = BO_Assign; break; |
| case tok::starequal: Opc = BO_MulAssign; break; |
| case tok::slashequal: Opc = BO_DivAssign; break; |
| case tok::percentequal: Opc = BO_RemAssign; break; |
| case tok::plusequal: Opc = BO_AddAssign; break; |
| case tok::minusequal: Opc = BO_SubAssign; break; |
| case tok::lesslessequal: Opc = BO_ShlAssign; break; |
| case tok::greatergreaterequal: Opc = BO_ShrAssign; break; |
| case tok::ampequal: Opc = BO_AndAssign; break; |
| case tok::caretequal: Opc = BO_XorAssign; break; |
| case tok::pipeequal: Opc = BO_OrAssign; break; |
| case tok::comma: Opc = BO_Comma; break; |
| } |
| return Opc; |
| } |
| |
| static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode( |
| tok::TokenKind Kind) { |
| UnaryOperatorKind Opc; |
| switch (Kind) { |
| default: llvm_unreachable("Unknown unary op!"); |
| case tok::plusplus: Opc = UO_PreInc; break; |
| case tok::minusminus: Opc = UO_PreDec; break; |
| case tok::amp: Opc = UO_AddrOf; break; |
| case tok::star: Opc = UO_Deref; break; |
| case tok::plus: Opc = UO_Plus; break; |
| case tok::minus: Opc = UO_Minus; break; |
| case tok::tilde: Opc = UO_Not; break; |
| case tok::exclaim: Opc = UO_LNot; break; |
| case tok::kw___real: Opc = UO_Real; break; |
| case tok::kw___imag: Opc = UO_Imag; break; |
| case tok::kw___extension__: Opc = UO_Extension; break; |
| } |
| return Opc; |
| } |
| |
| /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself. |
| /// This warning is only emitted for builtin assignment operations. It is also |
| /// suppressed in the event of macro expansions. |
| static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr, |
| SourceLocation OpLoc) { |
| if (!S.ActiveTemplateInstantiations.empty()) |
| return; |
| if (OpLoc.isInvalid() || OpLoc.isMacroID()) |
| return; |
| LHSExpr = LHSExpr->IgnoreParenImpCasts(); |
| RHSExpr = RHSExpr->IgnoreParenImpCasts(); |
| const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); |
| const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); |
| if (!LHSDeclRef || !RHSDeclRef || |
| LHSDeclRef->getLocation().isMacroID() || |
| RHSDeclRef->getLocation().isMacroID()) |
| return; |
| const ValueDecl *LHSDecl = |
| cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl()); |
| const ValueDecl *RHSDecl = |
| cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl()); |
| if (LHSDecl != RHSDecl) |
| return; |
| if (LHSDecl->getType().isVolatileQualified()) |
| return; |
| if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>()) |
| if (RefTy->getPointeeType().isVolatileQualified()) |
| return; |
| |
| S.Diag(OpLoc, diag::warn_self_assignment) |
| << LHSDeclRef->getType() |
| << LHSExpr->getSourceRange() << RHSExpr->getSourceRange(); |
| } |
| |
| /// CreateBuiltinBinOp - Creates a new built-in binary operation with |
| /// operator @p Opc at location @c TokLoc. This routine only supports |
| /// built-in operations; ActOnBinOp handles overloaded operators. |
| ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc, |
| BinaryOperatorKind Opc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr); |
| QualType ResultTy; // Result type of the binary operator. |
| // The following two variables are used for compound assignment operators |
| QualType CompLHSTy; // Type of LHS after promotions for computation |
| QualType CompResultTy; // Type of computation result |
| ExprValueKind VK = VK_RValue; |
| ExprObjectKind OK = OK_Ordinary; |
| |
| switch (Opc) { |
| case BO_Assign: |
| ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType()); |
| if (getLangOptions().CPlusPlus && |
| LHS.get()->getObjectKind() != OK_ObjCProperty) { |
| VK = LHS.get()->getValueKind(); |
| OK = LHS.get()->getObjectKind(); |
| } |
| if (!ResultTy.isNull()) |
| DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc); |
| break; |
| case BO_PtrMemD: |
| case BO_PtrMemI: |
| ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc, |
| Opc == BO_PtrMemI); |
| break; |
| case BO_Mul: |
| case BO_Div: |
| ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false, |
| Opc == BO_Div); |
| break; |
| case BO_Rem: |
| ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc); |
| break; |
| case BO_Add: |
| ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc); |
| break; |
| case BO_Sub: |
| ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc); |
| break; |
| case BO_Shl: |
| case BO_Shr: |
| ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc); |
| break; |
| case BO_LE: |
| case BO_LT: |
| case BO_GE: |
| case BO_GT: |
| ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true); |
| break; |
| case BO_EQ: |
| case BO_NE: |
| ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false); |
| break; |
| case BO_And: |
| case BO_Xor: |
| case BO_Or: |
| ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc); |
| break; |
| case BO_LAnd: |
| case BO_LOr: |
| ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc); |
| break; |
| case BO_MulAssign: |
| case BO_DivAssign: |
| CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true, |
| Opc == BO_DivAssign); |
| CompLHSTy = CompResultTy; |
| if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) |
| ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); |
| break; |
| case BO_RemAssign: |
| CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true); |
| CompLHSTy = CompResultTy; |
| if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) |
| ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); |
| break; |
| case BO_AddAssign: |
| CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, &CompLHSTy); |
| if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) |
| ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); |
| break; |
| case BO_SubAssign: |
| CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy); |
| if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) |
| ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); |
| break; |
| case BO_ShlAssign: |
| case BO_ShrAssign: |
| CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true); |
| CompLHSTy = CompResultTy; |
| if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) |
| ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); |
| break; |
| case BO_AndAssign: |
| case BO_XorAssign: |
| case BO_OrAssign: |
| CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true); |
| CompLHSTy = CompResultTy; |
| if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) |
| ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); |
| break; |
| case BO_Comma: |
| ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc); |
| if (getLangOptions().CPlusPlus && !RHS.isInvalid()) { |
| VK = RHS.get()->getValueKind(); |
| OK = RHS.get()->getObjectKind(); |
| } |
| break; |
| } |
| if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid()) |
| return ExprError(); |
| |
| // Check for array bounds violations for both sides of the BinaryOperator |
| CheckArrayAccess(LHS.get()); |
| CheckArrayAccess(RHS.get()); |
| |
| if (CompResultTy.isNull()) |
| return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc, |
| ResultTy, VK, OK, OpLoc)); |
| if (getLangOptions().CPlusPlus && LHS.get()->getObjectKind() != |
| OK_ObjCProperty) { |
| VK = VK_LValue; |
| OK = LHS.get()->getObjectKind(); |
| } |
| return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc, |
| ResultTy, VK, OK, CompLHSTy, |
| CompResultTy, OpLoc)); |
| } |
| |
| /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison |
| /// operators are mixed in a way that suggests that the programmer forgot that |
| /// comparison operators have higher precedence. The most typical example of |
| /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1". |
| static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc, |
| SourceLocation OpLoc, Expr *LHSExpr, |
| Expr *RHSExpr) { |
| typedef BinaryOperator BinOp; |
| BinOp::Opcode LHSopc = static_cast<BinOp::Opcode>(-1), |
| RHSopc = static_cast<BinOp::Opcode>(-1); |
| if (BinOp *BO = dyn_cast<BinOp>(LHSExpr)) |
| LHSopc = BO->getOpcode(); |
| if (BinOp *BO = dyn_cast<BinOp>(RHSExpr)) |
| RHSopc = BO->getOpcode(); |
| |
| // Subs are not binary operators. |
| if (LHSopc == -1 && RHSopc == -1) |
| return; |
| |
| // Bitwise operations are sometimes used as eager logical ops. |
| // Don't diagnose this. |
| if ((BinOp::isComparisonOp(LHSopc) || BinOp::isBitwiseOp(LHSopc)) && |
| (BinOp::isComparisonOp(RHSopc) || BinOp::isBitwiseOp(RHSopc))) |
| return; |
| |
| bool isLeftComp = BinOp::isComparisonOp(LHSopc); |
| bool isRightComp = BinOp::isComparisonOp(RHSopc); |
| if (!isLeftComp && !isRightComp) return; |
| |
| SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(), |
| OpLoc) |
| : SourceRange(OpLoc, RHSExpr->getLocEnd()); |
| std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(LHSopc) |
| : BinOp::getOpcodeStr(RHSopc); |
| SourceRange ParensRange = isLeftComp ? |
| SourceRange(cast<BinOp>(LHSExpr)->getRHS()->getLocStart(), |
| RHSExpr->getLocEnd()) |
| : SourceRange(LHSExpr->getLocStart(), |
| cast<BinOp>(RHSExpr)->getLHS()->getLocStart()); |
| |
| Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel) |
| << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr; |
| SuggestParentheses(Self, OpLoc, |
| Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr, |
| RHSExpr->getSourceRange()); |
| SuggestParentheses(Self, OpLoc, |
| Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc), |
| ParensRange); |
| } |
| |
| /// \brief It accepts a '&' expr that is inside a '|' one. |
| /// Emit a diagnostic together with a fixit hint that wraps the '&' expression |
| /// in parentheses. |
| static void |
| EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc, |
| BinaryOperator *Bop) { |
| assert(Bop->getOpcode() == BO_And); |
| Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or) |
| << Bop->getSourceRange() << OpLoc; |
| SuggestParentheses(Self, Bop->getOperatorLoc(), |
| Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence), |
| Bop->getSourceRange()); |
| } |
| |
| /// \brief It accepts a '&&' expr that is inside a '||' one. |
| /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression |
| /// in parentheses. |
| static void |
| EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc, |
| BinaryOperator *Bop) { |
| assert(Bop->getOpcode() == BO_LAnd); |
| Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or) |
| << Bop->getSourceRange() << OpLoc; |
| SuggestParentheses(Self, Bop->getOperatorLoc(), |
| Self.PDiag(diag::note_logical_and_in_logical_or_silence), |
| Bop->getSourceRange()); |
| } |
| |
| /// \brief Returns true if the given expression can be evaluated as a constant |
| /// 'true'. |
| static bool EvaluatesAsTrue(Sema &S, Expr *E) { |
| bool Res; |
| return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res; |
| } |
| |
| /// \brief Returns true if the given expression can be evaluated as a constant |
| /// 'false'. |
| static bool EvaluatesAsFalse(Sema &S, Expr *E) { |
| bool Res; |
| return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res; |
| } |
| |
| /// \brief Look for '&&' in the left hand of a '||' expr. |
| static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) { |
| if (Bop->getOpcode() == BO_LAnd) { |
| // If it's "a && b || 0" don't warn since the precedence doesn't matter. |
| if (EvaluatesAsFalse(S, RHSExpr)) |
| return; |
| // If it's "1 && a || b" don't warn since the precedence doesn't matter. |
| if (!EvaluatesAsTrue(S, Bop->getLHS())) |
| return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); |
| } else if (Bop->getOpcode() == BO_LOr) { |
| if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) { |
| // If it's "a || b && 1 || c" we didn't warn earlier for |
| // "a || b && 1", but warn now. |
| if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS())) |
| return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop); |
| } |
| } |
| } |
| } |
| |
| /// \brief Look for '&&' in the right hand of a '||' expr. |
| static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) { |
| if (Bop->getOpcode() == BO_LAnd) { |
| // If it's "0 || a && b" don't warn since the precedence doesn't matter. |
| if (EvaluatesAsFalse(S, LHSExpr)) |
| return; |
| // If it's "a || b && 1" don't warn since the precedence doesn't matter. |
| if (!EvaluatesAsTrue(S, Bop->getRHS())) |
| return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); |
| } |
| } |
| } |
| |
| /// \brief Look for '&' in the left or right hand of a '|' expr. |
| static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc, |
| Expr *OrArg) { |
| if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) { |
| if (Bop->getOpcode() == BO_And) |
| return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop); |
| } |
| } |
| |
| /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky |
| /// precedence. |
| static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc, |
| SourceLocation OpLoc, Expr *LHSExpr, |
| Expr *RHSExpr){ |
| // Diagnose "arg1 'bitwise' arg2 'eq' arg3". |
| if (BinaryOperator::isBitwiseOp(Opc)) |
| DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr); |
| |
| // Diagnose "arg1 & arg2 | arg3" |
| if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) { |
| DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr); |
| DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr); |
| } |
| |
| // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does. |
| // We don't warn for 'assert(a || b && "bad")' since this is safe. |
| if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) { |
| DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr); |
| DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr); |
| } |
| } |
| |
| // Binary Operators. 'Tok' is the token for the operator. |
| ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc, |
| tok::TokenKind Kind, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind); |
| assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression"); |
| assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression"); |
| |
| // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0" |
| DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr); |
| |
| return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr); |
| } |
| |
| /// Build an overloaded binary operator expression in the given scope. |
| static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc, |
| BinaryOperatorKind Opc, |
| Expr *LHS, Expr *RHS) { |
| // Find all of the overloaded operators visible from this |
| // point. We perform both an operator-name lookup from the local |
| // scope and an argument-dependent lookup based on the types of |
| // the arguments. |
| UnresolvedSet<16> Functions; |
| OverloadedOperatorKind OverOp |
| = BinaryOperator::getOverloadedOperator(Opc); |
| if (Sc && OverOp != OO_None) |
| S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(), |
| RHS->getType(), Functions); |
| |
| // Build the (potentially-overloaded, potentially-dependent) |
| // binary operation. |
| return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS); |
| } |
| |
| ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc, |
| BinaryOperatorKind Opc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| // We want to end up calling one of checkPseudoObjectAssignment |
| // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if |
| // both expressions are overloadable or either is type-dependent), |
| // or CreateBuiltinBinOp (in any other case). We also want to get |
| // any placeholder types out of the way. |
| |
| // Handle pseudo-objects in the LHS. |
| if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) { |
| // Assignments with a pseudo-object l-value need special analysis. |
| if (pty->getKind() == BuiltinType::PseudoObject && |
| BinaryOperator::isAssignmentOp(Opc)) |
| return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr); |
| |
| // Don't resolve overloads if the other type is overloadable. |
| if (pty->getKind() == BuiltinType::Overload) { |
| // We can't actually test that if we still have a placeholder, |
| // though. Fortunately, none of the exceptions we see in that |
| // code below are valid when the LHS is an overload set. Note |
| // that an overload set can be dependently-typed, but it never |
| // instantiates to having an overloadable type. |
| ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr); |
| if (resolvedRHS.isInvalid()) return ExprError(); |
| RHSExpr = resolvedRHS.take(); |
| |
| if (RHSExpr->isTypeDependent() || |
| RHSExpr->getType()->isOverloadableType()) |
| return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); |
| } |
| |
| ExprResult LHS = CheckPlaceholderExpr(LHSExpr); |
| if (LHS.isInvalid()) return ExprError(); |
| LHSExpr = LHS.take(); |
| } |
| |
| // Handle pseudo-objects in the RHS. |
| if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) { |
| // An overload in the RHS can potentially be resolved by the type |
| // being assigned to. |
| if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) { |
| if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent()) |
| return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); |
| |
| return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr); |
| } |
| |
| // Don't resolve overloads if the other type is overloadable. |
| if (pty->getKind() == BuiltinType::Overload && |
| LHSExpr->getType()->isOverloadableType()) |
| return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); |
| |
| ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr); |
| if (!resolvedRHS.isUsable()) return ExprError(); |
| RHSExpr = resolvedRHS.take(); |
| } |
| |
| if (getLangOptions().CPlusPlus) { |
| // If either expression is type-dependent, always build an |
| // overloaded op. |
| if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent()) |
| return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); |
| |
| // Otherwise, build an overloaded op if either expression has an |
| // overloadable type. |
| if (LHSExpr->getType()->isOverloadableType() || |
| RHSExpr->getType()->isOverloadableType()) |
| return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); |
| } |
| |
| // Build a built-in binary operation. |
| return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr); |
| } |
| |
| ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc, |
| UnaryOperatorKind Opc, |
| Expr *InputExpr) { |
| ExprResult Input = Owned(InputExpr); |
| ExprValueKind VK = VK_RValue; |
| ExprObjectKind OK = OK_Ordinary; |
| QualType resultType; |
| switch (Opc) { |
| case UO_PreInc: |
| case UO_PreDec: |
| case UO_PostInc: |
| case UO_PostDec: |
| resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc, |
| Opc == UO_PreInc || |
| Opc == UO_PostInc, |
| Opc == UO_PreInc || |
| Opc == UO_PreDec); |
| break; |
| case UO_AddrOf: |
| resultType = CheckAddressOfOperand(*this, Input, OpLoc); |
| break; |
| case UO_Deref: { |
| Input = DefaultFunctionArrayLvalueConversion(Input.take()); |
| resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc); |
| break; |
| } |
| case UO_Plus: |
| case UO_Minus: |
| Input = UsualUnaryConversions(Input.take()); |
| if (Input.isInvalid()) return ExprError(); |
| resultType = Input.get()->getType(); |
| if (resultType->isDependentType()) |
| break; |
| if (resultType->isArithmeticType() || // C99 6.5.3.3p1 |
| resultType->isVectorType()) |
| break; |
| else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7 |
| resultType->isEnumeralType()) |
| break; |
| else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6 |
| Opc == UO_Plus && |
| resultType->isPointerType()) |
| break; |
| |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << resultType << Input.get()->getSourceRange()); |
| |
| case UO_Not: // bitwise complement |
| Input = UsualUnaryConversions(Input.take()); |
| if (Input.isInvalid()) return ExprError(); |
| resultType = Input.get()->getType(); |
| if (resultType->isDependentType()) |
| break; |
| // C99 6.5.3.3p1. We allow complex int and float as a GCC extension. |
| if (resultType->isComplexType() || resultType->isComplexIntegerType()) |
| // C99 does not support '~' for complex conjugation. |
| Diag(OpLoc, diag::ext_integer_complement_complex) |
| << resultType << Input.get()->getSourceRange(); |
| else if (resultType->hasIntegerRepresentation()) |
| break; |
| else { |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << resultType << Input.get()->getSourceRange()); |
| } |
| break; |
| |
| case UO_LNot: // logical negation |
| // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). |
| Input = DefaultFunctionArrayLvalueConversion(Input.take()); |
| if (Input.isInvalid()) return ExprError(); |
| resultType = Input.get()->getType(); |
| |
| // Though we still have to promote half FP to float... |
| if (resultType->isHalfType()) { |
| Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take(); |
| resultType = Context.FloatTy; |
| } |
| |
| if (resultType->isDependentType()) |
| break; |
| if (resultType->isScalarType()) { |
| // C99 6.5.3.3p1: ok, fallthrough; |
| if (Context.getLangOptions().CPlusPlus) { |
| // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9: |
| // operand contextually converted to bool. |
| Input = ImpCastExprToType(Input.take(), Context.BoolTy, |
| ScalarTypeToBooleanCastKind(resultType)); |
| } |
| } else { |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << resultType << Input.get()->getSourceRange()); |
| } |
| |
| // LNot always has type int. C99 6.5.3.3p5. |
| // In C++, it's bool. C++ 5.3.1p8 |
| resultType = Context.getLogicalOperationType(); |
| break; |
| case UO_Real: |
| case UO_Imag: |
| resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real); |
| // _Real and _Imag map ordinary l-values into ordinary l-values. |
| if (Input.isInvalid()) return ExprError(); |
| if (Input.get()->getValueKind() != VK_RValue && |
| Input.get()->getObjectKind() == OK_Ordinary) |
| VK = Input.get()->getValueKind(); |
| break; |
| case UO_Extension: |
| resultType = Input.get()->getType(); |
| VK = Input.get()->getValueKind(); |
| OK = Input.get()->getObjectKind(); |
| break; |
| } |
| if (resultType.isNull() || Input.isInvalid()) |
| return ExprError(); |
| |
| // Check for array bounds violations in the operand of the UnaryOperator, |
| // except for the '*' and '&' operators that have to be handled specially |
| // by CheckArrayAccess (as there are special cases like &array[arraysize] |
| // that are explicitly defined as valid by the standard). |
| if (Opc != UO_AddrOf && Opc != UO_Deref) |
| CheckArrayAccess(Input.get()); |
| |
| return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType, |
| VK, OK, OpLoc)); |
| } |
| |
| /// \brief Determine whether the given expression is a qualified member |
| /// access expression, of a form that could be turned into a pointer to member |
| /// with the address-of operator. |
| static bool isQualifiedMemberAccess(Expr *E) { |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { |
| if (!DRE->getQualifier()) |
| return false; |
| |
| ValueDecl *VD = DRE->getDecl(); |
| if (!VD->isCXXClassMember()) |
| return false; |
| |
| if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD)) |
| return true; |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD)) |
| return Method->isInstance(); |
| |
| return false; |
| } |
| |
| if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { |
| if (!ULE->getQualifier()) |
| return false; |
| |
| for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(), |
| DEnd = ULE->decls_end(); |
| D != DEnd; ++D) { |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) { |
| if (Method->isInstance()) |
| return true; |
| } else { |
| // Overload set does not contain methods. |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| return false; |
| } |
| |
| ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc, |
| UnaryOperatorKind Opc, Expr *Input) { |
| // First things first: handle placeholders so that the |
| // overloaded-operator check considers the right type. |
| if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) { |
| // Increment and decrement of pseudo-object references. |
| if (pty->getKind() == BuiltinType::PseudoObject && |
| UnaryOperator::isIncrementDecrementOp(Opc)) |
| return checkPseudoObjectIncDec(S, OpLoc, Opc, Input); |
| |
| // extension is always a builtin operator. |
| if (Opc == UO_Extension) |
| return CreateBuiltinUnaryOp(OpLoc, Opc, Input); |
| |
| // & gets special logic for several kinds of placeholder. |
| // The builtin code knows what to do. |
| if (Opc == UO_AddrOf && |
| (pty->getKind() == BuiltinType::Overload || |
| pty->getKind() == BuiltinType::UnknownAny || |
| pty->getKind() == BuiltinType::BoundMember)) |
| return CreateBuiltinUnaryOp(OpLoc, Opc, Input); |
| |
| // Anything else needs to be handled now. |
| ExprResult Result = CheckPlaceholderExpr(Input); |
| if (Result.isInvalid()) return ExprError(); |
| Input = Result.take(); |
| } |
| |
| if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() && |
| UnaryOperator::getOverloadedOperator(Opc) != OO_None && |
| !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) { |
| // Find all of the overloaded operators visible from this |
| // point. We perform both an operator-name lookup from the local |
| // scope and an argument-dependent lookup based on the types of |
| // the arguments. |
| UnresolvedSet<16> Functions; |
| OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc); |
| if (S && OverOp != OO_None) |
| LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(), |
| Functions); |
| |
| return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input); |
| } |
| |
| return CreateBuiltinUnaryOp(OpLoc, Opc, Input); |
| } |
| |
| // Unary Operators. 'Tok' is the token for the operator. |
| ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, |
| tok::TokenKind Op, Expr *Input) { |
| return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input); |
| } |
| |
| /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". |
| ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, |
| LabelDecl *TheDecl) { |
| TheDecl->setUsed(); |
| // Create the AST node. The address of a label always has type 'void*'. |
| return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl, |
| Context.getPointerType(Context.VoidTy))); |
| } |
| |
| /// Given the last statement in a statement-expression, check whether |
| /// the result is a producing expression (like a call to an |
| /// ns_returns_retained function) and, if so, rebuild it to hoist the |
| /// release out of the full-expression. Otherwise, return null. |
| /// Cannot fail. |
| static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) { |
| // Should always be wrapped with one of these. |
| ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement); |
| if (!cleanups) return 0; |
| |
| ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr()); |
| if (!cast || cast->getCastKind() != CK_ARCConsumeObject) |
| return 0; |
| |
| // Splice out the cast. This shouldn't modify any interesting |
| // features of the statement. |
| Expr *producer = cast->getSubExpr(); |
| assert(producer->getType() == cast->getType()); |
| assert(producer->getValueKind() == cast->getValueKind()); |
| cleanups->setSubExpr(producer); |
| return cleanups; |
| } |
| |
| ExprResult |
| Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt, |
| SourceLocation RPLoc) { // "({..})" |
| assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!"); |
| CompoundStmt *Compound = cast<CompoundStmt>(SubStmt); |
| |
| bool isFileScope |
| = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0); |
| if (isFileScope) |
| return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope)); |
| |
| // FIXME: there are a variety of strange constraints to enforce here, for |
| // example, it is not possible to goto into a stmt expression apparently. |
| // More semantic analysis is needed. |
| |
| // If there are sub stmts in the compound stmt, take the type of the last one |
| // as the type of the stmtexpr. |
| QualType Ty = Context.VoidTy; |
| bool StmtExprMayBindToTemp = false; |
| if (!Compound->body_empty()) { |
| Stmt *LastStmt = Compound->body_back(); |
| LabelStmt *LastLabelStmt = 0; |
| // If LastStmt is a label, skip down through into the body. |
| while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) { |
| LastLabelStmt = Label; |
| LastStmt = Label->getSubStmt(); |
| } |
| |
| if (Expr *LastE = dyn_cast<Expr>(LastStmt)) { |
| // Do function/array conversion on the last expression, but not |
| // lvalue-to-rvalue. However, initialize an unqualified type. |
| ExprResult LastExpr = DefaultFunctionArrayConversion(LastE); |
| if (LastExpr.isInvalid()) |
| return ExprError(); |
| Ty = LastExpr.get()->getType().getUnqualifiedType(); |
| |
| if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) { |
| // In ARC, if the final expression ends in a consume, splice |
| // the consume out and bind it later. In the alternate case |
| // (when dealing with a retainable type), the result |
| // initialization will create a produce. In both cases the |
| // result will be +1, and we'll need to balance that out with |
| // a bind. |
| if (Expr *rebuiltLastStmt |
| = maybeRebuildARCConsumingStmt(LastExpr.get())) { |
| LastExpr = rebuiltLastStmt; |
| } else { |
| LastExpr = PerformCopyInitialization( |
| InitializedEntity::InitializeResult(LPLoc, |
| Ty, |
| false), |
| SourceLocation(), |
| LastExpr); |
| } |
| |
| if (LastExpr.isInvalid()) |
| return ExprError(); |
| if (LastExpr.get() != 0) { |
| if (!LastLabelStmt) |
| Compound->setLastStmt(LastExpr.take()); |
| else |
| LastLabelStmt->setSubStmt(LastExpr.take()); |
| StmtExprMayBindToTemp = true; |
| } |
| } |
| } |
| } |
| |
| // FIXME: Check that expression type is complete/non-abstract; statement |
| // expressions are not lvalues. |
| Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc); |
| if (StmtExprMayBindToTemp) |
| return MaybeBindToTemporary(ResStmtExpr); |
| return Owned(ResStmtExpr); |
| } |
| |
| ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, |
| TypeSourceInfo *TInfo, |
| OffsetOfComponent *CompPtr, |
| unsigned NumComponents, |
| SourceLocation RParenLoc) { |
| QualType ArgTy = TInfo->getType(); |
| bool Dependent = ArgTy->isDependentType(); |
| SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange(); |
| |
| // We must have at least one component that refers to the type, and the first |
| // one is known to be a field designator. Verify that the ArgTy represents |
| // a struct/union/class. |
| if (!Dependent && !ArgTy->isRecordType()) |
| return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type) |
| << ArgTy << TypeRange); |
| |
| // Type must be complete per C99 7.17p3 because a declaring a variable |
| // with an incomplete type would be ill-formed. |
| if (!Dependent |
| && RequireCompleteType(BuiltinLoc, ArgTy, |
| PDiag(diag::err_offsetof_incomplete_type) |
| << TypeRange)) |
| return ExprError(); |
| |
| // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a |
| // GCC extension, diagnose them. |
| // FIXME: This diagnostic isn't actually visible because the location is in |
| // a system header! |
| if (NumComponents != 1) |
| Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator) |
| << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd); |
| |
| bool DidWarnAboutNonPOD = false; |
| QualType CurrentType = ArgTy; |
| typedef OffsetOfExpr::OffsetOfNode OffsetOfNode; |
| SmallVector<OffsetOfNode, 4> Comps; |
| SmallVector<Expr*, 4> Exprs; |
| for (unsigned i = 0; i != NumComponents; ++i) { |
| const OffsetOfComponent &OC = CompPtr[i]; |
| if (OC.isBrackets) { |
| // Offset of an array sub-field. TODO: Should we allow vector elements? |
| if (!CurrentType->isDependentType()) { |
| const ArrayType *AT = Context.getAsArrayType(CurrentType); |
| if(!AT) |
| return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type) |
| << CurrentType); |
| CurrentType = AT->getElementType(); |
| } else |
| CurrentType = Context.DependentTy; |
| |
| ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E)); |
| if (IdxRval.isInvalid()) |
| return ExprError(); |
| Expr *Idx = IdxRval.take(); |
| |
| // The expression must be an integral expression. |
| // FIXME: An integral constant expression? |
| if (!Idx->isTypeDependent() && !Idx->isValueDependent() && |
| !Idx->getType()->isIntegerType()) |
| return ExprError(Diag(Idx->getLocStart(), |
| diag::err_typecheck_subscript_not_integer) |
| << Idx->getSourceRange()); |
| |
| // Record this array index. |
| Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd)); |
| Exprs.push_back(Idx); |
| continue; |
| } |
| |
| // Offset of a field. |
| if (CurrentType->isDependentType()) { |
| // We have the offset of a field, but we can't look into the dependent |
| // type. Just record the identifier of the field. |
| Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd)); |
| CurrentType = Context.DependentTy; |
| continue; |
| } |
| |
| // We need to have a complete type to look into. |
| if (RequireCompleteType(OC.LocStart, CurrentType, |
| diag::err_offsetof_incomplete_type)) |
| return ExprError(); |
| |
| // Look for the designated field. |
| const RecordType *RC = CurrentType->getAs<RecordType>(); |
| if (!RC) |
| return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type) |
| << CurrentType); |
| RecordDecl *RD = RC->getDecl(); |
| |
| // C++ [lib.support.types]p5: |
| // The macro offsetof accepts a restricted set of type arguments in this |
| // International Standard. type shall be a POD structure or a POD union |
| // (clause 9). |
| if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { |
| if (!CRD->isPOD() && !DidWarnAboutNonPOD && |
| DiagRuntimeBehavior(BuiltinLoc, 0, |
| PDiag(diag::warn_offsetof_non_pod_type) |
| << SourceRange(CompPtr[0].LocStart, OC.LocEnd) |
| << CurrentType)) |
| DidWarnAboutNonPOD = true; |
| } |
| |
| // Look for the field. |
| LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName); |
| LookupQualifiedName(R, RD); |
| FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>(); |
| IndirectFieldDecl *IndirectMemberDecl = 0; |
| if (!MemberDecl) { |
| if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>())) |
| MemberDecl = IndirectMemberDecl->getAnonField(); |
| } |
| |
| if (!MemberDecl) |
| return ExprError(Diag(BuiltinLoc, diag::err_no_member) |
| << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, |
| OC.LocEnd)); |
| |
| // C99 7.17p3: |
| // (If the specified member is a bit-field, the behavior is undefined.) |
| // |
| // We diagnose this as an error. |
| if (MemberDecl->isBitField()) { |
| Diag(OC.LocEnd, diag::err_offsetof_bitfield) |
| << MemberDecl->getDeclName() |
| << SourceRange(BuiltinLoc, RParenLoc); |
| Diag(MemberDecl->getLocation(), diag::note_bitfield_decl); |
| return ExprError(); |
| } |
| |
| RecordDecl *Parent = MemberDecl->getParent(); |
| if (IndirectMemberDecl) |
| Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext()); |
| |
| // If the member was found in a base class, introduce OffsetOfNodes for |
| // the base class indirections. |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/false); |
| if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) { |
| CXXBasePath &Path = Paths.front(); |
| for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end(); |
| B != BEnd; ++B) |
| Comps.push_back(OffsetOfNode(B->Base)); |
| } |
| |
| if (IndirectMemberDecl) { |
| for (IndirectFieldDecl::chain_iterator FI = |
| IndirectMemberDecl->chain_begin(), |
| FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) { |
| assert(isa<FieldDecl>(*FI)); |
| Comps.push_back(OffsetOfNode(OC.LocStart, |
| cast<FieldDecl>(*FI), OC.LocEnd)); |
| } |
| } else |
| Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd)); |
| |
| CurrentType = MemberDecl->getType().getNonReferenceType(); |
| } |
| |
| return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, |
| TInfo, Comps.data(), Comps.size(), |
| Exprs.data(), Exprs.size(), RParenLoc)); |
| } |
| |
| ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, |
| SourceLocation BuiltinLoc, |
| SourceLocation TypeLoc, |
| ParsedType ParsedArgTy, |
| OffsetOfComponent *CompPtr, |
| unsigned NumComponents, |
| SourceLocation RParenLoc) { |
| |
| TypeSourceInfo *ArgTInfo; |
| QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo); |
| if (ArgTy.isNull()) |
| return ExprError(); |
| |
| if (!ArgTInfo) |
| ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc); |
| |
| return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents, |
| RParenLoc); |
| } |
| |
| |
| ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, |
| Expr *CondExpr, |
| Expr *LHSExpr, Expr *RHSExpr, |
| SourceLocation RPLoc) { |
| assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); |
| |
| ExprValueKind VK = VK_RValue; |
| ExprObjectKind OK = OK_Ordinary; |
| QualType resType; |
| bool ValueDependent = false; |
| if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) { |
| resType = Context.DependentTy; |
| ValueDependent = true; |
| } else { |
| // The conditional expression is required to be a constant expression. |
| llvm::APSInt condEval(32); |
| SourceLocation ExpLoc; |
| if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc)) |
| return ExprError(Diag(ExpLoc, |
| diag::err_typecheck_choose_expr_requires_constant) |
| << CondExpr->getSourceRange()); |
| |
| // If the condition is > zero, then the AST type is the same as the LSHExpr. |
| Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr; |
| |
| resType = ActiveExpr->getType(); |
| ValueDependent = ActiveExpr->isValueDependent(); |
| VK = ActiveExpr->getValueKind(); |
| OK = ActiveExpr->getObjectKind(); |
| } |
| |
| return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, |
| resType, VK, OK, RPLoc, |
| resType->isDependentType(), |
| ValueDependent)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Clang Extensions. |
| //===----------------------------------------------------------------------===// |
| |
| /// ActOnBlockStart - This callback is invoked when a block literal is started. |
| void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) { |
| BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc); |
| PushBlockScope(CurScope, Block); |
| CurContext->addDecl(Block); |
| if (CurScope) |
| PushDeclContext(CurScope, Block); |
| else |
| CurContext = Block; |
| |
| // Enter a new evaluation context to insulate the block from any |
| // cleanups from the enclosing full-expression. |
| PushExpressionEvaluationContext(PotentiallyEvaluated); |
| } |
| |
| void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) { |
| assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!"); |
| assert(ParamInfo.getContext() == Declarator::BlockLiteralContext); |
| BlockScopeInfo *CurBlock = getCurBlock(); |
| |
| TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope); |
| QualType T = Sig->getType(); |
| |
| // GetTypeForDeclarator always produces a function type for a block |
| // literal signature. Furthermore, it is always a FunctionProtoType |
| // unless the function was written with a typedef. |
| assert(T->isFunctionType() && |
| "GetTypeForDeclarator made a non-function block signature"); |
| |
| // Look for an explicit signature in that function type. |
| FunctionProtoTypeLoc ExplicitSignature; |
| |
| TypeLoc tmp = Sig->getTypeLoc().IgnoreParens(); |
| if (isa<FunctionProtoTypeLoc>(tmp)) { |
| ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp); |
| |
| // Check whether that explicit signature was synthesized by |
| // GetTypeForDeclarator. If so, don't save that as part of the |
| // written signature. |
| if (ExplicitSignature.getLocalRangeBegin() == |
| ExplicitSignature.getLocalRangeEnd()) { |
| // This would be much cheaper if we stored TypeLocs instead of |
| // TypeSourceInfos. |
| TypeLoc Result = ExplicitSignature.getResultLoc(); |
| unsigned Size = Result.getFullDataSize(); |
| Sig = Context.CreateTypeSourceInfo(Result.getType(), Size); |
| Sig->getTypeLoc().initializeFullCopy(Result, Size); |
| |
| ExplicitSignature = FunctionProtoTypeLoc(); |
| } |
| } |
| |
| CurBlock->TheDecl->setSignatureAsWritten(Sig); |
| CurBlock->FunctionType = T; |
| |
| const FunctionType *Fn = T->getAs<FunctionType>(); |
| QualType RetTy = Fn->getResultType(); |
| bool isVariadic = |
| (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic()); |
| |
| CurBlock->TheDecl->setIsVariadic(isVariadic); |
| |
| // Don't allow returning a objc interface by value. |
| if (RetTy->isObjCObjectType()) { |
| Diag(ParamInfo.getSourceRange().getBegin(), |
| diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy; |
| return; |
| } |
| |
| // Context.DependentTy is used as a placeholder for a missing block |
| // return type. TODO: what should we do with declarators like: |
| // ^ * { ... } |
| // If the answer is "apply template argument deduction".... |
| if (RetTy != Context.DependentTy) { |
| CurBlock->ReturnType = RetTy; |
| CurBlock->TheDecl->setBlockMissingReturnType(false); |
| } |
| |
| // Push block parameters from the declarator if we had them. |
| SmallVector<ParmVarDecl*, 8> Params; |
| if (ExplicitSignature) { |
| for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) { |
| ParmVarDecl *Param = ExplicitSignature.getArg(I); |
| if (Param->getIdentifier() == 0 && |
| !Param->isImplicit() && |
| !Param->isInvalidDecl() && |
| !getLangOptions().CPlusPlus) |
| Diag(Param->getLocation(), diag::err_parameter_name_omitted); |
| Params.push_back(Param); |
| } |
| |
| // Fake up parameter variables if we have a typedef, like |
| // ^ fntype { ... } |
| } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) { |
| for (FunctionProtoType::arg_type_iterator |
| I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) { |
| ParmVarDecl *Param = |
| BuildParmVarDeclForTypedef(CurBlock->TheDecl, |
| ParamInfo.getSourceRange().getBegin(), |
| *I); |
| Params.push_back(Param); |
| } |
| } |
| |
| // Set the parameters on the block decl. |
| if (!Params.empty()) { |
| CurBlock->TheDecl->setParams(Params); |
| CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(), |
| CurBlock->TheDecl->param_end(), |
| /*CheckParameterNames=*/false); |
| } |
| |
| // Finally we can process decl attributes. |
| ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo); |
| |
| // Put the parameter variables in scope. We can bail out immediately |
| // if we don't have any. |
| if (Params.empty()) |
| return; |
| |
| for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(), |
| E = CurBlock->TheDecl->param_end(); AI != E; ++AI) { |
| (*AI)->setOwningFunction(CurBlock->TheDecl); |
| |
| // If this has an identifier, add it to the scope stack. |
| if ((*AI)->getIdentifier()) { |
| CheckShadow(CurBlock->TheScope, *AI); |
| |
| PushOnScopeChains(*AI, CurBlock->TheScope); |
| } |
| } |
| } |
| |
| /// ActOnBlockError - If there is an error parsing a block, this callback |
| /// is invoked to pop the information about the block from the action impl. |
| void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) { |
| // Leave the expression-evaluation context. |
| DiscardCleanupsInEvaluationContext(); |
| PopExpressionEvaluationContext(); |
| |
| // Pop off CurBlock, handle nested blocks. |
| PopDeclContext(); |
| PopFunctionScopeInfo(); |
| } |
| |
| /// ActOnBlockStmtExpr - This is called when the body of a block statement |
| /// literal was successfully completed. ^(int x){...} |
| ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, |
| Stmt *Body, Scope *CurScope) { |
| // If blocks are disabled, emit an error. |
| if (!LangOpts.Blocks) |
| Diag(CaretLoc, diag::err_blocks_disable); |
| |
| // Leave the expression-evaluation context. |
| assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!"); |
| PopExpressionEvaluationContext(); |
| |
| BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back()); |
| |
| PopDeclContext(); |
| |
| QualType RetTy = Context.VoidTy; |
| if (!BSI->ReturnType.isNull()) |
| RetTy = BSI->ReturnType; |
| |
| bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>(); |
| QualType BlockTy; |
| |
| // Set the captured variables on the block. |
| BSI->TheDecl->setCaptures(Context, BSI->Captures.begin(), BSI->Captures.end(), |
| BSI->CapturesCXXThis); |
| |
| // If the user wrote a function type in some form, try to use that. |
| if (!BSI->FunctionType.isNull()) { |
| const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>(); |
| |
| FunctionType::ExtInfo Ext = FTy->getExtInfo(); |
| if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true); |
| |
| // Turn protoless block types into nullary block types. |
| if (isa<FunctionNoProtoType>(FTy)) { |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.ExtInfo = Ext; |
| BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI); |
| |
| // Otherwise, if we don't need to change anything about the function type, |
| // preserve its sugar structure. |
| } else if (FTy->getResultType() == RetTy && |
| (!NoReturn || FTy->getNoReturnAttr())) { |
| BlockTy = BSI->FunctionType; |
| |
| // Otherwise, make the minimal modifications to the function type. |
| } else { |
| const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy); |
| FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| EPI.TypeQuals = 0; // FIXME: silently? |
| EPI.ExtInfo = Ext; |
| BlockTy = Context.getFunctionType(RetTy, |
| FPT->arg_type_begin(), |
| FPT->getNumArgs(), |
| EPI); |
| } |
| |
| // If we don't have a function type, just build one from nothing. |
| } else { |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn); |
| BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI); |
| } |
| |
| DiagnoseUnusedParameters(BSI->TheDecl->param_begin(), |
| BSI->TheDecl->param_end()); |
| BlockTy = Context.getBlockPointerType(BlockTy); |
| |
| // If needed, diagnose invalid gotos and switches in the block. |
| if (getCurFunction()->NeedsScopeChecking() && |
| !hasAnyUnrecoverableErrorsInThisFunction()) |
| DiagnoseInvalidJumps(cast<CompoundStmt>(Body)); |
| |
| BSI->TheDecl->setBody(cast<CompoundStmt>(Body)); |
| |
| for (BlockDecl::capture_const_iterator ci = BSI->TheDecl->capture_begin(), |
| ce = BSI->TheDecl->capture_end(); ci != ce; ++ci) { |
| const VarDecl *variable = ci->getVariable(); |
| QualType T = variable->getType(); |
| QualType::DestructionKind destructKind = T.isDestructedType(); |
| if (destructKind != QualType::DK_none) |
| getCurFunction()->setHasBranchProtectedScope(); |
| } |
| |
| computeNRVO(Body, getCurBlock()); |
| |
| BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy); |
| const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy(); |
| PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result); |
| |
| // If the block isn't obviously global, i.e. it captures anything at |
| // all, mark this full-expression as needing a cleanup. |
| if (Result->getBlockDecl()->hasCaptures()) { |
| ExprCleanupObjects.push_back(Result->getBlockDecl()); |
| ExprNeedsCleanups = true; |
| } |
| |
| return Owned(Result); |
| } |
| |
| ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, |
| Expr *E, ParsedType Ty, |
| SourceLocation RPLoc) { |
| TypeSourceInfo *TInfo; |
| GetTypeFromParser(Ty, &TInfo); |
| return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc); |
| } |
| |
| ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc, |
| Expr *E, TypeSourceInfo *TInfo, |
| SourceLocation RPLoc) { |
| Expr *OrigExpr = E; |
| |
| // Get the va_list type |
| QualType VaListType = Context.getBuiltinVaListType(); |
| if (VaListType->isArrayType()) { |
| // Deal with implicit array decay; for example, on x86-64, |
| // va_list is an array, but it's supposed to decay to |
| // a pointer for va_arg. |
| VaListType = Context.getArrayDecayedType(VaListType); |
| // Make sure the input expression also decays appropriately. |
| ExprResult Result = UsualUnaryConversions(E); |
| if (Result.isInvalid()) |
| return ExprError(); |
| E = Result.take(); |
| } else { |
| // Otherwise, the va_list argument must be an l-value because |
| // it is modified by va_arg. |
| if (!E->isTypeDependent() && |
| CheckForModifiableLvalue(E, BuiltinLoc, *this)) |
| return ExprError(); |
| } |
| |
| if (!E->isTypeDependent() && |
| !Context.hasSameType(VaListType, E->getType())) { |
| return ExprError(Diag(E->getLocStart(), |
| diag::err_first_argument_to_va_arg_not_of_type_va_list) |
| << OrigExpr->getType() << E->getSourceRange()); |
| } |
| |
| if (!TInfo->getType()->isDependentType()) { |
| if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(), |
| PDiag(diag::err_second_parameter_to_va_arg_incomplete) |
| << TInfo->getTypeLoc().getSourceRange())) |
| return ExprError(); |
| |
| if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(), |
| TInfo->getType(), |
| PDiag(diag::err_second_parameter_to_va_arg_abstract) |
| << TInfo->getTypeLoc().getSourceRange())) |
| return ExprError(); |
| |
| if (!TInfo->getType().isPODType(Context)) { |
| Diag(TInfo->getTypeLoc().getBeginLoc(), |
| TInfo->getType()->isObjCLifetimeType() |
| ? diag::warn_second_parameter_to_va_arg_ownership_qualified |
| : diag::warn_second_parameter_to_va_arg_not_pod) |
| << TInfo->getType() |
| << TInfo->getTypeLoc().getSourceRange(); |
| } |
| |
| // Check for va_arg where arguments of the given type will be promoted |
| // (i.e. this va_arg is guaranteed to have undefined behavior). |
| QualType PromoteType; |
| if (TInfo->getType()->isPromotableIntegerType()) { |
| PromoteType = Context.getPromotedIntegerType(TInfo->getType()); |
| if (Context.typesAreCompatible(PromoteType, TInfo->getType())) |
| PromoteType = QualType(); |
| } |
| if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float)) |
| PromoteType = Context.DoubleTy; |
| if (!PromoteType.isNull()) |
| Diag(TInfo->getTypeLoc().getBeginLoc(), |
| diag::warn_second_parameter_to_va_arg_never_compatible) |
| << TInfo->getType() |
| << PromoteType |
| << TInfo->getTypeLoc().getSourceRange(); |
| } |
| |
| QualType T = TInfo->getType().getNonLValueExprType(Context); |
| return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T)); |
| } |
| |
| ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) { |
| // The type of __null will be int or long, depending on the size of |
| // pointers on the target. |
| QualType Ty; |
| unsigned pw = Context.getTargetInfo().getPointerWidth(0); |
| if (pw == Context.getTargetInfo().getIntWidth()) |
| Ty = Context.IntTy; |
| else if (pw == Context.getTargetInfo().getLongWidth()) |
| Ty = Context.LongTy; |
| else if (pw == Context.getTargetInfo().getLongLongWidth()) |
| Ty = Context.LongLongTy; |
| else { |
| llvm_unreachable("I don't know size of pointer!"); |
| } |
| |
| return Owned(new (Context) GNUNullExpr(Ty, TokenLoc)); |
| } |
| |
| static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType, |
| Expr *SrcExpr, FixItHint &Hint) { |
| if (!SemaRef.getLangOptions().ObjC1) |
| return; |
| |
| const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>(); |
| if (!PT) |
| return; |
| |
| // Check if the destination is of type 'id'. |
| if (!PT->isObjCIdType()) { |
| // Check if the destination is the 'NSString' interface. |
| const ObjCInterfaceDecl *ID = PT->getInterfaceDecl(); |
| if (!ID || !ID->getIdentifier()->isStr("NSString")) |
| return; |
| } |
| |
| // Ignore any parens, implicit casts (should only be |
| // array-to-pointer decays), and not-so-opaque values. The last is |
| // important for making this trigger for property assignments. |
| SrcExpr = SrcExpr->IgnoreParenImpCasts(); |
| if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr)) |
| if (OV->getSourceExpr()) |
| SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts(); |
| |
| StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr); |
| if (!SL || !SL->isAscii()) |
| return; |
| |
| Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@"); |
| } |
| |
| bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, |
| SourceLocation Loc, |
| QualType DstType, QualType SrcType, |
| Expr *SrcExpr, AssignmentAction Action, |
| bool *Complained) { |
| if (Complained) |
| *Complained = false; |
| |
| // Decode the result (notice that AST's are still created for extensions). |
| bool CheckInferredResultType = false; |
| bool isInvalid = false; |
| unsigned DiagKind; |
| FixItHint Hint; |
| ConversionFixItGenerator ConvHints; |
| bool MayHaveConvFixit = false; |
| bool MayHaveFunctionDiff = false; |
| |
| switch (ConvTy) { |
| default: llvm_unreachable("Unknown conversion type"); |
| case Compatible: return false; |
| case PointerToInt: |
| DiagKind = diag::ext_typecheck_convert_pointer_int; |
| ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); |
| MayHaveConvFixit = true; |
| break; |
| case IntToPointer: |
| DiagKind = diag::ext_typecheck_convert_int_pointer; |
| ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); |
| MayHaveConvFixit = true; |
| break; |
| case IncompatiblePointer: |
| MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint); |
| DiagKind = diag::ext_typecheck_convert_incompatible_pointer; |
| CheckInferredResultType = DstType->isObjCObjectPointerType() && |
| SrcType->isObjCObjectPointerType(); |
| if (Hint.isNull() && !CheckInferredResultType) { |
| ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); |
| } |
| MayHaveConvFixit = true; |
| break; |
| case IncompatiblePointerSign: |
| DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign; |
| break; |
| case FunctionVoidPointer: |
| DiagKind = diag::ext_typecheck_convert_pointer_void_func; |
| break; |
| case IncompatiblePointerDiscardsQualifiers: { |
| // Perform array-to-pointer decay if necessary. |
| if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType); |
| |
| Qualifiers lhq = SrcType->getPointeeType().getQualifiers(); |
| Qualifiers rhq = DstType->getPointeeType().getQualifiers(); |
| if (lhq.getAddressSpace() != rhq.getAddressSpace()) { |
| DiagKind = diag::err_typecheck_incompatible_address_space; |
| break; |
| |
| |
| } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) { |
| DiagKind = diag::err_typecheck_incompatible_ownership; |
| break; |
| } |
| |
| llvm_unreachable("unknown error case for discarding qualifiers!"); |
| // fallthrough |
| } |
| case CompatiblePointerDiscardsQualifiers: |
| // If the qualifiers lost were because we were applying the |
| // (deprecated) C++ conversion from a string literal to a char* |
| // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME: |
| // Ideally, this check would be performed in |
| // checkPointerTypesForAssignment. However, that would require a |
| // bit of refactoring (so that the second argument is an |
| // expression, rather than a type), which should be done as part |
| // of a larger effort to fix checkPointerTypesForAssignment for |
| // C++ semantics. |
| if (getLangOptions().CPlusPlus && |
| IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType)) |
| return false; |
| DiagKind = diag::ext_typecheck_convert_discards_qualifiers; |
| break; |
| case IncompatibleNestedPointerQualifiers: |
| DiagKind = diag::ext_nested_pointer_qualifier_mismatch; |
| break; |
| case IntToBlockPointer: |
| DiagKind = diag::err_int_to_block_pointer; |
| break; |
| case IncompatibleBlockPointer: |
| DiagKind = diag::err_typecheck_convert_incompatible_block_pointer; |
| break; |
| case IncompatibleObjCQualifiedId: |
| // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since |
| // it can give a more specific diagnostic. |
| DiagKind = diag::warn_incompatible_qualified_id; |
| break; |
| case IncompatibleVectors: |
| DiagKind = diag::warn_incompatible_vectors; |
| break; |
| case IncompatibleObjCWeakRef: |
| DiagKind = diag::err_arc_weak_unavailable_assign; |
| break; |
| case Incompatible: |
| DiagKind = diag::err_typecheck_convert_incompatible; |
| ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); |
| MayHaveConvFixit = true; |
| isInvalid = true; |
| MayHaveFunctionDiff = true; |
| break; |
| } |
| |
| QualType FirstType, SecondType; |
| switch (Action) { |
| case AA_Assigning: |
| case AA_Initializing: |
| // The destination type comes first. |
| FirstType = DstType; |
| SecondType = SrcType; |
| break; |
| |
| case AA_Returning: |
| case AA_Passing: |
| case AA_Converting: |
| case AA_Sending: |
| case AA_Casting: |
| // The source type comes first. |
| FirstType = SrcType; |
| SecondType = DstType; |
| break; |
| } |
| |
| PartialDiagnostic FDiag = PDiag(DiagKind); |
| FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange(); |
| |
| // If we can fix the conversion, suggest the FixIts. |
| assert(ConvHints.isNull() || Hint.isNull()); |
| if (!ConvHints.isNull()) { |
| for (llvm::SmallVector<FixItHint, 1>::iterator |
| HI = ConvHints.Hints.begin(), HE = ConvHints.Hints.end(); |
| HI != HE; ++HI) |
| FDiag << *HI; |
| } else { |
| FDiag << Hint; |
| } |
| if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); } |
| |
| if (MayHaveFunctionDiff) |
| HandleFunctionTypeMismatch(FDiag, SecondType, FirstType); |
| |
| Diag(Loc, FDiag); |
| |
| if (SecondType == Context.OverloadTy) |
| NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression, |
| FirstType); |
| |
| if (CheckInferredResultType) |
| EmitRelatedResultTypeNote(SrcExpr); |
| |
| if (Complained) |
| *Complained = true; |
| return isInvalid; |
| } |
| |
| bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result, |
| unsigned DiagID, bool AllowFold) { |
| // Circumvent ICE checking in C++11 to avoid evaluating the expression twice |
| // in the non-ICE case. |
| if (!getLangOptions().CPlusPlus0x) { |
| if (E->isIntegerConstantExpr(Context)) { |
| if (Result) |
| *Result = E->EvaluateKnownConstInt(Context); |
| return false; |
| } |
| } |
| |
| Expr::EvalResult EvalResult; |
| llvm::SmallVector<PartialDiagnosticAt, 8> Notes; |
| EvalResult.Diag = &Notes; |
| |
| // Try to evaluate the expression, and produce diagnostics explaining why it's |
| // not a constant expression as a side-effect. |
| bool Folded = E->EvaluateAsRValue(EvalResult, Context) && |
| EvalResult.Val.isInt() && !EvalResult.HasSideEffects; |
| |
| // In C++11, we can rely on diagnostics being produced for any expression |
| // which is not a constant expression. If no diagnostics were produced, then |
| // this is a constant expression. |
| if (Folded && getLangOptions().CPlusPlus0x && Notes.empty()) { |
| if (Result) |
| *Result = EvalResult.Val.getInt(); |
| return false; |
| } |
| |
| if (!Folded || !AllowFold) { |
| Diag(E->getSourceRange().getBegin(), |
| DiagID ? DiagID : unsigned(diag::err_expr_not_ice)) |
| << E->getSourceRange(); |
| |
| // We only show the notes if they're not the usual "invalid subexpression" |
| // or if they are actually in a subexpression. |
| if (Notes.size() != 1 || |
| Notes[0].second.getDiagID() != diag::note_invalid_subexpr_in_const_expr |
| || Notes[0].first != E->IgnoreParens()->getExprLoc()) { |
| for (unsigned I = 0, N = Notes.size(); I != N; ++I) |
| Diag(Notes[I].first, Notes[I].second); |
| } |
| |
| return true; |
| } |
| |
| Diag(E->getSourceRange().getBegin(), diag::ext_expr_not_ice) |
| << E->getSourceRange(); |
| |
| if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice, E->getExprLoc()) |
| != DiagnosticsEngine::Ignored) |
| for (unsigned I = 0, N = Notes.size(); I != N; ++I) |
| Diag(Notes[I].first, Notes[I].second); |
| |
| if (Result) |
| *Result = EvalResult.Val.getInt(); |
| return false; |
| } |
| |
| void |
| Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) { |
| ExprEvalContexts.push_back( |
| ExpressionEvaluationContextRecord(NewContext, |
| ExprCleanupObjects.size(), |
| ExprNeedsCleanups)); |
| ExprNeedsCleanups = false; |
| } |
| |
| void Sema::PopExpressionEvaluationContext() { |
| // Pop the current expression evaluation context off the stack. |
| ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back(); |
| ExprEvalContexts.pop_back(); |
| |
| if (Rec.Context == PotentiallyPotentiallyEvaluated) { |
| if (Rec.PotentiallyReferenced) { |
| // Mark any remaining declarations in the current position of the stack |
| // as "referenced". If they were not meant to be referenced, semantic |
| // analysis would have eliminated them (e.g., in ActOnCXXTypeId). |
| for (PotentiallyReferencedDecls::iterator |
| I = Rec.PotentiallyReferenced->begin(), |
| IEnd = Rec.PotentiallyReferenced->end(); |
| I != IEnd; ++I) |
| MarkDeclarationReferenced(I->first, I->second); |
| } |
| |
| if (Rec.PotentiallyDiagnosed) { |
| // Emit any pending diagnostics. |
| for (PotentiallyEmittedDiagnostics::iterator |
| I = Rec.PotentiallyDiagnosed->begin(), |
| IEnd = Rec.PotentiallyDiagnosed->end(); |
| I != IEnd; ++I) |
| Diag(I->first, I->second); |
| } |
| } |
| |
| // When are coming out of an unevaluated context, clear out any |
| // temporaries that we may have created as part of the evaluation of |
| // the expression in that context: they aren't relevant because they |
| // will never be constructed. |
| if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) { |
| ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects, |
| ExprCleanupObjects.end()); |
| ExprNeedsCleanups = Rec.ParentNeedsCleanups; |
| |
| // Otherwise, merge the contexts together. |
| } else { |
| ExprNeedsCleanups |= Rec.ParentNeedsCleanups; |
| } |
| |
| // Destroy the popped expression evaluation record. |
| Rec.Destroy(); |
| } |
| |
| void Sema::DiscardCleanupsInEvaluationContext() { |
| ExprCleanupObjects.erase( |
| ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects, |
| ExprCleanupObjects.end()); |
| ExprNeedsCleanups = false; |
| } |
| |
| /// \brief Note that the given declaration was referenced in the source code. |
| /// |
| /// This routine should be invoke whenever a given declaration is referenced |
| /// in the source code, and where that reference occurred. If this declaration |
| /// reference means that the the declaration is used (C++ [basic.def.odr]p2, |
| /// C99 6.9p3), then the declaration will be marked as used. |
| /// |
| /// \param Loc the location where the declaration was referenced. |
| /// |
| /// \param D the declaration that has been referenced by the source code. |
| void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) { |
| assert(D && "No declaration?"); |
| |
| D->setReferenced(); |
| |
| if (D->isUsed(false)) |
| return; |
| |
| // Mark a parameter or variable declaration "used", regardless of whether |
| // we're in a template or not. The reason for this is that unevaluated |
| // expressions (e.g. (void)sizeof()) constitute a use for warning purposes |
| // (-Wunused-variables and -Wunused-parameters) |
| if (isa<ParmVarDecl>(D) || |
| (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) { |
| D->setUsed(); |
| return; |
| } |
| |
| if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) |
| return; |
| |
| // Do not mark anything as "used" within a dependent context; wait for |
| // an instantiation. |
| if (CurContext->isDependentContext()) |
| return; |
| |
| switch (ExprEvalContexts.back().Context) { |
| case Unevaluated: |
| // We are in an expression that is not potentially evaluated; do nothing. |
| return; |
| |
| case ConstantEvaluated: |
| // We are in an expression that will be evaluated during translation; in |
| // C++11, we need to define any functions which are used in case they're |
| // constexpr, whereas in C++98, we only need to define static data members |
| // of class templates. |
| if (!getLangOptions().CPlusPlus || |
| (!getLangOptions().CPlusPlus0x && !isa<VarDecl>(D))) |
| return; |
| break; |
| |
| case PotentiallyEvaluated: |
| // We are in a potentially-evaluated expression, so this declaration is |
| // "used"; handle this below. |
| break; |
| |
| case PotentiallyPotentiallyEvaluated: |
| // We are in an expression that may be potentially evaluated; queue this |
| // declaration reference until we know whether the expression is |
| // potentially evaluated. |
| ExprEvalContexts.back().addReferencedDecl(Loc, D); |
| return; |
| |
| case PotentiallyEvaluatedIfUsed: |
| // Referenced declarations will only be used if the construct in the |
| // containing expression is used. |
| return; |
| } |
| |
| // Note that this declaration has been used. |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { |
| if (Constructor->isDefaulted()) { |
| if (Constructor->isDefaultConstructor()) { |
| if (Constructor->isTrivial()) |
| return; |
| if (!Constructor->isUsed(false)) |
| DefineImplicitDefaultConstructor(Loc, Constructor); |
| } else if (Constructor->isCopyConstructor()) { |
| if (!Constructor->isUsed(false)) |
| DefineImplicitCopyConstructor(Loc, Constructor); |
| } else if (Constructor->isMoveConstructor()) { |
| if (!Constructor->isUsed(false)) |
| DefineImplicitMoveConstructor(Loc, Constructor); |
| } |
| } |
| |
| MarkVTableUsed(Loc, Constructor->getParent()); |
| } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { |
| if (Destructor->isDefaulted() && !Destructor->isUsed(false)) |
| DefineImplicitDestructor(Loc, Destructor); |
| if (Destructor->isVirtual()) |
| MarkVTableUsed(Loc, Destructor->getParent()); |
| } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) { |
| if (MethodDecl->isDefaulted() && MethodDecl->isOverloadedOperator() && |
| MethodDecl->getOverloadedOperator() == OO_Equal) { |
| if (!MethodDecl->isUsed(false)) { |
| if (MethodDecl->isCopyAssignmentOperator()) |
| DefineImplicitCopyAssignment(Loc, MethodDecl); |
| else |
| DefineImplicitMoveAssignment(Loc, MethodDecl); |
| } |
| } else if (MethodDecl->isVirtual()) |
| MarkVTableUsed(Loc, MethodDecl->getParent()); |
| } |
| if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { |
| // Recursive functions should be marked when used from another function. |
| if (CurContext == Function) return; |
| |
| // Implicit instantiation of function templates and member functions of |
| // class templates. |
| if (Function->isImplicitlyInstantiable()) { |
| bool AlreadyInstantiated = false; |
| if (FunctionTemplateSpecializationInfo *SpecInfo |
| = Function->getTemplateSpecializationInfo()) { |
| if (SpecInfo->getPointOfInstantiation().isInvalid()) |
| SpecInfo->setPointOfInstantiation(Loc); |
| else if (SpecInfo->getTemplateSpecializationKind() |
| == TSK_ImplicitInstantiation) |
| AlreadyInstantiated = true; |
| } else if (MemberSpecializationInfo *MSInfo |
| = Function->getMemberSpecializationInfo()) { |
| if (MSInfo->getPointOfInstantiation().isInvalid()) |
| MSInfo->setPointOfInstantiation(Loc); |
| else if (MSInfo->getTemplateSpecializationKind() |
| == TSK_ImplicitInstantiation) |
| AlreadyInstantiated = true; |
| } |
| |
| if (!AlreadyInstantiated) { |
| if (isa<CXXRecordDecl>(Function->getDeclContext()) && |
| cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass()) |
| PendingLocalImplicitInstantiations.push_back(std::make_pair(Function, |
| Loc)); |
| else if (Function->getTemplateInstantiationPattern()->isConstexpr()) |
| // Do not defer instantiations of constexpr functions, to avoid the |
| // expression evaluator needing to call back into Sema if it sees a |
| // call to such a function. |
| InstantiateFunctionDefinition(Loc, Function); |
| else |
| PendingInstantiations.push_back(std::make_pair(Function, Loc)); |
| } |
| } else { |
| // Walk redefinitions, as some of them may be instantiable. |
| for (FunctionDecl::redecl_iterator i(Function->redecls_begin()), |
| e(Function->redecls_end()); i != e; ++i) { |
| if (!i->isUsed(false) && i->isImplicitlyInstantiable()) |
| MarkDeclarationReferenced(Loc, *i); |
| } |
| } |
| |
| // Keep track of used but undefined functions. |
| if (!Function->isPure() && !Function->hasBody() && |
| Function->getLinkage() != ExternalLinkage) { |
| SourceLocation &old = UndefinedInternals[Function->getCanonicalDecl()]; |
| if (old.isInvalid()) old = Loc; |
| } |
| |
| Function->setUsed(true); |
| return; |
| } |
| |
| if (VarDecl *Var = dyn_cast<VarDecl>(D)) { |
| // Implicit instantiation of static data members of class templates. |
| if (Var->isStaticDataMember() && |
| Var->getInstantiatedFromStaticDataMember()) { |
| MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo(); |
| assert(MSInfo && "Missing member specialization information?"); |
| if (MSInfo->getPointOfInstantiation().isInvalid() && |
| MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) { |
| MSInfo->setPointOfInstantiation(Loc); |
| // This is a modification of an existing AST node. Notify listeners. |
| if (ASTMutationListener *L = getASTMutationListener()) |
| L->StaticDataMemberInstantiated(Var); |
| if (Var->isUsableInConstantExpressions()) |
| // Do not defer instantiations of variables which could be used in a |
| // constant expression. |
| InstantiateStaticDataMemberDefinition(Loc, Var); |
| else |
| PendingInstantiations.push_back(std::make_pair(Var, Loc)); |
| } |
| } |
| |
| // Keep track of used but undefined variables. We make a hole in |
| // the warning for static const data members with in-line |
| // initializers. |
| if (Var->hasDefinition() == VarDecl::DeclarationOnly |
| && Var->getLinkage() != ExternalLinkage |
| && !(Var->isStaticDataMember() && Var->hasInit())) { |
| SourceLocation &old = UndefinedInternals[Var->getCanonicalDecl()]; |
| if (old.isInvalid()) old = Loc; |
| } |
| |
| D->setUsed(true); |
| return; |
| } |
| } |
| |
| namespace { |
| // Mark all of the declarations referenced |
| // FIXME: Not fully implemented yet! We need to have a better understanding |
| // of when we're entering |
| class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> { |
| Sema &S; |
| SourceLocation Loc; |
| |
| public: |
| typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited; |
| |
| MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { } |
| |
| bool TraverseTemplateArgument(const TemplateArgument &Arg); |
| bool TraverseRecordType(RecordType *T); |
| }; |
| } |
| |
| bool MarkReferencedDecls::TraverseTemplateArgument( |
| const TemplateArgument &Arg) { |
| if (Arg.getKind() == TemplateArgument::Declaration) { |
| S.MarkDeclarationReferenced(Loc, Arg.getAsDecl()); |
| } |
| |
| return Inherited::TraverseTemplateArgument(Arg); |
| } |
| |
| bool MarkReferencedDecls::TraverseRecordType(RecordType *T) { |
| if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) { |
| const TemplateArgumentList &Args = Spec->getTemplateArgs(); |
| return TraverseTemplateArguments(Args.data(), Args.size()); |
| } |
| |
| return true; |
| } |
| |
| void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) { |
| MarkReferencedDecls Marker(*this, Loc); |
| Marker.TraverseType(Context.getCanonicalType(T)); |
| } |
| |
| namespace { |
| /// \brief Helper class that marks all of the declarations referenced by |
| /// potentially-evaluated subexpressions as "referenced". |
| class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> { |
| Sema &S; |
| |
| public: |
| typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited; |
| |
| explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { } |
| |
| void VisitDeclRefExpr(DeclRefExpr *E) { |
| S.MarkDeclarationReferenced(E->getLocation(), E->getDecl()); |
| } |
| |
| void VisitMemberExpr(MemberExpr *E) { |
| S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl()); |
| Inherited::VisitMemberExpr(E); |
| } |
| |
| void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { |
| S.MarkDeclarationReferenced(E->getLocStart(), |
| const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor())); |
| Visit(E->getSubExpr()); |
| } |
| |
| void VisitCXXNewExpr(CXXNewExpr *E) { |
| if (E->getConstructor()) |
| S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor()); |
| if (E->getOperatorNew()) |
| S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew()); |
| if (E->getOperatorDelete()) |
| S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete()); |
| Inherited::VisitCXXNewExpr(E); |
| } |
| |
| void VisitCXXDeleteExpr(CXXDeleteExpr *E) { |
| if (E->getOperatorDelete()) |
| S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete()); |
| QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType()); |
| if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl()); |
| S.MarkDeclarationReferenced(E->getLocStart(), |
| S.LookupDestructor(Record)); |
| } |
| |
| Inherited::VisitCXXDeleteExpr(E); |
| } |
| |
| void VisitCXXConstructExpr(CXXConstructExpr *E) { |
| S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor()); |
| Inherited::VisitCXXConstructExpr(E); |
| } |
| |
| void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) { |
| S.MarkDeclarationReferenced(E->getLocation(), E->getDecl()); |
| } |
| |
| void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) { |
| Visit(E->getExpr()); |
| } |
| }; |
| } |
| |
| /// \brief Mark any declarations that appear within this expression or any |
| /// potentially-evaluated subexpressions as "referenced". |
| void Sema::MarkDeclarationsReferencedInExpr(Expr *E) { |
| EvaluatedExprMarker(*this).Visit(E); |
| } |
| |
| /// \brief Emit a diagnostic that describes an effect on the run-time behavior |
| /// of the program being compiled. |
| /// |
| /// This routine emits the given diagnostic when the code currently being |
| /// type-checked is "potentially evaluated", meaning that there is a |
| /// possibility that the code will actually be executable. Code in sizeof() |
| /// expressions, code used only during overload resolution, etc., are not |
| /// potentially evaluated. This routine will suppress such diagnostics or, |
| /// in the absolutely nutty case of potentially potentially evaluated |
| /// expressions (C++ typeid), queue the diagnostic to potentially emit it |
| /// later. |
| /// |
| /// This routine should be used for all diagnostics that describe the run-time |
| /// behavior of a program, such as passing a non-POD value through an ellipsis. |
| /// Failure to do so will likely result in spurious diagnostics or failures |
| /// during overload resolution or within sizeof/alignof/typeof/typeid. |
| bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement, |
| const PartialDiagnostic &PD) { |
| switch (ExprEvalContexts.back().Context) { |
| case Unevaluated: |
| // The argument will never be evaluated, so don't complain. |
| break; |
| |
| case ConstantEvaluated: |
| // Relevant diagnostics should be produced by constant evaluation. |
| break; |
| |
| case PotentiallyEvaluated: |
| case PotentiallyEvaluatedIfUsed: |
| if (Statement && getCurFunctionOrMethodDecl()) { |
| FunctionScopes.back()->PossiblyUnreachableDiags. |
| push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement)); |
| } |
| else |
| Diag(Loc, PD); |
| |
| return true; |
| |
| case PotentiallyPotentiallyEvaluated: |
| ExprEvalContexts.back().addDiagnostic(Loc, PD); |
| break; |
| } |
| |
| return false; |
| } |
| |
| bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc, |
| CallExpr *CE, FunctionDecl *FD) { |
| if (ReturnType->isVoidType() || !ReturnType->isIncompleteType()) |
| return false; |
| |
| PartialDiagnostic Note = |
| FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here) |
| << FD->getDeclName() : PDiag(); |
| SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation(); |
| |
| if (RequireCompleteType(Loc, ReturnType, |
| FD ? |
| PDiag(diag::err_call_function_incomplete_return) |
| << CE->getSourceRange() << FD->getDeclName() : |
| PDiag(diag::err_call_incomplete_return) |
| << CE->getSourceRange(), |
| std::make_pair(NoteLoc, Note))) |
| return true; |
| |
| return false; |
| } |
| |
| // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses |
| // will prevent this condition from triggering, which is what we want. |
| void Sema::DiagnoseAssignmentAsCondition(Expr *E) { |
| SourceLocation Loc; |
| |
| unsigned diagnostic = diag::warn_condition_is_assignment; |
| bool IsOrAssign = false; |
| |
| if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) { |
| if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign) |
| return; |
| |
| IsOrAssign = Op->getOpcode() == BO_OrAssign; |
| |
| // Greylist some idioms by putting them into a warning subcategory. |
| if (ObjCMessageExpr *ME |
| = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) { |
| Selector Sel = ME->getSelector(); |
| |
| // self = [<foo> init...] |
| if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init")) |
| diagnostic = diag::warn_condition_is_idiomatic_assignment; |
| |
| // <foo> = [<bar> nextObject] |
| else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject") |
| diagnostic = diag::warn_condition_is_idiomatic_assignment; |
| } |
| |
| Loc = Op->getOperatorLoc(); |
| } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) { |
| if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual) |
| return; |
| |
| IsOrAssign = Op->getOperator() == OO_PipeEqual; |
| Loc = Op->getOperatorLoc(); |
| } else { |
| // Not an assignment. |
| return; |
| } |
| |
| Diag(Loc, diagnostic) << E->getSourceRange(); |
| |
| SourceLocation Open = E->getSourceRange().getBegin(); |
| SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd()); |
| Diag(Loc, diag::note_condition_assign_silence) |
| << FixItHint::CreateInsertion(Open, "(") |
| << FixItHint::CreateInsertion(Close, ")"); |
| |
| if (IsOrAssign) |
| Diag(Loc, diag::note_condition_or_assign_to_comparison) |
| << FixItHint::CreateReplacement(Loc, "!="); |
| else |
| Diag(Loc, diag::note_condition_assign_to_comparison) |
| << FixItHint::CreateReplacement(Loc, "=="); |
| } |
| |
| /// \brief Redundant parentheses over an equality comparison can indicate |
| /// that the user intended an assignment used as condition. |
| void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) { |
| // Don't warn if the parens came from a macro. |
| SourceLocation parenLoc = ParenE->getLocStart(); |
| if (parenLoc.isInvalid() || parenLoc.isMacroID()) |
| return; |
| // Don't warn for dependent expressions. |
| if (ParenE->isTypeDependent()) |
| return; |
| |
| Expr *E = ParenE->IgnoreParens(); |
| |
| if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E)) |
| if (opE->getOpcode() == BO_EQ && |
| opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context) |
| == Expr::MLV_Valid) { |
| SourceLocation Loc = opE->getOperatorLoc(); |
| |
| Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange(); |
| Diag(Loc, diag::note_equality_comparison_silence) |
| << FixItHint::CreateRemoval(ParenE->getSourceRange().getBegin()) |
| << FixItHint::CreateRemoval(ParenE->getSourceRange().getEnd()); |
| Diag(Loc, diag::note_equality_comparison_to_assign) |
| << FixItHint::CreateReplacement(Loc, "="); |
| } |
| } |
| |
| ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) { |
| DiagnoseAssignmentAsCondition(E); |
| if (ParenExpr *parenE = dyn_cast<ParenExpr>(E)) |
| DiagnoseEqualityWithExtraParens(parenE); |
| |
| ExprResult result = CheckPlaceholderExpr(E); |
| if (result.isInvalid()) return ExprError(); |
| E = result.take(); |
| |
| if (!E->isTypeDependent()) { |
| if (getLangOptions().CPlusPlus) |
| return CheckCXXBooleanCondition(E); // C++ 6.4p4 |
| |
| ExprResult ERes = DefaultFunctionArrayLvalueConversion(E); |
| if (ERes.isInvalid()) |
| return ExprError(); |
| E = ERes.take(); |
| |
| QualType T = E->getType(); |
| if (!T->isScalarType()) { // C99 6.8.4.1p1 |
| Diag(Loc, diag::err_typecheck_statement_requires_scalar) |
| << T << E->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| |
| return Owned(E); |
| } |
| |
| ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc, |
| Expr *SubExpr) { |
| if (!SubExpr) |
| return ExprError(); |
| |
| return CheckBooleanCondition(SubExpr, Loc); |
| } |
| |
| namespace { |
| /// A visitor for rebuilding a call to an __unknown_any expression |
| /// to have an appropriate type. |
| struct RebuildUnknownAnyFunction |
| : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> { |
| |
| Sema &S; |
| |
| RebuildUnknownAnyFunction(Sema &S) : S(S) {} |
| |
| ExprResult VisitStmt(Stmt *S) { |
| llvm_unreachable("unexpected statement!"); |
| return ExprError(); |
| } |
| |
| ExprResult VisitExpr(Expr *E) { |
| S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call) |
| << E->getSourceRange(); |
| return ExprError(); |
| } |
| |
| /// Rebuild an expression which simply semantically wraps another |
| /// expression which it shares the type and value kind of. |
| template <class T> ExprResult rebuildSugarExpr(T *E) { |
| ExprResult SubResult = Visit(E->getSubExpr()); |
| if (SubResult.isInvalid()) return ExprError(); |
| |
| Expr *SubExpr = SubResult.take(); |
| E->setSubExpr(SubExpr); |
| E->setType(SubExpr->getType()); |
| E->setValueKind(SubExpr->getValueKind()); |
| assert(E->getObjectKind() == OK_Ordinary); |
| return E; |
| } |
| |
| ExprResult VisitParenExpr(ParenExpr *E) { |
| return rebuildSugarExpr(E); |
| } |
| |
| ExprResult VisitUnaryExtension(UnaryOperator *E) { |
| return rebuildSugarExpr(E); |
| } |
| |
| ExprResult VisitUnaryAddrOf(UnaryOperator *E) { |
| ExprResult SubResult = Visit(E->getSubExpr()); |
| if (SubResult.isInvalid()) return ExprError(); |
| |
| Expr *SubExpr = SubResult.take(); |
| E->setSubExpr(SubExpr); |
| E->setType(S.Context.getPointerType(SubExpr->getType())); |
| assert(E->getValueKind() == VK_RValue); |
| assert(E->getObjectKind() == OK_Ordinary); |
| return E; |
| } |
| |
| ExprResult resolveDecl(Expr *E, ValueDecl *VD) { |
| if (!isa<FunctionDecl>(VD)) return VisitExpr(E); |
| |
| E->setType(VD->getType()); |
| |
| assert(E->getValueKind() == VK_RValue); |
| if (S.getLangOptions().CPlusPlus && |
| !(isa<CXXMethodDecl>(VD) && |
| cast<CXXMethodDecl>(VD)->isInstance())) |
| E->setValueKind(VK_LValue); |
| |
| return E; |
| } |
| |
| ExprResult VisitMemberExpr(MemberExpr *E) { |
| return resolveDecl(E, E->getMemberDecl()); |
| } |
| |
| ExprResult VisitDeclRefExpr(DeclRefExpr *E) { |
| return resolveDecl(E, E->getDecl()); |
| } |
| }; |
| } |
| |
| /// Given a function expression of unknown-any type, try to rebuild it |
| /// to have a function type. |
| static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) { |
| ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr); |
| if (Result.isInvalid()) return ExprError(); |
| return S.DefaultFunctionArrayConversion(Result.take()); |
| } |
| |
| namespace { |
| /// A visitor for rebuilding an expression of type __unknown_anytype |
| /// into one which resolves the type directly on the referring |
| /// expression. Strict preservation of the original source |
| /// structure is not a goal. |
| struct RebuildUnknownAnyExpr |
| : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> { |
| |
| Sema &S; |
| |
| /// The current destination type. |
| QualType DestType; |
| |
| RebuildUnknownAnyExpr(Sema &S, QualType CastType) |
| : S(S), DestType(CastType) {} |
| |
| ExprResult VisitStmt(Stmt *S) { |
| llvm_unreachable("unexpected statement!"); |
| return ExprError(); |
| } |
| |
| ExprResult VisitExpr(Expr *E) { |
| S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr) |
| << E->getSourceRange(); |
| return ExprError(); |
| } |
| |
| ExprResult VisitCallExpr(CallExpr *E); |
| ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E); |
| |
| /// Rebuild an expression which simply semantically wraps another |
| /// expression which it shares the type and value kind of. |
| template <class T> ExprResult rebuildSugarExpr(T *E) { |
| ExprResult SubResult = Visit(E->getSubExpr()); |
| if (SubResult.isInvalid()) return ExprError(); |
| Expr *SubExpr = SubResult.take(); |
| E->setSubExpr(SubExpr); |
| E->setType(SubExpr->getType()); |
| E->setValueKind(SubExpr->getValueKind()); |
| assert(E->getObjectKind() == OK_Ordinary); |
| return E; |
| } |
| |
| ExprResult VisitParenExpr(ParenExpr *E) { |
| return rebuildSugarExpr(E); |
| } |
| |
| ExprResult VisitUnaryExtension(UnaryOperator *E) { |
| return rebuildSugarExpr(E); |
| } |
| |
| ExprResult VisitUnaryAddrOf(UnaryOperator *E) { |
| const PointerType *Ptr = DestType->getAs<PointerType>(); |
| if (!Ptr) { |
| S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof) |
| << E->getSourceRange(); |
| return ExprError(); |
| } |
| assert(E->getValueKind() == VK_RValue); |
| assert(E->getObjectKind() == OK_Ordinary); |
| E->setType(DestType); |
| |
| // Build the sub-expression as if it were an object of the pointee type. |
| DestType = Ptr->getPointeeType(); |
| ExprResult SubResult = Visit(E->getSubExpr()); |
| if (SubResult.isInvalid()) return ExprError(); |
| E->setSubExpr(SubResult.take()); |
| return E; |
| } |
| |
| ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E); |
| |
| ExprResult resolveDecl(Expr *E, ValueDecl *VD); |
| |
| ExprResult VisitMemberExpr(MemberExpr *E) { |
| return resolveDecl(E, E->getMemberDecl()); |
| } |
| |
| ExprResult VisitDeclRefExpr(DeclRefExpr *E) { |
| return resolveDecl(E, E->getDecl()); |
| } |
| }; |
| } |
| |
| /// Rebuilds a call expression which yielded __unknown_anytype. |
| ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) { |
| Expr *CalleeExpr = E->getCallee(); |
| |
| enum FnKind { |
| FK_MemberFunction, |
| FK_FunctionPointer, |
| FK_BlockPointer |
| }; |
| |
| FnKind Kind; |
| QualType CalleeType = CalleeExpr->getType(); |
| if (CalleeType == S.Context.BoundMemberTy) { |
| assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E)); |
| Kind = FK_MemberFunction; |
| CalleeType = Expr::findBoundMemberType(CalleeExpr); |
| } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) { |
| CalleeType = Ptr->getPointeeType(); |
| Kind = FK_FunctionPointer; |
| } else { |
| CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType(); |
| Kind = FK_BlockPointer; |
| } |
| const FunctionType *FnType = CalleeType->castAs<FunctionType>(); |
| |
| // Verify that this is a legal result type of a function. |
| if (DestType->isArrayType() || DestType->isFunctionType()) { |
| unsigned diagID = diag::err_func_returning_array_function; |
| if (Kind == FK_BlockPointer) |
| diagID = diag::err_block_returning_array_function; |
| |
| S.Diag(E->getExprLoc(), diagID) |
| << DestType->isFunctionType() << DestType; |
| return ExprError(); |
| } |
| |
| // Otherwise, go ahead and set DestType as the call's result. |
| E->setType(DestType.getNonLValueExprType(S.Context)); |
| E->setValueKind(Expr::getValueKindForType(DestType)); |
| assert(E->getObjectKind() == OK_Ordinary); |
| |
| // Rebuild the function type, replacing the result type with DestType. |
| if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType)) |
| DestType = S.Context.getFunctionType(DestType, |
| Proto->arg_type_begin(), |
| Proto->getNumArgs(), |
| Proto->getExtProtoInfo()); |
| else |
| DestType = S.Context.getFunctionNoProtoType(DestType, |
| FnType->getExtInfo()); |
| |
| // Rebuild the appropriate pointer-to-function type. |
| switch (Kind) { |
| case FK_MemberFunction: |
| // Nothing to do. |
| break; |
| |
| case FK_FunctionPointer: |
| DestType = S.Context.getPointerType(DestType); |
| break; |
| |
| case FK_BlockPointer: |
| DestType = S.Context.getBlockPointerType(DestType); |
| break; |
| } |
| |
| // Finally, we can recurse. |
| ExprResult CalleeResult = Visit(CalleeExpr); |
| if (!CalleeResult.isUsable()) return ExprError(); |
| E->setCallee(CalleeResult.take()); |
| |
| // Bind a temporary if necessary. |
| return S.MaybeBindToTemporary(E); |
| } |
| |
| ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) { |
| // Verify that this is a legal result type of a call. |
| if (DestType->isArrayType() || DestType->isFunctionType()) { |
| S.Diag(E->getExprLoc(), diag::err_func_returning_array_function) |
| << DestType->isFunctionType() << DestType; |
| return ExprError(); |
| } |
| |
| // Rewrite the method result type if available. |
| if (ObjCMethodDecl *Method = E->getMethodDecl()) { |
| assert(Method->getResultType() == S.Context.UnknownAnyTy); |
| Method->setResultType(DestType); |
| } |
| |
| // Change the type of the message. |
| E->setType(DestType.getNonReferenceType()); |
| E->setValueKind(Expr::getValueKindForType(DestType)); |
| |
| return S.MaybeBindToTemporary(E); |
| } |
| |
| ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) { |
| // The only case we should ever see here is a function-to-pointer decay. |
| assert(E->getCastKind() == CK_FunctionToPointerDecay); |
| assert(E->getValueKind() == VK_RValue); |
| assert(E->getObjectKind() == OK_Ordinary); |
| |
| E->setType(DestType); |
| |
| // Rebuild the sub-expression as the pointee (function) type. |
| DestType = DestType->castAs<PointerType>()->getPointeeType(); |
| |
| ExprResult Result = Visit(E->getSubExpr()); |
| if (!Result.isUsable()) return ExprError(); |
| |
| E->setSubExpr(Result.take()); |
| return S.Owned(E); |
| } |
| |
| ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) { |
| ExprValueKind ValueKind = VK_LValue; |
| QualType Type = DestType; |
| |
| // We know how to make this work for certain kinds of decls: |
| |
| // - functions |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) { |
| if (const PointerType *Ptr = Type->getAs<PointerType>()) { |
| DestType = Ptr->getPointeeType(); |
| ExprResult Result = resolveDecl(E, VD); |
| if (Result.isInvalid()) return ExprError(); |
| return S.ImpCastExprToType(Result.take(), Type, |
| CK_FunctionToPointerDecay, VK_RValue); |
| } |
| |
| if (!Type->isFunctionType()) { |
| S.Diag(E->getExprLoc(), diag::err_unknown_any_function) |
| << VD << E->getSourceRange(); |
| return ExprError(); |
| } |
| |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) |
| if (MD->isInstance()) { |
| ValueKind = VK_RValue; |
| Type = S.Context.BoundMemberTy; |
| } |
| |
| // Function references aren't l-values in C. |
| if (!S.getLangOptions().CPlusPlus) |
| ValueKind = VK_RValue; |
| |
| // - variables |
| } else if (isa<VarDecl>(VD)) { |
| if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) { |
| Type = RefTy->getPointeeType(); |
| } else if (Type->isFunctionType()) { |
| S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type) |
| << VD << E->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // - nothing else |
| } else { |
| S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl) |
| << VD << E->getSourceRange(); |
| return ExprError(); |
| } |
| |
| VD->setType(DestType); |
| E->setType(Type); |
| E->setValueKind(ValueKind); |
| return S.Owned(E); |
| } |
| |
| /// Check a cast of an unknown-any type. We intentionally only |
| /// trigger this for C-style casts. |
| ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType, |
| Expr *CastExpr, CastKind &CastKind, |
| ExprValueKind &VK, CXXCastPath &Path) { |
| // Rewrite the casted expression from scratch. |
| ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr); |
| if (!result.isUsable()) return ExprError(); |
| |
| CastExpr = result.take(); |
| VK = CastExpr->getValueKind(); |
| CastKind = CK_NoOp; |
| |
| return CastExpr; |
| } |
| |
| ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) { |
| return RebuildUnknownAnyExpr(*this, ToType).Visit(E); |
| } |
| |
| static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) { |
| Expr *orig = E; |
| unsigned diagID = diag::err_uncasted_use_of_unknown_any; |
| while (true) { |
| E = E->IgnoreParenImpCasts(); |
| if (CallExpr *call = dyn_cast<CallExpr>(E)) { |
| E = call->getCallee(); |
| diagID = diag::err_uncasted_call_of_unknown_any; |
| } else { |
| break; |
| } |
| } |
| |
| SourceLocation loc; |
| NamedDecl *d; |
| if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) { |
| loc = ref->getLocation(); |
| d = ref->getDecl(); |
| } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) { |
| loc = mem->getMemberLoc(); |
| d = mem->getMemberDecl(); |
| } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) { |
| diagID = diag::err_uncasted_call_of_unknown_any; |
| loc = msg->getSelectorStartLoc(); |
| d = msg->getMethodDecl(); |
| if (!d) { |
| S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method) |
| << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector() |
| << orig->getSourceRange(); |
| return ExprError(); |
| } |
| } else { |
| S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr) |
| << E->getSourceRange(); |
| return ExprError(); |
| } |
| |
| S.Diag(loc, diagID) << d << orig->getSourceRange(); |
| |
| // Never recoverable. |
| return ExprError(); |
| } |
| |
| /// Check for operands with placeholder types and complain if found. |
| /// Returns true if there was an error and no recovery was possible. |
| ExprResult Sema::CheckPlaceholderExpr(Expr *E) { |
| const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType(); |
| if (!placeholderType) return Owned(E); |
| |
| switch (placeholderType->getKind()) { |
| |
| // Overloaded expressions. |
| case BuiltinType::Overload: { |
| // Try to resolve a single function template specialization. |
| // This is obligatory. |
| ExprResult result = Owned(E); |
| if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) { |
| return result; |
| |
| // If that failed, try to recover with a call. |
| } else { |
| tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable), |
| /*complain*/ true); |
| return result; |
| } |
| } |
| |
| // Bound member functions. |
| case BuiltinType::BoundMember: { |
| ExprResult result = Owned(E); |
| tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function), |
| /*complain*/ true); |
| return result; |
| } |
| |
| // ARC unbridged casts. |
| case BuiltinType::ARCUnbridgedCast: { |
| Expr *realCast = stripARCUnbridgedCast(E); |
| diagnoseARCUnbridgedCast(realCast); |
| return Owned(realCast); |
| } |
| |
| // Expressions of unknown type. |
| case BuiltinType::UnknownAny: |
| return diagnoseUnknownAnyExpr(*this, E); |
| |
| // Pseudo-objects. |
| case BuiltinType::PseudoObject: |
| return checkPseudoObjectRValue(E); |
| |
| // Everything else should be impossible. |
| #define BUILTIN_TYPE(Id, SingletonId) \ |
| case BuiltinType::Id: |
| #define PLACEHOLDER_TYPE(Id, SingletonId) |
| #include "clang/AST/BuiltinTypes.def" |
| break; |
| } |
| |
| llvm_unreachable("invalid placeholder type!"); |
| } |
| |
| bool Sema::CheckCaseExpression(Expr *E) { |
| if (E->isTypeDependent()) |
| return true; |
| if (E->isValueDependent() || E->isIntegerConstantExpr(Context)) |
| return E->getType()->isIntegralOrEnumerationType(); |
| return false; |
| } |